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ON THE σ2-SCALAR CURVATURE

Yuxin Ge, Chang-Shou Lin & Guofang Wang

Abstract

In this paper, we establish an analytic foundation for a fully
non-linear equation σ2

σ1

= f on manifolds with metrics of positive

scalar curvature and apply it to give a (rough) classification of
such manifolds. A crucial point is a simple observation that this
equation is a degenerate elliptic equation without any condition on
the sign of f and it is elliptic not only for f > 0 but also for f < 0.
By defining a Yamabe constant Y2,1 with respect to this equation,
we show that a manifold with metrics of positive scalar curvature
admits a conformal metric of positive scalar curvature and positive
σ2-scalar curvature if and only if Y2,1 > 0. We give a complete
solution for the corresponding Yamabe problem. Namely, let g0
be a positive scalar curvature metric, then in its conformal class
there is a conformal metric with

σ2(g) = κσ1(g),

for some constant κ. Using these analytic results, we give a rough
classification of the space of manifolds with metrics of positive
scalar curvature.

1. Introduction

Let (M,g0) be a compact Riemannian manifold of dimension n with
metric g0 and [g0] the conformal class of g0. Let Ricg and Rg denote
the Ricci tensor and scalar curvature of a metric g respectively. The
Schouten tensor of the metric g is defined by

Sg =
1

n− 2

(

Ricg −
Rg

2(n − 1)
· g
)

.

The importance of the Schouten tensor in conformal geometry can be
viewed in the following decomposition of the Riemann curvature tensor

Riemg = Wg + Sg ∧© g,

where ∧© is the Kulkani-Nomizu product and Wg is the Weyl tensor.
Note that g−1 ·Wg is invariant in a given conformal class. Therefore, in
a conformal class the Schouten tensor is important.
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The objective of this paper has two-folds. First, we study a class
of fully nonlinear quotient equations relating to the scalar curvature
and the recently introduced σ2-scalar curvature. Then, we apply the
analysis established for this class of equations to study the space of
metrics of positive scalar curvature. Let us first recall the definition of
the σ2-scalar curvature.

For a given 1 ≤ k ≤ n, the σk-scalar curvature or k-scalar curvature
is defined by

σk(g) := σk(g
−1 · Sg),

where g−1 · Sg is locally defined by (g−1 · Sg)
i
j =

∑

k g
ik(Sg)kj and σk is

the kth elementary symmetric function. Here for an n × n symmetric
matrix A we define σk(A) = σk(Λ), where Λ = (λ1, · · · , λn) is the set of
eigenvalues of A. It is clear that σ1(g) is a constant multiple of the scalar
curvature Rg. The σk-scalar curvature σk(g), which was first considered
by Viaclovsky [60], is a natural generalization of the scalar curvature.

In this paper, we focus on the σ2-scalar curvature. One of the reasons
to restrict ourself to σ2-scalar curvature is that σ2(g) still has a varia-
tional structure. This is an observation of Viaclovsky [60] (For k > 2,
σk(g) has a variational structure if and only if the underlying manifold
is locally conformally flat [60],[6]). The variational structure is very
crucial for our paper.

Since [60] and [10], there has been an intensive study for a nonlin-
ear Yamabe problem related to the σk-scalar curvature σk(g), namely,
finding a conformal metric g in a given conformal class [g0] satisfying

(1) σk(g) = c,

where

(2) g ∈ [g0] ∩ Γ+
k .

Here Γ+
k is a convex open cone -the Garding cone- defined by

Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ R

n |σj(Λ) > 0,∀j ≤ k}.
By g ∈ Γ+

k we mean that the Schouten tensor Sg(x) ∈ Γ+
k for any x ∈ M .

g ∈ Γ+
1 is equivalent to that g has positive scalar curvature. Note that

the condition g ∈ Γ+
k guarantees that equation (1) is elliptic.

Equation (1) is a fully nonlinear conformal equation, but it admits
many nice properties, which usually are only true for the semilinear
equations. For example, the local a priori estimates were established in
[26], a Liouville type theorem was given in [45]. The existence problem
of (1) has been intensively studied. For the existence results see [11],
[18], [19], [22], [27], [29], [31], [33], [45], [46], [47] [54], [59], [62]. See
also a recent survey by Viaclovsky [63] and references therein or the
lecture notes of Guan [21]. There are many interesting applications in
geometry, especially in the 4-dimensional case, see for examples [10],
[12], and [64]. See also [22], [23].
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However, till now one can only deal with equations like

(3) σk(g) = f

with condition f ≥ 0 or even f > 0. This has something to do with
the ellipticity of the corresponding equation. With this restriction we
could not use equation (3) to study negative σ2-scalar curvature. (cf.
the work of Gursky and Viaclovsky [34] for metrics in Γk

− and a class of
uniformly elliptic fully nonlinear equations [29].) In this paper, instead
of σ2(g) we consider the quotient type equation

(4)
σ2
σ1

= f.

When f > 0, it was studied recently in [19]. See also [28], [31], [24]
and [54]. The crucial point of this paper is that we can also deal with
the case with negative functions f for (4). In fact, we have

Observation. The operator σ2
σ1

is elliptic in the cone Γ+
1 \ R1 and

concave in Γ+
1 .

For the notation and the proof of this Observation, see Lemma 1.
Recall that the ordinary Yamabe constant is defined

Y1([g0]) = Y1(M, [g0]) := inf
g∈C1([g0])

∫

σ1(g)dvol(g)

(vol(g))
n−2
n

.

We will call it the first Yamabe constant. For simplicity of notation, we
denote Γ+

k ∩ [g0] by Ck([g0]), or even just Ck if there is no confusion. A
conformal class has positive first Yamabe constant if and only if this
class contains a metric of positive scalar curvature. This is a simple,
but important fact in the study of metrics of positive scalar curvature.
As one of applications of our study of equation (4), we will prove a
similar result for the σ2-scalar curvature. From now on we consider
the conformal class [g] with C1 6= ∅ and call a metric of positive scalar
curvature a psc metric. Now we first define a “nonlinear eigenvalue” for
σ2(g), more precisely for a fully nonlinear operator

(5) σ2

(

∇2u+ du⊗ du− |∇u|2
2

g0 + Sg0

)

,

where g = e−2ug0. Define

(6) λ(g0, σ2) = λ(M,g0, σ2) :=







































inf
g∈C1([g0])

∫

σ2(g)dvol(g)
∫

e4udvol(g)
, if n > 4,

∫

σ2(g)dvol(g), if n = 4,

sup
g∈C1([g0])

∫

σ2(g)dvol(g)
∫

e4udvol(g)
, if n = 3.
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One can also define a similar constant λ(g0, σk) for σk. When k = 1,
one can check that λ(g0, σk) is the first eigenvalue of the conformal
Laplacian. Hence we call the constant λ(g0, σ2) nonlinear eigenvalue of
operator (5). Such a nonlinear eigenvalue for fully nonlinear operator
was first considered in [49]. See also [65]. In the context of fully nonlin-
ear conformal operators, it was first considered in a preliminary version
of [27].

Now we define the second conformal Yamabe constant for a conformal
class with psc metrics.

Y2,1([g0]) = Y2,1(M, [g0]) :=







































inf
g∈C1([g0])

∫

σ2(g)dvol(g)
(∫

σ1(g)dvol(g)
)

n−4
n−2

, if n > 4,

∫

σ2(g)dvol(g), if n = 4,

sup
g∈C1([g0])

∫

σ2(g)dvol(g) ×
∫

σ1(g)dvol(g), if n = 3.

We emphasize that the infimum (or supremum) in the definition of λ2

and Y2,1 is taken over C1, not over C2. It is well-known that when
n = 4,

∫

M σ2(g)dvol(g) is a constant in a given conformal class. The
relationship between the sign of λ(g0, σ2) and Y2,1([g0]) will be discussed
in the next section.

Now we state our main analytic results in this paper .

Theorem 1. Assume n ≥ 3. The constant λ(g0, σ2) is achieved,
provided λ(g0, σ2) ≥ 0. More precisely, we have

1) If λ(g0, σ2) > 0, then C2([g0]) is not empty and λ(g0, σ2) > 0 is
achieved by a smooth metric g = e−2ug0 ∈ C2 satisfying

(7) σ2(g) = λe4u.

2) If λ(g0, σ2) = 0, then λ(g0, σ2) = 0 is achieved by a C1,1 metric
g = e−2ug0 ∈ C1 satisfying

σ2(g) = 0.

Here C1 is the closure of C1. Namely, C1 is the space of metrics
with non-negative scalar curvature. With the help of Theorem 1 and
results in [11], [33] and [19] we can solve the Yamabe problem for σ2

σ1

completely.

Theorem 2. Let (Mn, g0) be a compact Riemannian manifold with
g0 ∈ Γ+

1 and n ≥ 3. The following holds
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1) If Y2,1([g0]) > 0, then C2([g0]) is not empty. Moreover there is a
smooth metric g in C2 satisfying

(8)
σ2(g)

σ1(g)
= 1.

2) If Y2,1([g0]) = 0, then there is a C1,1 metric g in C1 satisfying

(9) σ2(g) = 0.

3) If Y2,1([g0]) < 0, then there is a smooth metric g in C1 satisfying

(10) σ2(g) = −σ1(g).

In fact, we can show that Y2,1 is achieved when n > 3. This will be
carried out elsewhere. We remark that in case 3) though the solution
metric g is in C1, it is smooth. One can show that any point x ∈ M with
σ2(g)(x) = 0 (and hence σ1(g)(x) = 0) is Ricci-flat, i.e., Ric(x) = 0.
We believe that g ∈ C1.

A direct consequence of the main analytic results is

Corollary 1. Let (Mn, g0) be a closed Riemannian manifold of di-
mension n > 2 with positive Yamabe constant Y1([g0]) > 0. If Y2,1([g0])
> 0, then there is a metric g ∈ [g0] with g ∈ Γ+

2 , i.e., with

Rg > 0 and σ2(g) > 0.

Note that Y2,1([g0]) > 0 if and only if λ(g0, σ2) > 0. See Lemma 3
below. When n = 4, this result was proved by Chang-Gursky-Yang [10].
Namely, for a closed 4-dimensional manifold M4, if there is a metric g0
with Y1([g0]) > 0 and

(11)

∫

M4

σ2(g0)dvol(g0) > 0,

then there is a metric g ∈ [g0] with Rg > 0 and σ2(g) > 0. Another
direct proof was given in [32]. See also [22] for locally conformally
flat manifolds. Many interesting applications to geometry were given in
these papers, especially in [12]. This result of Chang-Gursky-Yang is in
fact one of our main motivations of this paper. From their result, it is
natural to ask if this is also true for 3 dimensional manifolds. Corollary
1 gives an affirmative answer. For convenience of the reader, we restate
Corollary 1 for n = 3.

Corollary 2. Let (M3, g0) be a closed manifold of dimension 3 with
positive Yamabe constant Y1([g0]) > 0 and g0 ∈ Γ+

1 such that
∫

M3

σ2(g0)dvol(g0) > 0,

then there is a metric g ∈ [g0] with g ∈ Γ+
2 , i.e., with

Rg > 0 and σ2(g) > 0.
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Together with the Hamilton’s result [35] obtained by the Ricci flow,
the Corollary gives

Corollary 3. Let (M3, g0) be a compact 3-dimensional manifold. If
Y1([g0]) > 0 and Y2,1([g0]) > 0, then M is diffeomorphic to a quotient
of the sphere.

The difference between n = 4 and n = 3 is follows: In n = 4, due
to the conformal invariance of

∫

M4 σ2(g)dvol(g), Condition (11) implies
that

∫

M4 σ2(g)dvol(g) > 0 for all g ∈ [g0]. This is not the case for n = 3.

In fact one can show that for any 3-dimensional manifold (M3, g0) there
is always a conformal metric g ∈ [g0] with

∫

M3 σ2(g)dvol(g) < 0 by using
a method given in [20].

We remark that the method given in [32] and [22] can be used to give
another proof of Corollary 1 at least for n > 4. In another direction,
one may ask if the non-emptyness of Γ+

2 implies the positivity of Y2,1.
This question is not easy to answer by only using the methods given in
[32] and [22]. In [19], we showed that the non-emptyness of Γ+

2 implies
the positivity of

inf
g∈C2

(

1
∫

σ1(g)dvol(g))

)
n−4
n−2

∫

σ2(g)dvol(g).

It is clear that Y2,1 is less than or equals to the above constant. With

the analysis established here we can show that the non-emptyness of Γ+
2

implies the positivity of Y2,1.

Theorem 3. Let (M,g) be a compact Riemannian manifold with
positive scalar curvature. The second Yamabe constant is positive if
and only if Γ+

2 is non-empty.

We remark again that the case n = 4 was given in [10]. As men-
tioned above, it is well-known that the positivity of the first Yamabe
constant Y1 is equivalent to the existence of a conformal metric of posi-
tive scalar curvature. Theorem 3 means that Y2,1 has a similar property.
Motivated by this result, we hope to use σ2-scalar curvature to give a
further classification of the manifolds admitting metric with positive
scalar curvature. This is the second aim of this paper. For the further
discussion let us first recall the following definition.

(1+) Closed connected manifolds with a Riemannian metric whose scalar
curvature is non-negative and not identically 0.

(10) Closed connected manifolds with a Riemannian metric with non-
negative scalar curvature, but not in class (1+).

(1−) Closed connected manifolds not in classes (1+) or (10).

There is a remarkable result of Kazdan and Warner obtained in 1975.



ON THE σ2-SCALAR CURVATURE 51

Theorem A (Trichotomy Theorem) ([41], [42]) Let Mn be a closed
connected manifold of dimension n ≥ 3.

1. If M belongs to class (1+), then every smooth function is the scalar
curvature function for some Riemannian metric on M .

2. If M belongs to class (10), then a smooth function f is the scalar
curvature function of some Riemannian metric on M if and only
if f(x) < 0 for some point x ∈ M , or else f = 0. If the scalar
curvature of some g vanishes identically, then g is Ricci flat.

3. If M belongs to class (1−), then a smooth function f is the scalar
curvature function of some Riemannian metric on M if and only
if f(x) < 0 for some point x ∈ M .

The analysis used in the proof of Theorem A is based on the analysis
for the eigenvalue problem for the conformal Laplacian operator

(12) −∆v +
n− 2

4(n − 1)
Rgv = λv,

where ∆ is the Laplacian with respect to g and v is related to u by

v = e−
n−2
2

u. And it is closely related to the famous Yamabe equation

(13) −∆v +
n− 2

4(n − 1)
Rgv = kv

n+2
n−2 ,

where k is a constant. The existence of solutions for (13) is the so-called
Yamabe problem, which was solved by Yamabe, Trudinger, Aubin and
Scheon completely.

From Theorem A or an earlier result of Aubin [2] we know that a
negative function can always be realized as a scalar function of a met-
ric. See also the results of [17] and [50] for the existence of negative
Ricci curvature. The class of (10) is very small and consisting of very
special manifolds, thanks to a result of Futaki [15]. Theorem A also im-
plies that class (1+) is just the class of manifolds which admit a metric
of positive scalar curvature. There are topological obstructions for the
manifolds of positive scalar curvature, see [48] and [38]. This class at-
tracts much attention of geometers for many years, especially after the
work of Gromov-Lawson[20] and Schoen-Yau [53]. The most impor-
tant problem in this field is the Gromov-Lawson-Rosenberg conjecture
which was proved by Stolz [55] in the simply connected case. For this
conjecture, see for instance [51] and [57].

Note that it is well-known that class (1+) is equivalent to

(1′+) Closed connected manifolds with a Riemannian metric whose
scalar curvature is positive.

Now using σ2-scalar curvature we divide (1+) further into 3 sub-
classes:
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(2+) Closed connected manifolds admitting a psc metric whose σ2-
scalar curvature is positive.

(20) Closed connected manifolds admitting a psc metric with non-
negative σ2-scalar curvature, but not in class (2+).

(2−) Closed connected manifolds in (1+), but not in classes (2+) or
(20).

Remark 1. We believe that class (2+) is equivalent to the class
of closed connected manifolds admitting a psc metric whose σ2-scalar
curvature is non-negative and not identically 0. At the moment we could
not prove this equivalence.

Analog to the Trichotomy Theorem of Kazdan-Warner for the scalar
curvature and in view of the analysis established here, we propose the
following

Conjecture (Trichotomy Theorem) Let Mn (n > 2) be a closed
connected manifold in class (1+).

1. If M belongs to class (2+), then for every smooth function f there
is a psc metric g such that fσ1(g) is its σ2-scalar curvature.

2. If M belongs to class (20), then for a smooth function f , M admits
a psc metric g with σ2(g) = fσ1(g) if and only if f(x) < 0 for some
point x ∈ M , or else f = 0.

3. IfM belongs to class (2−), then for a smooth function f , M admits
a psc metric g with σ2(g) = fσ1(g) if and only if f(x) < 0 for some
point x ∈ M .

Though we could not prove this conjecture at moment, we have the
following results support this conjecture.

Theorem 4. Any Riemannian manifold Mn (n ≥ 4) in the class (1+)
admits a metric with non-positive σ2-scalar curvature and non-negative
scalar curvature.

The metric given in Theorem 4 satisfies
∫

σ2(g)dvol(g) < 0 and has
vanishing Ricci curvature at points with σ1(g)(x) = 0.

Theorem 5. Let Mn be a closed connected manifold of dimension
n > 3.

1. If M belongs to class (2+), then for every constant b there is a
metric g (with non-negative scalar curvature when b ≤ 0 and pos-
itive scalar curvature when b > 0) such that bσ1(g) is its σ2-scalar
curvature.

2. If M belongs to class (20), then for a constant b, M admits a met-
ric g (with non-negative scalar curvature when b ≤ 0 and positive
scalar curvature when b > 0) such that σ2(g) = bσ1(g) if and only
if b ≤ 0.
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3. If M belongs to class (2−), then for a constant b, M admits a met-
ric g(with non-negative scalar curvature when b ≤ 0 and positive
scalar curvature when b > 0) such that σ2(g) = bσ1(g) if and only
if b < 0.

The metrics found in Theorem 5 may have points with vanishing σ1-
scalar curvature. At such points its Ricci tensor also vanishes. When
b > 0, then the metric has positive scalar curvature. It is trivial that
the sphere belongs to (2+). By Corollary 3, in 3-dimension, only the
sphere and its quotients belong to (2+) and there are no manifolds in
(20). In 4-dimension, many examples of manifolds with metrics in Γ+

2
can be found in [10]. Those manifolds certainly belong to (2+). One
can prove that S3×S

1 belongs to (20), namely there is no positive scalar
metric on S

3×S
1 with positive σ2-scalar curvature, see Section 7 below.

Like class (10), class (20) should be very small. However, when n > 4,
we have no example of manifolds in class (1+) which do not belong to
(2+). This is somewhat strange. A possible candidate is the manifold
S
6 × H3, where H3 is a compact quotient of the hyperbolic space H

3.
It is easy to check that its product metric gP satisfies that σ1(gP ) > 0
and σ2(gP ) = 0. However, we believe that S6 ×H

3 has a metric g with
σ1(g) > 0 and σ2(g) > 0. See Example 2 in Section 7. Therefore we
may ask

Problem. Is there a topological obstruction for the existence of psc
metric with positive σ2-scalar curvature when n > 4?

For the scalar curvature as mentioned above there are topological
obstructions. What we ask is to find further conditions to distinguish
manifolds between (2+), (20) and (2+) for higher dimensional manifolds.
There is a similar and related problem proposed by Stolz in [56] for fur-
ther obstructions to the existence of metrics with positive Ricci tensor.
For some relationship between the positive Ricci tensor and positive
σk-scalar curvature, see [25]. With our analysis, the problem to find
a topological obstruction for σ2-scalar curvature perhaps might be not
very difficult.

The paper is organized as follows. In Section 2, we show the Ob-
servation and discuss the relationship between λ(g0, σ2) and Y2,1. We
introduce a class of perturbed equations (28) and a Yamabe type flow
(31) in Section 3 and establish local a priori estimates for these equa-
tions and flows in Section 4. In Section 5 we prove the global existence
of the Yamabe type flow and Theorem 1 and Theorem 2. One of an-
other crucial points of this paper, the Yamabe type flow preserves the
positivity of the scalar curvature, will also be proved in this section. In
Section 6, we show Theorem 3. We give the geometric applications in



54 Y. GE, C.-S. LIN & G. WANG

Section 7 by proving Theorems 4 and 5. In the last section, we mention
further applications in similar equations.

Acknowledgments. This project was started several years ago to-
gether with Pengfei Guan. The key observation was discovered by him
and the second named author in their study of fully nonlinear equations.
We would like to thank him for many helpful discussions and encour-
agement. A part of the work was carried out while the first author was
visiting McGill University and he would like to thank the department
and Pengfei Guan for warm hospitality.

After the paper has been circulated and submitted, the first and third
authors were kindly informed by Paul Yang in a conference in CIRM
in June 2007 that Catino and Djadli just announced a similar result to
Corollary 2. The preprint appeared later in Arxiv [9].

We would like to thank the referees for their critical reading and
useful suggestions.

2. Some preliminary facts

Let Sn be the space of n×n real symmetric matrices and F a smooth
function in Sn. By extending F to the whole space of n×n real matrices
by F (A) = F (12 (A + At)), we view F as a function of n × n variables
wij and define

F ij =
∂F

∂wij
.

The quotient function σ2
σ1

can be viewed as a function in Sn as follows.

Let W be a symmetric matrix and ΛW = {λ1, λ2, · · · , λn} its eigen-

values. Then we define σ2
σ1
(W ) = σ2(ΛW )

σ1(ΛW ) . A symmetric matrix is said

to be in Γ+
k if ΛW ∈ Γ+

k . Let R1 be the subspace of Sn consisting of
symmetric matrices of rank 1.

Lemma 1. For 1 < k ≤ n set F = σk
σk−1

. We have

1) the matrix (F ij)(W ) is semi-positive definite at W ∈ Γ+
k−1 and is

positive definite at W ∈ Γ+
k−1\R1.

2) The function F is concave in the cone Γ+
k−1. When k = 2, for all

W ∈ Γ+
1 and for all R = (rij) ∈ Sn, we have

(14)
∑

ijkl

∂2

∂wij∂wkl

(

σ2(W )

σ1(W )

)

rijrkl = −
∑

ij(σ1(W )rij − σ1(R)wij)
2

σ3
1(W )

.
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Proof. For Λ = (λ1, λ2, · · · , λn) and i ∈ {1, 2, · · · , n} let Λi = {1, 2, · · · ,
î, · · · , n} be the (n− 1)-tuple obtained from Λ without the ith-compo-
nent. A direct calculation gives

(15)
∂F

∂λi
=

σk−1(Λi)σk−1(Λ)− σk(Λ)σk−2(Λi)

σk−1(Λ)2
.

Since Λ ∈ Γ+
k−1, Λi ∈ Γ+

k−2. For the proof see for instance [39]. From
two identities

σk(Λ) = λiσk−1(Λi) + σk(Λi) and σk−1(Λ) = λiσk−2(Λi) + σk−1(Λi),

(15) becomes

(16)
∂F

∂λi
=

σ2
k−1(Λi)− σk(Λi)σk−2(Λi)

σk−1(Λ)2
.

Note that for convenience we set σ0(Λ) = 1. By the Newton-McLaughlin
inequality

(k − 1)(n − k)σ2
k−1(Λi) ≥ k(n− k + 1)σk(Λi)σk−2(Λi),

we have
∂F

∂λi
≥ 0

and equality implies that Λi = {0, 0, · · · , 0}, i.e., Λ = {0, · · · , 0, λi,
0, · · · , 0}. This proves 1).

2) was proved in [39]. q.e.d.

Though Lemma 1 is a rather simple fact, as mentioned in the intro-
duction it is one of crucial points of our paper. (We remark that this
Lemma might be observed also by other mathematicians. For example
in [14] there is a rather similar formula. We would like to thank To-
bias Lamm who told us this reference.) It means that σ2

σ1
is a concave,

degenerate elliptic operator in Γ+
1 . With this observation in mind, we

consider a family of perturbed operators for a positive number ν ∈ R
+

(17)

Fν : Γ+
1 → R

W 7→ Fν(W ) =
σ2(W )− ν

σ1(W )
.

As a direct consequence of Lemma 1, we have the following:

Lemma 2. The matrix (F ij
ν )(W ) is positive definite for all W ∈ Γ+

1

and the function Fν is strictly concave in Γ+
1 . Moreover, for all W ∈ Γ+

1
and for all R = (rij) ∈ Sn(R)

(18)
∑

ijkl

∂2Fν(W )

∂wij∂wkl
rijrkl ≤ − 2ν

σ3
1(W )

(

∑

i

rii

)2

.
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Lemma 2 means that for any positive number ν > 0, the operator Fν

is elliptic and strictly concave.

Now we discuss the relationship between the sign of the invariants
Y2,1([g0]) and that of λ(g0, σ2) defined in the introduction.

Lemma 3. The eigenvalue λ(g0, σ2) is a finite number. Moreover,
we have

(1) if n ≥ 4, then λ(g0, σ2) > 0 (resp. = 0, < 0 ) if and only if
Y2,1([g0]) > 0 (resp. = 0, < 0);

(2) if n = 3, then λ(g0, σ2) > 0 (resp. ≤ 0 ) if and only if Y2,1([g0]) > 0
(resp. ≤ 0).

Proof. The following formula was given in the proof of the Sobolev
inequality in [18]: for any g = e−2ug0 ∈ [g0] we have

(19)

2

∫

σ2(g)dvol(g)

=
n− 4

2

∫

σ1(g)|∇u|2g0e2udvol(g) +
n− 4

4

∫

|∇u|4g0e4udvol(g)

+

∫

∑

i,j

T ijS(g0)ijdvol(g) +

∫

∑

i,j

S(g0)
ijuiujdvol(g)

+
1

2

∫

σ1(g0)|∇u|2g0e4udvol(g),

where T ij = σ1(W )gij −W ij is the first Newton transformation associ-
ated with W . From this formula, we have

(20)

2

∫

σ2(g)dvol(g)

=
n− 4

2

∫

σ1(g)|∇u|2g0e2udvol(g) +
n− 4

4

∫

|∇u|4g0e4udvol(g)

+

∫

e2uσ1(g)σ1(g0)dvol(g) −
∫

e4u|S(g0)|2g0dvol(g)

+(4− n)

∫

∑

i,j

S(g0)
ijuiujdvol(g) +

∫

σ1(g0)|∇u|2g0e4udvol(g)

+

∫

e4u〈∇u,∇σ1(g0)〉g0dvol(g).
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We first consider the case n ≥ 5. By (20), there exists some c > 0 such
that
(21)
∫

σ2(g)dvol(g) ≥ n− 4

16

∫

|∇u|4g0e4udvol(g) − c

∫

e4udvol(g),

provided that g ∈ Γ+
1 . Here we have used the fact

∣

∣

∣

∣

∣

∣

∫

∑

i,j

S(g0)
ijuiujdvol(g)

∣

∣

∣

∣

∣

∣

≤ 1

8

∫

|∇u|4g0e4udvol(g) + 2 sup
M

|S(g0)|2g0
∫

e4udvol(g)

and

∣

∣

∣

∣

∫

e4u〈∇u,∇σ1(g0)〉g0
∣

∣

∣

∣

≤
∫

σ1(g0)|∇u|2g0e4udvol(g) + c

∫

e4udvol(g).

As a consequence, we conclude

λ(g0, σ2) ≥ −c.

Similarly, in case n = 3, we have for all g ∈ C1([g0])

(22)

∫

σ2(g)dvol(g)

= −1

4

∫

σ1(g)|∇u|2g0e2udvolg −
1

8

∫

|∇u|4g0e4udvol(g)

−1

4

∫

e4u|∇u|2g0σ1(g0)dvol(g)

+
1

2

∫

e4u(σ2
1(g0)− |S(g0)|2g0)dvol(g)

+
1

2

∫

∑

i,j

S(g0)
ijuiujdvol(g)

≤ − 1

16

∫

|∇u|4g0e4udvol(g) + c

∫

e4udvol(g),

which yields λ(g0, σ2) ≤ c. Thus, we finish the proof of the first part of
Lemma.

Now we begin to prove the second part. It is easy to see that for all
g ∈ C1([g0])
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(23)
∫

M
σ1(g)dvol(g)

=

∫ (

n− 2

2
|∇u|2 + σ1(g0)

)

e2udvol(g) ≥ Y1([g0])(V ol(g))
n−2
n .

Now we consider the case n ≥ 5. Suppose λ(g0, σ2) > 0, i.e.,
∫

M
σ2(g)dvol(g) ≥ λ(g0, σ2)

∫

M
e4udvol(g)

for any g = e−2ug0 ∈ Γ+
1 . From (21), (23) and Hölder’s inequality, we

deduce

(24)

∫

σ2(g)dvol(g) ≥ c

(∫

|∇u|4g0e4udvol(g) +
∫

e4udvol(g)

)

≥ c

(∫

M
σ1(g)dvol(g)

)2

(V ol(g))−1

≥ cY1([g0])
n

n−2

(∫

M
σ1(g)dvol(g)

)
n−4
n−2

,

which implies Y2,1([g0]) > 0. Conversely, using Hölder’s inequality and
(23), we have
(25)

∫

σ2(g)dvol(g) ≥ c

(
∫

M
σ1(g)dvol(g)

)
n−4
n−2

≥ cY1([g0])
n−4
n−2 (V ol(g))

n−4
n ≥ c

∫

e4udvol(g).

This gives the desired result. Clearly, we have λ(g0, σ2) < 0 if and only
if Y2,1([g0]) < 0. Consequently, λ(g0, σ2) = 0 if and only if Y2,1([g0]) = 0.
In the cases n = 4 and n = 3, the result is trivial.

q.e.d.

Remark 2. In the case n = 3, if λ(g0, σ2) = λ < 0, then Y2,1([g0]) <
0. To see this, for any g ∈ C1([g0]), it follows from Hölder’s inequality
and (23) that there holds

(26)

∫

σ1(g)dvol(g)

∫

σ2(g)dvol(g)

≤ λ

∫

σ1(g)dvol(g)

∫

e4udvol(g)

≤ cλ

∫

e−udvol(g0)

∫

eudvol(g0) ≤ cλ < 0.
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Remark 3. In the case n ≥ 5, the invariant Y2,1([g0]) is finite real
number. To see this, for any g ∈ C1([g0]) it follows from the Hölder’s
inequality, (21) and (23) that
(27)

∫

σ2(g)dvol(g)
(∫

σ1(g)dvol(g)
)

n−4
n−2

≥ −c

∫

e4udvol(g)
(∫

σ1(g)dvol(g)
)

n−4
n−2

≥ −c
(V ol(g))

n−4
n

(∫

σ1(g)dvol(g)
)

n−4
n−2

≥ −c > −∞.

In the case n = 3, we do not know if Y2,1([g0]) < +∞ or not, although
it is always true that Y2,1([g0]) > 0 if and only if λ(g0, σ2) > 0, and that
λ(g0, σ2) is finite. However, we believe that it is true.

3. Yamabe type flows

Now we want to consider the existence of the following equation

(28) Fν(g) =
σ2(g) − νe4u

σ1
= constant,

with g = e−2ug0 and ν > 0 a positive number (we could consider ν :
M → R

+ a positive function, but in this paper we will choose ν as a
small positive constant). Following [27], [18] and [19] we will introduce
a suitable Yamabe type flow to study equation (28).

For any ν ∈ (0,+∞) and for g = e−2ug0, consider the following
perturbed functional

Eν(g) :=















2

n− 4

∫

M
(σ2(g)− νe4u)dvol(g), if n 6= 4,

−
∫ 1

0

∫

M
(σ2(gt)− 2νe4tu)udvol(gt)dt, if n = 4,

where gt = e−2tug0. When ν = 0, the functional was considered in [60],
[10] and [7]. Set

F1(g) =

∫

M
σ1(g)dvol(g) and F2(g) =

∫

M
σ2(g)dvol(g)

From the variational formula given in [60], [10] and [7], we have

(29)
d

dt
Eν(g) =

∫

(σ2(g)− νe4u)g−1 · d

dt
gdvol(g)

and

(30)
d

dt
F1(g) =

n− 2

2

∫

σ1(g)g
−1 · d

dt
gdvol(g).
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Now we introduce a Yamabe type flow, which non-increases Eν and
preserves F1.

(31)
du

dt
= −1

2
g−1 d

dt
g := e−2uσ2(g)− νe4u

σ1(g)
− rν(g)e

−2u + sν(g),

where rν(g) and sν(g) are space constants, given by

(32) rν(g) :=
F2(g) −

∫

M νe4udvolg

F1(g)

and

(33)

∫

M
σ1(g)

{

e−2uσ2(g) − νe4u

σ1(g)
− rν(g)e

−2u + sν(g)

}

dvol(g) = 0.

Lemma 4. Flow (31) preserves F1 and non-increases Eν. Hence
when n ≥ 4, then rν is non-increasing along the flow, and when n = 3,
then rν is non-decreasing along the flow.

Proof. By the definition of sν(g) and (30), flow (31) preserves F1. By
the definition of sν and rν , we can compute as follows

(34)

d

dt
Eν(g) =

∫

M
(σ2(g) − νe4u)g−1 · d

dt
gdvol(g)

= −2

∫

e2uσ1(g)

(

e−2uσ2(g)− νe4u

σ1(g)
− rν(g)e

−2u

)2

dvol(g).

Therefore, the desired result yields. q.e.d.

4. Local estimates

In this section, we will establish a priori estimates for flow (31) and
equations (8), (9) and (10). Local estimates for this class of fully non-
linear conformal equations were first given in [26]. Since then there are
many extensions. See for instance [13] and the survey paper [63]. It is
important to note that the a priori estimates established below do not
depend on the perturbation ν > 0.

Given ν > 0, assume g0 ∈ C1([g0]). By Lemma 2, (31) is parabolic. By
the standard implicit function theorem we have the short-time existence
result. Let T ∗ ∈ (0,∞] so that [0, T ∗) is the maximum interval for the
existence of the flow g(t) ∈ Γ+

1 .

Theorem 6. Assume that n ≥ 3, ν > 0 and g0 ∈ Γ+
1 . Let u be a

solution of (31) in a geodesic ball BR × [0, T ] for T < T ∗ and R < τ0,
the injectivity radius of M .

(1) Assume that ∀t ∈ [0, T ]

rν(t) ≤ 0.
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Then there is a constant C depending only on (BR, g0) (indepen-
dent of ν and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(35) |∇u|2 + |∇2u| ≤ C.

(2) Assume that ∀t ∈ [0, T ]

rν(t) > 0.

Then there is a constant C depending only on (BR, g0) (indepen-
dent of ν and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(36) |∇u|2 + |∇2u| ≤ C

(

1 + sup
t∈[0,T ]

rν(t)× e−2 inf(x,t)∈BR×[0,T ] u(x,t)

)

.

In particular, if we assume n ≥ 4, we have

(37) |∇u|2 + |∇2u| ≤ C
(

1 + e−2 inf(x,t)∈BR×[0,T ] u(x,t)
)

.

Proof. In the proof, C is a constant independent of T and ν, which
may vary from line to line. Let W = (wij) be an n × n matrix with

wij = ∇2
iju + uiuj − |∇u|2

2 (g0)ij + (Sg0)ij . Here ui and uij are the first
and second derivatives of u with respect to the background metric g0.

Recall Fν(W ) =
σ2(W )− ν

σ1(W )
. Set

(38)

(F ij
ν (W )) :=

(

∂Fν

∂wij
(W )

)

=

(

σ1(W )T ij − σ2(W )δij + νδij

σ2
1(W )

)

where (T ij) = (σ1(W )δij − wij) is the first Newton transformation as-
sociated with W , and δij is the Kronecker symbol. In view of Lemma

2 we know that (F ij
ν ) is positive definite and Fν is concave in Γ+

1 . For
the simplicity of notation, we now drop the index ν, if there is no con-
fusion. We try to show the local estimates for first and second order
derivatives together. Let S(TM) denote the unit tangent bundle of
M with respect to the background metric g0. We define a function
G̃ : S(TM)× [0, T ] → R

(39) G̃(e, t) = (∇2u+ |∇u|2g0)(e, e)
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Without loss of generality, we assume R = 1. Let ρ ∈ C∞
0 (B1) be a

cut-off function defined as in [26] such that

(40)

ρ ≥ 0, in B1,

ρ = 1, in B1/2,

|∇ρ(x)| ≤ 2b0ρ
1/2(x), in B1,

|∇2ρ| ≤ b0, in B1.

Here b0 > 1 is a constant. Since e−2ug0 ∈ Γ+
1 , to bound |∇u| and

|∇2u| we only need to bound (∇2u + |∇u|2g0)(e, e) from above for all
e ∈ S(TM) and for all t ∈ [0, T ]. For this purpose, denote G(e, t) =

ρ(x)G̃(e, t). Assume (e1, t0) ∈ S(Tx0M)× [0, T ] such that

G(e1, t0) = max
S(TM)×[0,T ]

G(e, t),(41)

t0 > 0,(42)

G(e1, t0) > nmax
B1

σ1(g0).(43)

Let (e1, · · · , en) be a orthonormal basis at point (x0, t0). It follows from
the fact W ∈ Γ+

1

nG(e1, t0) ≥ ρ(∆u+ n|∇u|2) ≥ ρ

(

n|∇u|2 + n− 2

2
|∇u|2 − σ1(g0)

)

,

≥ 3n − 2

2
ρ|∇u|2 − 1

n
G(e1, t0),

so that

G(e1, t0) ≥
3n−2

2

n+ 1
n

ρ|∇u|2 ≥ 21

20
ρ|∇u|2.

Consequently, we obtain

(44) ∇2
11u(x0, t0) ≥

1

20
|∇u|2(x0, t0).

Set for any i 6= j = 1, · · · , n

e′ =
1√
2
(ei ± ej).

We have

(45) G(e′, t0) =
1

2
(G(ei, t0) +G(ej , t0))± ρ∇2

iju(x0, t0).

Thus, there holds

(46) ρ|∇2
iju(x0, t0)| ≤ G(e1, t0)−

1

2
(G(ei, t0) +G(ej , t0)).

On the other hand, we have ∀i = 1, · · · , n
(47) (n − 1)G(e1, t0) +G(ei, t0) ≥ ρ(∆u+ n|∇u|2) ≥
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ρ

(

3n− 2

2
|∇u|2 − σ1(g0)

)

,

which implies

(48) G(ei, t0) ≥ ρ

(

3n− 2

2
|∇u|2 − σ1(g0)

)

− (n− 1)G(e1, t0).

Together with (46), we deduce
(49)

ρ|∇2
iju(x0, t0)| ≤ nG(e1, t0)−

3n− 2

2
ρ|∇u|2+ρσ1(g0) ≤ (n+1)G(e1, t0).

(Indeed, at any point (x, t), the estimate ρ|∇2
iju| ≤ (n + 1)G(e1, t0)

holds). Now choose the normal coordinates around x0 such that at
point x0

∂

∂x1
= e1

and consider the function G on M × [0, T ] defined by

G(x, t) := ρ(x)(u11 + |∇u|2)(x, t).
Clearly, (x0, t0) is a maximum point of G(x, t) on M× [0, T ]. At (x0, t0),
we have

0 ≤ Gt = ρ

(

u11t + 2
∑

l

ulult

)

,(50)

0 = Gj =
ρj
ρ
G+ ρ



u11j + 2
∑

l≥1

ululj



 , for any j,(51)

0 ≥(52)

(Gij) =





ρρij − 2ρiρj
ρ2

G+ ρ(u11ij +
∑

l≥1

(2uliulj + 2ululij))



 .

Recall that (F ij) is definite positive. Hence, we have

(53)

0 ≥
∑

i,j≥1

F ijGij −Gt

≥
∑

i,j≥1

F ij ρρij − 2ρiρj
ρ2

G

+ρ
∑

i,j≥1 F
ij
(

u11ij +
∑

l≥1(2uliulj + 2ululij)
)

−ρ



u11t + 2
∑

l≥1

ulult



 .
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First, from the definition of ρ, we have

(54)
∑

i,j≥1

F ij ρρij − 2ρiρj
ρ2

G ≥ −C
∑

i,j≥1

|F ij |1
ρ
G,

and

(55)

∑

i,j≥1

|F ij | ≥
∑

i

F ii

=

(

n− 1− nσ2(W )

σ2
1(W )

)

+
nν

σ2
1(W )

≥ C
∑

i,j≥1

|F ij |

since W is positive definite . Using the facts that

(56) ukij = uijk +
∑

m

Rmikjum,

(57) ukkij =

uijkk+
∑

m

(2Rmikjumk−Ricmjumi−Ricmiumj−Ricmi,jum+Rmikj,kum)

and

(58)

(

∑

l

u2l

)

11

= 2
∑

l

(u11lul + u21l) +O(|∇u|2),

we have
(59)

∑

i,j≥1

F iju11ij

≥
∑

i,j≥1

F ij



wij11 − (u11)iuj − ui(u11)j +
∑

l≥1

(u21l + u11lul)(g0)ij





−2
∑

i,j≥1

F ijui1uj1 − C(1 + |∇2u|+ |∇u|2)
∑

i,j≥1

|F ij |

and
(60)

∑

i,j,l

F ijululij

≥
∑

i,j,l

F ijulwijl −
∑

i,j,l

F ij(uluiluj + uluiujl)

+
1

2

∑

i,j

F ij〈∇u,∇(|∇u|2)〉(g0)ij − C(1 + |∇u|2)
∑

i,j≥1

|F ij |.
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Combining (59) and (60), we deduce
(61)

∑

i,j≥1

F ij



u11ij + 2
∑

l≥1

(uliulj + ululij)





≥
∑

i,j≥1

F ij



wij11 + 2
∑

l≥1

wijlul





+2
∑

i,j≥1 F
ij
∑

l≥2 uliulj +
∑

i,j,l≥1 u
2
1lF

ij(g0)ij

−
∑

i,j

F ij

[

(u11 + |∇u|2)iuj + ui(u11 + |∇u|2)j

−〈∇u,∇(u11 + |∇u|2)〉(g0)ij
]

− C(1 + |∇2u|+ |∇u|2)
∑

i,j≥1

|F ij |

≥
∑

i,j

F ij(wij11 + 2
∑

l

wijlul) + u211
∑

i,j

F ij(g0)ij

+
∑

i,j

F ij (ρiuj + ρjui − 〈∇ρ,∇u〉(g0)ij)
G

ρ2

−C(1 + |∇2u|+ |∇u|2)∑i,j≥1 |F ij |.

Now, we want to estimate
∑

i,j,l F
ijwijlul and

∑

i,j F
ijwij11 respectively.

Using Lemma 1, there holds

(62)

∑

i,j,l

F ijwijlul =
∑

l

Flul,

and

(63)
∑

i,j

F ijwij11 = F11 −
∑

i,j,k,m

∂2F

∂wij∂wkm
wij1wkm1 ≥ F11.

Therefore, these estimates give

(64)
∑

i,j≥1

F ij



wij11 + 2
∑

l≥1

wijlul



 ≥ F11 + 2
∑

l

Flul.

Recall from (31) that

(65) F = ut + rν(g)e
−2u − sν(g),

so that

(66) F11 = u11t + rν(g)e
−2u(−2u11 + 4u21),
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(67) Fl = ult + rν(g)e
−2u(−2ul), ∀l = 1, · · · , n.

Gathering (44), (49), (53), (54), (55), (61) (64), (66) and (67), we obtain

(68)

0 ≥ −C





∑

i,j

∣

∣F ij
∣

∣





G

ρ
+ ρ

(

∑

i

F ii

)

u211

−Cρ
(

∑

i,j

∣

∣F ij
∣

∣

)

(1 + |∇u|2 + |∇2u|)

+
∑

i,j

F ij (ρiuj + ρjui − 〈∇ρ,∇u〉(g0)ij)
G

ρ

+ρrν(g)e
−2u

(

−2u11 − 4
∑n

l=2 u
2
l

)

≥ −C

(

∑

i

F ii

)

G

ρ
+ ρ

(

∑

i

F ii

)

u211

−C

(

∑

i

F ii

)

G|∇u|√
ρ

− C

(

∑

i

F ii

)

(ρ+G) ,

since rν(g) ≤ 0 for any t ∈ [0, T ]. As a consequence, there holds

(69) Cρ2 ≥ −CG− CG
√
G+ ρ2u211.

Recall (44) holds at point (x0, t0) so that

(70) G(x0, t0) = ρ(u11 + |∇u|2)(x0, t0) ≤ 21(ρu11)(x0, t0).

Together with (69), we deduce

(71) Cρ2 ≥ −CG− CG
√
G+

G2

212
,

which implies

(72) C ≥ −CG+
G2

2× 212
.

This yields

(73) G ≤ C.

Here C is a constant independent of T and ν. Therefore, we have
finished the proof of the first part of the Theorem. The second part
yields from (68) and Lemma 4. q.e.d.

The same proof gives the local estimates for the elliptic equation.

Corollary 4. Assume n ≥ 3, ν > 0 and g0 ∈ Γ+
1 . Let BR be a

geodesic ball for R < τ0, the injectivity radius of M . Assume that
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e−2ug0 ∈ Γ+
1 is a solution of the following equation in BR

(74)
σ2(g) − νe4u

σ1(g)
= κ,

for some constant κ.

(1) If κ ≤ 0, then there is a constant C depending only on (BR, g0)
(independent of ν) such that for any x ∈ BR/2

(75) |∇u|2 + |∇2u| ≤ C.

(2) If κ > 0, then there is a constant C depending only on (BR, g0)
and κ (independent of ν) such that for any x ∈ BR/2

(76) |∇u|2 + |∇2u| ≤ C(1 + e−2 infx∈BR
u(x)).

Corollary 5. Under the same hypotheses as in Theorem 6 with rν ≤
0 there is a constant C depending only on g0 (independent of ν) such
that for any t ∈ [0, T ∗)

(77) ‖∇u‖C(M) + ‖∇2u‖C(M) ≤ C.

Corollary 6. Under the same hypotheses as in Theorem 6 with rν ≤
0, then there is a constant C depending only on g0 (independent of ν)
such that for any t ∈ [0, T ∗)

(78) ‖u‖C2(M) ≤ C.

Proof. First, for any t ∈ [0, T ∗) we have

(79) F1(g(t)) ≡ F1(g(0)).

Hence the following Sobolev inequality
∫

M
σ1(g)dvol(g) ≥ Y1([g0])(V ol(g))

n−2
n , ∀g ∈ Γ+

1 ,

implies that the volume V ol(g(t)) along the flow is bounded from above,
i.e.,

(80)

∫

M
e−nudvol(g0) < C,

for some constant C > 0. On the other hand, applying Corollary 5, we
have

∫

M
e2udvol(g) ≥ C

∫

M
σ1(g)dvol(g) = CF1(g(0)) > 0.

This, together with (80), Hölder’s inequality and Corollary 5, implies u
is uniformly bounded. In view of Corollary 5, we prove the result.

q.e.d.
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We remark that in this paper we only use (1) of Theorem 6. (2) of
Theorem 6 will be used in a forthcoming paper.

5. Proof of Theorems 1 and 2

Now for ν > 0 we define

(81) aν :=



















inf
g∈C1([g0])

Eν(g)
(
∫

M σ1(g)dvol(g))
n−4
n−2

if n 6= 4;

∫

M
σ2(g)dvol(g) − ν if n = 4;

If n 6= 4 and aν is achieved by a metric g = e−2ug0, the g satisfies

(82)
σ2(g) − νe4u

σ1(g)
= κ,

for some constant κ. Equivalently, we will consider the energy functional
Eν on the normalized cone C̃1([g0])

(83) C̃1([g0]) :=
{

g ∈ C1([g0]) |
∫

M
σ1(g)dvol(g) = 1

}

.

The first step is to solve the perturbed equation (82).

Proposition 1. Let ν > 0. In the following three cases

1) when n ≥ 5, aν < 0,

2) when n = 4, aν < 0, which is equivalent to

∫

M
σ2(g)dvol(g)− ν <

0,
3) when n = 3, aν > 0,

flow (31) globally converges to a solution of (82). As a direct application,
aν is achieved by a function uν satisfying (82) for κ = −1. Moreover,
such a solution is unique.

Proof. The proof follows closely the proof given in [18]. When n ≥ 5,
without loss of generality we choose g0 ∈ Γ+

1 such that Eν(g0) < 0 and
∫

M
σ1(g0)dvol(g0) = 1. Using Lemma 4, we have rν(g(t)) ≤ rν(g(0)) <

0, ∀t ∈ [0, T ∗). If n = 3, or n = 4, by the hypotheses, we have rν(g(t)) <
−c < 0, ∀t ∈ [0, T ∗). Applying Corollary 6, the solution u of flow (31)
has a uniform C2 bound, which is independent of t. We divide the proof
into 3 steps.

Step 1. The flow preserves the positivity of the scalar curvature. This
is another crucial point of this paper.



ON THE σ2-SCALAR CURVATURE 69

Proposition 2. There is a constant C0 > 0, independent of T ∈
[0, T ∗) and ν such that σ1(g(t)) > C0ν for any t ∈ [0, T ].

Proof. The proof follows closely the proof given in [27] and [18]. Recall

W = (wij) =

(

∇2
iju+ uiuj −

|∇u|2
2

(g0)ij + (Sg0)ij

)

,

Fν(W ) =
σ2(W )− ν

σ1(W )
.

Hence, Fν = ut + rν(g(t))e
−2u − sν(g(t)). Without loss of generality,

we assume that the minimum of Fν is achieved at (x0, t0) ∈ M × (0, T ].
Near (x0, t0), we have
(84)
d

dt
Fν =

∑

ij

Aij(∇2
g(ut))ij =

∑

ij

Aij
[

(∇2
g(Fν))ij − rν(g)(∇2

g(e
−2u))ij

]

,

where

Aij :=
∂Fν

∂wij
=

(σ2
1(W )− σ2(W ) + ν)δij − σ1(W )W ij

σ2
1(W )

is positive definite. To simplify the notation, we drop the index ν as
before. Since (x0, t0) is the minimum of F in M × [0, T ], at this point,

we have
dF

dt
≤ 0, Fl = 0 ∀l and (Fij) is non-negative definite. Note

that

(∇2
g)ijF = Fij + uiFj + ujFi −

∑

l

ulFlδij = Fij ,

at (x0, t0), where Fj and Fij are the first and second derivatives with
respect to the back-ground metric g0. From the positivity of A and (84),
we have
(85)

0 ≥ Ft −
∑

i,j

AijFij

≥ −rν(g)
∑

i,j

Aij{(e−2u)ij + ui(e
−2u)j + uj(e

−2u)i −
∑

l

ul(e
−2u)lδij}

= −rν(g)e
−2u

∑

i,j

Aij{−2wij + 2uiuj + 2S(g0)ij + |∇u|2δij}

≥ −rν(g)e
−2u

(−2σ2(W )− 2ν

σ1(W )

)

−rν(g)e
−2u

∑

i,j A
ij(2uiuj + 2S(g0)ij + |∇u|2δij).
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Here we have used
∑

i,j

Aijwij =
σ2(W ) + ν

σ1(W )
. On the other hand, we

have
(86)

∑

i,j

AijS(g0)ij

=
(σ2

1(W )− σ2(W ))σ1(g0)

σ2
1(W )

− 1

σ1(W )

∑

i,j

W ijS(g0)ij +
νσ1(g0)

σ2
1(W )

.

Going back to (85), we have
(87)

0 ≥ Ft −
∑

i,j

AijFij

≥ −rν(g)e
−2u

[−2σ2(W )− 2ν

σ1(W )
+

2(σ2
1(W )− σ2(W ))σ1(g0)

σ2
1(W )

− 2

σ1(W )

∑

i,j

W ijS(g0)ij +
2νσ1(g0)

σ2
1(W )



 ,

since (Aij) is positive definite and rν(g) < −c is negative. Let us use
O(1) denote terms with a uniform bound. One can check σ2(W ) = O(1)

for ‖u‖C2 is uniformly bounded and
∑

i,j

W ijS(g0)ij = O(1). Also the

term σ2
1(W ) − σ2(W ) is always non-negative. From (87), we conclude

that there is a positive constant C2 > 0 (independent of T and ν) such
that

(88)
|σ2(W )(x0, t0)|+ ν

σ1(W )(x0, t0)
< C2.

Since (x, t) is the minimum of Fν(W ) in M × [0, T ], for any (x, t) ∈
M × [0, T ] we have

σ2(W )(x, t) − ν

σ1(W )(x, t)
≥ −C2.

Hence, there is a positive constant C > 0, independent of T and ν, such
that

σ1(W )(x, t) ≥ Cν,

for σ2(W ) ≤ 1
2σ

2
1(W ) provided σ2(W ) ≥ 0. This finishes the proof of

the Proposition and this step. q.e.d.

Step 2. Now we can prove equation (82) admits a solution. From
Step 1, we know that the flow is uniformly parabolic. And, Krylov’s
theory implies that u(t) has a uniform C2,α bound. Hence, T ∗ = ∞.
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One can also show that u(t) globally converges to u(∞), which clearly
is a solution of (82) for k = rν(g(∞)). (Note that rν(g(t)) is mono-
tone and bounded so that rν(g(∞)) exists) (see [27]). So uν = u(∞)−
1

2
log |rν(g(∞))| solves (82) for κ = −1.

Step 3. The solution to equation (82) for k = −1 is unique.
Assume u1 and u2 are two solutions. We consider the function v =
u1 − u2, which solves the following second order elliptic equation

(89)

∑

i,j

Aij(x)vij +
∑

i

Bivi +m(x)v = 0,

where

Aij(x) =

∫ 1

0
F ij(tW2 + (1− t)W1)dt,

Wl(x) =

(

(ul)ij + (ul)i(ul)j −
1

2
|∇ul|2(g0)ij + (S(g0))ij

)

, for l = 1, 2

and

m(x) = −2

∫ 1

0
e−2((1−t)u1(x)+tu2(x))dt < 0.

This is a uniformly elliptic equation. Now applying the classical strong
maximum principle, we deduce that

v ≡ 0.

Hence we have the uniqueness. It is clear that the unique solution
achieves aν . Thus, we finish the proof. q.e.d.

In the following, we study a nonlinear eigenvalue problem for the
operator

(90) σ2

(

∇2u+ du⊗ du− |∇u|2
2

g0 + Sg0

)

in Γ+
1 . The nonlinear eigenvalue problem for the operator (90) in Γ+

2
was considered in the first version of [27]. In that paper, the nonlinear
eigenvalue problem can only be considered in Γ+

2 . With our analysis
established for σ2/σ1, we can consider the nonlinear eigenvalue problem
for the operator (90) in a larger class Γ+

1 .

Proposition 3. Let (Mn, g0) be a compact Riemannian manifold
with g0 ∈ Γ+

1 and n ≥ 3. Assume that the first eigenvalue λ(g0, σ2) > 0.
Then C2([g0]) is not empty. Namely there exists a metric in [g0] with

σ1(g) > 0 and σ2(g) > 0.
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Moreover, there is a regular metric g = e−2ug0 ∈ C2([g0]) satisfying

(91) σ2(g) = λe4u,

for λ = λ(g0, σ2) > 0.

Proof. We define a function h

h : (0,+∞) → R

ν 7→ h(ν) = aν :=



















inf
g∈C1([g0])

Eν(g)
(
∫

M σ1(g)dvol(g))
n−4
n−2

if n 6= 4;

∫

M
σ2(g)dvol(g) − ν if n = 4;

Thus, h is a non-increasing function if n ≥ 4 and a non-decreasing
function if n = 3. First, we consider the case n ≥ 4. Define a set A

(92) A := {ν ∈ (0,+∞)| h(ν) < 0}.
By the assumption that λ(g0, σ2) > 0, it is easy to check that

(93) (λ(g0, σ2),+∞) ⊂ A and (0, λ(g0, σ2)) ∩A = ∅.
Hence for any ν > λ(g0, σ2) we have h(ν) < 0. By Proposition 1 we
have a smooth metric guν = e−2uνg0 ∈ C1([g0]), which solves equation

(82) for κ = h(ν) and satisfies

∫

M
σ1(guν )dvol(guν ) = 1. From Corollary

6, the set of solutions

{uν ,∀ν ∈ (λ(g0, σ2), λ(g0, σ2) + 1)}
is uniformly bounded in C2 norm. From equation (82), σ1(guν ) is uni-
formly bounded from below by a positive constant for ν ∈ (λ(g0, σ2),

λ(g0, σ2) + 1), since ν > λ(g0, σ2) > 0 and also we have
σ2(W )

σ1(W )
≤

1

2
σ1(W ), provided that σ1(W ) > 0. By the Krylov’s result, the set of

solutions {uν ,∀ν ∈ (λ(g0, σ2), λ(g0, σ2) + 1)} is also uniformly bounded
in C2,α for α > 0. Define

(94) κ0 := lim
ν→λ(g0,σ2)+

h(ν).

When ν → λ(g0, σ2), uν (by taking a subsequence) converges in C2 to
u0 ∈ Γ+

1 , which is a solution of (82) for ν = λ(g0, σ2) and κ = κ0.
Clearly, κ0 ≤ 0. We claim

(95) κ0 = 0.

Otherwise, Eλ(g0,σ2)(u0) < 0, which implies that there is some small
ε > 0 such that ∀ν ∈ (λ(g0, σ2)−ε, λ(g0, σ2)], we have Eν(u0) < 0. Hence
h(ν) < 0 for all ν ∈ (λ(g0, σ2)−ε,+∞), that is, (λ(g0, σ2)−ε,+∞) ⊂ A.
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This contradicts to (93). Hence we have (95), which is equivalent to say
that

σ2(gu0)− λ(g0, σ2)e
4u0 = 0.

This means that u0 ∈ Γ+
2 solves (91) for λ = λ(g0, σ2). In particular,

u0 ∈ Γ+
2 .

The proof for the case n = 3 is similar by consider a set A defined by

A := {ν ∈ (0,+∞)| h(ν) > 0}.
We leave the proof to the interested reader. q.e.d.

Remark 4. In the case n ≥ 4, the function h(ν) is Lipschitz contin-
uous. Indeed, for all ν ′ < ν and for all g ∈ C1([g0]), we have
(96)

0 < Eν′(u)− Eν(u) = (ν − ν ′)
∫

e4udvol(g) ≤ c(ν − ν ′)(V ol(g))
n−4
n

≤ cY1([g])
4−n
n−2 (ν − ν ′)

(∫

σ1(g)dvol(g)

)
n−4
n−2

This proves the claim.

Proof of Theorem 2. First we discuss the case Y2,1([g0]) > 0. Using
Lemma 3, we have λ(g0, σ2) > 0. By Proposition 3, the cone Γ+

2 is not
empty. Hence, from the results in [19] for the cases n ≥ 5, in [11] for
n = 4 and [33] for the case n = 3, there is a solution of (8).

Now suppose Y2,1([g0]) = 0. As in the proof of Proposition 3, we
consider the function h(ν) for all ν > 0. With the same arguments, for
any small positive ν > 0, equation (82) admits the unique solution uν ,
since h(ν) < 0 ∀ν > 0 if n ≥ 4 and h(ν) > 0 ∀ν > 0 if n = 3. This fact
is clear for n ≥ 4. And in the case n = 3, we have

inf
g∈C1([g0])

∫

σ1(g)dvol(g) ×
∫

e4udvol(g) > 0.

Moreover, as ν → 0, the family of solution {uν} is bounded in C2

norm. Thus, as ν → 0, uν converges in C1,α for any α ∈ (0, 1)
to some C1,1 function u. Consequently, this C1,1 conformal metric
gu = e−2ug0 ∈ [g0] ∩ Γ̄+

1 solves equation (9).

Let us consider the last case Y2,1([g0]) < 0. As in the previous case,
there holds h(ν) ≤ h(0) = Y2,1([g0]) < 0 ∀ν > 0 if n ≥ 4, and h(ν) ≥
h(0) = −Y2,1([g0]) > 0 ∀ν > 0 if n = 3 and the family of solution {uν}
is bounded in C2 as ν → 0. We claim this family is also bounded in
C2,α for α > 0. For this purpose, we will write equation (82) in the new

form. Recall wij = ∇2
iju+ uiuj − |∇u|2

2 (g0)ij + (Sg0)ij . We define a new

second order tensor W̃ = (w̃ij) with

w̃ij = wij + µ(g0)ij ,
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where µ is some small positive constant to be fixed later. It is clear that

(97) σ1(W̃ ) = σ1(W ) + nµ

and

(98) 2σ2(W̃ ) = 2σ2(W ) + 2(n − 1)µσ1(W ) + n(n− 1)µ2.

Denote uν the unique solution of (82) with

∫

σ1(g)dvol(g) = 1 for

k = h(ν) and for all small ν > 0. Using (97) and (98), uν satisfies the
following equation

(99)
σ2(W̃ )− n(n−1)µ2

2 − (n− 1)µ(σ1(W̃ )− nµ)− ν

σ1(W̃ )− nµ
= h(ν)e−2uν ,

that is, uν solves

(100)
σ2(W̃ )

σ1(W̃ )
+

−ν + nµh(ν)e−2uν + n(n−1)µ2

2

σ1(W̃ )
= h(ν)e−2uν +(n−1)µ.

Choose a small µ > 0 such that ∀ν ∈ (0, ν0) and ∀x ∈ M , we have

(101) h(ν)e−2uν (x) + (n − 1)µ < 0.

Now equation (100) is uniformly elliptic and concave for all ν ∈ (0, ν0).
From the classical Krylov’s result, the set of solutions {uν} is also

bounded in C2,α for α > 0. Passing to the limit, uν converges in C2,α′

for any α′ ∈ (0, α) to some C2,α function u ∈ Γ̄+
1 , which is a solution of

(10). Finally, writing equation in the form (100) for ν = 0, the unique-
ness comes from the maximum principle as in the proof of Proposition
1. Therefore, we finish the proof. q.e.d.

Proof of Theorem 1. When λ(g0, σ2) > 0, the result follows from Propo-
sition 3. When λ(g0, σ2) = 0, the proof is the same as in the case
Y2,1([g0]) = 0 in the previous proof. q.e.d.

Proof of Corollary 1. It follows from Proposition 3 directly. q.e.d.

Proof of Corollary 3. From Theorem 2, the cone Γ+
2 is not empty. Set

g ∈ C2([g0]). From a result due to Gursky-Viaclovsky [30] the Ricci
tensor of g is pointwise positive. Thanks to the result of Hamilton [35]
by using the Ricci flow, M is diffeomorphic to a compact 3-dimensional
Riemannian manifold with constant curvature. Moreover, M is diffeo-
morphic to S

3/Γ, where Γ is a finite isometry subgroup of S
3 in the

standard metric. q.e.d.

Remark 5. In Corollary 2, the condition
∫

M3 σ2(g0)dvol(g0) > 0
can be easily weakened to

∫

M3 σ2(g0)dvol(g0) ≥ 0. In this case, we

have two cases: either (i) there is a conformal metric g ∈ C1([g0])
with

∫

M3 σ2(g)dvol(g) > 0, or (ii) there is no conformal metric g ∈
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C1([g0]) with
∫

M3 σ2(g)dvol(g)0. Case (i) is just Corollary 1. In case
(ii), Y2,1([g0]) = 0 and g0 achieves Y2,1([g0]), hence σ2(g0) = 0. This
also implies that Ricg0 ≥ 0 and M3 is a quotient of a sphere, since
Y1([g0]) > 0.

6. The Yamabe invariants Y2,1([g0])

In this section, we prove Theorem 3. To this aim, we need a technic
result.

Lemma 5. Let (Mn, g0) be a compact Riemannian manifold with
g0 ∈ Γ+

1 and n ≥ 3. At most one of the followings holds:

1) M admits a regular metric g ∈ [g0] ∩ Γ+
2 ;

2) equation (9) admits a C1,1 solution g ∈ [g0] ∩ Γ̄+
1 ;

3) equation (10) admits a regular solution g ∈ [g0] ∩ Γ̄+
1 .

Proof. Let g ∈ [g0] ∩ Γ+
2 . Without loss of generality, assume g = g0.

From a result of Guan-Wang [28], there is no C1,1 solution of equation
(9) in Γ̄+

1 . On the other hand, for any g = e−2ug0 ∈ C1([g0]), let x0 be
a minimum point of u. At this point, we get ∇u = 0 and the Hessian
matrix ∇2u is non-negative definite. Thus, the Schouten tensor at point
x0 is in Γ+

2 . As a consequence, equation (10) does not admit a regular
solution g ∈ [g0] ∩ Γ̄+

1 .
Now suppose g1 = e−2u1g0 is a regular solution of equation (10) in

[g0] ∩ Γ̄+
1 . As above, [g0] ∩ Γ+

2 = ∅. As in the proof of Theorem 2, u1
solves

(102)
σ2(W̃ )

σ1(W̃ )
+

−nµe−2u1 + n(n−1)µ2

2

σ1(W̃ )
= −e−2u1 + (n − 1)µ,

where µ > 0 is a small positive number such that f(x) := −e−2u1 +
(n−1)µ

2 < 0 and w̃ij = wij + µ(g0)ij. Let g2 = e−2u2g0 ∈ [g0] ∩ Γ̄+
1 be a

C1,1 solution of equation (9). Thus, u2 is a subsolution to (102), that
is,

(103)
σ2(W̃ )

σ1(W̃ )
+

nµf(x)

σ1(W̃ )
≥ −e−2u1 + (n− 1)µ,

since u2 solves

(104)
σ2(W̃ )

σ1(W̃ )
+

n(n− 1)µ2

2σ1(W̃ )
= (n− 1)µ

and

(105) σ1(W̃ ) ≥ nµ.
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Set v = u2 − u1 and H(W,x) =
σ2(W ) + nµf(x)

σ1(W )
. Denote

H ij :=
∂H(W,x)

∂wij
.

On the other hand, for any c ∈ R, u2 + c is also a C1,1 solution of
equation (9). Without loss of generality, we could suppose v ≤ 0 and
max v = 0. From (102) and (103), v is a subsolution of some uniformly
elliptic second order operator, that is,

Lv :=
∑

i,j

Aij∇2
ijv +

∑

i

Bi∇iv ≥ 0,

where

Aij =

∫ 1

0
H ij(sW̃2 + (1− s)W̃1)ds.

From the strong maximum principle, v ≡ 0. This contradiction yields
the desired result and we finish the proof of Lemma. q.e.d.

Proof of Theorem 3. It follows from Theorem 2 and Lemma 5. q.e.d.

By Theorem 2 and Lemma 5, we have

Proposition 4. Let (Mn, g0) be a compact Riemannian manifold
with g0 ∈ Γ+

1 and n ≥ 3. The following holds
1) If there is a regular conformal metric g ∈ [g0]∩Γ+

2 , then Y2,1([g0]) > 0;
2) If there is a C1,1 conformal metric g ∈ [g0] ∩ Γ̄+

1 satisfying equation
(9), then Y2,1([g0]) = 0;
3) If there is a regular conformal metric g ∈ [g0] ∩ Γ̄+

1 solving equation
(10), then Y2,1([g0]) < 0.

Remark 6. With the same arguments, we know : let (Mn, g0) be a
compact Riemannian manifold with g0 ∈ Γ+

1 and n ≥ 3. At most one
of the followings holds:

1) M admits a regular metric g ∈ [g0] ∩ Γ̄+
2 ;

2) equation (10) admits a regular solution g ∈ [g0] ∩ Γ̄+
1 .

To this aim, let g2 = e−2u2g0 ∈ [g0]∩ Γ̄+
2 . Thus, u2 is also a subsolution

to (102) and the desired result yields. A direct consequence is that
Y2,1([g0]) ≥ 0 provided [g0] ∩ Γ̄+

2 6= ∅.

Finally, we state the following result.

Corollary 7. Let (M,g0) be a compact Riemannian manifold with
positive scalar curvature and of dimension n ≥ 4. The sign of λ(g0, σ2),
equivalently the sign of Y2,1([g0]), is a conformal invariant.
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7. Geometric Applications

First we show that any manifold in class (1+) admits a psc metric with
negative Yamabe constant Y2,1 < 0. Therefore by Theorem 2 we can
deform this metric in its conformal class to a metric with non-negative
scalar curvature and negative σ2-scalar curvature. Then we show that
Y2,1 is continuous in a suitable sense.

Proof of Theorem 4. With the analysis established above, in order to
show the Theorem, We need only to show that for any manifold in (1+)
there is a psc metric g with

∫

σ2(g)dvol(g) < 0.
Here we use the well-known construction of Gromov-Lawson [20] for

positive scalar curvature metrics. See also [51]. Let Sp be an embedded
sphere in M with trivial normal bundle of codimension q = n − p ≥ 3.
Let Sp×Dq(r̄) be an embedding into M for some small constant r̄ > 0.
Let r0 be a constant fixed later as small as we want.

By the construction of Gromov-Lawson, we have a manifold (N1, h1)
with an end S

p×S
q−1× [0,+∞) such that N1−(Sp×S

q−1× [1,∞], h1) is
isometric to M−S

p×Dq(r̄) and (Sp×S
q−1× [2,+∞), h1) is isometric to

S
p × S

q−1(r∞)× [2,+∞) with the product metric. Here S
p is standard

sphere with radius 1 and S
q−1(r∞) is the standard sphere with a small

radius r∞. The crucial point in the construction of Gromov-Lawson
is that the scalar curvature of h1 is positive. Now we glue on N1 −
S
p × S

q−1(r∞)× [τ0,+∞) a product manifold S
p ×Dq, where Dq is not

equipped with the flat metric, but a product metric of Sq−1 × [0, b] in a
neighborhood of the boundary and of positive scalar curvature on Dq.
The result manifold is of positive scalar curvature and is diffeomorphic
to M . It contains a product Sp × S

q−1(r∞)× [2, τ0] for a small r∞ and
a large τ0.

Now we consider the case q = 3. In this case, its Ricci curvature,
written as a diagonal matrix, is diag{n − 4, · · · , n − 4, r−2

∞ , r−2
∞ , 0}. Its

Schouten tensor, also written as a diagonal matrix and up to a multiple
constant independent of r∞, is

diag{n− 4− α, · · · , n− 4− α, r−2
∞ − α, r−2

∞ − α,−α}
with

α =
1

2(n − 1)

(

(n− 3)(n − 4) +
2

r2∞

)

.

It can be written as

1

n− 1
r−2
∞ diag{−1, · · · ,−1, n− 2, n − 2,−1} + C,

Where C is a matrix whose entries are independent of r∞. To decide the
sign of σ2-scalar curvature for this product, we only need to compute
σ2(−1, · · · ,−1, n − 2, n − 2,−1) = −1

2(n − 1)(n − 2). Hence choosing
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r∞ small, we have negative σ2-scalar curvature in this product part. By
choosing τ0 large enough, we obtain a metric g̃ on M with

∫

M
σ2(g̃) < 0.

Therefore for the conformal class [g̃] we have Y2,1([g̃]) < 0. By Theorem

2, we have a conformal metric h̃ with σ2(h̃) ≤ 0 and with non-negative
scalar curvature. q.e.d.

When n = 4, we have another proof. In this case,
∫ (

σ2(g) +
1

16
|W |2

)

dvol(g)

is the Euler characteristic of M up to a constant multiple. Since
∫

|W |2dvol(g) is invariant in a conformal class, so is
∫

σ2(g)dvol(g).
In [1] the authors constructed a sequence of metrics gi satisfying that

Y1([gi]) → Y1([g0]) and

∫

|W |2dvol(gi) → ∞,

as i → ∞. Since Rg0 > 0, from this sequence we can find a psc metric
gi with

∫

σ2(gi)dvol(gi) < 0.

Lemma 6. Let n ≥ 4. If the space of psc metric is equipped with the
C4,α-topology, then map g → Y2,1([g]) is continuous.

Proof. A similar Lemma for the first Yamabe constant Y1 was given
in [4], see also [5]. For Y2,1, the proof becomes complicated. We use
solutions of equations considered here.

Let gj be a sequence of psc metric converging to g in C4,α topology.
The proof is trivial for the case n = 4, since

∫

M σ2(g)dvol(g) is constant
in a conformal class. Now we consider the cases n ≥ 5. By taking a
subseqeunce we may assume that limj→∞Y2,1([gj ]) = Y0. It is easy to
see that

(106) Y0 = lim
j→∞

Y2,1([gj ]) ≤ Y2,1([g]).

To see this, for any ε > 0 find gu = e−2ug ∈ C1([g]) such that
∫

σ2(gu)dvol(gu) < Y2,1([g]) +
1

2
ε and

∫

σ1(gu)dvol(gu) = 1.

For sufficiently large j, we have e−2ugi ∈ C1([gj ]). Since
∫

σ2 and
∫

σ1
are continuous for this fixed function u, we have

Y2,1([gj ]) ≤ Y2,1([g]) + ε,

for sufficiently large j, and hence (106).
Now we show that Y0 ≥ Y2,1([g]). Let Y2,1(S

n) be the second Yamabe
constant for the standard sphere Sn. Using a method given in [54], one
can show that

Y2,1(S
n) ≥ Y2,1([g]),
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for any psc metric g. Without loss of generality, we may assume Y0 <
Y2,1(S

n). Otherwise, we have limj→∞Y2,1([gj ]) = Y0 = Y2,1(S
n) ≥

Y2,1([g]) and hence we are done.
Consider the following perturbed energy functional

Jε,ν(g) :=

∫

(σ2(g)− νe4u)dvol(g))
(∫

e2εuσ1(g)dvol(g)
)

n−4
n−2−2ε

for small ν ≥ 0 and ε ≥ 0 in the cone C1. The analysis established
above implies that the above functional admits a minimizer in C1([g])
for any psc metric. It is easy to check that for given j ∈ N, there are
small constants εj ≥ 0 and νj ≥ 0 such that a minimizer g̃j = e−2ujgj ∈
C1([gj ]) of the perturbed functional Jεj ,νj satisfies

Jεj ,νj(g̃j) ≤ Y2,1([gj ]) +
1

j
.

(When Y0 ≤ 0, we can take εj ≡ 0. When Y0 > 0, we can take νj ≡ 0.)
As a minimizer of Jε,ν , g̃j = e−2ujgj satisfies an equation similar to (8),
for which we have local estimates. Since gj converges to g in C4,α, the
local estimates and Y0 < Y2,1(S

n) imply that g̃j converges to a metric

g̃ = e−2ũg ∈ C1([g]) in C0-topology, and hence in C1,β-topology for any
β ∈ (0, 1). We first show that
(107)

lim
j→∞

∫

σ2(e
−2ujgj)dvol(e

−2ujgj) = lim
j→∞

∫

σ2(e
−2ujg)dvol(e−2uj g)

and
(108)

lim
j→∞

∫

e2εjujσ1(e
−2ujgj)dvol(e

−2uj gj)= lim
j→∞

∫

σ1(e
−2ujg)dvol(e−2uj g).

This is clear, for uj has a uniform C2 bound and gj converges to g in
C4,α-topology and εj → 0. Then, we claim that there exists metrics
e−2ũjg ∈ C1([g]) such that
(109)

lim
j→∞

∫

σ2(e
−2ũjg)dvol(e−2ũj g) = lim

j→∞

∫

σ2(e
−2ujg)dvol(e−2uj g)

and
(110)

lim
j→∞

∫

σ1(e
−2ũjg)dvol(e−2ũj g) = lim

j→∞

∫

σ1(e
−2ujg)dvol(e−2uj g).
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Given j ∈ N, we choose tj ∈ (0, 1) with lim tj = 1 such that e−2tjujg ∈
C1([g]). To see this, we compute
(111)

e−2tjujσ1(e
−2tjujg)

= tj∆guj − t2j
n− 2

2
|∇uj|2g + σ1(g)

= tje
−2ujσ1(e

−2ujgj) + tj
(

∆guj −∆gjuj + σ1(g) − σ1(gj)
)

+tj

(

n− 2

2
|∇uj|2gj −

n− 2

2
|∇uj |2g

)

+(1− tj)

(

tj
n− 2

2
|∇uj|2g + σ1(g)

)

.

It is clear that
(112)
∣

∣

∣

∣

tj(∆guj −∆gjuj + σ1(g) − σ1(gj)) + tj(
n− 2

2
|∇uj|2gj −

n− 2

2
|∇uj |2g)

∣

∣

∣

∣

≤ C‖g − gj‖C2(|∇uj |2g + 1).

Thus, we can choose tj close to 1 such that e−2tjujg ∈ C1([g]). From
(20), (23) and the fact that uj has a uniform C2 bound, we have (109)
and (110), which imply that Y0 = limj→∞ Y2,1([gj ]) ≥ Y2,1([g]). Hence
we finish the proof of the Lemma. q.e.d.

In fact, the Lemma is true for C4-topology.

Proof of Theorem 5. If M belongs to class (2+), then there is a
psc metric of positive σ2-scalar curvature. By Theorem 3, Y2,1([g]) > 0.
From Theorem 4 we have another psc metric g̃ with Y2,1([g̃]) < 0. Using
the previous Lemma we have the third psc metric ĝ with Y2,1([ĝ]) = 0.
Now 1. follows from Theorem 2. The proof for 2. and 3. is the same.

q.e.d.

In order to prove the Conjecture (Trichotomy Theorem) as in [41]
and [42], we need an implicit function theorem for the linearization
operator of σ2(g) in L2,p. This seems to be rather difficult for us, at
least at the moment.

Example 1. Let us consider the manifold M = S
3×S

1. It is a locally
conformally flat manifold with σ1 > 0 and σ2 = 0 for the product metric.
From

2π2χ(M) =

∫

M
σ2(g) +

1

16
|W |2,

we have
∫

S3×S1
σ2(g) = − 1

16

∫

|W |2 ≤ 0 for any metric g on S
3 × S

1.

Hence, S3 × S
1 belongs to class (20).
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Example 2. For n > 4 let us consider the locally conformally flat
manifold S

p×Hn−p, where p > n/2 and Hn−p is a compact quotient of
the hyperbolic space H

n−p with sectional curvature −1. Let g0 be the
product metric. It is clear that σ1(g0) > 0, for p > n/2. Its σ2-scalar
curvature, up to a positive constant multiple, is

(

p− n

2

)2
− n

4
.

Hence, p > n+
√
n

2 if and only if σ2(g0) > 0. Now we consider such p

with σ2(g0) = 0, namely p = n+
√
n

2 . It is clear that we have to consider

n = (2m+ 1)2 for some m ∈ N. For example m = 1, M = S
6 ×H3. In

general Mm := S
(m+1)(2m+1) ×Hm(2m+1). We conjecture that on such

a manifold there is a psc metric with positive σ2-scalar curvature. A
rough idea to check this can be made as follows. By Theorem 2, if it is
not true, we know that any psc metric g on Mm has Y2,1([g]) ≤ 0, which
is equivalent to

inf
g̃∈C1([g])

∫

M
σ2(g̃)dvol(g̃) ≤ 0.

Hence 0 is be a minimax value of
∫

M σ2(g)dvol(g) and the product metric

g0 would be a critical point of
∫

σ2 on the space of all metrics. If this is
true, then a result in [40] implies that g0 is a metric of constant sectional
curvature. This certainly is false. From this example, we propose a

Conjecture. When n > 4, class (20) is empty.

8. Further applications in fully nonlinear equations

With the method considered in this paper, we can also deal with the
following problems.

1. When (M,g0) is a locally conformally flat manifold with g0 ∈ Ck−1

(k > 1), the method presented here can be used to study the equation

(113)
σk(g)

σk−1(g)
= f.

Similarly we define a Yamabe type invariant in [22] as follows

Yk,k−1([g0]) = inf

∫

M σk(g)dvol(g)
(∫

M σk−1(g)dvol(g)
)

n−2k
n−2k+2

,

for k ≤ n/2. We can show that if Yk,k−1 > 0 ( Yk,k−1 = 0 and Yk,k−1 < 0
resp.), then there is a conformal metric g with σk > 0 (σk = 0 and σk ≤ 0
resp.)
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2. Let (M4, g0) be a compact 4-dimensional manifold with positive
scalar curvature. One can consider the equation

(114)
σ2 − s|W |2

σ1
= f,

where W is the Weyl tensor and s is a non-negative number. In this
case for a fixed s

∫

(σ2 − s|W |2)dvol(g)

is a constant in a given conformal class. With the method presented
here, we can show that the number

∫

(σ2 − s|W |2)dvol(g) is positive,
null or negative resp. if and only if there is a conformal metric with

σ2 − s|W |2 > 0,= 0 or ≤ 0 resp.

The positive and null cases were studied already in [12] as mentioned
above. This can be seen as a generalization of the following classi-
cal result: Let (M2, g0) be a closed surface. Its Euler characteristic
χ(M2) = 1

2π

∫

M Rgdvol(g) is positive, negative or null resp. if and only
if there is a conformal metric g with positive, negative or null scalar
curvature resp. It is clear that equation (114) can also be considered on
a higher dimensional manifold.

3. Our methods can also be applied to study the following fully
nonlinear equations

σk(∇2u)

σk−1(∇2u)
= f

and

σk(∇2u+ ug)

σk−1(∇2u+ ug)
= f,

in the class of (k − 1)-admissible functions.

4. Another interesting problem is a generalization of the prescribed
scalar curvature problem. Let Mn = S

n and f : Sn → R
1 be a smooth

function. We would like to ask if there is a conformal metric g ∈ C1

such that

σ2(g) = fσ1(g).

A Kazdan-Warner type necessary condition could be obtained as Han
[36] did for the prescribed σk-scalar curvature problem. Here, and also
in the previous problem, the function f need not be positive.
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