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SINGULARITIES OF HOLOMORPHIC FOLIATIONS
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To S. S. Chern & D. C. Spencer on their 60th birthdays

0. Introduction

The purpose of this note is twofold. First, we give a simpler and more nat-
ural proof of our meromorphic vector-field theorem of [5] and second, we
give a theorem on singularities of holomorphic foliations which includes the
meromorphic vector-field theorem as a special case. We have tried to make the
exposition as elementary and self-contained as possible.

To recall the result of [5], let M be a complex analytic manifold. Set n —
dim c M. Assume n > 2. Let T be the holomorphic tangent bundle of M, L be
a holomorphic line bundle on M, and η: L —> T be a holomorphic vector-
bundle map. Let X19 , Xn be indeterminates, and ψ be a polynomial in X19

• , Xn with complex coefficients:

(0.1) P6CK,. J»] .

Assume that φ is symmetric and homogeneous of degree n. Given an isolated
zero p of η, define a number φ(η, p) as follows. About p choose a nonvanishing
holomorphic section sp of L. Also about p, choose a complex-analytic coordi-
nate system z19 , zn with origin at p. The vector-field η(sp) is then well-de-
fined near p, and there has the expansion

(0.2) φp) = Σ afi/dZi ,
ί = l

where the at are holomorphic functions near p.
Form the matrix A of partial derivatives: 4̂ = 113 /̂3^^11. Let σί?σ2, ,σn

be the elementary symmetric functions in X19 , Xn. Define σi(A) by

(0.3) det (/ + tA) = 1 + tσλ{A) + + tnσn(A) .

Thus each at(A) is a function near p. Since φ is symmetric, there is a unique
polynomial φ such that
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(0.4) φ = φ(σ19 - , σ n ) .

Define φ(A) by

(0.5) φ(A) = φ(σ1(A),--',σn(A)) .

Then φ(η, p) is defined to be the value at p of the Grothendieck residue symbol.

(0.6) <p(v,p) p\

If p is a nondegenerate zero of η, i.e., if det || (daJdZjXp) \\ Φ 0, let λl9 ,
λn be the eigenvalues of WidaJdZjXp)^ From the general properties of the
Grothendieck residue given in [18] it then follows that in this case,

(0.7) <p(v,p) =φ(λl9 ..9λn)l(λi λn)

More generally, here is an explicit algorithm for computing the right-hand side
of (0.6).

Since the origin is an isolated zero of the aί9 there exist positive integers aίy

• , an with z£* in the ideal generated by a19 , an. Hence there exist holo-
morphic functions biό near p with

(0.8) z? = Σ ha .

One then has

(0.9) Resp \<PiA)dzi' * ' d z λ = Res, \^Λ) d e t " b ^ U dz^'"dzA .
L a19 , a n J L z? 1 , , za

n

n J

The right-hand side of (0.9) is now evaluated by expanding φ(A) det || fe^|| in a
power series in the zt. The coefficient of dzλ- <£zre/(£r * 'Zn) i n the resulting
Laurent series for φ(A) det \\bij\\dzι -dZn/iz"1' -za

n

n) is the desired answer.
This algorithm was derived for us by R. Hartshorne. It is an immediate con-

sequence of the general properties of the Grothendieck residue given in [18].
It can be easily checked that φ(η, p) does not depend on the choices made in

defining it. Hence <p(η, p) is a well-defined local number depending only on φ
and the local behavior of η near p.

The result of [5] is:
Theorem 1. Let M be a compact complex-analytic manifold, η\ L—+T be

a holomorphic vector-bundle map with isolated zeroes, and φ be symmetric and
homogeneous of degree n. Consider the virtual bundle T — L. Then

(0.10) φ(T-L)[M]= Σ Φl,P) -
p€Zero(τ?)

Remarks, (a) Let cλ{T — L), ,cn(T — L) be the Chern classes of
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T — L, taken in H*(M; C). Then, as is customary, φ(T — L) is defined by

(0.11) φ(T -L)= φ(Cl(T - L), , Cn(T - D ) ,

where φ is as in (0.4). Since φ is homogeneous of degree n, φ(T—L) e H2n(M;
C). φ(T — L)[M] denotes φ(T — L) evaluated on the canonical generator of
H2n(M;C).

(b) If M is a submanifold of complex projective space, then by tensoring
T with a sufficiently high power of the hyperplane bundle H, dim c Γ(T (x) Hr)
can be made arbitrarily large. Here Γ(T ® Hr) denotes the vector-space of all
holomorphic sections of T(x) Hr. Furthermore, almost all sections of T ® Hr

will have only isolated zeroes when r is large enough. A section of T(g)Hr gives
a vector-bundle map (Hr)* —> T. Thus there are many examples to which
Theorem 1 applies.

We now take the point of view that Theorem 1 is really a theorem about
holomorphic foliations with singularities. To see this, let us use the notation
convention that whenever E is a holomorphic vector-bundle, E shall denote the
sheaf of germs of holomorphic sections of E. Then at the sheaf level η is in-
jective.

(0,12) η\ L -^ Γ is injective .

Set ξ = η(L) and Q = Γ/f. Observe that ξ is an integrable subsheaf of Γ in
the sense that for each x ς. M, the stalk ξx is closed under the bracket opera-
tion for vector-fields. On M-Zero (η) we have a one-dimensional foliation, in
the usual sense, of M-Zero(^). On M, however, we have a foliation with
singularities, ξ can be thought of as the tangent sheaf of the foliation with
singularities. If Θ is the structure sheaf of M, then the singularities occur pre-
cisely at those points p e M such that Qp is not a free (^-module.

The exactness of

(0.13) 0 - > L - > T - ^ β - * 0

implies that c^Q) = ct(T — L), / = 1, , n. Hence (0.10) can be rewritten

(0.14) φ{Q)[M]= Σ φ(η,P)
p€Zero(η)

So we conclude that Theorem 1 computes the Chern numbers of Q in terms of
local information at the singularities of the foliation.

Pass now to higher dimensional foliations. Define a subsheaf ξ C Γ to be
integrable if

(i) ξ is coherent,
(ii) for each x e M, ξx is closed under the bracket operation for vector-

fields.
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Set Q — Σjζ and S = {x e M\ Qx is not a free (^-module}. S is a closed holo-
morphic subvariety of M. S will be referred to as the singular set. On M — S
there is a unique holomorphic sub-vector-bundle F oί T\M — S such that

(0.15) F = ξ\M - S .

We assume that dim c Fx is constant throughout M — S. This is automatically

the case if M is connected. dim c F^ will be denoted by k and will be referred

to as the leaf dimension of £. We shall always assume

(0.16) 1 <k< n .

Given p β M — S, the well-known theorem of Frobenius asserts that there exists
a complex-analytic coordinate system z1? , zn defined on an open neighbor-
hood Up of p such that

(0.17) d/dz19 , d/dzk is a frame of F \ Up .

A leaf of this foliation of M — S will be called a leaf of £.
It is natural to assume that ξ satisfies the following condition:

(0.18) Let U be an open subset of M, and γ a holomorphic section of T\U.
Suppose that γ(x) e Fx for each x e U Π (M — S). Then at each
p € U Π S the germ of the holomorphic vector-field f is in ξp.

A £ which satisfies this condition will be said to be full. In the situation of
Theorem 1, η{L) is full.

If £ is integrable and dim c S < n — 2, then there is a unique sheaf £ such
that £ is both full and integrable, and

(0.19) ξ\M - S = ξ\M - S .

To define £, let F be as in (0.15). Define f by

(0.20) Γ(ξ, D) = {r e Γ(T \ U) \ γ(x) e Fx whenever x € U Π (M - 5)} .

In (0.20), £/ is any open set of M, /"(£, C/) denotes the continuous sections of
ξ\U, and Γ(T\ U) denotes the holomorphic sections of T\ U. Thus by restrict-
ing attention to full integrable sheaves we rule out artificial singularities and
deal only with genuine foliation singularities.

Given a full integrable subsheaf £ of T we would like to compute Chern
polynomials φ(Q) in terms of local information at the singular set S. Let Z be
a connected component of S. Recall that if M is compact, there is the homo-
morphism μ^.:

(0.21) μ+: Hj(Z; C) -> H2n~i(M; C) j = 0, 1, . . , In .
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μ^ = ai* where i^: Hj(Z C) —> Hj(M C) is induced by the inclusion of Z
in M, and a: Hj(M; C) —> H2n~j(M; C) is the Poincare duality isomorphism.

We then have:
Theorem 2 (Residue existence theorem). Let M be a complex-analytic

manifold, ξ be a full ίntegrable subsheaf of T, and k be the leaf dimension of
ξ. Set Q = T_/ξ, and let φ e C[X19 , Xn] be a symmetric polynomial which
is homogeneous of degree I, where n = dim c M and n — k < / <n. Let Z be
a connected component of the singular set S, and assume that Z is compact.
Then there exists a homology class Reŝ , (ξ, Z) e Hln_u(Z\ C) such that

(0.22) ReSp (£, Z) depends only on ψ and on the local behavior of the leaves
of ξ near Z ,

(0.23) if M is compact, then Σ μ* Resp (ξ, Z) = φ(Q) .
z

Remarks, (a) If M is compact then clearly every connected component of
S must be compact. In (0.23) the sum is taken over all the connected com-
ponents of S.

(b) Let σ19 , σn be the elementary symmetric functions of X19 , Xn.
Since φ is symmetric and homogeneous of degree Z, there is a unique poly-
nomial φ in σi9 - , βι with ^(σ1? , σt) = φ. Let cx(Q), , cn(Q) be the
Chern classes of Q. Then ψ(Q) is defined by setting φ(Q) = ψ(cλ(Q), , ct(Q)).

(c) Let U be an open subset of M with VDZ. Reŝ , (ξ, Z) is a local matter
so ReSp (ξ, Z) depends only on φ and on ξ \ U.

(d) This is just an existence theorem. It asserts that Res^ (f, Z) exists and
has the desirable properties (0.22) and (0.23). But it does not give an explicit
formula for Res9 (f, Z) in terms of local information near Z.

To think about the problem of explicitly computing Res^ (?, Z), one must
confront the question: "What is the 'generic' singularity of a foliation?" Put
otherwise: "What sort of a singularity is it reasonable to expect?" This appears
to be a delicate question whose complete answer has eluded us. We have there-
fore only considered the case when the singular set satisfies certain natural di-
mension conditions. When k = 1, these conditions reduce to asserting that the
singular set consists of isolated points.

In general, observe that a connected component Z of 5 comes endowed with
a filtration. For given p e Z choose holomorphic vector-fields γ19 , γr defined
on an open neighborhood Up of p in M such that

(0.24) For all xeUp, the germs at x of the holomorphic vector-fields γ19 .,

γr are in ξx and span ξx as an ^-module.

Define a subspace Vp(ξ) C Tp by letting Vp(ξ) be the sub-vector-space of Tp

spanned by γλ(p), , γr(p) Vp(ξ) depends only on p and f, and is independent
of the choice of γ19 , γr. Set
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( 0 . 2 5 ) Z ( ί ) = {peZ\dimcVp(ξ)<k-i} , i = 1, ••-,*.

Then

(0.26) Z = Z ( 1 ) D DZ ( f e )

is a filtration of Z. Each Z{ί) is a closed holomorpic subvariety of M.

Our dimension conditions on Z are:

(0.27) dimcZ = k - 1 ,

(0.28) dim c Z
( 2 ) < k - 1 .

If (0.27) is valid for Z, a point p e Z will be said to be regular if there exist
an open neighborhood Up of p in M and complex-analytic coordinates zx ,
zTO defined on Up such that

(0.29) Upf]Z = {xe Up\zk(x) = . . . = zn(*) - 0} .

Let iV be the set of all points p in Z, which are not regular. N is a closed holo-
morphic subvariety of M with dim c iV < k — 1.

Elsewhere [4] a proof will be given of the following theorem which to some
extent describes the structure of a singularity for which (0.27) and (0.28) are
valid: Given such a Z, let p e Z — (Z ( 2 ) U N) The theorem asserts that in the
vicinity of p the foliation singularity is the "pull-back" via a submersion of an
isolated zero of a holomorphic vector field. The submersion maps a neighbor-
hood of p in M onto a neighborhood of the origin in cn~k+1.

(0.30) Theorem. Let M be a complex-analytic manifold, ξ be a full inte-
grable subsheaf of T, and Z be a connected component of the singular set S.
Assume that dim c Z = k - 1 and dim c Z

( 2 ) < k - 1. Let p <= Z - (Z ( 2 ) U ΛO
Then there exist an open neighborhood Up of p in M, complex-analytic co-
ordinates z19 - , zn defined on Up, holomorphic functions ak, ,an on Up,
and a positive real uumber ε such that:

(0.31) Z Π Up=--{xε Up\zk(x) = . = zn(x) = 0} .

(0.32) x -> (zχ(jc), , zn(x)) maps Up onto

{(ζ1, ,ζn)eCn\\ζί\<ε,i=l, ..,n} .

(0.33) ZΠUp = {xe Up\ak(x) = = an(x) = 0} .

(0.34) // 1 < / < k — 1 and k <i <n, then dat/dZj vanishes throughout Up,

(0.35) At each x € Up the germs of the holomorphic vector-fields d/dZι, ,
a r e in ζx anά sPan fa? a s o n ®

Remarks, (a) (0.34) implies that for x 6 Up, at(x) depends only on zk(x),

j zn(x) Thus the submersion referred to above is



HOLOMORPHIC FOLIATIONS 285

, - -,zn(X)) .

(b) Several examples of foliation singularities for which (0.27) and (0.28)
are valid will be described in § 11 below.

Let deg ψ = n — k + 1. Assume that Z is compact and satisfies (0.27) and
(0.28). Let Z19 , Zs be the irreducible complex-analytic components of Z of
dimension k — 1. Denote by [ZJ the element of H2k_2(Z; C) given by the
fundamental cycle of Z€. Then [ZJ, - . , [ZJ is a vector-space basis for
H2k_2(Z; C). To each Zt associate a complex number jjf(φ9ξ,Zi) as follows.
Choose p £Zt — (Z ( 2 ) U N). Choose a neighborhood Up of p and z19 , zn,
ak, , αn, ε as in (0.31)-(0.35). Form the (n — k + 1) X (n — k + 1) matrix
A of partial derivatives:

(0.36) A = \\dai/dzj\\, k < i9 j < n .

If det \\(dai/dzj)(p)\\ Φ 0, then let λ19 ~ - , λn_k+1 be the eigenvalues of

l I n t h i s

(0.37) $(φ,ξ,Zύ = φ(λl9 , ί n . * + i,0,

More generally, let σ19 , σn be the elementary symmetric functions in the
indeterminates X19 , Xn. For z ' = l , ,n — Λ + l define σ̂ (y4) by

(0.38) det (/ + M) = 1 + ί σ ^ ) + + tn~k+1an_k+1(A) .

Since deg φ — n — k + \9 there is a polynomial ^ in σ1? , σn_k+1 with

(0.39) φ = ^((7!, , <7n_fc+1) , deg 9 = n - k + 1 .

Define φ(A) by

(0.40) φ(A) = ^ U ) , , σn_fc

Thus ?̂(̂ 4) is a holomorphic function on t/p.
Let Dp = {x e Up \ zx(x) = zλ(p), , zk_ΐ(x) = z*_i(p)}. £>p is a holomorphic

normal disc to Zt at p. Restrict φ(A) to Dp and define #(^, f, Z$) to be the
value at p of the Grothendieck residue symbol

(0.41) #(p,e,Z<) p

L Λ,., -,an

Then 2f=1 #(̂ >, ξ,Z^\Z^\ is a well-defined homology class depending only on
ψ and the local behavior of the leaves of ξ near Z.

Theorem 3. Let M be a complex manifold, ξ be a full integrable sub sheaf
of T_9 S be the singular set of ξ, and Z be a connected component of S. Assume
that Z is compact, dίm c Z = k— 1, dim c Z

( 2 ) < / : — ! . Let Z19 , Zs be the
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irreducible complex-analytic components of Z of dimension k — 1. Let deg φ =
n — k + 1. Then

(0.42) Res, (£, Z) = ± #(p, £, ̂ [ Z J .
i = l

Remark. Suppose Λ = 1. Then from (0.14) it is clear that Theorem 2 and
Theorem 3 combine to imply Theorem 1. Hence Theorem 2 and Theorem 3
together constitute a result on holomorphic foliations, which includes Theorem
1 as a special case.

We'turn now to the question of computing Res^ (£, Z) when n — k + 1 <
deg φ<n. Here we have been unable to find an explicit formula for Res, (£,°Z).
However, we have discovered that Res,,(£,Z) has a rigidity property. This
rigidity1 appears to be the most relevant fact about these Resp (£, Z).

Theorem 4 {Rigidity thorem). Let M be a complex manifold. Assume that
n — k + 1 < deg φ < n. Let U be an open subset of M, and [a, b] be a closed
interval of real numbers. For t e [a, b] let {ξt} be a C°° 1-parameter family of
full integrable subsheaves of T\U. Let Zt = {x e U\(T/ξt)x is not a free <DX-
module}. Assume that each Zt is compact and connected, and also that there
is a fixed compact subset B of U with

(0.43) Zt c B for all t <= [a, b] .

Let ι#: H*(Zt C) -> H^(U C) be induced by the inclusion of Zt in £/. Then

(0.44) i # Res, (ξa,Za) = i# Res, (f b9 Zb) .

An immediate corollary of Theorem 4 is
(0.45) Corollary. Let M, U, [a, b], {ξt}, ψ be as above. Assume, in addi-

tion, that there is a fixed compact connected subvariety Z of U with

(0.46) Zt = Z for all t e [a, b] .

Then

(0.47)

Remarks, (a) In Theorem 4 and Corollary (0.45) no special assumption
is made on Zt other than that Zt be compact and connected. In particular, it
is not required that (0.27) and (0.28) be valid for Zt.

(b) Theorem 4 and Corollary (0.45) show that the two cases deg^ =
n — k + 1 and deg φ > n — k + 1 are quite different. If deg^> = n — k + 1,
then there are many examples where Res, (ξt, Z) is not constant in t.

1 Independently and in a slightly different context, a similar rigidity theorem has been
recently noted by James L. Heitsch, Deformations of secondary characteristic classes,
to appear in Topology.
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Thorem 4 suggests a conjecture. Let Q denote the rational numbers. The
inclusion Q c C gives inclusions

(0.48) Q[Xλ, . . . J J C C[X19 • • • , * „ ] ,

(0.49) ^(Z β)C^(Z C).

Rationality conjecture. Let M be a complex manifold, ξ be a full integrable
subsheaf of T, and Z be a compact connected component of the singular set S.
If n — k + 1 < deg φ < n and φ e Q[Xl9 , Xn], then

(0.50) Res,(£,2)6ff#(Z;<2) .

Remark. This conjecture, if true, would again point up a very sharp dif-
ference between the two cases where deg ψ = n — k + 1 and deg φ > n — k + 1.

Two special situations deserve special comment. If the singular set S is emp-
ty, then Theorem 2 becomes the vanishing theorem of [5] and [9].

Vanishing theorem. Let M be a complex manifold. On M, let F be an
integrable holomorphic sub-vector-bundle of T. Then

(0.51) φ(T/F) = 0

for all φ with n — k < deg φ < n.
Remarks, (a) In this vanishing theorem, M is not required to be compact.
(b) If the foliation of M is a fibration, then (0.51) is obvious. For in this

case let X be the base of the fibration and let π: M —• X be the projection of
M onto Z . Then

(0.52) T/F = π\TX) ,

where TX is the holomorphic tangent bundle of X and πι(TX) is the pull-back
by π of TX. Let TΓ* : H*(X; C) -* #*(M; C) be the cohomology map induced
by TΓ. Then (0.52) implies

(0.53) φ(T/F) = * V Γ * ) .

Since dim cX = n — k, ψ{TX) vanishes whenever deg^ > π — k. Hence (0.51)
is evident in this case.

(c) Compact complex manifolds very rarely foliate without singularities.
For example, (0.51) can be used to prove that there is no holomorphic foliation
(without singularities) of CPn. Foliations with singularities, however, exist in
great abundance.

A second special case of interest is the case when (0.27) and (0.28) are valid
for Z and in addition to this Z ( 2 ) and N are empty. Here we can give an ex-
plicit formula for Resp (£, Z) for all φ with n — k < deg φ < n. See § 11 below.

Finally, let us remark that the local classes Resp (ξ, Z) are functorial in an
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appropriate sense. Once this is made precise, it becomes clear that the work
of this note is very closely related to the problem of computing the homotopy
and homology of the foliation classifying spaces BΓc

q introduced by A. Haefliger
[15]. This will be commented on in § 12 below.

The paper is divided into 12 sections with the following titles:

1. Connections and curvature
2. Partial connections

3. Proof of the vanishing theorem
4. Exact sequences
5. Z-sequences
6. Coherent-real analytic sheaves
7. Proof of the residue existence theorem
8. Proof of Theorem 1
9. Proof of Theorem 3

10. Proof of the rigidity theorem
11. Examples
12. On the space BΓc

q

We thank P. Griffiths, R. Hartshorne, and R. MacPherson for many helpful
comments and suggestions. L. Illusie [19] has, independently, done some work
quite analogous to ours in the algebraic category.

1. Connections and curvature

Some standard facts on connections and curvature are very briefly reviewed
here. For a careful detailed treatment see [10]. The matters considered here
are purely C°°, so in this section let M be a C°° manifold. Set m = dim^ M,
and let n be the largest integer with n < mil. Let TRM be the usual C°° tangent
bundle of M, which is a real vector bundle. We wish to consider only complex
vector-bundles, so let r be the complexification of TRM, i.e.,

(1.1) τ = C®TRM .
R

If £ is a C°° complex vector-bundle on M, then C°°(E) denotes the space of
all C°° sections of E. E* denotes the bundle dual to E. ΛίE denotes the z'-th
exterior power of E.

On M we have the de Rham complex of all C°° complex-valued differential
forms on M:

(1.2) 0 >A°-^A1-^ d->Am —>0 .

A0 is the set of all smooth functions from M to C For i > l , A t = C°°(i4€τ*).

d is the usual de R h a m differentiation operator.
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(1.3) H%M; C) = Kernel {d: A' -> Ai+1}/Image {d: A*-1 -* A'} .

If ω e A1 has dω = 0, then we denote by [ω] the element of H%M; C)
determined by ω:

(1.4) [ω]εH%M;C) .

(1.5) Definition. Let E be a C°° complex vector-bundle on M. /4 connec-
tion for £ is a C-linear map D from C°°(£) to C°°(r* (g) £) such that

(1.6) D(fs) = df®s + fDs ,

whenever / e 4° and 51 e C°°(£).
Remark. £ always has many connections.
If D is a connection for £ , then for each i > 0, D induces a unique C-linear

map, also denoted by D:

(1.7) D: C U V (x) £) -> C°°U ί+1τ* ® £)

such that

(1.8) D(ω®s) = dω®s + (-l)Wλs ,

whenever ω e A1 and s e C°°(£).
There is a unique C°° vector-bundle map i<C(D):

(1.9) K{D)\E-*Λ2τ*®E

such that for all s e C°°(E),

(1.10) DDs = K(D)s .

is the curvature of D.
Let C/ be an open subset of M. If s e C°°(E) vanishes on U, then Ds also

vanishes on U. From this remark it follows immediately that D restricts to give
a connection f or E \ U:

(1.11) D: C~(E\U)->C~(τ*®E\U) .

On U, let e19 , er be a C°° frame of £ . A matrix Θ = | | # o || of 1-forms is
determined by

(1.12) De,= Σθιj®ej
3=1

θ is the connection matrix of D with respect to the frame e19 , er. Set K —
dθ - θ A θ. Then
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r

.ID) Kij '==- dC/Ίj 2-1 "ΐa ' \ "aj *

K = \\κij\\ is the curvature matrix of D with rsepect to e19 , er, so that

(1.14) £(D)e,W
3=1

\ί e[, , er

r is another C00 frame of £ on U, let A = Hα̂ H be determined by

(1.15) 4±=

Let Λ/ be the curvature matrix of D with respect to e[, , e'r. Then

(1.16) κr = AfcA~1 .

Let σ1? , σn be the elementary symmetric functions of X19 , Xn. Define
σM, '"9σn(κ) by

(1.17) det (/ + tfc) = 1 + ί^W + - + tnσM .

σ̂ ί/t:) is then a 2/-form on C/. Note that if r < n, then σj(tc) — 0 whenever
r < / < n. (1.16) implies

(1.18) σ,0c) = σ,(*0 , / = 1, - - -,/i .

Hence by choosing local frames for E throughout M a well-defined differential
form σj(K(D)) is obtained on M. σj(K(D)) is closed, i.e.,

(1.19) dσj(K(D)) = 0 .

Let c^E), , cn(E) be the Chern classes of E taken in H*(M; C). Note that
if r < n, then c^(£) = 0 whenever r < / < n. The Chern-Weil theory of char-
acteristic classes [10] asserts that the element of H2j(M; C) determined by
σj(K(D)) is Vπ/V^ΐycjiE), i.e.,

(1.20) [σj(K(D))] = (2π/V=ϊycj(E) , / = 1, • , n .

In particular, if 3 is another connection for E, then [σ/JKXD))] = [σj(Kφ))].
Assume I < n. If <p e C[Xλ, , A'J is symmetric and homogeneous of de-

gree /, set ψ — φiσ^ , σt). Define <p(E) € H2l(M; C) by

(1.21)

Let D be a connection for E, and set K — K(D). On M define a 2/-form

by
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(1.22) φ(K) = <p(σλ(K), . - . ,

(1.9) implies

(1.23) dφ(K) = 0 .

(1.20) implies

(1.24) V ^ Ϊ

2. Partial connections

As in § 1, let M be a C°° manifold, and £ a C ° ° complex vector-bundle on
M. If H is a C°° sub-vector-bundle of τ, then # * is a quotient bundle of τ*.
Denote by p: τ* —> H* the projection of τ* onto # * .

(2.1) Definition. A partial connection for E is a pair (//, δ) where H is a
C°° sub-vector-bundle of τ and δ is a C-linear map from C°°(E) to C°°(//* (g) £)
such that

(2.2) δ(fs) = p(df) ® s + fδs ,

whenever f ζ A0 and s € C°°(E).
Remark. Let (H, δ) be a partial connection for E, and £/ an open subset of

M. It s € C°°{E) vanishes on U, then δs also vanishes on £/. From this it follows
that (H, δ) restricts to give a partial connection for E \ U:

(2.3) δ: C-(E I t θ -> C-(τ* ® £ 11/) .

(2.4) Definition. Let (^, <5) be a partial connection for E, and Z> a con-
nection for E. D extends δ if the diagram

C"(£) > C~(r* (x) £)

is commutative.
(2.5) Lemma. Let (H, δ) be a partial connection for E. Then there exists

a connection D for E such that D extends δ.

Proof. Cover M by open sets {Ua} such that on each Ua there is a C°° frame

e;, . -. ,ea

r of E. Define ft 6 C°°(#* | C/J by

(2.6) δe% = 2 ft (x) ̂  .

Choose θlj € C°°(r* I Ua) such that
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(2.7) piθίj) = ft •

Define a connection Da for E\Ua by

(2.8) Όae\ = Σ θlj ® ey

Then on £/„ the diagram

Cm I £/.) ^ = — • C"(t* ® £ I U.)

(2.9) \ Li
0 \ ψ

is commutative.
Let {ψa} be a partition of unity subordinate to the cover {Ua}. Define a con-

nection D for £ by

(2.10) D= ΣIA
α

D extends δ.
(2.11) Lemma. Lei (H, δ) be a partial connection for E, and s e C°°(E)

be such that:

(2.12) s(x)^0 forallxeM,

(2.13) as = O.

Then there exists a connection D for E with

(2.14) D extends δ ,

(2.15) Ds = 0.

Proof. Proceed as in the proof of Lemma (2.5) except that el is required
to be s I t/α, and θ"j is required to be zero.

Remarks. We have the evident pairing C°°(#) X C°°(H*) -> A\ Hence
u e C°°(H) determines a map i(u) from C°°(H*) to ^4°:

(2.16) I(M): C°°(H*)->^0 .

Similarly, u determines a map, also denoted by i(u), from C°°(H* ® £) to

C"(£):

(2.17) i(u): C°°(H* ® E) -> C°°(£:) .

Note also that if / 6 4̂°, then by applying u to / we obtain w[/] 6 ^4°:
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(2.18) u[f] = i(u)p(df) .

Let (H, δ) be a partial connection for E. Then

(2.19) i{ux + u2)δs = iiujδs + i(u2)δs ,

(2.20) i(ju)δs = fi(u)δs ,

(2.21) /(K)«CSΊ + J2) = *(")&Ί + Ku)δs2 ,

(2.22) I(M)3(/J) = u[f]s + //(«)& ,

whenever u, u19 u2 e C°°(H), s, s19 s2 e C°°(E), and / e A0.

3. Proof of the vanishing theorem

Let M be a complex-analytic manifold. As in (1.1) set τ — C® TRM. Then
there are the standard splittings:

(3.1) τ=T®T,

(3.2) r* = Γ*θP.

T is the holomorphic tangent bundle of M. T is the anti-holomorphic tangent
bundle of M. A C°° section of Γ* is a 1-form of type (1,0). A C°° section of
f* is a 1-form of type (0,1).

Let U be an open subset of M. On U let z1? , zn be a complex-analytic
coordinate system. Then on £/:

(3.3) d/dzl9 , d/dzre is a holomorphic frame of Γ,

(3.4) <fe1? , dzn is a holomorphic frame of Γ*.

Let £ be a holomorphic vector-bundle on M. If U is an open subset of M,
then J Γ ( E | £/) will denote the space of all holomorphic sections of E\ U. Since
E is holomorphic there is the S operator:

(3.5) 3: C"(£) -> C"(Γ* ® £) .

Setting H = T and <5 = 9, we then have a partial connection (Γ, 9) for E. Note
that:

(3.6) Γ(E I 0) = Kernel {S: C°°(£| £/) -> C°°(Γ* ® E | U)} .

A connection for E which extends (T, S) is said to be a connection of type
(1,0). A straightforward argument shows that a connection D for E is of type
(1,0) if and only if D has the following property:

(3.7) Whenever e19 , er is a holomorphic frame for E, the connection ma-
trix 110̂ 11 of D with respect to this frame has each θiS of type (1,0).
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The bracket operation for C°° sections of T satisfies:

(3.8) [uλ + M2, w3] = [u19 W3] + [w2, ι/3] ,

(3.9) [/«!, u2] = -u2[f]u, + f[u19 u2] ,

(3.10) [u19 u2 + w3] = [u19 u2] + [u19 u3] ,

(3.11) [uvfu2] = Wl[/]w2 + /[w15 u2] ,

whenever w1? w2, w3 € C°°(T) and / ς ^4°.
Recall also that if C/ is an open subset of M, and z15 , zn is a complex-

analytic coordinate system on U9 then

(3.12) [d/dZi, d/dzj] = 0 1 < 1, / < #i .

(3.13) Definition. A holomorphic sub-vector-bundle F of Γ is ίntegrable
if C°°(F) is closed under the bracket operation.

Remark. A holomorphic sub-vector-bundle F of T is integrable if and only
if:

(3.14) whenever U is an open subset of M, and γ19 γ2eΓ(F\U), then

Assume now that F is an integrable holomorphic sub-vector-bundle of T.
Form the quotient bundle T/F and denote by η\ T-+ T/F the projection of T
onto T/F. Let u € C°°(F) and s € C°°(Γ/F). Choose S e C°°(T) such that

(3.15) η(S) = s.

Then, since C°°(F) is closed under bracket,

(3.16) η[u, s] depends only on u and s.

Denote η[u9 s] by <u, s}. Then from (3.8)—(3.11) it is clear that:

(3.17) <>! + u2,s} = (μ19sy + <u29sy ,

(3.18) <ju,s> = f<u9s>,

(3.19) (u9s1 + s2} = <w,^> + <w,^> ,

(3.20) u <«,/J> = «[/]J + /<M,J>,

whenever w, w1? w2 € C°°(F), j , s19 s2 e C°°(T/F), and / 6 ̂ 4°.
Comparing (3.17)-(3.20) to (2.19)-(2.22) and noting that T/F is a holo-

morphic vector-bundle on M, we then have
(3.21) Proposition. Let F be an ίntegrable holomorphic sub-vector-bundle

of T. Then there exists a unique partial connection (F 0 T, δ) for T/F such
that
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(3.22)

(3.23) i(v)δs = i(v)ds ,

whenever u e C°°(/0, v e C°°(f), β/ui J € C°°(T/F).
(3.24) Definition. A ftαs/c connection for T/F is a connection for T/F

which extends (F 0 f , j ) .
Remarks, (a) A connection D for T/F is basic if and only if

(3.25) i(μ)D(ηγ) == 3?[w, 7-] whenever u e C°°(F) and γ e C~(Γ),

(3.26) D is of type (1,0) .

(b) By Lemma (2.5) a basic connection D exists for T/F.
(3.27) Proposition. Lei M be a complex manifold, and F an integrable

holomorphίc sub-vector-bundle of T. Set n = άimc M, k = άimc Fx. Let
φ € C[X19 , Xn] be symmetric and homogeneous of degree /, where n — k<
I < n. Let D be a basic connection for T/F, and set K — K(D). Then

(3.28) φ(K) = 0 .

Proof. Given p e M, let U be an open neighborhood of p in M such that
on U there is a complex-analytic coordinate system zί9 - , zn with

(3.29) d/dz19 d/dz2, , d/dzk € Γ(F\U) .

Let 4̂(C/) be the set of all C°° complex-valued differential forms on U. A(U) is
a ring under the usual addition and wedge product of differential forms. In
A(U), let I(F, U) be the ideal generated by dzk+ί9 , dzn. This ideal has the
properties:

(3.30) If ω € I(F, U), then dω e I(F, U).

(3.31) If ω19 - , ωn_k+1 are any n — k + 1 elements of /(F, t/), then ωx A

• Λ ωw_fc+i = 0.

Let η\ T -> Γ/F be the projection, and ̂  = | [ ^ | | the connection matrix of D
with respect to the frame ηd/dzk+1, , ηd/dzn. D is basic, so (3.26) implies
that each dtj is of type (1,0). (3.25) and (3.12) imply that for each θi5

(3.32) 0 = Kd/dzdθij = = i{dldzk)θiS .

Hence each 0^ is in /(F, £/). Let Λ: = ||/c^|| be the curvature matrix of D with

respect to τfl/dzk+19 , ηd/dzn. From (3.30) and (1.13) it is clear that each

jti, is in 7(F,E/):

(3.33) KiJeI(F,U) .

As in (1.17) define ^(Λ:), , </„(*) by



296 PAUL BAUM & RAOUL BOTT

(3.34) det (/ + to) = 1 + tσM + + *"*„(

Set ψ = ^(σ15 , σt), and I = deg p. Then on t/,

(3.35)

Since I > n — Λ + 1, (3.31) and (3.33) now imply that p(X) vanishes on £/.
This proves (3.28).

Due to (1.24), (0.51) is now evident.

4. Exact sequences

Some well-known facts about connections and exact sequences of vector
bundles are collected here. As in § 1, the matters considered here are purely
C°°. So in this section let M be a C°° manifold. Let m = dim^M, and let n be
the largest integer with n < m/2.

If E is a C°° complex vector-bundle on M, let c(E) denote the total Chern
class of E in #*(M; C), so that

(4.1) c(E) = l +Cι(E)+ . . . +cn(E) .

Note that in the ring H*{M C) = H\M C) Θ H\M C) Θ Θ # m ( M C),
c(£) is invertible.

If E15 Eo are two C°° vector-bundles on M, then the total Chern class of the
virtual bundle Eo — Ex is defined by

( 4 . 2 ) c(E0-E1) = c(E0)/c(E1) .

Thus the Chern classes C^EQ — Eλ), , cn(E0 — Et) are determined by

(4.3)

(4.4)

More generally, let JSg, £β_ 1 5 , Eo be C°° complex vector-bundles on M. Set
e(0 = ( - 1 ) \ Then the total Chern class of the virtual bundle Σϊ=o ( - 1 ) % is
defined by

(4.5) c(t (-D'Bi) = Π (<*£,))•«> , e(0 - (-1)* .
\ί=0 / i=0

S e t ζ = Σ ? = o ( - 1 ) 4 ^ * - T h u s t h e C h e r n c l a s s e s c^ζ), •••,cB(ζ) a r e d e t e r m i n e d
b y

(4.6)

(4.7) ft W£J) (<) = 1 + c,(ζ) + + c,(0
q

Π
i = 0
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Let φ β C[X19 -,Xn] be symmetric and homogeneous of degree /. Assume
/ < n. Set φ = φ(σιy , σt). Then φ(ζ) is defined by

(4.8) φ(ζ) = φ(Cl(ζ), . . . , c z ( ζ ) ) .

Hence φ(ζ) <= H2l(M;C).
Suppose now that Dq, Dq_19 , Do are connections for Eq, Eq_19 « , Eo

respectively. Set Kt = £(£>*), and define differential forms σ3(Kq \ Kq_λ | | Ko)
by

(4.9) ajίKtlK^l- \KQ) eA*' , j = 1, , n ,

Π(det(/ + ^ ) ) ^
(4.10) i=o

= 1 +σ1(Kq\Kq_1\ .\K0) + . .. + σ n ( K q \ K q _ ι \ . - . \ K J .

(1.19) implies

(4.11) dσJ(Kq\Kq_1\...\KJ) = 0.

(1.20) and (4.7) imply

(4.12) [σj(Kq I Kq_γ I . . . I Xo)] = (2π/V^ΛVcj(ζ) .

As above let φ be symmetric and homogeneous of degree / < n. Set φ = φiσ^
...9σt) and ωs = σ3(Kq \ Kq_λ \ . | Ko). Define a 2/-form φ(Kq \ Kq_γ \ | Ko)
on M by

(4.13) ^ ( ^ I Kq_λ I I Xo) = ̂ ω i ,

Then

(4.14) dφ(Kq\Kq_1\. -\K0) =

(4.15) [p(Kβ I Kq_x I

where as above ζ = Σf= 0 ( — 1
(4.16) Definition. Let 0 ->E q -> Eq_λ -> > Eo -+ E_x -> 0 be an exact

sequence of C°° vector-bundles on M. Denote by ηi the map from EitoE^^
Let Dq, Dq_ι, , Do, D_! be connections for Z^, £,_!, «, Eo, E_λ respectively.
Then (Dq, Dq_19 - - ,DO,D_X) is compatible with the exact sequence if for each
i = q, q — 1, . . . , 0 the diagram

C°°(Eτ) > C°°(τ* (x) Eι)
I I

Vi\ 1 ® ί?i

is commutative.
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(4.17) Lemma. Let 0 —> Eq -* Eq_λ —• -> Eo —> E_x -^0 be an exact
sequence of C°° vector bundles on M, and Ό_λbe a connection for E_γ. Then
there exist connections Dq, Dq_1, , Do for Eq9 Eq_19 , EQ such that (Dq,
Dq_19 , Do, D_x) is compatible with the exact sequence.

Proof. Proceed by induction on q. If q = 0, the exact sequence is 0 -* Eo

—>£_!—> 0. D_j then determines a unique connection Do for EQ such that
(Do, D_x) is compatible with the exact sequence.

Assume now that the lemma is valid tor q — 1. Consider an exact sequence
0 -^ Eq —• Eq_1 —»...—>£„—» £_! —> 0. Let Ύ]q{Eq) be the image of ηq\ Eq-+
Eq_ι. Choose a C°° sub-vector-bundle / of Eq_x such that

(4.18) Eq_ι = J@ηq{Eq) .

By the induction hypotheses there exist connections Dq_ι, Dq_2, , Do for /,
Eq_2, , Eo such that

(4.19) (Dq^, Dq_2, - , Do, D_x) is compatible with the exact sequence 0 —•

Choose a connection D for ηq(Eq). Let Dα be the unique connection for Eq

such that

(4.20) (Dq, D) is compatible with the exact sequence 0 —> £ a —> ̂ β(£ β) -> 0.

On £β_j = / 0 ηq(Eq) let D^.j 0 D be the direct sum connection. Thus

(4.21) (D,_! 0 D)(^ + s2) = D , _ Λ + Ds2 ,

whenever^ € C°°(/) ands2 € C°°(^(£:α)). T h e n ( D ^ D ^ φ D . D ^ , -,D0,D_λ)
is compatible with the exact sequence 0 —> Eq —> Eq_ι —> —• Eo —> Ex —> 0.
This proves the lemma.

(4.22) Lemma. Let 0 -> E 9 -> E^.j -• -> Eo -+ E_λ -> 0 fcβ an exact
sequence of C°° vector bundles on M, and Dq, Dq_λ, , Do, D_x be connec-
tions for Eq, Eq_19 - , Eo, E_λ. Assume that (Dq, Dq_λ, , Do, D_λ) is com-
patible with the exact sequence. Let φ be symmetric and homogeneous of degree
l< n. Set Ki = Kφi). Then

(4.23)

Proof. Set e(i) = (—1)*. To prove (4.23) it suffices to show

(4.24) det (/ + O = Π (det (/ + K,))^ .

To prove (4.24) proceed by induction on q. If q = 0, the exact sequence is
0 —> EQ -+ E_ί -^ 0 and (4.24) is obvious in this case.
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Assume now that (4.24) is valid for q — 1, and consider an exact sequence
0 —> Eq —> Eq_x —• —• Eo —> E_λ -* 0. Let ηq(Eq) be the image of ηq: Eq -*
Eq_x. Choose a C°° sub-vector-bundle / of Eq_1 such that

(4.25) Eq^ = J®7jq(Eq).

Let p: Eq_1 —• J be the projection oί Eq_λ onto / resulting from this direct sum
decomposition. So we have

(4.26) 1 <g) p : r* ® ^ _ ! -> τ* ® / .

Define a connection F for / by

(4.27) V = (1 ® p)Dq_1 .

Then

(4.28) det (/ + £,_!) = det (/ + Kq) det (/ + K(F)) ,

(4.29) (Γ, Dq_2, , Do, D.j) is compatible with the exact sequence 0 —> / —>
Eq_2 - > > EQ -> £_, -> 0.

The induction hypotheses and (4.29) imply

(4.30) det (/ + K_λ) = det (/ + AXF))ε(«-υ Π (det (/ + /Q) £ ( ί ) .

(4.30) and (4.28) combine to give

(4.31) det (/ + K_J = Π (det (/ + l Q ) £ ( ί ) .

This completes the inductive step and the proof.
(4.32) Lemma. On M let

0 0

1 I
• —• E'o -* E'_λ —> 0

I I
• —• £L0 - > t,_λ —> υ

I i

I l '
0 0

a commutative diagram of C°° vector bundles in which each row and each

0
ϊ

ϊ
Eq^.

ϊ

ϊ
0

0
ϊ

E'q.

1

1
K

I
0
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column are exact. Let ίj{Ef

3) be the image of the map c3: E] —> Ej. Then there
exist C°° sub-vector-bundles Fq, Fq_17 , Fo, F_x of Eq, Eq_v , Eo, E_x such
that

(4.33) Ej = FjφejiE'j) , j = q,q-l, ,0, - 1 ,

(4.34) the map ηj: Ej —> Ej_x maps Fj into Fj_19 j = q, q — 1, , 0.

Proof. Construct Fq, Fq_19 , F 0 , F_x by a downward induction. First,
let Fq be any C°° sub-vector-bundle of Eq such that

(4.35) Eq = Fq®cq(E'q) .

Next, suppose that Fq,Fq_ιy - ,Fr have been constructed so that

(4.36) Ej = FjQcjiE'j) , 7 = *, * - 1, , r ,

(4.37) fl/ί1,) C F,._x , / = ^, ^ - 1, , r + 1 .

^ r (F r ) is then a C°° sub-vector-bundle of Er_ι. A diagram chase shows that

(4.38) Vr(Fr) Π cr_,{K_λ) = {0} .

Hence there exists a C°° sub-vector-bundle Fr_λoί Er_x such that

(4.39) £ M = ίMθUEί-i) ,

(4.40) ^ r (F r ) C /%._, .

This completes the inductive step and the proof.
(4.41) Lemma. Let E be a C°° vector-bundle on M, and B a closed sub-

set of M. On M — B let D be a connection for E\M — B. Let Σ be a closed
subset of M such that B is contained in the interior of Σ. Then on M there
exists a connection D for E such that

(4.42) D and D agree on E \ M - Σ .

Proof. On M let V be a connection for E. Let ψ: M —> R be a C°° function
such that

(4.43) ψ vanishes on a neighborhood of 2?,

(4.44) ψ = 1 on M - I 1 .

Set 5 = ψD + (1 — ψ)Γ. 5 satisfies (4.42).
(4.45) Lemma. On M let 0-^> E' -+ E—> E" -^0 be an exact sequence of

C°° vector-bundles. Denote by c(Ef) the image of c\ Er —*E. Let B be a closed
subset of M. On M — B let F be a C°° sub-vector-bundle of E\M — B such that
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(4.46) E\M - B = F@c(E'\M- B) .

Let Σ be a closed subset of M such that B is contained in the interior of Σ.
Then on M there exists a C°° sub-vector-bundle F of E such that

(4.47) . E

(4.48) F\M - Σ = F\M - Σ .

Proof. Denote by μ: E -^ E" the map from E to E". On M — B there is
a unique map a: E"\M — B -» E\M — B such that

(4.49) α ( E " | Λ f - B ) = F ,

(4.50) μa = 1 .

On M let β: E " —> E be a map of C°° vector-bundles such that

(4.51) μβ = 1 .

Let ψ: M -^ i? be a C03 function with (4.43) and (4.44) valid for ψ. On M
define #: E" —> E by

(4.52) # = ψα + (1 - ψ)j8 .

Set JF = ά(E"). F satisfies (4.47) and (4.48).
(4.53) Remark. Let M, X be C°° manifolds, E be a C°° vector-bundle on

X, and g : M - ^ I be a C°° map. Then on M there is the pull-back bundle
gKE):

(4.54) gKE)p = E g p , p ε M .

Let C/ be an open subset of X, and let s € C°°(E\ Ό). Then on g~ι(Ό) there is

(4.55) g»(Φ = s{gp) , p € M .

If D is a connection for E, then there is the pull-back connection gι(D) for

Let e19 , er be a C°° frame of g !(£), ^ = | |0^| | be the connection matrix of
D with respect to e19 , e r, and α> = Hω̂ H be the connection matrix of gι(D)
with respect to gKeJ, , g(er). Then for each θij9

(4.56) ω < i = g * ^ .

(4.56) characterizes gι(D). Here g* is the usual map

(4.57) g* : C~(r*Z | U) -+ C°°(τ*M \ g~
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If E' is another C°° vector-bundle on X, and η: E' —> E is a map of C°° vector-
bundles, then there is

(4.58) g{ri):gKE')-+gKE) .

For p € M, g»(,): £'(£')*> -> gι(E)P is 9: is;, -> E0P.
Example. Suppose that M is complex-analytic, and that F is a holomorphic

integrable sub-vector-bundle of T. Assume that the foliation determined by F
is a fibration. Let X be the base of this fibration, and π: M —> X the projection
of M onto X. Then

(4.59) T/F = πKTX) .

On X let D be a connection of type (1,0) for TX. ττ!(D) is then a basic connec-
tion for T/F.

5. Z-sequences

As in the introduction let M be complex-analytic, and ξ an integrable sub-
sheaf of Γ. Let k be the leaf dimension of ξ, and S the singular set. On M — S,
let F be the unique holomorphic sub-vector-bundle of T such that

(5.1) F = ξ\M-S .

Here F denotes the sheaf of germs of holomorphic sections of F. On M — S set

(5.2) v=T/F .

(5.3) Lemma. Let W be an open subset of M — S. On W, let D and D'
be two basic connections for v\W.SetW=Wχ [0,1]. Let p.W^W and
t: W —> [0,1] be the projections. On W define a connection 7 for p\v\W) by

(5.4) V = tpKD') + (1 - t)pKD) .

Set K = K(F). Let φ^C[Xx, , X J fee symmetric and homogeneous of de-
gree I. Assume n — k < Z < n. Then

(5.5) φ(K) = 0 .

Proof. The proof is very much like the proof of (3.28). Given p eW, let
Wp be an open neighborhood of p in W such that Wp is the domain of a com-
plex-analytic coordinate system z19 , zn with

(5.6) 3/3Zl, '"9d/dzk^Γ(F\Wp)

Set J^ p = ίP p X [0,1]. Let AQYP) be the ring of all C°° complex-valued differ-
ential forms on Wp. In A(WV) let I(F,WP) be the ideal generated by
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p*(dzk+1), , ρ*(dzn). This ideal has the properties:

(5.7) If ω e I(F, Wp) , then dω s I(F, Wp) .

(5.8) If ω19 , ωn_k+1 are any /ι — A + 1 elements of I(F, Wp), then ωι Λ

• Λ ωn_ f c + 1 = 0.

On Wp let 37: T -> y be the projection of T onto v. Let 0 = || θtj || and 0' = || ffi5 \\
be the connection matrices of D and Dr with respect to the frame ηd/dzk+1,
• , ηd/dZn- Let ω = | |ω^ | | be the connection matrix of V with respect to the

frame ριηd/dzk+ι, , pιηdjdzn. Then according to (5.4), for each ωυ:

(5.9) ωtJ = tp*(/Kj) + (1 - φ * ( ^ , )

Since D and D r are basic, (3.25) and (3.26) now imply that each ω^ is in

KF,WP):

(5.10) ωίjzI(F,Wp) .

Let K — \κiΛ\ be the curvature matrix of V with respect to the frame pιηd/dzk+1,

• , pιηd/dzn. Then (5.7) and (1.13) imply that each κi5 is in I(F, Wp):

(5.11) KijeI(F,tirp) .

Let σ19 - , σn be the elementary symmetric functions of AΓ15 , Xn. Set ̂  =
ψiσ^ - ,Gι). On ̂  define differential forms σM, , <7TO(/c) by requiring:

(5.12) σj(κ) in a 2/-form on Wp, j = 1, , ft ,

(5.13) det (J + j0 = 1 + ^(Λ:) + + σn(κ) .

Then

(5.14) 9(K) I Wp = φiσM, , σ 7ω) .

Since deg <p> n — k, (5.14), (5.11) and (5.8) imply that φ(K) vanishes on Wp.
This proves the lemma.

(5.15) Definition. Let Z be a connected component of the singular set S.
A Z-sequence β is a triple 0 = (£/, (£ β , £ α _ l 5 , £ 0 ), (ηq, ηq_l9 • • •, % ) ) such
that the following five conditions are satisfied:

(5.16) U is an open subset of M such that U Π S = Z and Z is a deforma-
tion retract of ί/.

(5.17) £ β , £ β _ 1 9 , EQ are C°° complex vector-bundles on t/.

(5.18) For ί = q, q—ί, ., 1, ̂  is a C°° vector-bundle map from Et\U — Z
to £*_! I £/ - Z.

(5.19) 0̂ is a C°° vector-bundle map from E0\U — Z to v\U — Z.
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(5.20) On U - Z the sequence

0->Eq\U - Z-+Eq_λ\U - Z - > >E0\U - Z-^v\U - Z->0

is exact.

Remark. Note that although each Et is a vector-bundle on all of U, ηt

exists only on U — Z:

(5.21) 9 < : E < | E / - Z - E i _ 1 | C / - Z , i = 9, « - 1, , 1 ,

(5.22) % : E | l 7 - Z - > i ; | E / - Z .

(5.23) Definition. Let Z be a connected component of S. Assume that Z
is compact. Let β = (U, (Eq, Eq_19 , Eo), (ηq9 ηq_λ, , η0)) be a Z-sequence.
On U let Z)α, D ^ , , Do be connections for 2sβ, Z^^, , EQ. On U — Z,
let Z>_! be a connection for v \ U — Z. Then (Dq, Dq_19 , Do, D_α) is /fried to

(5.24) D_ t is a basic connection for v\ U — Z,

(5.25) there exists a compact subset Σ oi U with Z contained in the interior
of Σ such that on U — 21, (Dα, DQ_15 , Do, D_x) is compatible with
the exact sequence

0 -> Eq\U - Σ -^ Eq_,\U - Σ -> >E0\U - Σ-+v\U - Σ->0 .

(5.26) Lemma. Let Z be a connected component of S. Assume that Z is
compact. Let β = (£/, (Eq, Eq_19 , Eo), (ηq, ηq_19 , η0)) be a Z-sequence,
and D_x a basic connection for v\U — Z. Then on U there exist connections
Dq, Dq_λ, . ,D0for Eq9Eq_19 ,E o such that

(5.27) (Dq, Dq_l9 , Do, D. t ) is fitted to β.

Proof. According to Lemma (4.17) on U — Z there exist connections Fq,

Pq-i> , Γo for £ β 11/ — Z, £ β _ ! I U - Z, , £01 C/ - Z such that

(5.28) (Fq, P\_l9 , FQ, D_ X ) is compatible with the exact sequence

0-+Eq\U - Z->Eq_λ\U - Z-^ '•- ->E0\U - Z->v\U - Z - + 0 .

Let 21 be a compact subset of U with Z contained in the interior of Σ. Accord-
ing to Lemma (4.41) on U there exist connections Dq, Dq_ 1 5 - ,DQ for Eα,
Eq.x, , Eo such that

(5.29) D 4 and Γ< agree on ^ | U — Z, i = <?, (? — 1, , 0.

(Z)q, Dq_l9 , Do, D_x) is then fitted to 0.
(5.30) Remark. Note that given β = (U, (Eq, Eq_19 , Eo), (ηq9 ηq_l9 ,

η0)) and given any compact subset Σ of U with Z contained in the interior of
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Σ, one can then construct Dq, Dq_λ, , Do, D_λ such that (5.25) is valid for
these Dι and the given Σ.

(5.31) Proposition. Let Zbea connected component of S. Assume that Z
is compact. Let β = (U, (Eq, Eq_19 , Eo), (ηq, ηq_u , ηQ)) be a Z-sequence.
Assume that (Dq, Dq_19 , DQ, D^) is fitted to β. Let φ e C[Xλ, X29 , Xn]
be symmetric and homogeneous of degree I, where n — k < / < n. Set Kt =
K(Di). On U consider the 21-jorm ψ(Kq\Kq_λ \. \K0). Then

(5.32) φ(Kq I Kq_λ I . I Ko) has compact support.

Moreover, suppose (Dq, Dq_λ, , D'o, D'^) is also fitted to β. Set K't = Kφ^.
Then there exists a 21 — 1 form ω on U such that

(5.33) ω has compact support,

(5.34) dω = φ(Kq IKq_, | | K) - φ(Kq \K^ \.. . | Ko) .

Proof. Given (Dq, Dq_λ, , Do, D_λ) let Σ be as in (5.25). Then according
to (4.23) on U - Σ,

(5.35) <p(Kq\Kq_x\.. \KQ)\U - Σ = ψ{K_λ)\U - Σ .

Hence by (3.28), φ(Kq\Kq_λ \ -.. |Ko) vanishes on U - Σ. This proves (5.32).
To prove (5.33) and (5.34) we may assume that on U — Σ, (Dq, Dq_λ, .,

DQ, Df_^) is also compatible with the exact sequence

(5.36) 0->Eq\υ -Σ-^Eq_λ\υ -Σ-* > EQ\ U - Σ->v\ U -Σ-+0 .

Define U, Σ, Z by

(5.37) U = U χ[0,l],

(5.38) Σ = Σ χ[0,l],

(5.39) Z = Z x [0, 1] .

Let p:U-^U and t: V —> [0, 1] be the projections. On ZJ there is the pull-back
bundle pι(Ei), and there are the pull-back connections ρι(D'i) and pKD^ for

ί)- On U define a connection F 4 for pι(Et) by

(5.40) Γ* = tpKDO + (1 - ήpXDi) , i = q,q-l9 . 9O.

Sot Ki = K(Fi). Onϋ - Z s e t

(5.41) v = pKv) ,

(5.42) V.x - tpKDf_x) + (1 - t)pKD_λ) ,

(5.43) K_x --= K(V_λ) .

Define ι0: U->U and i\: U->U by
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(5.44) φ ) = (JC,0) , xeU,

(5.45) I^JC) = (JC, 1) , xεU,

Then (5.40) and (4.56) imply

(5.46) i*φ(Kq I Kq_λ I IKQ) = φ(Kq IKq_λ | . . . | Ko) ,

(5.47) i * ^ i £ , _ ! i . . . i £ 0 ) = Ψ(κ'q i x ; . , i i κς> .

Hence in order to prove (5.33) and (5.34) it suffices to prove

(5.48) φ(Kq I Kq_λ I I Ko) vanishes on U - Σ .

If the exact sequence (5.36) is pulled back by pι to U — Σ, then on U — Σ
(Vq, Fq-i, •• , F 0 , Γ.x) is compatible with the pulled-back exact sequence. So
according to (4.23), on U — Σ

(5.49) φ{Kq\kq_x\- - \K0)\ϋ -Σ = φ{K_λ)\U - Σ .

By (5.5), pCSLi) = 0. This completes the proof.
Remark. Let Z be compact, and β — (U, (Eq, Eq_19 «, Eo), (ηq, ηq_λ, ,

η0)) be a Z-sequence. Let H*(U;C) denote the cohomology of U with compact
supports and coefficients C. Then there are isomorphisms:

(5.50) H&U; C) - H2n_j(U; C) - JΪ2»_,(Z; C) .

The isomorphism HJ

C(U; C) —> H2n_j(U; C) is the usual Poincare duality iso-
morphism. The isomorphism H2n_j(U\ C) *— H2n_j(Z; C) is given by the in-
clusion of Z in U. Recall that by (5.16), Z is a deformation retract of U. Thus
a closed /-form ω on £/ with compact support determines an element of
H2n_j(Z;C).

We come now to the main definition of this section.
(5.51) Definition. Let Z be a connected component of 5. Assume that Z

is compact. Let β = (U, (Eq, Eq_x, , Eo), (ηq, ηq_19 , 7]Q)) be a Z-sequnce.
Choose connections Dq, Dq_λ, , Do, D_x such that (Dq, Dq^, , Do, D_x) is
fitted to j8. Set Kt = K(Dt]. Let ^ be symmetric and homogeneous of degree /,
where n — k < I < n. Define Res^ (ξ, Z, β) e H2n_2l(Z; C) to be the element
of H2n_2l(Z; C) determined by W^ΐ/(2π))ιφ(Kq\Kq_11 |KQ).

Remarks, (a) (5.33) and (5.34) imply that Reŝ , (£, Z, β) depends only on
φ, ξ, Z, and β. Res^ (ξ, Z, β) does not depend on the choice of Dq, Dq_x, ,

(b) Since Z is a compact holomorphic subvariety of M, Z has the prop-
erty :

(5.52) Let V be any open subset of M with VDZ. Then there exists an open
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subset Vx of M such that F D F J D Z and Z is a deformation retract
of Vx.

(c) For Res, (ξ, Z, β) only the local structure of ξ and β near Z is relevant.
Let β = (£/, 0Eβ, £ β _!, , £0)> (%J %-i> > %))• Let W be an open subset of
M with U Z) W Ό Z, and Z a deformation retract of W. Set β\W =

(WΛE.lW.E^l W, ,E0\W), (yq\W,Vq_x\ W, . . Vo\W)). Then

(5.53) Res, (f, Z, /3) = Res, (£, Z, β\W) .

(5.53) can be proved by applying Remark (5.30). Choose (D 9, D ^ , , Do,

D_x) fitted to β so that the Σ of (5.25) is contained in W. (Dq | ΪF, Dq_x\ W,- -,

Do IΨ, D_,\ W) is then fitted to β\ W. Hence the element of H2n_t(Z;C) deter-

mined by (^/^Λ /(2π))ιφ(Kq \ Kq_x | | Ko) is Res, (Z, f, β) and is also

Res f(Z,£,j9|W0.
The next proposition will be used in § 7.

(5.54) Definition. Let β and γ be two Z-sequences. Set

β = (t^s (Eq, Eq_x, , £ 0 ), (^, %_!, , η0))

and

Assume s = q. An admissible epimorphism or 7* onto 3̂ is a pair of consisting
of an open subset W of M and a diagram

0 0

1 1
0 -> Lq -> L β . ! ->

I 1
(5.55) o - * / , - * / ^ - * . . .

i I
0 — ^ — J B ^ i — ••-

I I
0 0

of C°° vector-bundles such that the following six conditions are satisfied:

(5.56) U Π V D W D Z .

(5.57) Each column 0 —> L 7 —> /7 —> ^ —> 0 is defined and exact on all of
j = q,q - I, '-,0.

(5.58) The map v -> v is the identity of * | W - Z.

0

1
Lo

1

1

I
0

0

1
- > 0 - *

ϊ

4

I
0

0

0

0
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(5.59) The top row 0 —> Lq —> Lq_λ -> —> Lo —> 0 —> 0 is defined and exact
on all of W.

(5.60) The middle row isγ\W. The bottom row is β \ W.

(5.61) The diagram commutes on W — Z.

(5.62) Proposition. // there is an admissible eipimorphism of γ onto β,
then for all φ with n — k < deg φ < n

(5.63) Res, (Z, f, β) = Res, (Z, f, r ) .

Proof. Set /3 = (U, (Eq, Eq_19 , Eo), (ηq9 Vq_19 , , 0)) and γ = (V, (/β,
Iq-iy " ' > Io)> (flq> Pq-i* — 9 /A))) Let JF be as in Definition (5.54), and consider
the diagram (5.55). In view (5.52) and of (5.53) we may assume

(5.64) U = V = W .

On U choose connections Pq9Fq_19 , Fo for Lq, L β - 1 , , Lo such that on
U

(5.65) (Γβ, Fβ_!, , Fo) is compatible with the exact sequence 0 —• Lq -> Lq_x

_> , Lo -> 0.

Let D_λ be a basic connection for v\ U — Z. On C/ choose connections D 9 ,
Dq.!, , Do for £ β , Eq_u , Eo such that

(5.66) (Dα, Dq_19 - , Do) is fitted to ^.

Hence there exists a compact subset Σ ot U with (5.25) valid for Σ.
Denote by cj(Lj) the image of cό: Lj —• Ij. According to Lemma (4.32) on

U — Z there exist C°° sub-vector-bundles Fq9 Fq_19 , F 0 of Iq\U — Z,
lq_λ I C/-Z, . . . , /01 C7 - Z such that

(5.67) / ^ | C / - Z = F, Θ o ( ^ l ^ - z ) , i=q,Q- h -',09

(5.68) ^ ( F , ) C F , . ! , / = if, r̂ — 1, — , 1 -

According to Lemma (4.45) on U there exist C°° sub-vector-bundles Fq9 Fq_19

• , Fo of /β, /β_!, , /0 such that

(5.69) /,- = FjΘcjiLj) , j = q,q-h > ,0,

(5.70) Fj\ U - Σ = Fj\ U - Σ , j - q9 q - 1, , 0 .

On U let Dj be the unique connection for F3 such that

(5.71) (Dj, Dj) is compatible with the exact sequence

0 — F , - > £ , - > 0 , j = q,q-l,--,O.
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On U let Pj be the unique connection for ij(Lj) such that

(5.72) (Fj, Pj) is compatible with the exact sequence

0 _> Lj -* Cj(Lj) -» 0 , j = q,q-l, ",O.

Let Dj be the direct sum connection for Ij:

(5.73) DJ = DJ®^J.

Thus

(5.74) 5/s, + s2) = ^ s , + F>2 , ^

(5.65) and (5.66) imply

(5.75) ( 4 , £,_„ . Λ,, β-i) is fitted to r .

Set Kj = X(5j), Xy = £(D,). (5.73) implies

(5.76) det (/ + Kj) = det (/ + Kj) det (/ + K{V,)) .

Set e(0 = (-1) ', (5.65) and (4.24) imply

(5.77)
ί = 0

Therefore

(5.78) Π ( d e t (7 + £i)) i ( < ) = Π
i=0 ί=0

(5.78) and (4.13) imply

(5.79) p ( ^ I ^ . x I I Xo) = p(Kβ I Kq-i I

Due to (5.66) and (5.75), (5.63) has been proved.

6. Coherent real-analytic sheaves

In order to prove the residue existence theorem stated in the introduction,
we shall have to use real-analytic sheaves. Following [1] let us state the basic
facts which we need.

Let M be a complex-analytic manifold, and n = dim c M. Denote by 0 the
sheaf of germs of holomorphic functions on M, and by si the sheaf of germs
of real-analytic functions on M. Given x <= M, let z1? , zn be complex-ana-
lytic coordinates defined about x with zt{x) = 0. Then six is isomorphic to the
ring C{z19 , zn, zu , zn) of convergent power series in z<, z*. Any module
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over si x has a projective resolution of length <2n. Θ and si are both sheaves
of rings, and there is the natural injection Θ-+si. If 3F is a sheaf of 0-modules,
then si (8)0 F is a sheaf of ^-modules.

(6.1) Proposition. Let ^ be a coherent shea] of Θ-modules. Then
si®e^ is a coherent sheaf of si-modules. Moreover, if Fλ —> SF2 —> J^ 3 is
an exact sequence of coherent sheaves of Θ-modules, then si ®G3Fλ-+ si ®0 2F2

—• si ®Θ 3FZ is an exact sequence of coherent sheaves of si-modules.
Proof. See [1, Proposition 2.9, p. 30] and also [2, Proposition (1.5), p.

153].
(6.2) Definition. Let U be open in M. On U, let F be a coherent sheaf

of ^/-modules. A resolution of IF is an exact sequence

of coherent sheaves of j/-modules on U such that each /Zt is locally free.
(6.3) Proposition (Existence of resolutions). Let U be an open subset of

M, and ίF a coherent sheaf of si-modules on U. Let W be an open subset of
U such that there is a compact B with U z> BZ)W. Then on W, 1F\W has a
resolution.

Proof. See [1, Proposition 2.6, p. 29].
(6.4) Definition. On U, let R19 R2 be two resolutions of 2F. A morphism

of Rγ to R2 is a commutative diagram

0 —> H2n —> iϋ^n-i —* * * * -^ Ho—> ^ —> 0

I I I I

of sheaves of ^/-modules on U such that the upper row is R19 the lower row is
R2, and the vertical arrow farthest to the right is the identity map. The
morphism is said to be a morphism of Rλ onto R2 if the vertical arrows are all
surjections.

(6.5) Proposition (Comparison of resolutions). Let U be open in M. On
U, let !F be a coherent sheaf of si-modules, and Rλ, R2 be two resolutions of
ίF. Let W be an open subset of U such that there is a compact set B with
U -D B D W. Let Rλ\W, R2\W be the restrictions of R19 R2 to W. Then on W
there is a resolution R3 of tF\W such that

(6.6) there exists a morphism of R2 onto Rλ \ W,

(6.7) there exists a morphism of R3 onto R2 \ W.

Proof. See [7, Lemmas 13 and 14, p. 107]. In [7] these are proved on an
algebraic variety using coherent algebraic sheaves. But due to [1, Corollary 2.5,
p. 29] the same reasoning is valid in the real-analytic framework.

(6.8) Remarks, (a) If H is a coherent sheaf of j/-modules, then H is
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locally free if and only if each stalk Hx is a free j/^-module.
(b) If E is a real-analytic vector-bundle, let is denote the sheaf of germs

of real-analytic sections of E. Then E -̂ —> E is a functor which gives an equiv-
alence between the category of real-analytic vector-bundles on M and the cate-
gory of locally free coherent sheaves of ^/-modules on M.

(c) If M is compact and IF is a coherent sheaf of 0-modules, then Proposi-
tions (6.1),( 6.3), and (6.5) can be used to define the Chern classes of IF'.
To do this, on M let

0 _• H2n -> H2n_λ - > > # 0 -> J / (x) J^ -> 0
0

be a resolution of J / ®0 ίF. Let Et be the real-analytic vector-bundle with
Ei = Ht. In K(M) let ζ be the virtual bundle:

(6.9) ζ= £(-im.

is defined by

(6.10) Q ( ^ ) - Q ( ζ ) , / = 1, . . . , / i .

It follows easily from Proposition (6.5) that ζ depends only on 3F. Hence
is well-defined. For a detailed proof of this see [7, Lemma 11, p. 106].

More generally, let ψ be symmetric and homogeneous with deg ψ<n.
is defined by

(6.11)

where ^ = ^(σΊ, , σ z), and / = deg φ.
(d) We are forced to use real-analytic sheaves because it is not known

whether the propositions on existence and comparison of resolutions are true
in the holomorphic category. By Proposition (6.1) a resolution in the holo-
morphic category, when tensored with J / , gives a resolution in the real-analytic
category.

7. Proof of the residue existence theorem

As in the statement of Theorem 2 let M be complex-analytic, and ξ a full
integrable sub-sheaf of Γ. Set Q = Γ/f. Let ψ be symmetric and homogeneous
of degree I where n — k < I < n.

(7.1) Definition. Let Z be a connected component of the singular set S.
Assume that Z is compact. Choose an open subset U of M with U Π S = Z
and Z a deformation retract of U such that on U there exists a resolution R:
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0,— E2n -> £,„_, -> > E, — J * <g> β -* 0

For ί = 2n,2n — 1, , 1 let ηt: Ei \ U — Z -> E ^ | £/ — Z be the vector-

bundle map which gives E*1 U - Z - ^ E ^ \U - Z. Let η0: EQ\U — Z-*v\U—Z

be the vector-bundle map which gives E^\U — Z —> srf ®ΘQ\U — Z. Then

(U, (E2n,E2n_19 ,E o ), (η2n,η2n_19 -,ηj) is a Z-sequence. Call this Z-se-

quence β(R), and define Resp (ξ, Z) by

(7.2) Resp (£, Z) - Res, (f, Z, ^(Λ)) .

(7.3) Remarks, (a) The existence of U, R as in Definition (7.1) is im-
plied by (5.52) and Proposition (6.3).

(b) In order for (7.2) to be legitimate it must be shown that Reŝ , (£, Z, β(R))
does not depend on the choice of U and R. This is implied by (5.62) and
Proposition (6.5). A morphism of a resolution R1 onto a resolution R2 gives an
admissible epimorphism of β(Rλ) onto β(R2).

Proof of (0.22). From (7.3)b and (5.53) it is clear that Res, (ξ, Z) depends
only on ψ and on the local structure of Q near Z. Since ξ is full, (0.18) implies
that the local structure of Q near Z is determined by the local behavior of the
leaves of ξ near Z. (0.22) is now evident.

Proof of (0.23). If M is compact, then on M let

0 - EE2n

be a resolution of rf(8)flβ. Let Z1 5 , Z r be the connected components of

the singular set S. Choose open subsets U19 , Ur of M such that

(7.4)

(7.5)

(7.6)

Choose

(7.7)

(7.8)

t/j n s

Zt is a

compact subsets 2\,

ut-
Z, is contained

1 7 T 1
-— ^ i ? ϊ = 1

^ Uj = φ if i
> •>
φj ,

deformation retract of

• , 21,. of M such

) Σt , i = 1,

in the interior of .

that

• , r

Set Σ = Σλ U U 2V On M — S let D_x be a basic connection for v. On

M let D 2 n , D2n-u •• , A b e connections for E2n, E2n_ι, , Eo such that

(7.9) On M — Σ, (D2n, D2n_1, , Do, D_λ) is compatible with the exact se-

quence

0->E2n\M - ^ - > V i l ^ ~ 2 l-> . - > E 0 | M - 2 l - ^ ^ | Λ f - 2 I - > 0 .
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Set K, = K(Dτ). According to (4.15) and (6.11),

(7.10) [φ(K2n I K2n.λ I . . . I Ko)] = (2π/V^Ϊ)ιφ(Q) .

(7.9), (4.23), and (3.28) imply

(7.11) φ(K2n I K2n_λ I I Ko) vanishes on M - Σ .

Therefore φ(K2n\K2n_ι \ | Ko) \Ui is a 2/-form on Ut with compact support.

By (7.2) the element of H2n_2l(Z; C) determined by φ(K2n\K2n_λ \ . . | KQ) \ Ut

is (Iπ/V^ϊy Res, (£, Z%). Let ωt be the 2/-form on M denned by

(7.12) ωt\Ut = φ{K2n\K2n_λ\. ..\Kά\υi9

(7.13) ωt vanishes on M — Ut .

From definition (0.21) of μ# we then have

(7.14) [ωj = (2π/Λf=ϊ)ιμ* Res^ (f, Z,) , / = 1, . • ., r .

But

(7.15) φ(K2n\K2n_λ I I £ 0 ) = ωλ + + ω r .

(7.15), (7.14), and (7.10) imply (0.23). This completes the proof of Theorem 2.
Remark. In Definition (7.1) the exact sequence of sheaves has 2n locally

free sheaves. The next lemma asserts that Resp (f, Z) can be obtained from a
suitable exact sheaf sequence of any length.

(7.16) Lemma. Let U be an open set containing Z with U Γ) S = Z and
Z a deformation retract of U. On U let

(7.17) 0 -> £ , - > £ , _ ! - > > E 0 - > ^ ( χ ) ( 2 - > 0

be an exact sequence of sheaves of ^/-modules. Let β be the resulting Z-se-
quence. Then

(7.18) Res^ (£, Z, 0) = Res, (£, Z) .

Proof. If g < 2n, add on 2π — g zeroes to the left of (7.17) to obtain

(7.19) 0 — 0 -> > 0 -> E, — £ g _ 1 -> > E 0 - > ^ ( χ ) β - > 0 .

Let β' be the Z-sequence resulting from (7.19). βf has length In so by (7.1)

(7.20) Res, (£, Z) = Res, (£, Z, /3') .

But it is obvious that
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(7.21) Res, (£, Z, /3) = Res, (ξ, Z, β') .

This proves (7.18) when q < In.
If q > 2«, then by the syzygy theorem [13, Chapter VIII, Theorem 6.5',

p. 158], the kernel of E^n-i -» JLrc-2 is locally free. Denote this kernel by £\
Thus

(7 .22) 0 -> E -> E ^ . , -> EE 2 7 Z _ 2

is a resolution of stf ®0 Q. Denote this resolution by R. The map E2W

gives a surjection E2 n —> E —> 0. Consider the commutative diagram:

0 -* 0 -> 0 - > . . . - > 0 -> E _> £•,„_! - > . . . - > E O - ^ J / ^ ^ Q - ^ O

This diagram gives an admissible epimorphism of Z-sequences. Therefore by
(5.63)

(7.23) Res, (£, Z, 0) = Res, (ζ, Z, flφ) .

This proves (7.18) when q > In. If q = 2n, then (7.18) is immediate from
(7.1).

(7.24) Corollary. Suppose that Eq, Eq_1, , Eo are holomorphic vector-
bundles on U. Let

(7.25) 0 -> Eq -> E β _ x -> > EQ -> Q -> 0

sequence of sheaves of Θ-modules on Ό. Denote the resulting Z-
sequence by β. Then

(7.26) Res, (£, Z) = Res, (f, Z, /3) .

Proof. View each £^ as a real-analytic vector-bundle. According to Propo-
sition (6.1), (7.25) gives an exact sequence

(7.27) 0 -> Eq -> E,_! -> > I < , - > ^ ( x ) β - » 0

of sheaves of ^/-modules on C/. Hence Lemma (7.16) applies, and the corollary
is proved.

8. Proof of Theorem 1

Recall the data of the theorem. M is compact and complex-analytic. L is a
holomorphic line bundle on M. η: L —> T is a holomorphic vector-bundle map.
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Each zero of η is isolated, φ is symmetric and homogeneous of degree n =
dim cM. Set ξ = η(L) For peZero(η) there is the usual identification
H0(p; C) = C Let φ(η,p) be as in the introduction. Then due to (0.23) and
(0,14), (0.10) will be implied by

(8.1) p(9,p) = Res,(£,p) .

The remainder of this section will be devoted to proving (8.1). The proof
will have two steps:

Step 1. Replace a situation involving several vector-bundles and several
connections by a much simpler situation involving only one vector-bundle and
one connection.

Step 2. An explicit computation using one vector-bundle and one connec-
tion.

To begin Step 1, let W be an open subset of M. On W let X be a holomor-
phic section of T\ W such that X has no zeroes. According to (3.10) and (3.11),

(8.2) [X, Sl + s2] = [X, sj + [X, s2] ,

(8.3) [X,fs]

whenever s, s19 s2 e C°°(T\ W), and /: W -+ C is a C°° function.
If (X) denotes the sub-line-bundle of T\ W spanned by X, then (8.2) and

(8.3) imply that there is a unique partial connection {(X) 0 T \ W, δ) for T\ W
such that

(8.4) ί(X)δs =[X,s], se C°°(TIW) ,

(8.5) ί(r)δs = ί(γ)3s , s e C~(T\ W) , γ ε C°°(Γ | W) .

This partial connection for T\W will be referred to as the partial connection
for T\ W determined by X. Note that (8.4) implies

(8.6) i(fX)δs = f[X, s] , f : W - > C .

(8.7) Definition. Let X be a holomorphic section of T | W such that X has
no zeroes. An X-connection for T\ W is a connection for T\ W, which extends
the partial connection for T\W determined by X.

(8.8) Remarks, (a) A connection D for T\ W is an Z-connection if and
only if

(8.9) i(X)Ds=[X,s], seC~(T\W),

(8.10) D is of type (1,0) .

(b) Lemma (2.5) guarantees the existence of Z-connections. Since [X, X]
= 0 and SX = 0, Lemma (2.11) implies that there exist Z-connections D with
DX = 0.
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(8.11) Lemma. Let X be a holomorphίc section of T\W such that X has
no zeroes. Let D be an X-connection for T\ W. Set K = K(D). Assume deg^>
= n. Then

(8.12) φ(K) = 0 .

Proof. Given p eW, let Wp be an open neighborhood of p in W such that

Wp is the domain of a complex-analytic coordinate system zί9 , zn with

(8.13) d/dz1 = X\Wp .

Let A(Wp) be the ring of all C°° complex-valued differential forms on Wp. In
A(WP) let I(X, Wp) be the ideal generated by dz2, , dzn. This ideal has the
properties:

(8.14) If ω € I(X, Wp), then dω e /(X, ^ ) .

(8.15) If ω19 , ωTO are any n elements of I(X, Wp), then ωx Λ Λ ωn = 0.

Let 0 = || ̂  || be the connection matrix of D with respect to the frame d/dz19

-", 3/dzn. Then (8.9), (8.10), and (3.12) imply that each θί3 is in I(X, Wp):

(8.16) θtjZKXtW,).

Let K = \\fCij\\ be the curvature matrix of D with respect to the frame d/dz19

• , d/dzn. (8.16), (8.14), and (1.13) imply that each KiJ is in I(X, Wv):

(8.17) KiJeI(X,Wp).

Since deg^? = n, (8.17) and (8.15) imply that φ(K) vanishes on Wp. This
proves the lemma.

(8.18) Lemma. Let X be a holomorphic section of T\W such that X has
no zeroes. Let D and Dr be two X-connections for T\W.SetW=Wχ [0,1].
Let p.W^W and t: W —>[ 0,1] be the projections. On W define a connection
V for PKT\W) by

(8.19) F = tpW) + a -t)PKD) .

Set K = K(P). Assume degφ = n. Then

(8.20) φ(K) = 0 .

Proof. Given p eW, let Wp be an open neighborhood of p in W such that
Wp is the domain of a complex-analytic coordinate system zl9 , zn with

(8.21)
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Set Wp = Wp x [0,1]. Let A(WP) be the ring of all C°° complex-valued differ-
ential forms on Wp. In A(WP) let I(X, Wp) be the ideal generated by p*(dz2),
•• ,p*(dzn).

Let θ = WθuW and ff = | |0^| | be the connection matrices of D and D' with
respect to the frame d/dz19 , d/dzn. Let ω = ||ωί<7 || be the connection matrix
of V with respect to the frame pKd/dzλ), , pι(d/dzn). Then (8.19) and (4.56)
imply for each ωij9

(8.22) ωij = ̂ *0?y + (1 - φ * ( ^ ) .

Since D and D' are both ^-connections, it now follows that each ωtj is in

(8.23) ωίjeI(X,Wp) .

Let Λ: = \\fCij\\ be the curvature matrix of V with respect to the frame
J, , pKd/dZn). I(X, Wp) is closed under d, so each jtti is in I(X, Wp):

(8.24) κtJ

The wedge product of any n elements of I(X, Wp) is zero. Since deg^? = n,
(8.24) now implies that φ(K) vanishes on Wp. This proves the lemma.

(8.25) Definition. Let U be an open subset of M. On U let X be a holo-
morphic section of T\U. Set Z = {p € U\X(p) = 0}. Assume that Z is com-
pact and connected. On U let D be a connection for Γ| [/. Then D is /ϊίted to
Xit

(8.26) there exists a compact subset Σ oi U with Z contained in the interior
of Σ such that on U — Σ, D is an Z-connection for T\ U — Σ.

Remark. Given U, X as in Definition (8.25), choose any compact subset
Σ of U with Z contained in the interior of Σ. Then according to Lemma (4.41)
there exists a connection D for T\ U such that (8.26) is valid for D and the
chosen Σ.

(8.27) Lemma. Let U be an open subset of M. On U let X be a holo-
morphic section of T\U. Assume that the zero set Z of X is compact and con-
nected. Let Dbea connection forT\U such that D is fitted to X. Set K = K(D).
Assume deg^ = n. Then

(8.28) φ(K) has compact support.

Moreover, suppose that Όf is another connection for T\U such that D' is also

fitted to X. Set K' = K{Df). Then

(8.29) Jφ(K) =
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Proof. To prove (8.28), let Σ be as in (8.26). Then on U - Σ, D is an
Z-connection for T\ U — Σ. Hence by (8.12), <p(K) vanishes on U — Σ. This
proves (8.28).

To prove (8.29) we may assume that on U — Σ, Dr is also an X-connection
for T\ U - Σ. Let V = U X [0,1]. Let p: V -> U and t: V -> [0,1] be the
projections. On V define a connection V for pι(T\ U) by

(8.30) V = tpKD') + (1 -

Set K = X(F), and define /0, i^. C/ -> C/ by

( 8 . 3 1 ) I0(JC) = ( J C , O ) , j c e

( 8 . 3 2 ) I\(JC) = (JC, 1) , j c e

T h e n

(8.33) φ(K) = i*φ(K) ,

(8.34) g

According to (8.20), ^(^) vanishes on V — Σ X [0,1]. Therefore

(8.35) φ(K) has compact support.

(8.33), (8.34), and (8.35) imply that there exists a (2n - l)-form ω on U with

(8.36) ω has compact support,

(8.37) dω = φ(K') - φ(K) .

(8.29) is now evident.

(8.38) Proposition. Let U be an open subset of M. On U let X be a

holomorphic section of T\U. Assume that the zero set Z of X is compact and

connected. Let D be a connection for T\U such that D is fitted to X. Set K —

K(D). Let ξ be the subsheaf of T\U spanned by X. Assume degφ = n. Then

(8.39) Res, (£, Z) = (^/(2π))n Jφ(K) .
u

Proof. Due to (8.29) it will suffice to exhibit a connection D' for T \ U such
that D! is fitted to X and such that for K! = K(Df) it is immediate and obvious
that

(8.40) Res, (?, Z) = ( V ^

u

To construct such a D', let V be an open subset of U, and Δ be a compact
subset of U with
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(8.41) ί/DFDjDZ,

(8.42) Z is contained in the interior of Δ,

(8.43) Z is a deformation retract of V.

Let Df be a connection for T \ U such that

(8.44) on U — Δ, D' is an X-connection for T\ U — Δ,

(8.45) on U - Δ , D'X = 0 .

The existence of such a D' is implied by Lemma (2.11) and (4.41). Set K! =
K(Df).

To verify (8.40), let (1) denote the trivial line bundle U X C. Define

(8.46) η(p,z)

Define a section s of (1) by

(8.47)

Thus

(8.48) ^ = X .

Let Dx be the unique connection for (1) with

(8.49) D,s = 0 .

On ί/ - Z set v = T/^(l). Let μ: T\ U-Z->v be the projection. O n F - Z
consider

(8.50) 0 - > ( l ) - > T - > ^ - > 0 .

Let /3 denote the Z-sequence obtained from (8.50).
For v\ U — Δ there is a unique connection D_x such that

(8.51) 0

whenever ^ e C°°(Γ| U — Δ). D_x is a basic connection for y| C/ — Δ. By en-
larging J slightly and applying Lemma (4.41) we may assume that on U — Z
there is a basic connection D_x for v such that

(8.52) D_λ and D^ agree on y| ί/ - J .

Thus (/>!, D', D_λ) is fitted to the Z-sequence β. Set β = T/ξ. At the sheaf
level (8.50) gives on V an exact sequence of sheaves of (^-modules:
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(8.53) 0-»(D-» Σ\V^Q\V-^0 .

Set Kj = KίDJ. Then from (7.26) it follows directly and immediately that

(8.54) Res9 (ξ, Z) = (/=ϊ/(2*))» J9(K, | K1) .
U

But (8.49) implies

(8.55) Kx = 0 .

Therefore

(8.56)

(8.56) and (8.54) imply (8.40), so the proof is complete.
Remark. Definition (7.1) of Resp (ξ, Z) requires choosing a resolution and

then choosing connections for the vector-bundles in the resolution. Thus sev-
eral vector-bundles and several connections are involved. The point of (8.39)
is that it replaces this complicated situation involving several vector-bundles
and several connections by a much simpler situation involving only one vector-
bundle and one connection.

The next proposition will use (8.39) to explicitly compute Reŝ , (£, p) when
p is an isolated zero of X. But first, a lemma which will permit an application
of the Lebesgue bounded convergence theorem.

(8.57) Lemma. Let g: [0,1) —> [0,1) be a nondecreasing C°° function with

(8.58) g(r) = r, for 0 < r < 1 / 3 ,

(8.59) g(r) = 1 , for 2/3 < r < 1 .

For m = 1, 2, define gm: [0,1) -* [0,1) by

(8.60) gm(r) = Tfgf^) , r € [0,

there exists a positive real number b such that for all r e [0,1) and all
m = 1,2, . . .

(8.61) \(dgn/dr)(r)\<b.

Proof. Choose a real number b such that

(8.62) 3 \{dg/dr)(r)\ < b , for all r e [0,1) .

Then (8.61) will be implied by

(8.63) \{dgjdr)(r)\ < 3 |(d*/</r)(r*)| , for all r e [0,1) .

On [0, ^T73] £ » - r. So on [0,
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(8.64) 1 = \(dgjdr)(r)\ < 3 \(dg/dr)(r^)\ = 3 , r e [0, VT/3] .

On [ rfT/3, 1) differentiation of gm gives

(8.65) (dgm/dr)(r) = {dgldr){r™)gm(r)r™-ηg{r™) .

g is nondecreasing so g(rm) > 1/3 for all r e [ Λ/T/3,1). Hence (8.65) implies

(8.66) \(dgjdr)(r)\ < 3 \(dg/dr)(r™)\ , r <= [^1/3,1) .

(8.66) and (8.64) combine to give (8.63). The lemma is proved.
(8.67) Proposition. Let U be an open subset of M. On U let X be a

holomorphic section of T\U. Assume that the zero set of X consists of one
point p. Let z15 , zn be a complex-analytic coordinate system with domain
U and origin p. Denote by ξ the subsheaf of T\U spanned by X. Assume
deg ψ = n. Then

(8.68) Res f(f,p) = Res, Γ
L a19 - ,an

where X = Σ?=i ^d/dZi and A = I I ^ / ^ H
Proof. Since p is an isolated zero of the ai9 there exist positive integers a19

•. , an such that z"* is in the ideal generated by a19 , an. So there exist
holomorphic functions 6^ defined about p with

(8.69) zί^ξiiA.

Passing to a smaller £/, if necessary, it may be assumed that each biά is defined
on all of U. Hence (8.69) holds throughout U.

L e t z : U -+Cn be

(8.70) z(z) = (ZiW, , z»W) , xeU .

In C w denote by Ba the set

\ίu ' J in) € C 2J iζίζiΓ* <

We may assume

(8.72) £ α C z(ϋ) .

For if Ba <£z(U)9 then replace zί9 —, zn by bzv , bzn where Z? is a large
positive real number. Set wt = tei Then

(8.73) X=Σ(b
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(8.74)

(8.75) Res, \^A)dw^ ' ' ' dwA = Resp \^A)dz^ ' ' ' dzA .
L ba19 --,ban J L a19 - ,an J

So it is legitimate to assume that (8.72) is valid.
In U let B denote the subset

(8.76) B = {xsU\z(x)zBa}.

On B define a 1-form ω by

(8.77) α ι = Σ (ZiY'bijdZj.

On 5 let D be the connection f or T \ B given by

(8.78) D(d/dZi) = ω ® [X, 3/3zJ , / = 1, , n .

Set K = K(D). Then (8,68) will be proved if it can be shown that

(8.79) Res, (£, p) = ( V ^

(8.80) (V^ϊ/(2π))w Γω(X) = Res, 1?^^ ''' dzλ .
J L fl15 , fln J

T o prove (8.79) construct a sequence of connections Dl9 D2, - - - for T\B as
follows. O n 5 denote by (z, z) α the function

(8.81) (z,z)°=

Let π1 be the 1-form on B — {p} defined by

(8.82) π = ω/(z,z)a .

Then on B — {p}

(8.83) π is of type (1,0) ,

(8.84) i(X)π = 1 ,

Note that (8.84) is implied by (8.69). For m = 1,2, , let gm: [0,1) -> [0,1)
be as in (8.60). Define ψ m : B -> [0,1) by

(8.85) ψm(x) = gm((z,Z) JC) , κ 5 .

Then on 5 take Dm to be the connection toτ T\B such that
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(8.86) Dm(d/dZi) = ψmπ ® [X, 3/3zJ , ί = 1, , n .

Note that near p ψmπ agrees with ω, so Dm is well-defined on all of B. Set
Km = K(DJ. (8.83), (8.84), and (8.59) imply

(8.87)

So by (8

(8.88)

Now for

(8.89)

.39),

all r e [0,

Hence for all x € I

(8.90)

Res, (

1),

Dm is fitted to X.

ξ,p) =z (V^Ϊ/(2π))Λ I
B

£5ί-(r) = r.

lim ψm(x) = (z, z)"x .

So if x e B and v e Tx φ f Λ, then

(8.91) lim ί(v)ψmπ = i(v)ω .
m-*oo

Moreover, if x e B and v19 , ̂  e Tx 0 J^, then

(8.92) lim i(V l, , v2n)φ(KJ = /(^15 , v

Due to (8.61) the Lebesgue bounded convergence theorem [17, Chapter V,
Theorem D, p. 110] applies to give

(8.93) limjφ(KJ = Jφ(K) .
B B

(8.93) and (8.88) imply (8.79), so (8.79) has been proved.
To prove (8.80), let θ, K denote respectively the connection and curvature

matrices of D with respect to the frame d/dz19 , d/dzn. Then

(8.94) θ = -ωA .

From (8.94) it is clear that θ A θ = 0, so K = dθ,

(8.95) K = -(dω)A + (ω)dA .

ω is of type (1,0), so by (8.95) each entry of K is a sum of 2-forms of type
(1,1) and type (2,0). In φ(κ), which is of type (n, ή), the terms of type (2,0)
will play no role. Set dω = dfω + d"ω where
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(8.96)

(8.97)

Then

(8.98)

(8.99)

d'ω is

d"ω is

Ψω =
d"ω = Σ

of type (2,0) ,

of type (1,1) .

: φ(-(d"ω)A) ,

cciiZiY^dzAji

Since φ is homogeneous of degree n, (8.98) implies

(8.100) φ(κ) = (-d"ω)nφ(A) .

Set Ω — dZidZi dzndzn. A straightforward calculation from (8.99) shows

(8.101) (-d"ώ)» = /liar • αn(z,)βl-1 (zn)
β"-1det H^ll fl .

Therefore

(8.102) φdc) - nla,' -a^zd"1'1- -(zn)
β""VW) d e t \\bu\\ Ω

Now (8.72) implies

(8.103)

Also, if β — (jSu , j3n) is an n-tuple of nonnegative integers with (βl9 , j8n)
^ (αx — 1, , an — 1), then (8.72) implies

(8.104) Jzi^zl1 z -^ί fl - o .

Expand p(>4) det | |6^| | in a power series in z15 , zn. Denote by λ the coeffi-
cient of z?-ι> -z?-1. Then (8.102)-(8.104) imply

(8.105) ^ = W^Λ/(2π))n Jφ(K) .

If (8.105) is compared to the algorithm for computing Resp ΪΨ^dzι'' 'dzn~\

given by (0.9), then it is evident that (8.80) has been proved.
The proof of the proposition is complete.
From (0.2) and (0.6) it is clear that (8.68) implies (8.1). Theorem 1 is

proved.
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9. Proof of Theorem 3

Let U be an open subset of M. On U, let ξ be a full integrable subsheaf of
TI U. Set Z = {x β 1/1 Tyfa. is not a free (^-module}. Assume that Z is com-
pact and connected. Assume also that (0.27) and (0.28) are valid for Z.
Throughout this section deg φ = n — k + 1.

Let Z1? , Zs be the irreducible complex-analytic components of Z of
dimension k — 1. If [ZJ denotes the element of H2k_2(Z; C) given by the
fundamental cycle of Z ί 5 then [ZJ, . ,[ZJ is a vector-space basis for
H2k_2(Z; C). Hence there exist complex numbers jt19 . , λs with

(9.1) Res p ( f ,Z)= Σ Λ t Z J .
ί = l

In order to prove (0.42) we must compute λ19 , λ8.
Let V be an open subset of U such that

(9.2) V contains Z, and Z is a deformation retract of V,

(9.3) on V there is an exact sequence

of sheaves of j/-modules.

On V there is the short exact sequence

(9.4) 0 - > ^ ( g > f - > Γ | K - >

Combining (9.3) and (9.4) gives

(9.5) 0 - Eq -> E,., ^E^TIF-^j/^β^O.

Denote by /3 the Z-sequence resulting from (9.5). On V, let Dq, Dq_1, , Do,
Z)_! be connections for Eq, Eq_19 , E19 T\ V, v such that

(9.6) ( D q , Dq_17 " , D 0 , D_λ) is fitted t o β .

Set Kt = Kφi). As in (5.50) a closed /-form ω on Z with compact support
determines an element of H2n_j{Z\ C). (9.5) is exact, so by (7.18)

(9.7) (f=ϊl(2π))n-*+1φ(Kq \Kq_λ \ -. | Ko) determines Resp (f, Z) .

Since (0.27) and (0.28) are valid for Z, Theorem (0.30) applies. Let
p € Zt - (Zt Π (Z(2) U ΛO). Let t/p be an open neighborhood of p in V such
that on £/p there are defined a complex-analytic coordinate system z1? , zn

and holomorphic functions ak, - -, an as in (0.31)-(0.35). Define a holomor-
phic normal disc Dp by
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(9.8) {Dp = x€ υv\zx(x) = zx(p)9 , ztM

Let i: Dp -» V be the inclusion. It may be assumed that V and Up have been
chosen so that / is proper. Hence there is the induced map of cohomology
with compact supports

(9.9) i*: H*(V C) -> H*(DP C) .

Consider the homomorphism Ip: H2k_2(Z; C) —> C given by

(9.10) H 2 k _ 2 ( Z ; C ) s H Γ " 2 λ ; + 2 ( F 5 C ) - > H l n ~ 2 k + 2 ( D P ; C ) ^ C .

(9.1) implies

(9.11)

But then (9.7) implies

(9.12) ^ = (V^T/(2τr))»-*+1 J ^ X ^ I ^ . , I . \K0)
JO,

On Dp let 4̂ be the (n — A: + 1) x (n — k + 1) matrix

(9.13) A = Wddi/dZjW , k<i,j<n.

Due to (9.12), (0.42) will be implied by

(9.14) (V=ϊ/(2ar))»-* + 1 Γ/*^(Kα | Kq_λ \.- \KQ) = Res , Γ ^ ) ώ * *' ' dzA .
Jp I cιk, ",an A

To prove (9.14), observe that Dp is itself a complex manifold with

(9.15) dimcDp = n - Λ + 1 .

Let TίDp) denote the holomorphic tangent bundle of Dp. On Z)p set

(9.16) Σ(DP) = sheaf of germs of holomorphic sections of T(DP),

(9.17) Z = ΣaffifiZi,
i = k

(9.18) I = subsheaf of T(DP) spanned by X.

Then according to (8.68),

(9.19) Res, (I, p) = Res, Γ^ ) έ f e * " ' ' dzΛ .
L ak9-"9an J

So (9.14) will follow from
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(9.20) Resp (I, p) = (V^Ϊ/(2^))- fc+1 JPφiK^K^ | | Ko) .

To prove (9.20), on Dp set]

(9.21) ϋ — sheaf of germs of holomorphic^f unctions,

(9.22) si = sheaf of germs of real-analytic functions,

(9.23) Q = T(D P )/ | ,

(9.24) EJ = H E J ) , j = q,q-l,> >,l,

(9.25) t = /'(Γ) .

Thus £^ is a sheaf of si modules on Dp. Now use (9.5) to construct on Dp an
exact sequence

(9.26) 0 -> J , -> £,_! -> ^^-^Γ-^^^β^O

of sheaves of j/-modules.

The sequence (9.26) is obtained by first noting that (0.35) implies

(9.27) ξx is a free (^-module for all xeUp.

Let E be the unique holomorphic vector bundle on Up with

(9.28) E = ξ\Up.

Then (9.3) gives on Up an exact sequence of vector-bundles

(9.29) 0 -> £ β -> £ g _ 1 -> > Ex -> E -> 0 .

Set £ = i !(£). Applying i! to (9.29) gives on Dp an exact sequence of vector-
bundles

(9.30) 0 -> Eq -> £,_! -> > ̂  -> £ -> 0 .

So on Dp the sequence

(9.31) 0 -* J β -> έq^ -> > | t -> ΐ -> 0

is exact.

On C/p the inclusion ξ \ Up C Γ | Up gives a vector-bundle map η:E—>T\Up

such that

(9.32) on Up there is a holomorphic frame e19 - —, ekoi E with

n

for / = 1, . , k — 1 and ψk = 2 Λ<9./3Z< ,
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(9.33) 0->E-+T\Up->Q\Up->0 is exact .

Restricting η to Dp gives E ->T and thus gives a map of ^-modules E~>T.

On Dp let / be the holomorphic sub-vector-bundle of f spanned by 9/9z1? ,

k-i Then

(9.34) t = JP

This direct sum decomposition gives a projection t —> T(DP). Map T to Q by

(9.35) £->I(£g-β.

Then (9.32) and (9.23) imply

(9.36) 0-+E->T->Q->0 is exact.

Hence by (6.1)

(9.37) 0-»|}->Z;->j/(§)β->0 is exact.
6

Now (9.26) is the exact sequence obtained by combining (9.37) and (9.31).
On Dp let β be the p-sequence resulting from (9.26). Set Dj = HDj). (9.26)

implies

(9.38) (Λz> t>q-ι, - ,t>0, D_,) is fitted to β.

Set Kj = X(D7 ). Since (9.26) is exact, (7.18) implies

(9.39) Res, (f,p).= W^ϊ/(2π))n-k+1 fφiK^K^ \ | Ko) .

But

(9.40) φ(Kq I ^,_x I I Ko) = i*φ(Kq I Kq_, I | Ko) .

So (9.20) has been proved. This concludes the proof of Theorem 3.
Remark. The argument of this section really verifies a very special case of

the functoriality of Res^ (ξ, Z).

10. Proof of the rigidity theorem

Let F be a holomorphic integrable sub-vector-bundle ofT,k = dim^F^, and
v = T/F. If U is an open subset of M, let A(U) denote the ring of all C°°
complex-valued differential forms on U. In A(U) let /(/% U) be the ideal gen-
erated by all C°° 1-forms ω on U such that
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(10.1) ω is of type (1,0) ,

(10.2) i{γ)ω = 0 for every γ e C~(F | U) .

(10.3) Lemma. Let D be a basic connection for v. On U let e19 , en_k

be a C°° frame of v. Let κ = ^κij^be the curvature matrix of D with respect to
the frame e19 , en_k. Then for each κij9

(10.4) κid e /(F, U) .

Proof. Let η\ T —> T/F be the projection. Given p <= U, let Up be an open
neighborhood of p in U such that on Up there is a complex-analytic coordinate
system z19 , zn with

(10.5) d/dzl9 , d/dzk e Γ(F\UP) .

Let κr — Hyc yll be the curvature matrix of D with respect to the frame ηd/dzk+19

• , ηdjdzn. Then according to (3.33) each ^ is in I(F, U):

(10.6) ύjeI(F,U) .

(10.4) is now implied by (1.16), and the lemma is proved.
Next, let U be open in M, and [a, b] a closed interval of real numbers. Set

U = U X [a, b]9 and let p: U —> U9 t:U —> [Λ, 6] be the projections. For each
r e [β, ft] define ir: U —> C/ by

(10.7) ir(jc) = (JC, r) , xεU,rt [a, b] .

(10.8) Definition. A C°° 1-parameter family of holomorphic foliations of
U is a 1-ρarameter family {Fr}, a < r < b, such that

(10.9) for each r e [a, b], Fr is a holomorphic integrable sub-vector-bundle
of T\U,

(10.10) on U there exists a C°° sub-vector-bundle F of pι(T\U) with /^(F) =
F r for each r e [a, b].

(10.11) Lemma. Let {Fr}, a < r < b, be a C°° 1-parameter family of
holomorphic foliations of Ό. On U let D be a connection for pι(T)/F such
that

(10.12) for each r 6 [a, b]9 i[(D) is a basic connection for T/Fr.

Set K = K(D), and assume n — k + 1 < άegφ < n. Then

(10.13) φ(K) = 0 .

Proof. Given p e U, let Up be an open neighborhood of p in U such that
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p is a deformation retract of Up. Set Up = Up X [tf, 6]. In ^(C/p) let / be the
ideal

(10.14) I = {ωe A(UP) | For each r € [α, 6], i*(ω) € /(Fr, C/)} .

On #„ let ul9 , un_k be a C00 frame of ρι(T)/F. Let Λ: = ||Λ:O || be the curva-
ture matrix of D with respect to w1? , un_k. Then (10.12), (10.4), and
(4.56) imply that each κiS is in /:

(10.15) * „ € / .

Hence (10.13) will follow from

(10.16) if ω19 - , α) n _ U 2 are any n — k + 2 elements of /, then ^ Λ •
Λfi)n- f c + 2 = 0.

To prove (10.16) let TRU and TR[a, b] be the C°° tangent bundles of C/ and
[a, b]. Define TcU,Tc[a,b] by

(10.17)

(10.18)

Then

(10.19)

On ϋp let v

(10.20)

(10.21)

(10.22)

(10.23)

TCU = C®TRU ,

Tc[a,b] = C®TR[a,b].

Γ c[/ = ^ ! ( i ) φ /0!(Γ) θ ΓΓc[fl, Z?] .

L> # 9 v2n+i be a C°° frame of TCC7 such that

v19 , vk € C°°(F|C/p) ,

f̂c + l> 5 Vn € C°°(pl(T) 1 C/p) ,

^w+i> 9 V271 s C°°(ρι(T) 1 C/p) ,

Let vf9 , v,*+1 denote the dual frame for the dual bundle (Γc£/)* | Up. Then
(10.14) implies that / is the ideal in A(UP) generated by vf+1, , v* and
vfn+1. Since there are n — k + 1 of these, (10.16) is clear. This completes the
proof.

Remark. If {Fr} is as in Lemma (10.11), then there always exist connec-
tions D for pι(T)/F such that (10.12) is valid for D. To see this, set v = pKΌ/F
and iv = T/Fr. As in Proposition (3.21) for each vr there is a partial connec-
tion

(10.24) δr: C-(i;r) -> C~((Fr 0 Γ)* ® vr) .

These ^r fit together to give a partial connection δ for £:
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(10.25) δ: C°°(v) -> C~((F 0 p'T)* <g> 5) .

A connection D for 5 which extends this δ will satisfy (10.12).
(10.26) Definition, On U let ξ be a full integrable subsheaf otT\U. Let

Eq9 Eq_l9 , £Ί be real-analytic vector-bundles on £7 such that there is an
exact sequence of sheaves of ^/-modules

(10.27) 0 -> Eq -> Eq_x -> > 1^ -> jtf <g) £ -• 0

on £/. From (10.27) a complex

(10.28) 0 -> Eq -> £,_! -> >E1-^T\U

of real-analytic vector-bundles on U is obtained. By viewing each Et and T as
C°° vector-bundles, (10.28) may then be taken to be a complex of C°° vector-
bundles on U. Any complex of C°° vector-bundles on U which arises in this
way will be referred to as a complex for ξ.

Remark. Up to this point we have not precisely defined a C°° 1-ρarameter
family of sheaves. This is made precise by

(10.29) Definition. A C°° ί-parameter family {ξr}, a < r < b, of full
integrable subsheaves of T | U is a 1-parameter family such that

(10.30) for each r e [a, b], ξr is a full integrable subsheaf ot T\U,

(10.31) on U = U X [a, b] there exists a complex

of C°° vector-bundles such that for each r e[a,b],

0 - UEq) -> ι\(Eq_J -> > UEd ->T\U

is a complex for ξr.

Proof of Theorem 4. Let {ξr}, a < r < b, be a C°° 1-parameter family of
full integrable subsheaves of T\ U. For r € [a, b], let Zr = {x z U\(T/ξr)x is
not a free 0^-module}. Assume that each Zr is compact and connected. As in
(0.43) assume that there is a compact subset B of U with

(10.32) Zr C B for all r e [a, b] .

Let ί%: H^(Zr C) —> H^(U; C) be the homology map induced by the inclu-
sion of Zr in U. If ft — k + 1 < deg φ < n, we then wish to prove

(10.33) /* Res, (fβ, Za) = i # Res, (ft, Z6) .

To prove (10.33) set U = U X [α, 6], and on V let

(10.34) 0 - * £ « - > £,_! > Ex
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be as in (10.31). On U — Zr let Fr be the unique holomorphic sub-vector-
bundle of T\ U - Zr such that

(10.35) Er = ξr\U-Zr.

On U — Z r , set vr — T/Fr. Let Vr be an open subset of U with Zr contained
in Vr and Zr a deformation retract of Vr. Then

(10.36) when restricted to Vr,

0 -> i[(Eq) - i\(Eq_J > UEJ -+ T -> vr -* 0

is a Zr-sequence.

Set Z == {(JC, r) e £/1 JC € Z r}. On £/ — Z, let F be the unique C°° sub-vector-
bundle of pι(T) such that

(10.37) /!

r0O = Fr for each r € [α, 6] .

On J7 — Z, set £) = pι(T)/F. Let D ^ be a connection for v with

(10.38) i\(D_^ is a basic connection for vr for each r e [a, b] .

With B as in (10.32) choose a compact subset Σ of U with 5 contained in the
interior of Σ. Set i? = Σ X [α, 6]. On C/ let Dq,Dq_λ. - - , D19 Do be connec-
tions for Eβ, Eg.j, ••-,£!, pKT) such that

(10.39) on U — Σ, (Dq, Dq_λ, , Do, D_J is compatible with the exact se-
quence

0 _^ Eq -> E , . ! -> > Ex -> ^(T) -* ί; — 0 .

Set X* = ^(Z)i). Then according to (4.23),

(10.40) On U-2, φ(Kq I Kq_λ \...\KJ = φ(K^) .

Since n - k + 1 < degy> < n, (10.38) and (10.13) imply

(10.41) φ(K_λ) vanishes on U - Σ .

Hence

(10.42) ψ{Kq\Kq_λ I. IKQ) is a closed form on £/ with compact support.

Set D\ = iliDi), K\ = X(D[). Let I = dεgφ. On U there is the Poincare
duality isomorphism:

(10.43) a: H2n_2l(U; C) -> Hf(U; C) .

(10.36H10.39) imply
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(10.4.4) for each r e [a, b], φ(K\ \ Kr

q_x | . . . | Kr

0) is a 2/-form on U with com-
pact support,

(10.45) the element of Hf(U C) given by (V^l / (2π))ιφ(Kr

q \ Kr

q_, | | Kr

0)
is αf/*Res, ( f r ,Z r ) .

Since a is an isomorphism, (10.33) will be proved if it can be shown that
φ(Ka

q I K*q_x \' -\K%) and φ(Kq \ K\_λ | . . . | Kb

0) give the same element of H?(U).

But (4.56) implies

(10.46) i*φ(Kq I X β _ 1 1 . . . [ Ko) = φ(Kq \ Kr

q_, \ - - - \ K r

0 ) f o r e a c h r z [a, b] .

From (10.46) and (10.42) it is clear that the proof is complete.
Proof of Corollary 0.44. Let Z be as in Corollary (0.45). Choose an open

subset V of U with Z contained in V and Z a deformation retract of V. Let
/*: H%(Z; C) —> # # ( F ; C) be the homology map induced by the inclusion of
Z in F. Then according to (0.43),

(10.47) /# Res, (fβ, Z) - /* Res, (ξb, Z) .

Since Z :̂ H^(Z; C) —> ^ ( F ; C) is an isomorphism, (10.47) implies

(10.48) Res, (ξa, Z) = Res, (ξb9 Z) .

This proves the corollary.

11. Examples

Example 1. Let Λ1? , λn be nonzero complex numbers. On Cn, with its
usual coordinate system, let X be the homomorphic vector-field:

(11.1) X= Σteid/SZi -
i = l

The origin is the only zero of X. Let ξ be the subsheaf of T spanned by X.
Assume deĝ > = n. Identify, as usual, H0(0, C) = C. Then

(11.2) Res,.(£,0) - φ(λl9λ2, , ί n ) / « Λ •*„) .

Example 2. Let a0, - - -, an be n + I distinct complex numbers. Define a
holomorphic flow

(11.3) CxCPn->CPn

by

(11.4) (z, [ZQ: Zx: : zn]) -> [^α°%: ^ α i % : : ββ *zn] .
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Let X be the holomorphic vector field on CPn, which generates this flow. The
zeroes of X are the n + 1 points p0, ft, . , pn where

Λ = [1 : 0 : 0 : : 0] ,

ft = [0 : 1 : 0 : - : 0] ,

pn = [0 : 0 : 0 : : 1] .

Each Pi is a non-degenerate zero of X. Let ξ be the subsheaf of T_ spanned
by Z. Identify H0(pi9 C) = C, and assume deg£> = n. Then

(ξ,

(11.5) •, an — α^

(a0 -

Example 3. Fix integers k and n with 1 < k < n. Let A be a /: X (n + 1)
matrix of complex numbers

(11.6)

For each i = 0,1, , n denote by 4̂̂  the A: X n matrix obtained by subtract-
ing the z'-th column of A from all the other columns of A

(11.7)

a1Q — flu — au

021 — 02Z *

aln - av

a9n — a9,

Assume

(11.8) for each i = 0, 1, , n all the k X Λ sub-matrices of 4̂€ are non-
singular.

The set of all matrices A for which (11.8) is valid is open and dense in the
vector-space of all k X (n + 1 ) matrices of complex numbers.

So given A satisfying (11.8) let Vt be the holomorphic vector field on CPn

which generates the flow

(11.9) (z, : zj) -> (eai°zz0: ea»zzx: : eai»zzn) .
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Let ξ be the subsheaf of Γ spanned by V19 , Vk. ξ is integrable and full.
To describe the singular set of ξ, leta=(a19 , an_k+1) be an (n — k + 1)-

tuple of integers with

(11.10) 0 < ^ < . . . <an_k+1<n .

Define CP*'1 by

(11.11) C P k

a - 1 = { [ z 0 : z 1 : - " : z n ] e C P * | 0 = z a χ = ••• = z a n _ k + 1 } .

The singular set Z of £ is

(11.12) Z = U C P Γ 1 ,

where the union is taken over all a satisfying (11.10). The CPk

a~
ι are the irre-

ducible complex-analytic components of Z. (0.27) and (0.28) are valid for Z.
If degφ = n — k + 1, then Theorem 3 applies. Hence according to (0.42)

(11.13) Res, (£, Z) = Σ fe £> CP^OtCPΓ1] .

#(^> f J CPJ"1) can be explicitly computed as follows. First, shuffle the columns
of A to obtain a new matrix Aa whose first n — k + 1 columns are the αrΓth,
• , (Xn-k+rth columns of A. Next, form a k x n matrix Ba by subtracting the
last column of Aa from all the other columns of Aa. Define complex numbers
λΐ> •••jί-fc+iby letting λ" be the determinant of the k X k sub-matrix of Ba

consisting of the z-th column of Ba and the last k — 1 columns of Ba. Then
by (0.37):

(11.14) %(φ, φ

Combining (11.14) and (11.13) gives

(11.15) Res, (f,Z) = Σ 9«f, ' -^ί-t^O, ,0)/α«

If n — k + 1 < deg φ < n, then the situation is quite different. In this case,
set / = deg φ and let x e H\CPn C) be the element of H\CPn C) dual to a
hyperplane. Define a complex number w(φ) by

(11.16)

Choose an /-tuple β = (βv , βt) of integers with

(11.17) 0 < i 8 1 < . . < ft < n .

Define CP£~ι by
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(11.18) C P J - 1 = ( b o : Z i : ••• : z n ] z C P n \ 0 = z β ί = .•• = z P ι } .

Denote by [CP71'1] the element of H2n_2l(Z, C) given by the fundamental cycle
of CPnfι. [CPn~ι] does not depend on the choice of β. Then

(11.19) Res, (ξ,Z) = w(9)[CPn~l] , rc-&+l<degp<n.

Note how (11.15) and (11.19) illustrate the rigidity theorem. If A is varied,
then the right-hand side of (11.15) varies, but that of (11.19) remains con-
stant.

Example 4. Fix integers k and n with 1 < k < n. Let Z be a compact
connected complex-analytic manifold with

(11.20) d i m c Z = : k - 1 .

Set r = n — k + 1. Let L be a holomorphic line bundle on Z. Choose non-
zero integers n19 , nr. Let M be the total space of the vector-bundle
Lni 0 . 0 L"r. Here Lni denotes the tensor product of L with itself nt times.
Then M is a complex manifold with

(11.21) dimcM = n .

Let 7r: Lni 0 0 LUr -> Z be the projection. The zero section of the vector-
bundle gives an inclusion Z C M.

Choose a cover {Ua}aζI of Z by open sets with:

(11.22) Ua is the domain of a complex-analytic coordinate system wf, ,

(11.23) on t/α there is a holomorphic section sa of L | t/β such that 5 β has no
zeroes.

Let s%* denote the tensor product of sa with itself π^ times. Then s%\ , s%r is
a holomorphic frame of Lni © 0 L n r on t/β.

Set Ua = π~\Ua). On £/α let zf, , z£ be the coordinate system resulting
from wί, , wa

k_λ and j j 1 , , ^ r . Thus if v e Ua9 then

(11.24) zliv) = w;(πv) , / = 1, . . , k - 1 ,

(11.25) v= Σ zΐ+n-ά
i

On C/α let fβ be the subsheaf of Σ\Ua spanned by d/dz",

G+k-i- Then

(n.26) f j t / β n uβ = ξβ\ua n c/,.

So the {ξa}a€I fit together to form a subsheaf f of Γ, which is iritegrable and
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full. Also, (11.26) implies that ξ does not depend on the choice of the cover
{^«}«€/ The singular set of ξ is Z.

Set x = cx(L), so that x e H\Z; C). Then for any φ with n — k + 1 <
deg φ < n,

(11.27) Resp (£, Z) is the element of H2n_2l(Z, C) which by Poincare duality

in Z is dual to φ ^ ' " ^ r , 0 , ...,0)χl_r ? r = n _ R + χ

n^- nr

Example 5. Let k, n, Z be as in Example 4. Set r = n — k + 1. Let M
be Z x Cr, and TΓi: Z x C r -> Z, τr2: Z x C r -^ C r be the projections. Then
there is the splitting

(11.28) T(Z x Cr) = π[(TZ) 0 ^i(ΓCr) .

Let λ19 , λr be nonzero complex numbers. On Cr with its usual coordinate
system set

(11.29) X=
i = i

On Z x Cr set

(11.30) X = π[(X).

Let f be the subsheaf of T spanned by X and all local holomorphic sections
of π[(TZ). ξ is integrable and full, and its singular set is Z x {0}. Identify
Z x {0} = Z.

(11.31) If deg φ = r, then Resp (£, Z) = ^ 1 ? ••-,*„(),•-•, 0 ) [ z ] ̂

(11.32) If r < άegφ < n, then Resp (f,Z) = 0 .

Example 6. Fix integers d and n with 1 <d<n. Let Z be a compact con-
nected complex manifold with

(11.33) dimcZ = d .

Set s = n — d. Let L1? , L s be holomorphic line bundles on Z, and M the
total space of the vector-bundle Lx 0 0 Ls. Then M is a complex manifold
with

(11.34) dimcM = n.

The zero section of the vector bundle gives an inclusion Z c M. Denote a
point of M by (w1? , ws), so that uteLt. Let Λ15 , λs be nonzero complex
numbers. Construct a holomorphic flow
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(11.35) CXM-+M

by

(11.36) (z, (u19 , ii,)) -> (e»'u19 , e*»uB) .

Let X be the vector-field on M, which generates this flow. Let X be the sub-
sheaf of T spanned by X. The singular set of ξ is Z. Identify # 0 (Z, C) = C.
Assume rc = degy?. Let ^ , , xd be the formal Chern roots of TZ. Set
yt = c ^ ) . Take the 2d-dimensional component of ^(x15 , xd9 Xγ + y19 ,
λ + ft)/[tfi + 3Ί) W + yβ)L Evaluate this element of H2d(Z,C) on the
fundamental cycle of Z. This gives

(11.37) Res, (ξ, Z) = p(*i * * + ft * + y)
Wi + ft) Wβ + ft)

For a proof of (11.37) see [8] or [14], and also [6], [3, Theorem (8.11) and
Proposition (8.13), pp. 597-599], [20], [21].

Remark. In the general problem of computing Res^ (ξ, Z) let Z = Z α ) z>
• D Z(fc) be as (0.26). Consider the special case when dim c Z = k — 1 and
Z (2) = 0. It can be shown that for this special case Examples 4 and 5 above
essentially solve the problem of computing Resp (ξ, Z).

12. On the space BΓc

q

In the homotopy theory of complex foliations as developed by Haefliger-
Phillips-Gromov [15], [16] a complex foliation F on a manifold M determines
a classifying map

(12.1) fF:M->BΓ\

Here q = n — k is the codimension of F. In this section we would like to ex-
plain the relation of our residue classes Resp (f, Z) to this homotopy theory.

First recall that there is a natural map

(12.2) v:BΓc

q->BGL(q) ,

which corresponds to assigning the normal bundle of a foliation. As usual
BGL(q) denotes the classifying space of the general linear group GL(q, C). In
terms of these concepts the vanishing theorem simply asserts

(12.3) v*: H2J(BGL(q) C) -> H2j(BΓc

q C) vanishes whenever / > q .

In contrast to this, it is not difficult to show that
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v*: HUBGUq) Z) -> JΪ'(BΓ? C)

is injective for all /' = 0,1, 2, ,

and (12.3) and (12.4) together imply

(12.5) For each / > q, H2j_λ(BΓc

(L\ Z) is an abelian group which is not finite-
ly generated.

See [12] for details of these first consequences of (12.3). More delicate results
arise in the following manner:

Let BGL be the classifying space of the infinite general linear group. If c19

c2, are the universal Chern classes, then

(12.6) H*(BGL; C) = C[c19c29 •] .

Let vs: BΓq -> BGL be the composition of v with the inclusion BGL(q) C BGL.
Then (12.3) is equivalent to

(12.7) v*: H2j(BGL C) -> H2j(BΓ€
q C) vanishes whenever / > q.

We are interested in vs only up to homotopy type, so vs can be taken as an
inclusion BΓq C BGL. Thus there is the pair of spaces (BGL,BΓq). In this
context the constructions of § 5 (e.g., Definition (5.51)) can be interpreted as
lifting each φ € H2j(BGL; C), j > q, to a definite and well-defined class
ψeH2j(BGL,BΓq; C).

More precisely, let ξ be a full integrable sheaf on a complex manifold M.
Set Q— T/ξ. Let S be the singular set of ξ. The procedure given in § 5 and § 7
(e.g., Definition (7.1)) lifts each φ(Q) <= H2J(M; C), / > n - k, in a canonical
fashion to a class φ(Q) e H2j(M,M — S; C). Now ξ determines a homotopy
commutative diagram

M-S Jl> BΓq

(12.8)

M >BGL
JQ

where fF classifies the foliation of M — S, and fQ classifies the element of K(M)
given by Q.

The exactness of a resolution of Q gives on M — S an exact sequence of
vector-bundles

(12.9) 0 -»E r ->£,_!-> > £ 0 ^ v - > 0 ,

which can be thought of as an explicit homotopy between the two maps of
M — S into BGL of (12.8). Therefore ζ defines a map of pairs:
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(12.10) ^ : (M, M - U) -> {BGL, BΓq) ,

where U is a small neighborhood of S in M.
The universal liftings φ e H2j(BGL, BΓq C) are now uniquely characterized

by

(12.11) ff(ψ) = φ(Q) .

Quite equivalently this is expressed by the formula

(12.12) Resp (f, Z) = πzff(φ) ,

where

πz: H*(M, M-S;C)-> H*(Z, C)

is induced by excision followed by Poincare duality.
Granting (12.12) one may use the examples of § 11 to prove the following:
Proposition. Let d(n) be the dimension of H2n(BGL(n — 1) C) over C.

Then there exists a surjection of abelian groups

(12.13) h: π.n^BΓ^) -> Cd(n) .

This result was already announced in [9] and is an easy analogue in the
complex case of the recent results of Thurston [22], concerning real foliations
with varying Godbillion-Vey invariants.

To prove (12.13) we first construct a homomorphism

(Λ O 1 Λ\ It' -m ΐ~D/~**T D P \ s~<d(n)

in the following manner. Let φl9 , φdm be a basis for the symmetric poly-
nomials in π-variables X19 , Xn, which are of degree n, and lie in the ideal
generated by the first n — 1 elementary symmetric functions σ19 , σn_λ of
the X's. We identify the φ's with classes in H*(BGL) by interpreting the σt as
the /-th Chern classes, and denote by φ19 , ψdm the liftings of these classes
to H*(BGL, BΓc

n_ϊ). Now then h is defined to be the evaluation of this basis
on a relative class:

(12.15) h(qί) = {φM, , φdm(a)} ,

where a denotes both the element in π2n_1 and its image in H2n_1 under the
Hurewicz map.

We next evaluate h on the relative elements fλ determined by the foliation
Fλ of § 11. Recall that here λ — (λ19 , λn) is an n-tuple of nonzero complex
numbers, and Fλ the foliation of Cn — {0} given by the vector-field
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According to (11.2) and (12.12) we obtain

h(fλ) = {φι(λ)/σn(X), "9φdin)(λ)/σn(λ)}

The surjectivity now follows from the folloing proposition whose simple proof
is given in an Appendix:

Lemma. The set A e Cdin) consisting of the values h(fλ), λ e (C — {0})n

additively generates all of Cd{n).
To proceed to (12.14) consider the diagram:

π2n(BGL) - π2n(BGL, BΓc

n_x) - π^BΓ^) -* π2n_x(BGL)

It is well known that π2n_λ{BGL) = 0, and that π2n(BGL) = Z. Furthermore
any decomposable element vanishes on a spherical class. Hence h is zero on
the image of π2n and induces the desired surjection h: π^^BΓn-i) —» Cd(n).

Appendix

In § 12 we needed to show that a certain subset of affine space additively
generated the whole space. The general principle behind this fact is expressed
in the following

Proposition. Suppose that A C Cn is a connected complex analytic subset
of Cn of dim > 1, which is not contained in any affine hyper plane of Cn. Then
A generates Cn additively.

Proof. Let M C A denote the submanifold of nonsingular points in A. M
will still satisfy our conditions by well known arguments. Hence it is sufficient
to show that M generates Cn.

Now let span (M) denote the vector space spanned by the translates to 0 of
all the tangent spaces to M. If span (M) does not equal Cn, then there is a
linear form z on Cn which vanishes identically on span (M). Hence the restric-
tion of the one form dz to M vanishes identically whence—as M is connected,
M lies in a hyperplane z = const, contradicting our hypothesis.

Therefore span (M) = Cn, and we can find a finite number of points m19 ,
mk€ M whose tangent spaces already generate Cn. Now consider the map

M x . . . x M-?-+Cn

obtained by sending a Λ-tuple in M to its sum. Clearly the differential of this
map is onto at the point (m1? , mk). Hence the image of F contains an open
ball about rax + + mk. But such a ball clearly generates all of C w . q.e.d.
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To apply this principle in our case, observe that the image of the map λ —>

h(fλ) is equal to the image of a map H: Cn~ι -> Cd{n\ which sends the

(n — l)-tuple {JCJ to the d(rc)-tuρle {ma(x)}, where a ranges over the multi-

indexes of weight n and ma(x) denotes the monomial x^ -x^1. The linear

independence of these monomials now clearly implies that the image of M does

not lie in a hyperplane.
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