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HIGHER REGULARITY OF THE INVERSE MEAN

CURVATURE FLOW

Gerhard Huisken & Tom Ilmanen

Abstract

We prove higher regularity properties of inverse mean curva-
ture flow in Euclidean space: A sharp lower bound for the mean
curvature is derived for star-shaped surfaces, independently of the
initial mean curvature. It is also shown that solutions to the in-
verse mean curvature flow are smooth if the mean curvature is
bounded from below. As a consequence we show that weak solu-
tions of the inverse mean curvature flow are smooth for large times,
beginning from the first time where a surface in the evolution is
star-shaped.

A classical solution of inverse mean curvature flow (IMCF) in Eu-
clidean space is a smooth family F : Nn × [0, T ] → R

n+1 of regular and
closed hypersurfaces satisfying

(0.1)
∂

∂t
F (p, t) =

1

H
ν(p, t), p ∈ Nn, 0 ≤ t ≤ T,

where H(p, t) > 0 and ν(p, t) are the mean curvature and exterior unit
normal of the surface Nt = F (·, t)

(

Nn
)

at the point F (p, t). It was
shown by Gerhardt [3] that for smooth star-shaped initial data of strictly
positive mean curvature, equation (0.1) has a smooth solution for all
times which approaches a homothetically expanding spherical solution
as t → ∞, see also Urbas [15].

For nonstar-shaped initial data it is well known that singularities may
develop; in the case n = 2 Smoczyk [13] proved that such singularities
can only occur if the speed becomes unbounded, or, equivalently, when
the mean curvature tends to zero somewhere during the evolution.

In [6], [7], [8] the authors developed a new level set approach to weak
solutions of the flow, allowing “jumps” of the surfaces and solutions
of weakly positive mean curvature. Weak solutions of the flow can be
used to derive energy estimates in General Relativity, see [7] and the
references therein.
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In Section 1 we prove a lower bound for the mean curvature of star-
shaped solutions to (0.1) which is independent of the curvature of the
initial surface and only depends on gross geometric properties of the
initial surface; see Theorem 1.1. Our lower bound for H can be thought
of as embodying a weak Harnack inequality, in which inf H is bounded
below by some integral of H, which in turn is bounded below by the
initial area in view of the Michael-Simon Sobolev inequality. The proof
combines the evolution equation of the mean curvature with the evolu-
tion equation of the support function w = 〈F, ν〉. In conjunction with
the Sobolev inequality for hypersurfaces and an iteration scheme due to
Stampacchia, we derive as a central result of the paper an estimate inte-
rior in time stating that in the star-shaped setting the mean curvature
has to grow at least of order (t− to)

1/2 when starting from a surface of
nonnegative mean curvature at time to. Since time t is a dimensionless
quantity in IMCF, the power t1/2 is not explained by scaling but arises
by some other mechanism unknown to us. It is sharp, as can be seen
from the one-dimensional case. From another point of view, the result
can be seen as a sharp Harnack inequality for the speed of the surface,
capturing how the near infinite speed at some part of the surface is
spread around a starshaped surface in time.

In Section 2, Theorem 2.1, we estimate the full second fundamental
form A when the mean curvature H is bounded below by a positive
constant, making use of a maximum principle for the tensor HA. This
extends a result of Smoczyk [13] to all dimensions. As a direct conse-
quence we obtain a sharp blowup criterion for IMCF: A solution can
only become singular if the mean curvature goes to zero, see Corollary
2.3.

Combining the results above with an approximation lemma we can
construct smooth solutions to IMCF for star-shaped, weakly mean con-
vex initial data of class C1 in Theorem 2.5. This result can then be
applied to variational level set solutions of the flow as introduced and
studied in [7]: Using the uniqueness of these weak solutions we conclude
in Theorem 2.7 that every level set solution to the flow is regular after
the first instant to where a level set Nto is star-shaped. Since a blowdown
argument shows that every weak solution eventually is star-shaped, this
in particular implies that weak solutions will be regular outside some
compact set.

We note that Heidusch [5] has derived local estimates for solutions
of IMCF which are locally star-shaped, implying C1,1-regularity of the
level sets of weak solutions in low dimensions. Chow and Gulliver [1]
obtain slope estimates for radial graphs; compare the remark at the
end of Section 2. Questions concerning large initial mean curvature for
IMCF are discussed in [8].
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In a forthcoming paper we will extend the results presented here to
inverse mean curvature flow in asymptotically flat Riemannian mani-
folds, proving smoothness for large times and convergence to the center
of mass.

1. A lower bound for the mean curvature

If F : Nn → R
n+1 is a smooth closed hypersurface, we say that

F (Nn) is star-shaped (with respect to the origin) if 〈F, ν〉 > 0 on Mn.
We will prove the following theorem in this section.

Theorem 1.1. Suppose F : Nn × [0, T ] → R
n+1 is a smooth star-

shaped solution of (0.1) such that on Nn
0 we have the estimates

(1.1) 0 < R1 ≤ 〈F, ν〉 ≤ R2.

Then there is a constant 0 < cn < ∞ depending only on n such that the
estimates

1

H〈F, ν〉
≤ cn max

(

1

t1/2
, 1

)

R−1
1 |Nn

0 |
1/n

and

H ≥ c−1
n min

(

t1/2, 1
)

exp(−t/n)R1R
−1
2 |Nn

0 |
−1/n

hold everywhere on Nn × [0, T ].

We recall the evolution equations for various geometric quantities
under the inverse mean curvature flow. Let g = {gij}1≤i,j≤n and A =
{hij}1≤i,j≤n be the first and second fundamental form of the evolving
surfaces, let H = gijhij = traceg A as before be the mean curvature, w =
〈F, ν〉 the support function and dµ the induced measure on Nt. Since
we already know from [3] that the smooth solution can be extended for
all time, we will assume throughout this section that T = ∞.

Lemma 1.2. Smooth solutions of (0.1) with H > 0 satisfy

(i)
∂

∂t
gij = 2H−1hij ,

(ii)
∂

∂t
(dµ) = dµ,

(iii)
∂

∂t
ν =

1

H2
∇H,

(iv)
∂

∂t
hij =−∇i∇j

( 1

H

)

+
1

H
hilh

l
j =

1

H2
∆H−

2

H3
∇iH∇jH+

|A|2

H2
hij ,

(v)
∂

∂t
H =

1

H2
∆H −

|A|2

H
,

(vi)
∂

∂t
w =

1

H2
∆w +

|A|2

H2
w.

Proof. The evolution equations for the metric and the second funda-
mental form have been established in [3]; see also [9] for the evolution
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equations satisfied by general flows. The evolution equation for the
support function w follows from (iii) and the identity

∆〈F, ν〉 = −|A|2 〈F, ν〉 + 〈∇H, F 〉 + H.

As a first consequence we conclude that star-shaped surfaces remain
star-shaped, a fact first observed by Gerhardt [3].

Proposition 1.3. If the initial surface satisfies

0 < R1 ≤ 〈F, ν〉 ≤ R2,

then the solution of (0.1) satisfies

exp (t/n)R1 ≤ 〈F, ν〉 ≤ |F | ≤ R2 exp (t/n).

Proof. Since |A|2 ≥ H2/n we have for w = 〈F, ν〉

∂

∂t
w ≥

1

H2
∆w +

1

n
w,

proving the first inequality in view of the maximum principle. The
second inequality follows from the equation

∂

∂t
|F |2 =

2

H
〈F, ν〉

and the fact that in the point of the surface most distant from the origin
we have 〈F, ν〉 = |F | and H ≥ n|F |−1.

To prove the lower bound for the mean curvature we exploit the fact
that the functions 1/H and w = 〈F, ν〉 satisfy the same equation to get
rid of the nonlinear zero order terms: We will derive an upper bound
for the modified speed function

u =
1

Hw
.

Lemma 1.4. The modified speed function u = H−1w−1 satisfies the
evolution equation

∂

∂t
u =

1

H2
∆u −

2

H2
u−1|∇u|2 −

2

H3
∇iH∇iu

= ∇i

(

1

H2
∇iu

)

−
2

H2
u−1|∇u|2.

Proof. Combine the equations (v) and (vi) from lemma 1.2.
The strategy of proof aims for a Stampacchia iteration to estimate

sup u. The first step is an Lp–estimate for u that for each 2 < p <
∞ behaves like t−1/2 for small t and still depends on p at this stage.
The 1/H2-term in front of the Laplacian is of crucial help, making the
diffusion stronger when H is small.

Theorem 1.5. Suppose the initial surface N0 satisfies

0 < R1 ≤ 〈F0 , ν〉
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and Nt solves IMCF (0.1). Then there is a constant c(n) depending only
on n such that the modified speed function u satisfies for all p > 2 and
0 < t ≤ T the estimate

||u||Lp(Nt) ≤ c(n)R−1
1 |N0|

p+n

np exp

(

2

p
t

)

(

exp

(

2

p
t

)

− 1

)−1/2

.

Proof. From Lemma 1.4 and Lemma 1.2(ii) we compute for p ≥ 2

d

dt

∫

up dµ = p

∫

up−1∇i

(

1

H2
∇iu

)

dµ

− 2p

∫

1

H2
up−2|∇u|2 dµ +

∫

up dµ

= −p(p + 1)

∫

1

H2
up−2|∇u|2 dµ +

∫

up dµ.

Using now the first inequality in Proposition 1.3 we conclude

d

dt

∫

up dµ = −p(p + 1)

∫

〈F, ν〉2up|∇u|2 dµ +

∫

up dµ

≤ −p(p + 1) exp
( 2

n
t
)

R2
1

∫

up|∇u|2 dµ +

∫

up dµ

and thus arrive for g = up/2+1 at the estimate

(1.2)
d

dt

∫

up dµ ≤ − exp
( 2

n
t
)

R2
1

∫

|∇g|2 dµ +

∫

up dµ.

To proceed further we need the Sobolev inequality on hypersurfaces due
to Michael and Simon, see [12].

Proposition 1.6. There is a constant c(n) depending only on n ≥ 2
such that

(

∫

Nn

f
n

n−1 dµ
)

n−1
n

≤ c(n)

∫

Nn

|∇f | + |H||f | dµ

for any f ∈ C0,1
c (Nn).

In applying the Sobolev inequality we have to distinguish the cases
n = 2 and n > 2.

I. Case n = 2. Setting f = |h|q for q > 1 we conclude from Proposition
1.6 that

(1.3)

(

∫

N2

|h|2q dµ

)1/q

≤ c q2 |N2|1/q

∫

N2

|∇h|2 + |H|2|h|2 dµ.
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Hence we derive from (1.2) with 2 > q = 2p
p+2 > 1 for p > 2 that

d

dt

∫

up dµ ≤ −c−1 exp (t) R2
1q

−2 |Nt|
−1/q

(

∫

g2q dµ

)1/q

+ exp (t)R2
1

∫

H2g2 dµ +

∫

up dµ.

Using up = gq and Hölder’s inequality, we derive

d

dt

∫

gq dµ ≤ −c−1R2
1q

−2 |Nt|
−2/q exp (t)

(

∫

gq dµ

)2/q

+ exp (t)R2
1

∫

H2g2 dµ +

∫

up dµ.

Now we estimate

exp (t)R2
1

∫

H2g2 dµ ≤

∫

〈F, ν〉2H2g2dµ

=

∫

u−2g2 dµ =

∫

gq dµ,

such that finally in view of |Nt| = |N0| exp (t) and 1 < q < 2

d

dt

∫

gq dµ

≤ −c−1q−2R2
1 |Nt|

−2/q exp (t)

(

∫

gq dµ

)1+2/p

+ 2

∫

up dµ

= −c−1q−2R2
1 |N0|

−2/q exp
(

−
2

p
t
)

(

∫

gq dµ

)1+2/p

+ 2

∫

up dµ.

Setting ϕ = exp (−2t)
∫

gq dµ this is equivalent to

d

dt
ϕ ≤ −c−1q−2R2

1 exp
(2t

p

)

|N0|
−

p+2
p ϕ

p+2
p .

From the solution of the corresponding ODE we conclude

ϕ ≤ |N0|
p+2
2

(

c−1R2
1q

−2

(

exp
(2t

p

)

− 1

)

)−p/2

and derive the desired Lp–estimate for u:

||u||Lp ≤ c R−1
1 |N0|

p+2
2p exp

(2

p
t
)

(

exp
(2

p
t
)

− 1

)−1/2

.

II. Case n ≥ 3. Using the Sobolev inequality in the form

(1.4)

(

∫

Nn

|h|
2n

n−2 dµ

)
n−2

n

≤ c(n)

∫

Nn

|∇h|2 + |H|2|h|2 dµ,
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we derive from (1.2) for q = 2p
p+2 , p ≥ 2, as before

d

dt

∫

gq dµ ≤ −c−1(n)R2
1 exp

(2t

n

)

(

∫

g
2n

n−2 dµ

)
n−2

n

+ 2

∫

gq dµ.

The Hölder inequality and |Nt| = |N0| exp (t) yield

d

dt

∫

gq dµ ≤ −c−1(n)R2
1 |N0|

−2(p+n)
np exp

(−2t

p

)

(

∫

gq dµ

)
p+2

p

+ 2

∫

gq dµ

and the proof proceeds as before to the estimate

||u||Lp ≤ c(n)R−1
1 |N0|

p+n

np exp
(2

p
t
)

(

exp
(2

p
t
)

− 1

)−1/2

,

as required.
In the second step of the proof we derive an iteration inequality first

employed by Stampacchia for the measure of the set where u is larger
than a constant, weighted by tβ .

Proof of Theorem 1.1. To obtain the supremum estimate for u from
the Lp-estimate, let t0 > 0 be arbitrary but fixed and set

(1.5) v = (t − t0)
βu = (t − t0)

β 1

H〈F, ν〉
,

where 0 < β < 1 will be chosen later. From Lemma 1.4 we get the
evolution equation

d

dt
v = ∇i

(

1

H2
∇iv

)

−
2

H2
v−1|∇v|2 + β(t − t0)

−1v.

Let vk = max(v − k, 0) for k ≥ 0 and let A(k) = {p ∈ Nt| v(p, t) > k}.
We multiply the last equation with vk and integrate to derive

d

dt

∫

Nt

v2
k dµ = 2

∫

A(k)
vk∇i

(

1

H2
∇iv

)

dµ +

∫

A(k)
v2
k dµ

− 4

∫

A(k)

1

H2
vkv

−1|∇v|2 dµ + 2β(t − t0)
−1

∫

A(k)
vkv dµ.
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This implies

d

dt

∫

Nt

v2
k dµ ≤ −2

∫

A(k)

1

H2
|∇v|2 dµ +

∫

A(k)
v2
k dµ

+ 2β(t − t0)
−1

∫

A(k)
v2 dµ

= −2(t − t0)
−2β

∫

A(k)
〈F, ν〉2v2|∇v|2 dµ +

∫

A(k)
v2
k dµ

+ 2β(t − t0)
−1

∫

A(k)
v2 dµ.

We now use v > k on A(k) as well as 〈F, ν〉 ≥ R1 exp (t/n) from Propo-
sition 1.3 to estimate

d

dt

∫

Nt

v2
k dµ + 2k2R2

1(t − t0)
−2β exp

(2t

n

)

∫

Nt

|∇vk|
2 + H2v2

k dµ(1.6)

≤ 2β(t − t0)
−1

∫

A(k)
v2 dµ + 3

∫

Nt

v2
k dµ.

Here we also used the fact that on A(k)

exp
(2t

n

)

(t − t0)
−2βH2R2

1 ≤ (t − t0)
−2βH2〈F, ν〉2 = v−2 < k−2.

Again we have to distinguish the cases n = 2 and n ≥ 3.

I. Case n = 2. The Sobolev inequality (1.3) for some fixed 1 < q < ∞
yields the estimate

d

dt

∫

Nt

v2
k dµ + c−1k2R2

1 q−2(t − t0)
−2β exp (t)|Nt|

− 1
q

(

∫

Nt

v2q
k dµ

)
1
q

(1.7)

≤ 2β(t − t0)
−1

∫

A(k)
v2 dµ + 3

∫

Nt

v2
k dµ.

In view of the Hölder inequality

∫

Nt

v2
k dµ ≤ |Nt|

1− 1
q

(

∫

Nt

v2q
k dµ

)
1
q
,

the second term on the RHS can be absorbed if |Nt| ≤
1
3c−1k2R2

1q
−2(t−

t0)
−2β exp (t). As |Nt| = |N0| exp(t) this inequality will hold in the

interval [t0, t1] for k ≥ k0 > 0 if we make sure that

(1.8) k2
0 ≥ 3 c (t1 − t0)

2βR−2
1 q2 |N0|.
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Hence, for n = 2 we derive the inequality

d

dt

∫

Nt

v2
k dµ + c−1k2 R2

1 q−2 (t − t0)
−2β exp (t)|Nt|

− 1
q

(

∫

Nt

v2q
k dµ

)
1
q

(1.9)

≤ 2β(t − t0)
−1

∫

A(k)
v2 dµ

provided (1.8) holds.

II. Case n ≥ 3. Again starting from (1.6) we use the Sobolev inequal-
ity in the form (1.4), set q = n

n−2 and infer with the help of the Hölder
inequality

∫

Nt

v2
k dµ ≤ |Nt|

2
n

(

∫

Nt

v2q
k dµ

)
1
q

the estimate

d

dt

∫

Nt

v2
k dµ + c−1(n)k2R2

1(t − t0)
−2β exp

(2t

n

)(

∫

Nt

v2q
k dµ

)
1
q

(1.10)

≤ 2β(t − t0)
−1

∫

A(k)
v2 dµ,

provided t ∈ [t0, t1], k ≥ k0 > 0 and

(1.11) k2
0 ≥ 3 c(n) (t − t0)

2βR−2
1 |N0|

2
n .

Now define a constant B(k) by setting

B(k) :=

{

c−1 q−2 k2 R2
1 |Nt1 |

− 1
q exp (t0), n = 2,

c−1(n) k2 R2
1 exp (2t0/n), n ≥ 3,

such that for all n ≥ 2 we have from (1.9) and (1.10) the estimate

d

dt

∫

Nt

v2
k dµ + B(k)(t− t0)

−2β
(

∫

Nt

v2q
k dµ

)
1
q
≤ 2β(t− t0)

−1

∫

A(k)
v2 dµ.

Integrating from t0 to any t ∈ [t0, t1] and having in mind that v
vanishes at t = t0 we deduce

sup
[t0,t1]

∫

Nt

v2
k dµ + B(k)

∫ t1

t0

(t − t0)
−2β

(
∫

A(k)
v2q
k dµ

)
1
q

dt(1.12)

≤ 2β

∫ t1

t0

(t − t0)
−1

∫

A(k)
v2 dµ dt.

To proceed further we define an interpolating exponent 1 < q0 < q by

1

q0
=

a

q
+ (1 − a), a =

1

q0
.
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With this choice we have 1 − a = (1/q0)(1 − 1/q) and

1 < q < ∞, q0 = 2 −
1

q
, if n = 2,(1.13)

q =
n

n − 2
, q0 = 2 −

1

q
=

n + 2

n
, if n = 3.

By interpolation and Young’s inequality we obtain

(

∫ t1

t0

B(k)(t − t0)
−2β

∫

A(k)
v2qo

k dµ dt

)1/qo

≤

[

∫ t1

t0

B(k)(t − t0)
−2β

(
∫

A(k)
v2q
k dµ

)aqo/q(∫

A(k)
v2
k dµ

)qo(1−a)

dt

]1/qo

≤

(

sup
[t0,t1]

∫

A(k)
v2
k dµ

)1−a
[

∫ t1

t0

B(k)(t − t0)
−2β

(
∫

A(k)
v2q
k dµ

)1/q

dt

]a

≤ sup
[t0,t1]

∫

A(k)
v2
k dµ + c(n)

∫ t1

t0

B(k)(t − t0)
−2β

(
∫

A(k)
v2q
k dµ

)1/q

dt,

since q, q0 are fixed depending only on n. Combining this estimate with
(1.12) we derive

(

∫ t1

t0

B(k)(t − t0)
−2β

∫

A(k)
v2q0

k dµ dt

)1/q0

≤ c(n)β

∫ t1

t0

(t − t0)
−1

∫

A(k)
v2 dµ dt.

Now let dσ := (t − t0)
−2βdµ dt, ||A(k)|| :=

∫ t1
t0

∫

A(k) dσ and apply

Hölder’s inequality with respect to dσ on the LHS to conclude

B(k)
1
q0

∫ t1

t0

∫

A(k)
v2
k dσ ≤ c(n)β||A(k)||

1− 1
q0

∫ t1

t0

(t − t0)
−1

∫

A(k)
v2 dµ dt.

To properly match the powers of (t− t0) on both sides of the inequality,
a good choice for β is β = 1/4. Then

∫ t1

t0

∫

A(k)
v2
k dσ

(1.14)

≤ c(n)B(k)
− 1

q0 ||A(k)||
1− 1

q0

∫ t1

t0

(t − t0)
−1|A(k)|1−

1
r

(
∫

Nt

v2r dµ

)
1
r

dt
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for some r > 1 to be chosen. We use the Lp–estimate in Theorem 1.5
for u = H−1w−1 = v(t − t0)

−1/4,

||u||Lp(Nt) ≤ c(n) exp
(2

p
t
)

|N0|
p+n

np

(

R2
1

(

exp
(2

p
t
)

− 1

)

)−1/2

≤ c(n)R−1
1 |N0|

p+n

np max
(

1,
p

t

)1/2
exp

( t

p

)

,

and thus from (1.14)
∫ t1

t0

∫

A(k)
v2
k dσ

≤ c(n)R−2
1 B(k)

− 1
q0 ||A(k)||

1− 1
q0 |N0|

2r+n

nr

· max
(

1,
r

t0

)

exp
( t1

r

)

∫ t1

t0

(t − t0)
−1/2|A(k)|1−

1
r dt.

The integral on the RHS can be estimated by
∫ t1

t0

(t − t0)
−1/2|A(k)|1−

1
r dt

≤
(

∫ t1

t0

(t − t0)
−1/2|A(k)| dt

)1− 1
r
(

∫ t1

t0

(t − t0)
−1/2dt

)
1
r

= 2||A(k)||1−
1
r (t1 − t0)

1
2r .

So we finally arrive at
∫ t1

t0

∫

A(k)
v2
k dσ ≤ c(n)R−2

1 B(k)
− 1

q0 |N0|
2r+n

nr

· max
(

1,
r

t0

)

exp
( t1

r

)

(t1 − t0)
1
2r ||A(k)||

2− 1
q0

− 1
r .

Now choosing r depending only on q0 = q0(n) large enough that γ =
2 − 1

q0
− 1

r > 1 we get the iteration inequality

|h − k|2||A(h)|| ≤ c(n)R−2
1 B(k0)

− 1
q0 |N0|

2r+n

nr

· max
(

1,
r

t0

)

exp
( t1

r

)

(t1 − t0)
1
2r ||A(k)||γ

for h > k ≥ k0 > 0. A well known lemma due to Stampacchia ([14],
Lemma 4.1) yields

‖A(k0 + d)‖ = 0,

d2 = c(n)R−2
1 B(k0)

− 1
q0 |N0|

2r+n

nr

· max
(

1,
r

t0

)

exp
( t1

r

)

(t1 − t0)
1
2r ||A(k0)||

γ−1.
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Now observe that

||A(k0)|| =

∫ t1

t0

(t − t0)
−1/2

∫

A(k)
dµ dt ≤ 2|N0| exp (t1)(t1 − t0)

1/2,

so

(1.15) d2 ≤ c(n)R−2
1 B(k0)

− 1
q0 |N0|

1+ 2
n
− 1

q0

· max
(

1,
r

t0

)

(t1 − t0)
1
2
(1− 1

q0
)
exp

((

1 −
1

q0

)

t1

)

.

Now we have to distinguish small and large times:

I. Case t0 ≤ 1: We choose k0 = c(n) t
−1/4
0 R−1

1 |N0|
1/n, t1 = 2t0,

where c(n) is chosen such that inequalities (1.8) and (1.11) are satisfied.
Using the relation between q, q0 and n as in (1.13) we note that 1 −
2/q0 − 1/qq0 = 0 if n = 2 and 1− 1/q0 − 2/nq0 = 0 if n ≥ 3, and derive
from (1.15), the definition of B(k0) and routine calculation that

(1.16) d2 ≤ c(n)R−2
1 |N0|

2/n t
−1/2
0 .

Here we also used the fact that the exponential function is bounded
since t0 ≤ 1.

II. Case t0 ≥ 1: We set k0 = c(n)R−1
1 |N0|

1/n, t1 = t0 + 1, where
c(n) is again chosen large enough to guarantee inequalities (1.8) and
(1.11). Exploiting the relations between q, q0 and n as in the first case
and noting that now the coefficient of t0 in the exponential function
vanishes, we infer from (1.15)

(1.17) d2 ≤ c(n)R−2
1 |N0|

2/n.

In view of the definition of v in (1.5),

v = (t − t0)
1/4u = (t − t0)

1/4 1

H〈F, ν〉
,

and in view of our choice t1 = min(2t0, t0 +1), this shows in both cases
that

sup
Nt1

1

H〈F, ν〉
≤ cn max

(

1, t
−1/2
1

)

R−1
1 |N0|

1/n,

proving the first estimate of Theorem 1.1. The second estimate of the
theorem,

H ≥ c−1
n min(1, t−1/2) exp(−t/n)R1 R−1

2 |N0|
−1/n,

is then a direct consequence of Proposition 1.3.
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2. Regularity for positive mean curvature

The classical formulation of inverse mean curvature flow is parabolic
if the mean curvature is positive. We show in this section that a solution
of the flow remains smooth as long as the mean curvature is bounded
away from zero. In the two-dimensional case this was shown by Smoczyk
[13]. Combining with the Harnack inequality of Section 1, we show that
star-shaped, weakly mean convex initial data have a unique, smooth
solution of strictly positive mean curvature for all times t > 0 and also
show that general weak solutions of IMCF constructed in [6] are smooth
after some finite time.

We begin with a curvature estimate which is interior in time.

Theorem 2.1. Let F : Nn × [0, T ) → R
n+1 be a smooth solution of

IMCF (0.1) satisfying uniform bounds 0 < H0 ≤ H ≤ H1. Then the
largest eigenvalue κn of the tensor M ,

Mij = H hij ,

and the largest eigenvalue λn of the second fundamental form A satisfy
the estimates

κn ≤
H2

1

2t
, λn ≤

H2
1

2H0t
,

everywhere on Nn × [0, T ).

Corollary 2.2. If the mean curvature H satisfies 0 < H0 ≤ H ≤ H1

on Nn × [0, T ), the full second fundamental form satisfies an estimate
of the form

|A| ≤ cn
H2

1

H0

1

t

on Nn × [0, T ).

Proof. We combine the evolution equations of H and hij to get rid
of the zero order terms: From Lemma 1.2 we compute the evolution
equation

∂

∂t
Mij = hij

(

1

H2
∆H −

2

H3
|∇H|2 −

|A|2

H

)

+ H

(

1

H2
∆hij −

2

H3
∇iH∇jH +

|A|2

H2
hij

)

=
1

H2
∆Mij −

2

H2
∇kH∇khij −

2hij

H3
|∇H|2 −

2

H2
∇iH∇jH

=
1

H2
∆Mij −

2

H3
∇kH∇kMij −

2

H2
∇iH∇jH.
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To obtain the interior estimate of the theorem for the eigenvalues of M ,
we compute

∂

∂t
M i

j =
1

H2
∆M i

j −
2

H3
∇kH∇kM

i
j −

2

H2
∇iH∇jH −

2

H2
M ikMkj .

It follows immediately by the maximum principle for such parabolic
systems, see e.g., ([4], Section 4), that the largest eigenvalue of M i

j

remains bounded above by its initial data. In fact, due to the negative
forcing term on the RHS, if on the time interval considered we have an
upper bound H ≤ H1 for the mean curvature, it follows by comparison
with the ODE

d

dt
ϕ = −

2

H2
1

ϕ2

that the largest eigenvalue κn of M satisfies

κn ≤
H2

1

2t
.

For the largest principal curvature λn = κn/H this implies the estimate

λn =
κn

H
≤

H2
1

2H

1

t
≤

H2
1

2H0

1

t
,

completing the proof of Theorem 2.1. Since H ≥ 0, it follows that the
full second fundamental form is bounded by

|A| ≤ c(n)
H2

1

H0

1

t
,

as claimed in Corollary 2.2.
In view of this curvature estimate we can now characterize the max-

imal time interval of smooth existence by

Corollary 2.3. Let F : Nn × [0, T ) → R
n+1 be a smooth solution of

IMCF (0.1) with H > 0, 0 < T < ∞. If the mean curvature H remains
bounded from below by a constant H0 > 0 for all t ∈ (0, T ), then the
solution can be extended beyond T . In particular, if [0, T ), T < ∞, is
the maximal time interval of existence for a smooth solution of IMCF
(0.1), then the speed 1/H is unbounded for t → T .

Remark 2.4. The maximal smooth solution constructed here may
not coincide with the weak solution of [7] on the entire interval of exis-
tence [0, T ).

Proof. In view of the evolution equation for H in Lemma 1.2(v), the
mean curvature is uniformly bounded above by its initial value H1 =
supN0

H on Nn × [0, T ). Given an additional uniform lower bound
H0 > 0 for H, Theorem 2.1 and Corollary 2.2 imply that the second
fundamental form is bounded by |A| ≤ c(n)H2

1/H0t, which is bounded
for t → T . The regularity results of Krylov [10], see also [3] and [15],
then guarantee higher regularity of the solution and convergence to a
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smooth limit surface NT as t → T , satisfying H ≥ H0 > 0. The short-
time existence of solutions to (0.1) in case of smooth initial data with
positive mean curvature then yields the desired extension.

We are now ready to prove global existence and regularity of solu-
tions to IMCF for star-shaped initial data with weakly positive mean
curvature.

Theorem 2.5. Let F0 : Nn → R
n+1 be a closed embedded hyper-

surface of class C1 with measurable, bounded, nonnegative weak mean
curvature H ≥ 0. Assume that F0(N

n) = Nn
0 is strictly star-shaped,

i.e.,
0 < R1 ≤ 〈F, ν〉 ≤ R2

holds everywhere on Nn
0 with positive constants R1, R2. Then IMCF

(0.1) has a global smooth solution F : Nn × (0,∞) → R
n+1 satisfying

the estimates established in Theorem 1.1, Theorem 2.1, and Corollary
2.2. As t → 0, Nt converges to Nn

0 uniformly in C0.

To apply our a priori estimates and prove Theorem 2.5, we need the
following approximation lemma.

Lemma 2.6. Let F0 : Nn → R
n+1 be a closed, oriented hypersur-

face immersion of class C1, with measurable, bounded, nonnegative weak
mean curvature. Then Nn

0 is of class C1,β ∩ W 2,p for all 0 < β < 1,
1 ≤ p < ∞, and can be approximated locally uniformly in C1,β ∩ W 2,p

by a family of smooth surfaces Ñn
ǫ , 0 < ǫ < ǫ0, satisfying H > 0.

Proof. The weak mean curvature H is defined as in ([6], Section 1)
by the first variation formula

∫

Nn

divNX dµ =

∫

Nn

H〈X, ν〉 dµ

for vectorfields X ∈ C∞
c (Rn, R

n). Since Nn
0 is C1 and H is bounded,

standard regularity results of Allard and Calderon-Zygmund imply that
Nn

0 is of class C1,β∩W 2,p for all 0 < β < 1, 1 ≤ p < ∞. By mollification

we can pick a sequence of surfaces N̂n
i converging locally uniformly

to Nn
0 in C1,β ∩ W 2,p. Now consider standard mean curvature flow

starting from the smooth approximating surfaces F̂i : Nn → R
n+1,

F̂i(N
n) = N̂n

i :

∂

∂ǫ
F (p, ǫ) = −H ν(p, ǫ), p ∈ Nn, 0 < ǫ < ǫ0,

Fi(p, 0) = F̂i(p).

In view of the local gradient estimates for mean curvature flow in [2]

the surfaces N̂i,ǫ = Fi(·, ǫ)(N
n) exist on some fixed time interval [0, ǫ0)

independent of i and remain graphs over Nn
0 in Gaussian adapted co-

ordinates. These graphs therefore satisfy uniformly parabolic quasilin-
ear equations with initial data in C1,β ∩ W 2,p. By interior parabolic
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Schauder regularity theory (see e.g., [11], Section IV) the curvature of

the surfaces N̂i,ǫ satisfies

|Ai,ǫ| ≤
c

ǫ1/2−β/2
,

where c is a constant uniform in i, depending on the C1,β regularity of
Nn

0 . Furthermore, for each i and 1 ≤ p < ∞ we can compute from the
evolution equation for the second fundamental form,

∂

∂ǫ
|Ai,ǫ|

2 = ∆|Ai,ǫ|
2 − 2|∇Ai,ǫ|

2 + 2|Ai,ǫ|
4,

that

d

dǫ

∫

N̂i,ǫ

|Ai,ǫ|
p dµ

≤ −p(p − 1)

∫

N̂i,ǫ

|Ai,ǫ|
p−2|∇A|2 dµ + p

∫

N̂i,ǫ

|Ai,ǫ|
2|Ai,ǫ|

p dµ

≤
c2 p

ǫ1−β

∫

N̂i,ǫ

|Ai,ǫ|
p dµ.

It follows by Gronwall’s Lemma that hence
∫

N̂i,ǫ

|Ai,ǫ|
p dµ ≤ exp

(

c2 p

β
ǫβ
0

)
∫

N̂i

|Ai,ǫ|
p dµ ≤ c(p)

uniformly in i for 0 < ǫ < ǫ0. In view of this uniform W 2,p-estimate we
obtain for i → ∞ a solution F̃ : Nn × (0, ǫ0) → R

n+1 of mean curvature
flow still satisfying

|Aǫ| ≤
c

ǫ1/2−β/2

on (0, ǫ) and converging to Nn
0 in C1,β ∩W 2,p for all 0 < β < 1, 1 ≤ p <

∞ as ǫ → 0. Note that the solution of mean curvature flow is unique
in this class. It follows in particular that Hǫ → H strongly in Lp as
ǫ → 0, 1 ≤ p < ∞, and similarly, Hǫ− = min(Hǫ, 0) → H− = min(H, 0)
strongly in Lp, 1 ≤ p < ∞. We may then use the evolution equation for
the mean curvature ∂

∂ǫHi,ǫ = ∆Hi,ǫ + |Ai,ǫ|
2Hi,ǫ and Gronwalls lemma

for the L2-norm of H− to conclude that
∫

Nn
ǫ

|Hǫ−|
2 dµ ≤ exp

(

c ǫβ
0

)

∫

Nn
0

|H−|
2 dµ = 0,

proving that Hǫ ≥ 0 for all 0 < ǫ < ǫ0. By the strong maximum
principle and the compactness of Nn

ǫ ⊂ R
n+1 it follows that Hǫ > 0 for

all 0 < ǫ < ǫ0 as required.

Proof of Theorem 2.5. Given Nn
0 , let Ñn

ǫ be the family of approxi-
mating surfaces of positive mean curvature constructed in Lemma 2.6.
For each 0 < ǫ < ǫ0 IMCF (0.1) has a global smooth solution in view of
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Theorem 1.1 and Corollary 2.3, see also [3]. As the estimates in The-
orem 1.1 and all resulting higher regularity estimates are uniform in ǫ
for each positive fixed t > 0, we may let ǫ → 0 and obtain the desired
global solution to IMCF. It approaches the initial data uniformly for
t → 0 in view of the estimate on the speed in Theorem 1.1 and in view
of the fact that Nt can be written as a graph of bounded gradient over
N0.

Finally we apply Theorem 2.5 to weak solutions of IMCF in R
n+1 to

show that weak solutions are smooth outside some compact region:

Theorem 2.7. Let Nn
t = ∂Et, Et = {x ∈ R

n+1| u(x) < t} for some

function u : R
n+1 → R, u ∈ C0,1

loc , u|∂E0 = 0, be a weak (level set)
solution of IMCF as in [6] with compact initial data E0 ⊂ R

n+1. Then
the following is true:

a) If there is t0 ≥ 0 such that Nn
0 is C1 and strictly star-shaped as in

(1.1), then {Nn
t }t>t0 is a smooth solution of IMCF satisfying all

estimates of Theorem 1.1, Theorem 2.1, and Corollary 2.3.
b) Given E0 there indeed exists some t0 ≥ 0, such that Nn

t0 is strictly

star-shaped and C1. In particular, there is a compact set K ⊂
R

n+1 depending only on the initial data E0, such that the solution
{Nn

t } is smooth in R
n+1\K.

Proof.
a) All level sets of a weak solution have non-negative, bounded, mea-

surable mean curvature, see [7]. Since Nn
t0 is assumed to be C1 and

strictly star-shaped, we may use Nn
t0 as initial data in Theorem 2.5

to obtain a smooth solution {Ñn
t }t>t0 of IMCF with strictly positive

mean curvature outside Nn
t0 . By [5], Lemma 2.3 (see also Lemma 1.1)

{Ñn
t }t≥t0 is a weak solution in the set Rn\Et0 . By restriction, {Nn

t }t≥t0

is also a weak solution in R̄n\Et0 . Since the level sets are compact, the
uniqueness theorem for weak solutions [5, Lemma 2.2] then shows that

Ñt = Nt for all t ≥ t0, proving a).

b) In [5], Theorem 7.1, it was shown that the blowdown of a weak
solution to IMCF with compact level sets converges to the standard
expanding sphere solution. In particular, the scaled-down level sets
converge to spheres in C1, so Nn

t is star-shaped for large t. Therefore
a) applies to conclude the proof of the theorem.

Remark 2.8.

a) Theorem 2.1 carries over directly to analogous results for IMCF in
general smooth Riemannian manifolds, since the additional cur-
vature terms in the evolution equations for H and hij are of lower
order.

b) Chow-Gulliver [1] have shown that a smooth family of surfaces
that obeys an outward parabolic flow must become star-shaped
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with respect to x by the time it has left the smallest ball BR(x)
that contains N0. We believe that their method can be made
to work in Euclidean space for variational weak solutions as well
by employing the comparison principle implied by Lemma 2.3 in
[7]. Their estimates of the slope as a radial graph lead to area
estimates that imply that IMCF becomes smooth before the time

t∗ = C + log

(

diam(N0)
n

|N0|

)

,

where C is an explicit constant; in fact C = log(2 · 4nn ωn).
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