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ON THE CONTACT CLASS IN HEEGAARD FLOER

HOMOLOGY

Ko Honda, William H. Kazez & Gordana Matić

Abstract

We present an alternate description of the Ozsváth-Szabó con-
tact class in Heegaard Floer homology. Using our contact class,
we prove that if a contact structure (M, ξ) has an adapted open
book decomposition whose page S is a once-punctured torus, then
the monodromy is right-veering if and only if the contact structure
is tight.

1. Introduction

In the paper [OS5], Ozsváth and Szabó defined an invariant of a
contact 3-manifold (M, ξ) which lives in the Heegaard Floer homology

ĤF (−M) of the manifold M with reversed orientation. It is defined
via the work of Giroux [Gi2], who showed that there is a 1-1 corre-
spondence between isomorphism classes of open book decompositions
modulo positive stabilization and isomorphism classes of contact struc-
tures on closed 3-manifolds. Ozsváth and Szabó associated an element
in Heegaard Floer homology to an open book decomposition and showed
that its homology class is independent of the choice of the open book
compatible with the given contact structure. They also showed that
this invariant c(ξ) is zero if the contact structure is overtwisted, and
that it is nonzero if the contact structure is symplectically fillable. The
contact class c(ξ) has proven to be extremely powerful at (i) proving
the tightness of various contact structures and (ii) distinguishing tight
contact structures, especially in the hands of Lisca-Stipsicz [LS1, LS2]
and Ghiggini [Gh].

The goal of this paper is to introduce an alternate, more hands-on,
description of the contact class in Heegaard Floer homology and to use it
in the context of our program of relating right-veering diffeomorphisms
to tight contact structures.
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We briefly recall the notion of a right-veering diffeomorphism which
was introduced in [HKM2]. Let S be a compact oriented surface with
nonempty boundary (sometimes called a “bordered surface”) and h :

S
∼
→ S be a diffeomorphism such that h|∂S = id. Given two properly

embedded oriented arcs α and β with the same initial point x ∈ ∂S, we
say α is to the left of β if the following holds: Isotop α and β, while
fixing their endpoints, so that they intersect transversely (this include
the endpoints) and with the fewest possible number of intersections.
We then say α is to the left of β if either α = β or the tangent vectors
(β̇(0), α̇(0)) define the orientation on S at x. Then h is right-veering
if for every choice of basepoint x ∈ ∂S and every choice of properly
embedded oriented arc α based at x, h(α) is to the right of α.

In [HKM2] we proved that if (S, h) is an open book decomposition
compatible with a tight contact structure, then h is right-veering. In
[HKM3] we continued the study of the monoid V eer(S, ∂S) of right-
veering diffeomorphisms and investigated its relationship with symplec-
tic fillability in the pseudo-Anosov case. In particular we proved the
following:

Theorem 1.1. Let S be a bordered surface with connected boundary
and h be pseudo-Anosov with fractional Dehn twist coefficient c. If
c ≥ 1, then the contact structure ξ(S,h) supported by (S, h) is isotopic to
a perturbation of a taut foliation. Hence (S, h) is (weakly) symplectically
fillable and universally tight if c ≥ 1.

Hence, when a contact structure is supported by an open book with
“sufficiently” right-veering monodromy, it is symplectically fillable and
therefore tight as a consequence of a theorem of Eliashberg and Gro-
mov [El]. Unfortunately, a right-veering diffeomorphism with a small
amount of rotation does not always correspond to a tight contact struc-
ture. In fact, any open book can be stabilized to a right-veering one (see
Goodman [Go], as well as [HKM2]). However, we might optimistically
conjecture that a minimal (i.e., not destabilizable) right-veering open
book defines a tight contact structure. If we specialize to the case of
a once-punctured torus, then we can use our description of the contact
class to prove this conjecture.

Theorem 1.2. Let (M, ξ) be a contact 3-manifold which is supported
by an open book decomposition (S, h), where S is a once-punctured torus.
Then ξ is tight if and only if h is right-veering.

Very recently John Baldwin [Ba] also obtained results similar to The-
orem 1.2.

The paper is organized as follows. In Section 2, we review the
standard definition of c(ξ). Then, in Section 3, we describe the class

EH(ξ) ∈ ĤF (−M), which arose in discussions between John Etnyre
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and the first author. We also prove that the class EH(ξ) equals the
Ozsváth-Szabó contact class c(ξ), and hence EH(ξ) is a contact in-
variant. In Section 4, the class EH(ξ) is applied to contact structures
with compatible genus one open book decompositions with connected
boundary to prove Theorem 1.2.

Acknowledgements. The authors are grateful to John Etnyre for
discussions which led to the alternate description of the contact class.
We also thank the referee for helpful comments and suggestions.

2. Open books and Ozsváth-Szabó contact invariants

In [OS1, OS2], Ozsváth and Szabó defined invariants of closed ori-
ented 3-manifolds M which they called Heegaard Floer homology. A-
mong the several versions of Heegaard Floer homology defined by Oz-

sváth and Szabó, we concentrate on the simplest one, namely ĤF (M).
It is defined as the homology associated to a chain complex determined
by a Heegaard decomposition of M . Consider a Heegaard decompo-
sition (Σ, α = {α1, . . . , αg}, β = {β1, . . . , βg}) of genus g. Here Σ is
the Heegaard surface, i.e., a closed oriented surface of genus g which
splits M into two handlebodies H1 and H2, Σ = ∂H1 = −∂H2, αi

are the boundaries of the compressing disks of H1, and βi are the
boundaries of the compressing disks of H2. Then consider two tori
Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg in Symg(Σ). Also pick a

basepoint z ∈ Σ − ∪g
i=1αi − ∪g

i=1βi. The complex ĈF (M) is defined
to be the free Z-module generated by the points x = {x1, . . . , xg} of
Tα ∩ Tβ. The boundary map is defined by counting points in certain
0-dimensional moduli spaces of holomorphic maps of the unit disk into
Symg(Σ). It is, very roughly, defined as follows. Denote by Mx,y the
0-dimensional (after quotienting by the natural R-action) moduli space
of holomorphic maps u from the unit diskD2 ⊂ C (with complex coordi-
nate ζ) to Symg(Σ) that (i) send 1 7→ x, −1 7→ y, S1∩{Im ζ ≥ 0} to Tα

and S1∩{Im ζ ≤ 0} to Tβ, and (ii) avoid {z}×Symg−1(Σ) ⊂ Symg(Σ).
Then define

∂x =
∑

µ(x,y)=1

#(Mx,y) y,

where µ(x,y) is the relative Maslov index of the pair and #(Mx,y) is a

signed count of points in Mx,y. The homology of this complex ĤF (M)
is shown to be independent of the various choices made in the definition.
In particular, it is independent of the choice of a “weakly admissible”
Heegaard decomposition.

Each intersection point x in Tα ∩ Tβ defines a Spinc structure sx on
M . If there is a topological disk from x to y which satisfies (i) and (ii)
in the previous paragraph, then the two Spinc structures agree. Hence,
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the complex (as well as the homology of the complex) splits according to
Spinc structures. The Heegaard Floer homology decomposes as a direct
sum

ĤF (M) = ⊕s ĤF (M, s).

Given a contact structure ξ on M , let (S, h) be a compatible open
book decomposition, where S is a surface of genus g (here genus means
the genus of the surface capped off with disks) and h is a diffeomor-
phism of S which is the identity on ∂S. The manifold M is homeomor-
phic to (S × [0, 1])/ ∼ and the binding K is given by (∂S × [0, 1])/ ∼.
Here, the equivalence relation ∼ is generated by (x, 1) ∼ (h(x), 0) for
x ∈ S and (y, t) ∼ (y, t′) for y ∈ ∂S, t, t′ ∈ [0, 1]. From the above
description of M we immediately see a natural Heegaard splitting of
M by setting H1 = (S × [0, 1

2 ])/ ∼ and H2 = (S × [12 , 1])/ ∼. This
gives a Heegaard decomposition of genus 2g with the splitting surface
Σ = S1/2 ∪ −S0, where St = S × {t}. A set of 2g properly embedded
disjoint arcs a1, . . . , a2g which cut S into a disk defines a set of com-

pressing disks ai × [0, 1
2 ], i = 1, . . . , 2g, in H1 and a set of compressing

disks ai × [12 , 1], i = 1, . . . , 2g, in H2. We then set αi = ∂(ai × [0, 1
2 ])

and βi = ∂(ai × [12 , 1]), for i = 1, . . . , 2g. See Figure 1.
Given the contact manifold (M, ξ), we denote the associated Spinc

structure by sξ. Ozsváth and Szabó define in [OS5] an element c(ξ) ∈

ĤF (−M, sξ)/(±1) by using a Heegaard splitting associated to an open
book decomposition (S, h) compatible with ξ. (At the time of the
writing of the paper, the ±1 ambiguity still exists. It is possible,
however, that a careful study of orientations would remove this am-
biguity. The ±1 issue does not arise in Seiberg-Witten Floer homol-
ogy. To avoid writing ±1 everywhere, we either work with Z/2Z-
coefficients or tacitly assume that c(ξ) is well-defined up to a sign when
Z-coefficients are used.) The Heegaard splitting given in the previ-
ous paragraph is not quite the Heegaard splitting that Ozsváth and
Szabó consider when defining c(ξ). Instead, they use a Heegaard sur-
face that can be viewed simultaneously as a Heegaard surface for M and
for M0(K), the zero surgery along the binding K. (They also assume
that ∂S is connected and hence K is a knot.) The contact element

in ĤF (−M) can be seen on this Heegaard surface as the image of a

class in ĤF (−M0(K)) (provided g(K) > 1), or, equivalently, as the

image of a class in ĤFK(−M,K,F,−g). To construct such a splitting,
take a disk D ⊂ int(S) which is contained in a small neighborhood of
∂S, dig D × [0, 1

2 ] out of H1, and then attach it to H2. This produces
two new handlebodies H ′

1 and H ′
2. On H ′

2 we keep the same set of
β-curves β1, . . . , β2g as H2 and add β0 = ∂D × {1

4}. Next, let d be a
short arc connecting between the two boundary components of S −D,
and let {b1, . . . , b2g} be a set of arcs with endpoints on ∂D which are
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Figure 1. The left-hand portion of the figure shows the
decomposition into the two handlebodies H1 and H2 and
a compressing disk on each corresponding to a1. The
upper right portion shows −Σ = −S1/2 ∪ S0 and the
boundaries of two compressing disks. We draw just the
lower right portion to indicate the Heegaard decomposi-
tion and the effect of the monodromy on arcs.

“dual” to {a1, . . . , a2g}. (By this we mean a2i+1 ∩ bj = ∅ if j 6= 2i and
a2i+1∩b2i = {x2i+1}; also a2i∩bj = ∅ if j 6= 2i+1 and a2i∩b2i+1 = {x2i}.)
Then on H ′

1, we let α0 = ∂(d × [0, 1
2 ]) and αi = ∂(bi × [0, 1

2 ]). Also let
α0 ∩ β0 = {x0}.

The above choices determine a special point x = {x0, x1, . . . , x2g} in
Tα ∩ Tβ ⊂ Sym2g+1(Σ). (Here, xi means (xi,

1
2), for i > 0.) This point

(after modifying the Heegaard diagram by winding in a region that does
not affect x to adjust for admissibility) defines the special cycle in Hee-
gaard Floer homology. The homology class of x is defined as the contact

class c(ξ) by Ozsváth-Szabó. They show that ĤFK(−M,K,F,−g), the
knot Floer homology for (−M,K) at the lowest possible filtration level
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−g, is isomorphic to Z and is generated by x. Then c(ξ) is defined to

be the image of this generator in ĤF (−M). For details, including the
figures describing this decomposition and the corresponding generator
of c(ξ), see [OS5].

3. An alternate description of the contact element

3.1. Definition and main theorem. Let S be a bordered surface
whose boundary is not necessarily connected. Let {a1, . . . , ar} be a
collection of disjoint, properly embedded arcs of S so that S −

⋃r
i=1 ai

is a single polygon. We will call such a collection a basis for S. Observe
that every arc ai of a basis is a nonseparating arc of S. Next let bi be
an arc which is isotopic to ai by a small isotopy so that the following
hold:

1) The endpoints of ai are isotoped along ∂S, in the direction given
by the boundary orientation of S.

2) ai and bi intersect transversely in one point in the interior of S.
3) If we orient ai, and bi is given the induced orientation from the

isotopy, then the sign of the intersection ai ∩ bi is +1.

See Figure 2.

Figure 2. The arcs ai and bi for a once-punctured torus S.

Let M = M(S,h) be the 3-manifold with open book decomposition
(S, h). Recall the Heegaard decomposition for M described in the pre-
vious section, where Σ = S1/2 ∪−S0. We choose the compressing disks

to be αi = ∂(ai × [0, 1
2 ]) and βi = ∂(bi × [12 , 1]). We will sometimes

write αi = (ai, ai) and βi = (bi, h(bi)), where the first entry is the arc
on S1/2 and the second entry is the arc on S0. Let xi be the intersec-

tion point (ai ∩ bi) × {1
2} lying in S1/2 ⊂ Σ, and let z be the basepoint

which sits on S1/2 and lies outside the thin strips of isotopy between
the ai’s and the bi’s. Then (Σ, β, α, z) gives a weakly admissible Hee-
gaard diagram, namely every periodic domain has positive and negative
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components. This is due to the fact that every periodic domain which
involves αi crosses xi, at which point the sign of the connected compo-
nent of Σ −

⋃r
i=1 αi −

⋃r
i=1 βi changes.

Let D0, . . . ,Dm be the closures of the components of Σ −
⋃r

i=1 αi −⋃r
i=1 βi, and let zi, i = 0, . . . ,m, be a point in the interior of Di. Assume

additionally that z0 is the basepoint z. Given a Whitney disk u : D →
Symr(Σ), the domain associated to u is the formal linear combination

D(u) =
m∑

i=0

nzi
(u)Di,

where nzi
(u) is the algebraic intersection number of u with {zi} ×

Symr−1(Σ). To a holomorphic map u : D → Symr(Σ) there is the

associated map ũ : D̃ → Σ of a branched cover of D to Σ. The domain
D(u) can also be interpreted as the (homotopy class of the) image of ũ.

In the definition of the boundary map in the ĤF theory, we only count
holomorphic disks u : D → Symr(Σ) that miss {z} × Symr−1(Σ), i.e.,
where the coefficient of D0 is zero. For such disks the intersection of the
support of D(u) with S1/2 is thus constrained to lie in the thin strips of
isotopy of the ai to bi.

We claim that x = {x1, . . . , xr} ∈ ĈF (Σ, β, α, z) is a cycle, thanks to

the fortuitous placement of the basepoint z. (We write ĈF (Σ, β, α, z) in-

stead of ĈF (Σ, α, β, z) to indicate homology on −M .) Suppose u : D →
Symr(Σ) contributes nontrivially to ∂x; in particular it is a holomorphic
disk from x to y with y 6= x. Since y = (y1, ..., yr) 6= x = (x1, ..., xr),
at least one yi lies on S × {0}. There is an arc connecting yi to some
component xi of x that is in the image of the boundary of the corre-
sponding holomorphic map ũ. Because of the orientation of the holo-
morphic disk that starts at x (recall that S1 ∩ {Im ζ ≥ 0} maps to Tβ

and S1 ∩ {Im ζ ≤ 0} maps to Tα), the image of ũ near xi has to come
out of xi in the region containing z and hence the coefficient of D0 is
nonzero, which contradicts the assumption that it contributes to the
boundary operator.

Define EH(S, h, {a1, . . . , ar}) to be the homology class of the gener-
ator x. The following is the main theorem of this section:

Theorem 3.1. EH(S, h, {a1, . . . , ar}) is an invariant of the contact
structure and equals c(ξ(S,h)).

In particular, EH(S, h, {a1, . . . , ar}) is independent of the choice of
basis, and it will often be denoted by EH(S, h).

In Theorem 3.1 we are not assuming that ∂S is connected.

Examples: To give some intuition for the class EH(S, h), we give
three examples when S is an annulus. Refer to Figure 3. The leftmost
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diagram gives a and b on S1/2. The subsequent diagrams give S0 for
(1), (2), and (3) below (from left to right).

(1) If h is the identity, then (M, ξ) is the standard tight contact struc-
ture on S1 × S2. Since there are two holomorphic disks from y
to x, it follows that EH(S, h) 6= 0. One of the holomorphic disks
from y to x has been shaded in Figure 3.

(2) If h is a positive Dehn twist about the core curve, then (M, ξ) is
the standard tight contact structure on S3. Since x is the unique
intersection point on Σ = T 2, EH(S, h) 6= 0.

(3) If h is a negative Dehn twist about the core curve, then (M, ξ) is
an overtwisted contact structure on S3. We have ∂y1 = ∂y2 = x;
hence EH(S, h) = 0.

Figure 3. Examples when S is an annulus.

The following lemma echoes our result in [HKM2], which states that
ξ(S,h) is overtwisted if h is not right-veering.

Lemma 3.2. If h is not right-veering, then EH(S, h) = 0.

Proof. If h is not right-veering, then there exists an arc a1 on S so
that h(a1) is to the left of a1. If a1 is nonseparating, then it can be
completed to a basis {a1, . . . , ar}. There exists an intersection point
y1 ∈ α1 ∩ β1 and a unique (up to translation) holomorphic map from
the unit disk D ⊂ C (with complex coordinate ζ) to Σ, where 1 7→ y1,
−1 7→ x1, ∂D ∩ {Im ζ ≥ 0} maps to βi and ∂D ∩ {Im ζ ≤ 0} maps
to αi. Since z forces any holomorphic disk u : D → Symr(Σ) which
contributes to ∂{y1, x2, . . . , xn} to be constant near xi, i = 2, . . . , r, all
the αi and βi, i = 2, . . . , r, are “used up”, and the only holomorphic disk
that remains is the unique one from y1 to x1. Hence ∂{y1, x2, . . . , xn} =
{x1, x2, . . . , xn}.

If the arc a1 is separating, then let us call its initial point p. Suppose
the arcs h(a1) and a1 intersect efficiently. Then h(a1) and a1 must
intersect at some point in the interior of h(a1); otherwise h(a1) will cut
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off a strictly smaller subsurface of S inside a subsurface of S cut off
by a1. Let q be the first point of intersection between h(a1) and a1 in
int(h(a1)), c be the subarc of a1 from p to q, and c′ be the subarc of
h(a1) from p to q. Then either c(c′)−1 is separating or it is not. If c(c′)−1

separates a region S′ to the left of a1, then there is a nonseparating arc
b ⊂ S′ which begins and ends at p. On the other hand, if c(c′)−1 is
nonseparating, then we let b = c(c′)−1. In either case, since b is strictly
to the left of a1 and strictly to the right of h(a1), it follows that h(b)
is strictly to the left of b. By separating the endpoints of b a little,
we obtain a nonseparating, properly embedded, oriented arc which is
moved to the left under h. q.e.d.

In view of Theorem 3.1 and the fact that every overtwisted contact
structure admits an open book that is not right-veering, Lemma 3.2
immediately implies that c(ξ) = 0 for an overtwisted contact structure.

Proof of Theorem 3.1. Let us denote a positive Dehn twist about a
closed curve γ by φγ . Assume ∂S is connected. We first prove the
theorem for a special case, namely when h = φn

∂S with n > 0, in Sec-
tion 3.2. Next, in Section 3.3 we prove that EH(S, h, {a1, . . . , ar}) only
depends on the isotopy class of h (relative to the boundary), and in
Section 3.4 we show that EH(S, h, {a1, . . . , ar}) is independent of the
choice of basis by using handleslides. Then in Section 3.5 we prove that
the class EH(S, h) is mapped to the class EH(S, φ−1

γ ◦ h) under the
natural map

ĤF
(
−M(S,h)

)
→ ĤF

(
−M(S,φ−1

γ ◦h)

)
,

which corresponds to a Legendrian (+1)-surgery. We then start with
φn

∂S with n≫ 0 and apply a sequence of negative Dehn twists until we
reach the desired monodromy map h. In Section 3.6 we reduce the case
of multiple boundary components to the case when ∂S is connected.

q.e.d.

3.2. Primordial Example. Let S be a once-punctured torus and h =
φ∂S , i.e., a positive Dehn twist about ∂S. The same argument works
if S is a genus g surface with one boundary component and h = φn

∂S ,
n > 0.

The subarcs of αi and βi that live in S0 are given in Figure 4. We
change notation and the constituent points of x representing EH(S, h)
will be denoted x0 = x′0 and y0 = y′0 as in Figure 4. Although x0 = x′0
and y0 = y′0, strictly speaking, live on S1/2, we view them as sitting on
∂S0. (Also, the points x0 and x′0, as well as y0 and y′0, are drawn as
distinct points on ∂S0, but we hope this will not cause any confusion
for the reader.)

We then place the basepoint w on S0 as indicated in Figure 4. Observe
that z and w together represent the binding K. The binding K is
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isotopic to the dotted curve γ0 which consists of two subarcs c1 and c2
between z and w, where c1 intersects only the α-curves and c2 intersects
only the β-curves. Then (Σ, β, α, z, w) is a doubly-pointed Heegaard
diagram for the knot Floer homology of K.

Figure 4. S0 when h = φ∂S , and a zoomed-in
ammonite-like region.

If we stabilize this Heegaard splitting by digging a handle in S× [0, 1
2 ]

which is parallel to the arc c2, then we obtain a Heegaard surface Σ′ on
which we can see both −M and −M0(K). See Figure 5. Here −M is
given by {β0}∪β and {α0}∪α, whereas −M0(K) is given by γ = {γ0}∪β
and {α0} ∪ α. (Here γ0 is viewed as a curve that passes through the
handle once.) The stabilization sends x = {x0, y0} to x′ = {z0, x0, y0},
where z0 is the intersection of the two new compressing curves α0 and
β0.

Figure 5. Part of the stabilized Heegaard surface −Σ′.
The domain F has been shaded.

As a first step in exploiting the Ozsváth-Szabó characterization of
c(ξ), we show that the lowest filtration level is generated by x′ =
{z0, x0, y0} as well as the other intersection points y = {z0, x, y}, where
x and y live inside the dotted lines of Figure 4. The filtration level is
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computed by first letting F ⊂ Σ′ be the domain bounded by α0 and
γ0 which does not intersect S1/2 (and hence lives mostly on S0). We

additionally assume that F is oriented so that the surface F̂ , obtained
from F by capping off ∂F , is an oriented fiber of the fibration of M0(K).
In order to find generators y which are at the lowest filtration level, we
minimize 〈c1(sy′), [F̂ ]〉. Here y′ = {z′0, x, y} and z′0 is the intersection
point on α0∩γ0 which forms a small triangle with Θ ∈ β0∩γ0 and z0 as

in Figure 5. (Keep in mind that since we are dealing with ĤF of −M
and −M0(K), the Heegaard surface is −Σ′; otherwise our calculations
will be off by a negative sign.)

To this end, we recall the formula for the first Chern class (Section 7.1
of [OS2]; for some details, see Rasmussen [Ra]):

〈c1(sy′), [A]〉 = χ(P) − 2nz(P) + 2
∑

p∈y′

np(P).

Here [A] ∈ H2(M0(K),Z), sy′ is a Spinc structure corresponding to
y′, P is the periodic domain for [A] (where we do not require that
P avoid z) and χ is the Euler measure. Let D be a component of
(−Σ′) −

⋃
i αi −

⋃
i γi. Then np(D) equals (i) 1 if p is in the interior of

D, (ii) 0 if p does not intersect D, (iii) 1
2 if p is on an edge of D (but

not a corner), and (iv) 1
4 if p is on a corner of D. We then extend np

linearly to P.
In the case at hand, the possible x’s and y’s are either in the interior

of F or not in F , and therefore they either contribute 1 or 0. On
the other hand, nz(P) = −2, χ(P) = −2g(S), and nz′

0
(P) = −1 are

constant, and it follows that 〈c1(sy′), [F̂ ]〉 = 2 − 2g(S) is the minimal
value and it is attained when both x and y are not in F . (In fact,
({β0} ∪ β, {α0} ∪ α, z,w) is a “sutured Heegaard diagram” in the sense
of [Ni].)

The graded complex for calculating ĤFK(−M,K,−1) is generated
by:

{z0, x0, y0}, {z0, x0, y2}, {z0, x
′
1, y1}, {z0, x1, y1},

{z0, x2, y0}, {z0, x2, y2}, {z0, x3, y1}.

Our task is to identify x′ = {z0, x0, y0} as a generator of ĤFK(−M,K,
−1) ≃ Z. We will show that all the generators besides x′ correspond to
Spinc structures which are different from that of the contact structure
ξ. An easy computation shows that H2(M ; Z) ≃ Z2 and is generated by
tori Tδ of the form (δ × [0, 1])/ ∼, where δ is any nonseparating curve
on S and (x, 1) ∼ (h(x), 0) as before. Since ξ is close to the foliation
S × {t} on (S × [0, 1])/ ∼, it follows that 〈c(ξ), [Tδ ]〉 = 0. Now, let
δ1 be a (0, 1)-curve on S and δ2 be a (1, 0)-curve. Then [Tδ1 ] is given
by the periodic domain Pδ1 , which consists of two rectangles y0y2y

′
4y

′
2

and y′0y
′
2y4y2 with opposite signs, shown in Figure 6. Similarly, [Tδ2 ] is
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represented by Pδ2 , consisting of x0x2x
′
4x

′
2 and x′0x

′
2x4x2 with opposite

signs.

Figure 6. Cover of a neighborhood of ∂S.

Now refer to Figure 6, which is a cover of an annular neighborhood
of ∂S ⊂ S. The dotted curve is (a lift of) c1c2. Points below the
dotted curve are not in F , so only they have the proper filtration level
to represent generators.

We will show s{z0,x,y} 6= s{z0,x0,y0} if {x, y} 6= {x0, y0}, by showing
that 〈c(s{z0,x,y}), [Tδi

]〉 6= 0 for i = 1 and 2 if {x, y} 6= {x0, y0}.
First consider the intersection points on the vertical lines starting

at x0 and at x′0. Suppose that 〈c(s{z0,x,y}), [Tδ2 ]〉 = 0. The rectangle

x′0x
′
2x4x2 of the periodic domain Pδ2 contributes 1

2 if x = x3 or x = x′1.
Since there is no value of y below the dotted curve with a contribution
of −1

2 from the rectangle x0x2x
′
4x

′
2 to cancel the 1

2 , the possibilities

x = x3, x
′
1 are eliminated. Since x0x2x

′
4x

′
2 gives a contribution of −1

2

to x1, and x′0x
′
2x4x2 contributes 0 to y0,

1
2 to y1 and 1 to y1, the only

generator containing x1 that is allowed is {z0, x1, y1}. Any generator
containing y2 is also disallowed since x′0x

′
2x4x2 contributes 1 to y2, and

there is no x value that will offset it from the x0x2x
′
4x

′
2 rectangle. The

only generator allowed to contain y1 is again {z0, x1, y1}. The same
rectangle gives x′1 a contribution of −1

2 that cannot be offset.
It therefore remains to consider the generator {z0, x1, y1}, as well as

pairs with x = x0 or x2. Moreover, the only possible y-coordinates are
y0 and y1, and {z0, x1, y1} is the only option allowed for y = y1. Now
use the periodic domain Pδ1 . The rectangle y0y2y

′
4y

′
2 contributes −1 to

{z0, x1, y1}, thus eliminating it as a possibility. The only other option
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different from {z0, x0, y0} is {z0, x2, y0} (since y2 was banned) which
gets a nonzero contribution from y0y2y

′
4y

′
2.

To show how this argument generalizes to higher genus surfaces, let
us examine the genus two case. The generators will have the form
{z0, x, y, u, v}, and there will be 8 intersection points on each vertical
segment in a picture analogous to Figure 6. Denote the points on the
boundary by u0, v0, u

′
0, v

′
0, x0, y0, x

′
0, y

′
0 going from right to left. Start

by considering the rectangles u0u2u
′
8u

′
6 and u′0u

′
6u8u2. We eliminate

u3, . . . , u7 and all the u′ values besides u′0, by noticing that there is
no allowable v value to offset the 1

2 contribution from u′0u
′
6u8u2. The

contribution of 1 from the same rectangle eliminates all values of v
other than v0 and v1 (though no v′i are yet disallowed). If v = v1, only
generators of the form {z0, x, y, u1, v1} are allowed.

Now use the periodic domain represented by the rectangles v0v2v
′
8v

′
6

and v′0v
′
6v8v2. The generators of the form {z0, x, y, u1, v1} get a contri-

bution of −1 from v0v2v
′
8v

′
6 and there is no positive contribution from

the allowable x, y coordinates that can be gained from v′0v
′
6v8v2; there-

fore all the {z0, x, y, u1, v1} are eliminated. Next, u2 gets a contribution
of −1 from v0v2v

′
8v

′
6 that cannot be canceled since there is no v value

that gets a contribution of 1 needed from v′0v
′
6v8v2. It follows that u0 is

the only allowable u-coordinate. Generators {z0, x, y, u0, v
′
i}, i 6= 0, are

eliminated since v′i gets a contribution of 1
2 from v′0v

′
6v8v2 that cannot

be canceled. Therefore we are left with {z0, x, y, u0, v0}. The argument
is now reduced to eliminating the possible x, y coordinates, and this
follows just as in the genus one argument given above.

This shows how the proof works for arbitrary genus. The inductive
step is done in the same way by eliminating all extra options in the two
new coordinates, thus reducing to the case of lower genus.

Since the contact invariant is the image of a generator of ĤFK(−M,K,

−g) in ĤF (−M), it follows that c(ξ(S,h)) = EH(S, h). It is not hard to
see how the above argument generalizes to the h = φn

∂S , n > 0 case.

3.3. Isotopy. In this subsection we prove the following:

Lemma 3.3. If ht : S
∼
→ S, t ∈ [0, 1], is a 1-parameter family of dif-

feomorphisms which restrict to the identity on ∂S, then EH(S, h0, {a1,
. . ., ar}) = EH(S, h1, {a1, . . ., ar}).

Proof. Let αi = (ai, ai) and βt
i = (bi, ht(bi)). In other words, we

fix the αi and isotop the βi. Observe that the βt
i remain constant on

S×{1}. According to Theorem 7.3 of [OS1], we can reduce to the case

where ht is a Hamiltonian isotopy. Let Ψt : Σ
∼
→ Σ be the Hamiltonian

isotopy which restricts to the identity on S × {1} and restricts to ht on
S×{0}. We use the same notation for the induced isotopy on Symr(Σ).

Then the chain map Φ : ĈF (β0, α) → ĈF (β1, α) is obtained by counting
holomorphic disks u : [0, 1]×R → Symr(Σ) which satisfy limt→+∞ u(s+
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it) = x, limt→−∞ u(s+ it) = x′, u(0 + it) ∈ Ψt(Tβ), and u(1 + it) ∈ Tα,

and avoid {z} × Symr−1(Σ). Here x ∈ ĈF (β0, α) and x′ ∈ ĈF (β1, α).
Now, if x is the unique r-tuple of points on S × {1} representing the
generator of EH(S, h0, {a1, . . . , ar}, then the only holomorphic disks of
the above type are constant holomorphic disks, due to the placement of
the basepoint z. This implies that EH(S, h0, {a1, . . . , ar}) is mapped

to EH(S, h1, {a1, . . . , ar}) under the isomorphism Φ : ĤF (β0, α)
∼
→

ĤF (β1, α). q.e.d.

3.4. Change of basis. In this subsection we prove the following propo-
sition:

Proposition 3.4. EH(S, h, {a1, . . . , ar}) is independent of the choice
of basis {a1, . . . , ar}.

Let {a1, a2, . . . , ar} be a basis for S. After possibly reordering the
ai’s, suppose a1 and a2 are adjacent arcs on ∂S, i.e., there is an arc
τ ⊂ ∂S with endpoints on a1 and a2 such that τ does not intersect
any ai in int(τ). Define a1 + a2 to be the isotopy class of a1 ∪ τ ∪ a2,
relative to the endpoints. Then the modification {a1, a2, . . . , ar} 7→
{a1 + a2, a2, . . . , ar} is called an arc slide.

Proposition 3.4 is immediate from the following two lemmas.

Lemma 3.5. EH(S, h) is invariant under an arc slide {a1, a2, . . . , ar}
7→ {a1 + a2, a2, . . . , ar}.

Proof. Without loss of generality, consider the case where S is a once-
punctured torus. We show that the chain map which corresponds to an
arc slide takes the representative of EH(S, h, {a1, a2}) determined by
x = {x1, x2} to the representative of EH(S, h, {a1 +a2, a2}) determined
by the intersection point w = {w1, w2}. Observe that an arc slide
corresponds to a sequence of two handleslides for the corresponding
Heegaard splitting.

Let (Σ, β, α, z) be the pointed Heegaard diagram corresponding to ai,
bi as described above, with z a point in S1/2 lying outside the thin strips
of isotopy between the ai’s and the bi’s. If we slide α2 over α1 along
a path parallel to ∂S, then we obtain a new pair γ = {γ1, γ2}, where
γ1 = (a1 + a2, a1 + a2) and γ2 is a suitable pushoff of (a2, a2) as in the
proof of the invariance of Heegaard Floer homology under handleslides
in [OS1]. Figure 7 depicts the case where a1 is to the right of a2 with
respect to τ ; the case where a2 is to the right of a1 is treated similarly.

We claim that (Σ, γ, β, α, z) is a weakly admissible Heegaard triple-
diagram. Recall that a triple-diagram is weakly admissible if each non-
trivial triply-periodic domain which can be written as a sum of doubly-
periodic domains has both positive and negative coefficients. First let
us restrict to a neighborhood R of the labeled regions of Σ − ∪iαi −
∪iβi − ∪iγi on the right-hand side of Figure 7. Due to the placement
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of z, the only potential doubly-periodic region involving β, α on R is
D2 +D3 −D5 −D6. (Here Di is the domain labeled i.) Similarly, for
γ, β we have D1 +D2−D4−D5 and for α, γ we have D1 +D6−D3−D4.
Taking linear combinations, we have

a(D2 +D3 −D5 −D6) + b(D1 +D2 −D4 −D5)

+c(D1 +D6 −D3 −D4)

= (b+ c)D1 + (a+ b)D2 + (a− c)D3

−(b+ c)D4 − (a+ b)D5 + (−a+ c)D6.

Since the coefficients come in pairs, e.g., a + b and −(a + b), if any
of a + b, b + c, a − c does not vanish, then the triply-periodic domain
has both positive and negative coefficients. Hence, if any of α1, β1 and
γ1 is used, then we are done. Otherwise, we may assume that none of
α1, β1 and γ1 is used in the periodic domain. This allows us to erase
all three, and apply the above considerations to α2, β2, and γ2. The
verifications of weak admissibility of all other triple-diagrams in this
paper are identical, and are omitted.

Let Θ = {Θ1,Θ2} be the top generator of ĤF (#(S1 × S2)) =

ĤF (α, γ). Define the map

ψ : ĤF (β, α) ⊗ ĤF (α, γ) → ĤF (β, γ),

where ψ(y ⊗ y′) counts holomorphic triangles, two of whose vertices

are y ∈ ĈF (β, α) and y′ ∈ ĈF (α, γ). Then the isomorphism g :

ĤF (β, α)
∼
→ ĤF (β, γ) is given by g(y) = ψ(y ⊗ Θ).

Figure 7. The first handleslide.

We claim that the representative x = {x1, x2} of EH(S, h, {a1, a2})

gets mapped to y = {y1, y2} ∈ ĈF (β, γ) given in Figure 7. By the
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placement of z, we see that the unique domain which has x1 and some
Θi as corners and avoids z must be a triangle with vertices x1,Θ1, y1.
Now that α1, β1, and γ1 are used up, it easily follows that the unique
domain which involves x2 and Θ2 and avoids z is a triangle with vertices
x2,Θ2, y2. This proves the claim.

Let us now consider the effect of the second handleslide, depicted in
Figure 8. Let δ = {δ1, δ2}, where δ1 and δ2 are suitable pushoffs of
(a1 + a2, h(a1 + a2)) and (a2, h(a2)), respectively. A similar argument
as above shows that, under the map

ĤF (δ, β) ⊗ ĤF (β, γ) → ĤF (δ, γ),

Θ ⊗ y gets mapped to w. This shows that x and w determine the
same element in Heegaard Floer homology, and consequently EH(S, h,
{a1, a2}) = EH(S, h, {a1 + a2, a2}). q.e.d.

Figure 8. The second handleslide.

Lemma 3.6. Let {a1, . . . , ar} and {b1, . . . , br} be two bases for S.
Then there is a sequence of arc slides that takes {a1, . . . , ar} to {b1, . . . ,
br}.

We do not need to assume that ∂S is connected.

Proof. We argue that we can reduce the total number of intersections
of

⋃
i ai and

⋃
i bi by replacing {a1, . . . , ar} with {a′1, . . . , a

′
r}, which is

obtained from {a1, . . . , ar} by a sequence of arc slides. By inducting
on the number of intersection points, this shows that we can perform
a sequence of arc slides until

⋃
i ai and

⋃
i bi become disjoint. We then

show that two disjoint bases can be brought one into another by a
sequence of arc slides.
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Let P = S−
⋃

i ai. Then P is a polygon whose boundary ∂P consists

of 4r arcs, 2r of which are ai or a−1
i and 2r of which are arcs τ1, . . . , τ2r

of ∂S.
Suppose (

⋃
i ai) ∩ (

⋃
i bi) 6= ∅, where we are assuming efficient inter-

sections. After possibly reordering the arcs, there is a subarc b01 ⊂ b1
which starts on τ1 ⊂ ∂S and ends on a1, and whose interior int(b01) does
not intersect

⋃
i ai. (In other words, b01 is a properly embedded arc of

P .) We may assume that a1 is not adjacent to τ1; otherwise, isotop the
relevant endpoint of b1 along τ1. The subarc b01 separates the polygon
P into two regions P1 and P2, only one of which contains a boundary
arc that is labeled a−1

1 (say P2). We can then slide a1 over all the arcs

of type ai or a−1
i in the other region P1, and obtain the new curve a′1 as

in Figure 9 so that the new basis {a′1, a2, . . . , ar} has fewer intersections

with
⋃

i bi. (Note that trying to slide over a−1
1 presents a problem, so we

Figure 9. Simplifying the intersections of
⋃
ai and

⋃
bi.

must go the other way around.) There is one situation when the above
strategy needs a little more thought, namely when ∂P2 only intersects
a1 and a−1

1 (among all the ai and a−1
i ). In this case, b1 exits the polygon

P along a1 and reenters through a−1
1 . Eventually we find a subarc of b1

which starts on some τ2 and ends on an adjacent a−1
1 , a contradiction.

We now apply the same procedure to {a′1, a2, . . . , ar} and {b1, . . . , br}
until they become disjoint.

Now suppose that the two bases {a1, . . . , ar} and {b1, . . . , br} are
disjoint. We consider the polygon P = S −

⋃
i ai. Some of the bi arcs

may be parallel to aj or a−1
j . An arc b1 that is not parallel to any of the

ai will cut P into two components P1 and P2, each containing more than
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one of ai, a
−1
i , i = 1, . . . , r. Recall that b1 is nonseparating. One can

easily verify that b1 being nonseparating is equivalent to the existence
of some ai such that ai ∈ P1 and a−1

i ∈ P2 (or vice versa). (If there

is some ai, then take an arc c in P from ai ⊂ P1 to a−1
i ⊂ P2. The

closed curve in S obtained by gluing up c is dual to b1.) If each such ai

is parallel to some bj , then S −
⋃

i bi would be disconnected. Hence we
may additionally assume that there is some ai which is not parallel to
any bj. Now we slide ai across all the arcs of type aj , a

−1
j in P1 until it

becomes parallel to b1. q.e.d.

3.5. Legendrian surgery. Let δ be a nonseparating curve and φ−1
δ be

a negative Dehn twist about δ. We now transfer EH from M = M(S,h)

to M ′ = M(S,φ−1

δ
◦h). Recall that there is a natural map

f : ĤF (−M) → ĤF (−M ′),

which arises from tensoring with the top generator Θ of ĤF (#(S1×S2)).

Proposition 3.7. f(EH(S, h)) = EH(S, φ−1
δ ◦ h).

Proof. By Proposition 3.4 we may take a basis {a1, . . . , ar} for S so
that δ is disjoint from h(b2), . . . , h(br), intersects h(b1) exactly once, and
is parallel to h(b2). Then the result of performing (+1)-surgery along δ
(or, equivalently, a negative Dehn twist along δ) is given by Figure 10.

Figure 10. Legendrian (+1)-surgery. The second figure
shows curves and their relative position correctly, but
they are positioned on S0 as if h−1 had been applied to
each of them.

The α-curves and β-curves are as before, and we define the γ-curves
as follows: Let γ1 = (b1, φ

−1
δ ◦ h(b1)) and γi = (bi, h(bi)) for i > 1. Let

Θ ∈ ĤF (γ, β) be the top generator of #(S1 × S2), given in Figure 10.
Define the map

φ : ĤF (γ, β) ⊗ ĤF (β, α) → ĤF (γ, α),
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where φ(y ⊗ y′) counts holomorphic triangles, two of whose vertices

are y and y′. Then the map f : ĤF (β, α) → ĤF (γ, α) is given by
f(y) = φ(Θ ⊗ y). By the convenient placement of z, it follows that
we only have small triangles in the Heegaard diagram. Hence if [x] =
EH(S, h, {a1, a2}), then φ([Θ ⊗ x]) = EH(S, φ−1

δ ◦ h, {a1, a2}). q.e.d.

3.6. Multiple boundary components. Consider (S, h) where S has
disconnected boundary. For simplicity, assume S has two boundary
components. Pick a basis {a1, . . . , ar} for S. Next consider (S′, h#id),
where S′ is obtained from S by attaching a 1-handle between the two
boundary components and we are extending h by the identity. If a0

is the cocore of the 1-handle, then {a0, . . . , ar} is a basis for S′. Our
argument is similar to that of Lemma 4.4 of [OS3]. The natural map

FU : ĤF
((
−M(S,h)

)
#

(
S1 × S2

))
→ ĤF

(
−M(S,h)

)
,

which corresponds to the cobordism U attaching a 3-handle as in Sec-
tion 4.3 of [OS4], sends

EH
(
S′, h#id, {a0, a1, . . . , ar}

)
7→ EH (S, h, {a1, . . . , ar}) .

Since S′ has only one boundary component, we already know that

c(S′, h#id) = EH
(
S′, h#id, {a0, a1, . . . , ar}

)
.

Moreover, if δ is a closed curve on S′ which is “dual” to a0, then there
is a natural map

FW : ĤF
(
−M(S,h)

)
→ ĤF

((
−M(S,h)

)
#

(
S1 × S2

))

which maps c(S, h) to c(S′, h#id). Here (S, h) and (S′, φδ ◦ (h#id))
represent the same 3-manifold, and W is the cobordism from
−M(S′,φδ◦(h#id)) to −M(S′,h#id), obtained by attaching a 2-handle along
the curve δ. Finally, U ◦W ≃ [0, 1] ×M(S,h), so

c(S, h) = FU ◦FW (c(S, h)) = FU (c(S′, h#id)) = EH(S, h, {a1, . . . , ar}).

4. Right-veering and holomorphic disks

In this section we prove Theorem 1.2.

Proof of Theorem 1.2. Let S be a once-punctured torus.
Suppose first that h has pseudo-Anosov monodromy. If the fractional

Dehn twist coefficient c ≥ 1, then the contact structure is already sym-
plectically fillable and universally tight. It also follows that c(ξ(S,h)) 6= 0.

If c = 1
2 , then c(ξ(S,h)) 6= 0 follows from Theorem 4.1 below. If c ≤ 0,

then ξ is overtwisted since S is not right-veering. (See [HKM2].)
If h is periodic, then ξ is right-veering if and only if h is a product of

positive Dehn twists by [HKM3].
If h is reducible, then c(ξ(S,h)) 6= 0 follows from Theorem 4.3 below.

q.e.d.
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Theorem 4.1. Let (S, h) be an open book decomposition for M ,
where S is a once-punctured torus and h is pseudo-Anosov with frac-
tional Dehn twist coefficient c = 1

2 . Then c(ξ(S,h)) = EH(S, h) 6= 0, and
hence the contact structure ξ(S,h) is tight.

Proof. We show that EH(S, h) 6= 0 by choosing a basis for S for
which there are no holomorphic disks in the corresponding Heegaard
diagram that map to the generator x = {x0, y0} defining EH(S, h).

The following lemma furnishes us with a convenient basis:

Lemma 4.2. Let A ∈ SL(2,Z) be a matrix with tr(A) < −2. Then
A is conjugate in SL(2,Z) to a matrix

(
a b
c d

)
, where (a, c) and (b, d) are

in the third quadrant.

Proof. Let Λs and Λu be the stable and unstable laminations for A.
The slopes of Λs and Λu will be written slope(Λs) and slope(Λu). (Recall
that these slopes are irrational.) Let us consider the Farey tessellation
on the hyperbolic unit disk D2. Pick a vertex s1 on the clockwise edge
along ∂D2 from slope(Λs) to slope(Λu), and pick a vertex s2 on the
counterclockwise edge from slope(Λs) to slope(Λu), so that there is an
edge of the Farey tessellation between s1 and s2. (The existence of
such a pair s1, s2 is an exercise.) Then A(s1) (resp. A(s2)) is closer
to slope(Λs) than s1 (resp. s2) is. An oriented basis corresponding to
(s1, s2) will have the desired property. q.e.d.

With the choice of basis as above, we can represent M = M(S,h) by
the Heegaard diagram below. We have drawn a picture of the diagram
corresponding to A =

(
−1 −1
−1 −2

)
, but the same argument works for any

such A as described in the previous lemma. We prove that there is no
holomorphic disk from any y to x = {x0, y0}. Suppose on the contrary
that there is such a holomorphic disk u. Let ∂D(u) be the boundary
of the support of D(u). Assuming ∂D(u) is connected, it is given by a
subarc of a1 from some xi ∈ a1 ∩ h(a2) to x0, followed by a subarc of
h(a1) from x0 to some yj ∈ a2 ∩ h(a1), followed by a subarc of a2 from
yj to y0 (you either turn left or turn right at yj), and then by a subarc
of h(a2) from y0 to xi. If we lift ∂D(u) to the universal cover of the
capped off surface T 2 = S ∪ D2, then in all cases we see that ∂D(u)
is not contractible. This implies that ∂D(u) cannot bound a surface in
S. We argue similarly when ∂D(u) has two components. It follows that
the class EH(S, h) of x = {x0, y0} is nonzero. q.e.d.

Theorem 4.3. EH(S, h) 6= 0 if h is reducible and right-veering.

Proof. Suppose h is reducible. Let g be an element of Aut(S, ∂S)
which is the minimally right-veering representative for the matrix A =
−id. (In terms of positive Dehn twists, g = (A1A2A1)

2, where A1 =
( 1 1

0 1 ) and A2 =
(

1 0
−1 1

)
.) After changing bases if necessary, h = gnφm

γ ,
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Figure 11

where n is a positive integer, m is an integer, and φγ is a positive Dehn
twist about a (0, 1)-curve γ. If m is nonnegative, then h is a product of
positive Dehn twists, and EH(S, h) 6= 0.

Suppose m < 0. It suffices to prove the theorem for n = 1, since
the contact structures corresponding to larger n are obtained from the
n = 1 case by Legendrian surgery. Take a basis corresponding to slopes
0,∞ and matrix A =

(
−1 0
−m −1

)
. Then EH(S, h) is nonzero by the same

argument as in Theorem 4.1. q.e.d.
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[Gi1] E. Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66

(1991), 637–677, MR 1129802, Zbl 0766.53028.
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