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0. Introduction

The purpose of this note is twofold. First, we give a simpler and more nat-
ural proof of our meromorphic vector-field theorem of [5]; and second, we
give a theorem on singularities of holomorphic foliations which includes the
meromorphic vector-field theorem as a special case. We have tried to make the
exposition as elementary and self-contained as possible.

To recall the result of [5], let M be a complex analytic manifold. Set n =
dim, M. Assume n > 2. Let T be the holomorphic tangent bundle of M, L be
a holomorphic line bundle on M, and »: L — T be a holomorphic vector-
bundle map. Let X, - - -, X, be indeterminates, and ¢ be a polynomial in X,
- -+, X, with complex coefficients:

(0.1) gDeC[Xla "‘,Xn] .

Assume that ¢ is symmetric and homogeneous of degree n. Given an isolated
zero p of 3, define a number ¢(y, p) as follows. About p choose a nonvanishing
holomorphic section s, of L. Also about p, choose a complex-analytic coordi-
nate system z,, - - -, z, with origin at p. The vector-field 7(s,) is then well-de-
fined near p, and there has the expansion

0.2) 7(sp) = Z}l a,0/0z; ,
where the a; are holomorphic functions near p.
Form the matrix A4 of partial derivatives: A=||da;/dz;||. Let g}, 0, -+, 0,
be the elementary symmetric functions in X, - - -, X,. Define ¢,(4) by
(0.3) det(I + t4A) =1 + to,(A) + - -+ + t"0,(A4) .

Thus each g,(A4) is a function near p. Since ¢ is symmetric, there is a unique
polynomial ¢ such that
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0.4) o= @lay, - ,0,) .
Define ¢(A) by
(0'5) sD(A) = ¢(01(A)9 Tty an(A)) .

Then ¢(z, p) is defined to be the value at p of the Grothendieck residue symbol.

©6) o(7, p) = Res, [¢(A)d11~ : -dzn] .

Gy, = v v 0y

If p is a nondegenerate zero of 7, i.e., if det | (3a;/3z,)(p)|| # O, let 4, - - -,
2, be the eigenvalues of ||(da;/dz;)(p)|. From the general properties of the
Grothendieck residue given in [18] it then follows that in this case,

0.7 o, P) = Ay, ++ -5 ) [(A- -+ Ay) -

More generally, here is an explicit algorithm for computing the right-hand side
of (0.6).

Since the origin is an isolated zero of the a;, there exist positive integers «;,
-+ +, a, with z{ in the ideal generated by a,, - - -, a,. Hence there exist holo-
morphic functions b,; near p with

(0.8) zfz — i bijaj .
One then has
09 Res, [0 i) _ s [l det b ey -d,]

ay a
A, 50, FARP IR A

The right-hand side of (0.9) is now evaluated by expanding ¢(A) det | b;;|| in a
power series in the z;. The coefficient of dz,- - -dz,/(z,- - -z,) in the resulting
Laurent series for ¢(A4) det || b;;| dz,- - -dz, [(z*- - -z%) is the desired answer.

This algorithm was derived for us by R. Hartshorne. It is an immediate con-
sequence of the general properties of the Grothendieck residue given in [18].

It can be easily checked that ¢(3, p) does not depend on the choices made in
defining it. Hence ¢(z, p) is a well-defined local number depending only on ¢
and the local behavior of 7 near p.

The result of [5] is:

Theorem 1. Let M be a compact complex-analytic manifold, »: L — T be
a holomorphic vector-bundle map with isolated zeroes, and ¢ be symmetric and
homogeneous of degree n. Consider the virtual bundle T — L. Then

(0.10) oT — DMl = 3, ¢(,p) .

p € Zero(y)

Remarks., (a) Let ¢(T — L), ---,c,(T — L) be the Chern classes of
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T — L, taken in H*(M ; C). Then, as is customary, ¢(T — L) is defined by
0.1D AT — L) =@c(T — L), ---,c(T — L)),

where ¢ is as in (0.4). Since ¢ is homogeneous of degree n, o(T—L) € H**(M ;
C). o(T — L)[M] denotes o(T — L) evaluated on the canonical generator of
H,,(M; C).

(b) If M is a submanifold of complex projective space, then by tensoring
T with a sufficiently high power of the hyperplane bundle H, dim,I'(T ® H")
can be made arbitrarily large. Here (T ® H") denotes the vector-space of all
holomorphic sections of T ® Hr. Furthermore, almost all sections of T ® H”
will have only isolated zeroes when r is large enough. A section of 7 &® H" gives
a vector-bundle map (H")* — T. Thus there are many examples to which
Theorem 1 applies.

We now take the point of view that Theorem 1 is really a theorem about
holomorphic foliations with singularities. To see this, let us use the notation
convention that whenever E is a holomorphic vector-bundle, E shall denote the
sheaf of germs of holomorphic sections of E. Then at the sheaf level 7 is in-
jective.

0,12) 2 L—>T is injective .

Set £ = (L) and Q = T /&. Observe that & is an integrable subsheaf of T in
the sense that for each x e M, the stalk &, is closed under the bracket opera-
tion for vector-fields. On M-Zero (3) we have a one-dimensional foliation, in
the usual sense, of M-Zero (). On M, however, we have a foliation with
singularities. £ can be thought of as the tangent sheaf of the foliation with
singularities. If @ is the structure sheaf of M, then the singularities occur pre-
cisely at those points p € M such that Q, is not a free ¢,-module.

The exactness of

(0.13) 0O-L->T—-Q—0
implies that ¢(Q) = ¢,(T — L), i =1, ---, n. Hence (0.10) can be rewritten
0.14) e @QIM] = X o p) .

. p € Zero(y)

So we conclude that Theorem 1 computes the Chern numbers of Q in terms of
local information at the singularities of the foliation.

Pass now to higher dimensional foliations. Define a subsheaf & C T to be
integrable if

(i) ¢& is coherent,

(ii) for each x e M, &, is closed under the bracket operation for vector-
fields.
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Set Q=1T/& and S = {x e M|Q,, is not a free @,-module}. S is a closed holo-
morphic subvariety of M. S will be referred to as the singular set. On M — S
there is a unique holomorphic sub-vector-bundle F of T|M — S such that

0.15) F=¢M-S.

We assume that dim, F, is constant throughout M — S. This is automatically
the case if M is connected. dim, F, will be denoted by k and will be referred
to as the leaf dimension of £&. We shall always assume

(0.16) 1<k<n.

Given p e M — S, the well-known theorem of Frobenius asserts that there exists
a complex-analytic coordinate system z,, - - -, z, defined on an open neighbor-
hood U, of p such that

0.17) 9/0zy, -+, 0/0z; is a frame of F|U, .

A leaf of this foliation of M — S will be called a leaf of &.
It is natural to assume that & satisfies the following condition:

(0.18) Let U be an open subset of M, and y a holomorphic section of T'|U.
Suppose that y(x) e F, for each xe U N (M — S). Then at each
pe U N S the germ of the holomorphic vector-field y is in &,.

A & which satisfies this condition will be said to be full. In the situation of
Theorem 1, »(L) is full.

If ¢ is integrable and dim; S < n — 2, then there is a unique sheaf & such
that ¢ is both full and integrable, and

(0.19) EIM—S=¢M—5.
To define &, let F be as in (0.15). Define & by
0.20) I'¢,U) = {y e I'(T|U)|7(x) € F, whenever x e UN(M — S)} .

In (0.20), U is any open set of M, I'(¢, U) denotes the continuous sections of
€| U, and I'(T| U) denotes the holomorphic sections of 7| U. Thus by restrict-
ing attention to full integrable sheaves we rule out artificial singularities and
deal only with genuine foliation singularities.

Given a full integrable subsheaf ¢ of T we would like to compute Chern
polynomials ¢(Q) in terms of local information at the singular set S. Let Z be
a connected component of S. Recall that if M is compact, there is the homo-
morphism g, :

0.21) e H(Z; C) > H"i(M;C) j=0,1,---,2n.
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sy = aiy Where i : H(Z; C) — H/M; C) is induced by the inclusion of Z
in M, and a: H;(M; C) — H™ (M ; C) is the Poincaré duality isomorphism.

We then have:

Theorem 2 (Residue existence theorem). Let M be a complex-analytic
manifold, & be a full integrable subsheaf of T, and k be the leaf dimension of
g Set Q=T/¢, and let p e C[X,, - - -, X,] be a symmetric polynomial which
is homogeneous of degree |, where n = dimgM and n — k <1 < n. Let Z be
a connected component of the singular set S, and assume that Z is compact.
Then there exists a homology class Res, (¢, Z) € Hy,_,(Z; C) such that

(0.22) Res, (&, Z) depends only on ¢ and on the local behavior of the leaves
of & near Z ,

(0.23) if M is compact, then }, p, Res, (§,Z) = ¢(Q) .

Remarks. (a) If M is compact then clearly every connected component of
S must be compact. In (0.23) the sum is taken over all the connected com-
ponents of S.

(b) Letgy,---,aq, be the elementary symmetric functions of X,, - - -, X,,.
Since ¢ is symmetric and homogeneous of degree I, there is a unique poly-
nomial ¢ in gy, ---,a; With @y, - -+,0;) = ¢. Let ¢,(Q), - - -, c,(Q) be the
Chern classes of Q. Then ¢(Q) is defined by setting ¢(Q) = @(c,(Q), - - -, c,(Q)).

(c) Let U be an open subset of M with U D Z. Res, (¢, Z) is a local matter
so Res, (£, Z) depends only on ¢ and on §|U.

(d) This is just an existence theorem. It asserts that Res, (£, Z) exists and
has the desirable properties (0.22) and (0.23). But it does not give an explicit
formula for Res, (£, Z) in terms of local information near Z.

To think about the problem of explicitly computing Res, (£, Z), one must
confront the question: “What is the ‘generic’ singularity of a foliation?”” Put
otherwise: “What sort of a singularity is it reasonable to expect?”” This appears
to be a delicate question whose complete answer has eluded us. We have there-
fore only considered the case when the singular set satisfies certain natural di-
mension conditions. When k = 1, these conditions reduce to asserting that the
singular set consists of isolated points.

In general, observe that a connected component Z of S comes endowed with
a filtration. For given p € Z choose holomorphic vector-fields 7,, - - -, 7, defined
on an open neighborhood U, of p in M such that

(0.24) For all x € U, the germs at x of the holomorphic vector-fields 7,, - - -,
7, are in &, and span &, as an @,-module.

Define a subspace V(&) C T, by letting V,(£) be the sub-vector-space of T,
spanned by 7,(p), - - -, 1,(p). V(&) depends only on p and &, and is independent
of the choice of 7,, - - -, 7,. Set



284 PAUL BAUM & RAOUL BOTT

(0.25) Z9 ={peZ|dim; V(&) <k — i}, i=1,.---,k.
Then
(0.26) Z=2ZVD ... DZ®

is a filtration of Z. Each Z® is a closed holomorpic subvariety of M.
Our dimension conditions on Z are:

(0.27) dmeZ =k — 1,
(0.28) dimg Z® < k — 1.

If (0.27) is valid for Z, a point p € Z will be said to be regular if there exist
an open neighborhood U, of p in M and complex-analytic coordinates z;- - -,
z,, defined on U, such that

(0.29) U, NZ={xeUy|zu(x) = -+ = z,(x) =0} .

Let N be the set of all points p in Z, which are not regular. N is a closed holo-
morphic subvariety of M with dim; N < k — 1.

Elsewhere [4] a proof will be given of the following theorem which to some
extent describes the structure of a singularity for which (0.27) and (0.28) are
valid: Given such a Z, let p e Z — (Z® U N). The theorem asserts that in the
vicinity of p the foliation singularity is the “pull-back” via a submersion of an
isolated zero of a holomorphic vector field. The submersion maps a neighbor-
hood of p in M onto a neighborhood of the origin in C*~%*,

(0.30) Theorem. Let M be a complex-analytic manifold, & be a full inte-
grable subsheaf of T, and Z be a connected component of the singular set S.
Assume that dimg Z = k — 1 and dim; Z® < k — 1. Let pe Z — (Z® U N).
Then there exist an open neighborhood U, of p in M, complex-analytic co-
ordinates z,, - - -, z,, defined on U,, holomorphic functions ay, - - -, a, on Up,
and a positive real uumber ¢ such that:

(0.31) ZNU,={xeUy|z;(x) = -+ = z,(x) =0} .

(0.32) x = (Z,(), - - -, 2,(%)) maps U, onto
(Gt eCm||G] <ei=1,---,n}.

(0.33) ZNU,={xeUy|a(x) = -+ = a,(x) =0} .

0.34) If1<j<k—1andk <i< n,thenda,[oz; vanishes throughout U,
(0.35) At each x e U, the germs of the holomorphic vector-fields 3oz, - - -,
0/025_1, D01 a;0/02; are in &, and span &, as on O,-module.

Remarks. (a) (0.34) implies that for x € U,, a,(x) depends only on z,(x),
- -+, Z,(x). Thus the submersion referred to above is
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X — (zk(x)7 c o )zn(X)) .

(b) Several examples of foliation singularities for which (0.27) and (0.28)
are valid will be described in § 11 below.

Let degp = n —k + 1. Assume that Z is compact and satisfies (0.27) and
(0.28). Let Z,, - - -, Z, be the irreducible complex-analytic components of Z of
dimension k — 1. Denote by [Z;] the element of H,;_,(Z; C) given by the
fundamental cycle of Z,. Then [Z], ---,[Z,] is a vector-space basis for
H,, (Z; C). To each Z, associate a complex number #(p, &, Z;) as follows.
Choose pe Z;, — (Z® U N). Choose a neighborhood U, of p and z,, - -, 2y,
Ay, + + +5 dy, € as in (0.31)—(0.35). Form the (n — k + 1) X (n — k + 1) matrix
A of partial derivatives:

(0.36) A = |oa;joz,)|, k<ij<n.

If det|(da;/3z;)(p)| # O, then let A, ---, 2,_;,, be the eigenvalues of
| (@a;/0z,)(p)||. In this case,

(037) #(SD, E’ Zi) = 50(217 R Zn—lc+1’ 09 M) 0)/(21 . -X,,_,Hl) .

More generally, let gy, - - -, 0, be the elementary symmetric functions in the
indeterminates X,, - - -, X,,. Fori =1, ..., n — k + 1 define ¢,(4) by

0.38)  det +tA) =1+ t0,(A) + -+ + " g, (A) .

Since deg ¢ = n — k + 1, there is a polynomial ¢ in gy, « - -, g,,_4,, With
(0.39) 0 =00, 5 0n_k4) > degp=n—k+1.

Define ¢(A4) by

(0.40) o(A) = @lo,(A4), -+, 0,4_1..(A) .

Thus ¢(A4) is a holomorphic function on U,.

Let D, ={xec U,|z,(x) =z(p), - - -, 24_1(x) = 2,,_,(p)}. D, is a holomorphic
normal disc to Z; at p. Restrict ¢(4) to D, and define #(¢p, &, Z,) to be the
value at p of the Grothendieck residue symbol

(0.41) ¥(0, £, Z) = Res, [go(A)dz,c. . .dzn] .

gy ** 5 Ay

Then 5., #(p, & Z,)[Z;] is a well-defined homology class depending only on
¢ and the local behavior of the leaves of & near Z.

Theorem 3. Let M be a complex manifold, & be a full integrable sub sheaf
of T, S be the singular set of &, and Z be a connected component of S. Assume
that Z is compact, dmgs Z = k— 1, dimg Z® < k — 1. Let Z,, - - -, Z, be the
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irreducible complex-analytic components of Z of dimension k — 1. Let deg ¢ =
n—k+4 1. Then

(0.42) Res, (£, 2) = 2}1#(30, £,Z)Z] .

Remark. Suppose k = 1. Then from (0.14) it is clear that Theorem 2 and
Theorem 3 combine to imply Theorem 1. Hence Theorem 2 and Theorem 3
together constitute a result on holomorphic foliations, which includes Theorem
1 as a special case.

We'turn now to the question of computing Res, (§,Z) when n — k 4+ 1 <
deg ¢ < n. Here we have been unable to find an explicit formula for Res, (£, Z).
However, we have discovered that Res, (£, Z) has a rigidity property. This
rigidity' appears to be the most relevant fact about these Res, (£, Z).

Theorem 4 (Rigidity thorem). Let M be a complex manifold. Assume that
n—k+1<degp < n. Let U be an open subset of M, and [a, b] be a closed
interval of real numbers. For t e [a, b] let {§,} be a C* 1-parameter family of
full integrable subsheaves of T|U. Let Z, = {x e U|(T |&,), is not a free 0 ,-
module}. Assume that each Z, is compact and connected, and also that there
is a fixed compact subset B of U with

(0.43) " Z,CB for all t € [a, b] .
Leti,: H(Z,; C)— H,(U; C) be induced by the inclusion of Z, in U. Then
(0.44) iy Res, (&5, Z,) = iy Res, (§;,Z,) -

An immediate corollary of Theorem 4 is
(0.45) Corollary. Let M, U, [a, b], {&}, ¢ be as above. Assume, in addi-
tion, that there is a fixed compact connected subvariety Z of U with

(0.46) Z, =2 for all t € [a, b] .
Then
0.47) Res, (£§,,Z) = Res, (§4,2) .

Remarks. (a) In Theorem 4 and Corollary (0.45) no special assumption
is made on Z, other than that Z, be compact and connected. In particular, it
is not required that (0.27) and (0.28) be valid for Z,.

(b) Theorem 4 and Corollary (0.45) show that the two cases deg¢o =
n—k+1and degy > n — k + 1 are quite different. If degp =n —k + 1,
then there are many examples where Res, (£;, Z) is not constant in ¢.

* Independently and in a slightly different context, a similar rigidity theorem has been

recently noted by James L. Heitsch, Deformations of secondary characteristic classes,
to appear in Topology.
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Thorem 4 suggests a conjecture. Let Q denote the rational numbers. The
inclusion Q C C gives inclusions

(048) Q[Xla M ,Xn] C C[XD M aXn] ’
(0.49) ' HJ(Z;Q CcH/(Z;C).

Rationality conjecture. Let M be a complex manifold, & be a full integrable
subsheaf of T, and Z be a compact connected component of the singular set S.
Ifn—k+1<degp <nand ¢peQ[X,, ---,X,], then

(0.50) Res, (§,2) e H(Z; Q) .

Remark. This conjecture, if true, would again point up a very sharp dif-
ference between the two cases where dego=n—k+1 and degp >n—k+ 1.

Two special situations deserve special comment. If the singular set S is emp-
ty, then Theorem 2 becomes the vanishing theorem of [5] and [9].

Vanishing theorem. Let M be a complex manifold. On M, let F be an
integrable holomorphic sub-vector-bundle of T. Then

0.51) o(T/F) = 0

for all ¢ withn — k < deg ¢ < n.
Remarks. (a) In this vanishing theorem, M is not required to be compact.
(b) If the foliation of M is a fibration, then (0.51) is obvious. For in this
case let X be the base of the fibration and let z: M — X be the projection of
M onto X. Then

(0.52) T/F = 2(TX) ,

where TX is the holomorphic tangent bundle of X and #'(TX) is the pull-back
by = of TX. Let z*: H*(X; C) — H*(M; C) be the cohomology map induced
by #. Then (0.52) implies

(0.53) o(T|F) = n*p(TX) .

Since dim¢; X = n — k, ¢(TX) vanishes whenever deg ¢ > n — k. Hence (0.51)
is evident in this case.

() Compact complex manifolds very rarely foliate without singularities.
For example, (0.51) can be used to prove that there is no holomorphic foliation
(without singularities) of CP". Foliations with singularities, however, exist in
great abundance.

A second special case of interest is the case when (0.27) and (0.28) are valid
for Z and in addition to this Z® and N are empty. Here we can give an ex-
plicit formula for Res, (¢, Z) for all p with n — k < deg¢p < n. See §11 below.

Finally, let us remark that the local classes Res, (£, Z) are functorial in an
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appropriate sense. Once this is made precise, it becomes clear that the work
of this note is very closely related to the problem of computing the homotopy
and homology of the foliation classifying spaces BI'¢ introduced by A. Haefliger
[15]. This will be commented on in § 12 below.

The paper is divided into 12 sections with the following titles:
Connections and curvature
Partial connections
Proof of the vanishing theorem
Exact sequences
Z-sequences
Coherent-real analytic sheaves
Proof of the residue existence theorem
Proof of Theorem 1
Proof of Theorem 3

10. Proof of the rigidity theorem

11. Examples

12. On the space BI'¢

We thank P. Griffiths, R. Hartshorne, and R. MacPherson for many helpful
comments and suggestions. L. Illusie [19] has, independently, done some work
quite analogous to ours in the algebraic category.

PRI AE L=

1. Connections and curvature

Some standard facts on connections and curvature are very briefly reviewed
here. For a careful detailed treatment see [10]. The matters considered here
are purely C>, so in this section let M be a C~ manifold. Set m = dim; M,
and let » be the largest integer with n < m /2. Let TzM be the usual C* tangent
bundle of M, which is a real vector bundle. We wish to consider only complex
vector-bundles, so let ¢ be the complexification of T M, i.e.,

(1.1) t=CQ®TM.
R

If E is a C~ complex vector-bundle on M, then C~(E) denotes the space of
all C~ sections of E. E* denotes the bundle dual to E. A*E denotes the i-th
exterior power of E.

On M we have the de Rham complex of all C> complex-valued differential
forms on M:

1.2) 0ot Y 0.

A° is the set of all smooth functions from M to C. For i > 1, A? = C=(Az*).
d is the usual de Rham differentiation operator.
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(1.3) Hi(M; C) = Kernel {d: A®* — A*'}/Image {d: A" — A%} .

If we A* has dw = 0, then we denote by [w] the element of H(M; C)
determined by w:

1.4 [wl e H(M; C) .

(1.5) Definition. Let E be a C~ complex vector-bundle on M. A connec-
tion for E is a C-linear map D from C*(E) to C*(z* ® E) such that

(1.6) D(fs) = df ® s + {Ds ,

whenever f e A° and s € C*(E).

Remark. FE always has many connections.

1f D is a connection for E, then for each i > 0, D induces a unique C-linear
map, also denoted by D:

1.7 D: C*(Aiz* ® E) — C(Ai+'c* Q E)
such that
(1.8) Do®s) =do®s + (—1)wDs ,

whenever w € A% and s € C*(E).
There is a unique C~ vector-bundle map K(D):

(1.9) KD):E— f7*QE
such that for all s e C*(E),
(1.10) DDs = K(D)s .

K(D) is the curvature of D.

Let U be an open subset of M. If s € C*(E) vanishes on U, then Ds also
vanishes on U. From this remark it follows immediately that D restricts to give
a connection for E|U:

(1.11) D: C*(E|U) - C*QE|U) .

On U, lete, ---,e, be a C” frame of E. A matrix 6 = |6, of 1-forms is
determined by

(1.12) De,= Y 0,®e; .
j=1

6 is the connection matrix of D with respect to the frame e, - - -, e,. Set x =
dj — 6 /\ 6. Then
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(1.13) ki = dfy; — 1 0 A 0, .
a=1
& = || x4, is the curvature matrix of D with rsepect to e, - - -, e,, so that
(1.14) K(D)e;= DDe; = 3 1, ®e; .
j=1

If ¢, - - -, e, is another C* frame of E on U, let A = ||a;;|| be determined by
(1.15) ¢ =Y aye, .
i=1

Let £’ be the curvature matrix of D with respect to €], - - -, €. Then
(1.16) ¥ = AkA~'.

Let gy, - - -, 0, be the elementary symmetric functions of X, - - -, X,,. Define
0,(k), - - -, 0,(k) by

a1.17n det(I + te) =1+ toy(x) + -+ - + t"0,(x) .

o;(x) is then a 2j-form on U. Note that if » < n, then ¢;(x) = O whenever
r < j < n. (1.16) implies

(1.18) a'j(/c) = a'j(/c’) , i=1,.-.,n.

Hence by choosing local frames for E throughout M a well-defined differential
form ¢;(K(D)) is obtained on M. ¢;(K(D)) is closed, i.e.,

(1.19) do(K(D)) = 0 .

Let ¢,(E), - - -, ¢,(E) be the Chern classes of E taken in H*(M ; C). Note that
if r < n, then c;(E) = 0 whenever r < j < n. The Chern-Weil theory of char-
acteristic classes [10] asserts that the element of H?*(M; C) determined by

o, (K(D)) is @[+ —1)icy(E), i.e.,

(1.20) [0,KD)] = Qr/v =1icE), j=1,---,n.

In particular, if D is another connection for E, then [, (K(D))] = [oj(K(ﬁ))].
Assume ! < n. If p e C[X, - - -, X,,] is symmetric and homogeneous of de-

gree [, set ¢ = ¢(ay, - - -, ;). Define o(E) € H*(M ; C) by

(1.21) P(E) = @(c(E), - -+, c(E)) -

Let D be a connection for E, and set K = K(D). On M define a 2/-form ¢(K)
by
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(1.22) oK) = @(o((K), - - -, ai(K)) .
(1.9) implies

(1.23) dp(K) =0 .

(1.20) implies

(1.24) [p(K)] = Qn /v —1)'p(E) .

2. Partial connections

As in § 1, let M be a C~ manifold, and E a C~ complex vector-bundle on
M. If H is a C* sub-vector-bundle of 7, then H* is a quotient bundle of z*.
Denote by p: * — H* the projection of ¢* onto H*.

(2.1) Definition. A partial connection for E is a pair (H, ) where H is a
C= sub-vector-bundle of = and ¢ is a C-linear map from C*(E) to C*(H* @ E)
such that

2.2) a(fs) = p(df) @ s + fos ,

whenever f € A° and s € C*(E).

Remark. Let (H, ) be a partial connection for E, and U an open subset of
M. If s e C=(E) vanishes on U, then ds also vanishes on U. From this it follows
that (H, §) restricts to give a partial connection for E|U:

(2.3) 5: C=(E|U) — C=(* ® E|U) .

(2.4) Definition. Let (H,d) be a partial connection for E, and D a con-
nection for E. D extends ¢ if the diagram

C(E) —2— C=(z* Q E)

Sk

C*(H*® E)

is commutative.

(2.5) Lemma. Let (H, ) be a partial connection for E. Then there exists
a connection D for E such that D extends §.

Proof. Cover M by open sets {U,} such that on each U, there is a C> frame

es, - -+, 2 of E. Define y5; ¢ C=(H*|U,) by

M-

(2.6) def = 15 ®es.

Jj=1

Choose 65, € C=(z*|U,) such that
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2.7 005 = 715 .

Define a connection D, for E|U, by

2.8) D=y 65Q ¢ .
j=1

Then on U, the diagram

C(E|U,) —2=— C~(z* ® E|U.)
2.9) S =3
C*(H*®E|U,)

is commutative.
Let {y,} be a partition of unity subordinate to the cover {U,}. Define a con-
nection D for E by

(2.10) D=3 +.D, .

a

D extends 4.
(2.11) Lemma. Let (H,¢) be a partial connection for E, and s € C*(E)
be such that:

2.12) s(x) =0 forall xe M ,
(2.13) os=20.

Then there exists a connection D for E with

(2.14) D extends ¢ ,
(2.15) Ds=0.

Proof. Proceed as in the proof of Lemma (2.5) except that ef is required
to be s|U,, and 63; is required to be zero.

Remarks. We have the evident pairing C~(H) X C~(H*) — A°. Hence
u e C=(H) determines a map i(u) from C=(H*) to A°:

(2.16) i(W): C=(H*) — A" .

Similarly, u determines a map, also denoted by i(u), from C~(H* ® E) to
C=(E):

2.17) i(w): C*(H*® E) - C~(E) .

Note also that if f € A°, then by applying u to f we obtain u[f] € A°:
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(2.18) ulfl = iwp(df) .

Let (H, ¢) be a partial connection for E. Then

2.19) i(u, + u)os = i(u)ds + i(u,)os ,
(2.20) i(fu)os = fi(u)os ,

(2.21) (w)o(s, + s,) = i(u)ds, + i(wés, ,
(2.22) i(w)a(fs) = ulfls + fiwas ,

whenever u, u,, u, e C*(H), s, s,, s, € C*(E), and f e A°.

3. Proof of the vanishing theorem

Let M be a complex-analytic manifold. As in (1.1) set c = C (? TrM. Then
there are the standard splittings:

(3.1) t=T®T,
(3.2) *F=T*PT*.
T is the holomorphic tangent bundle of M. T is the anti-holomorphic tangent
bundle of M. A C= section of T* is a 1-form of type (1,0). A C* section of
T* is a 1-form of type (0,1).

Let U be an open subset of M. On U let z, - - -, z, be a complex-analytic
coordinate system. Then on U:

(3.3) 4d/dz, ---,0/0z, is a holomorphic frame of T,
(3.4) dz, ---,dz, is a holomorphic frame of T*.

Let E be a holomorphic vector-bundle on M. If U is an open subset of M,
then I'(E | U) will denote the space of all holomorphic sections of E|U. Since
E is holomorphic there is the ¢ operator :

(3.5) 0: C*(E) » C>(T*QE) .

Setting H = T and 6 = d, we then have a partial connection (T, 3) for E. Note
that:

(3.6) ['(E|U) = Kernel {3: C=(E|U) — C=(T* ® E|U)} .

A connection for E which extends (7', 9) is said to be a connection of type
(1,0). A straightforward argument shows that a connection D for E is of iype
(1,0) if and only if D has the following property:

(3.7 Whenever e, - - -, e, is a holomorphic frame for E, the connection ma-
trix ||@,;,|| of D with respect to this frame has each 6, of type (1,0).
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The bracket operation for C~ sections of 7 satisfies:

(3.9 l, + wy, ug] = [uy, ug] + [uy, 5],
(3.9 Uu, w)] = —w,[flu, + fluy, w,]
(3.10) (g uy + us] = [wy, ] + [y, 0l
(3.11) [, fu,] = wilflu, + fluy, wpl
whenever u,, u,, u, € C=(T) and f e A°.
Recall also that if U is an open subset of M, and z,, - - -, 2, is a complex-

analytic coordinate system on U, then
(3.12) [6/0z;,d/0z;1 = O 1<i,j<n.

(3.13) Definition. A holomorphic sub-vector-bundle F of T is integrable
if C=(F) is closed under the bracket operation.

Remark. A holomorphic sub-vector-bundle F of T is integrable if and only
if:

(3.14) whenever U is an open subset of M, and 7,, 7,€ I'(F|U), then
[y, 1.1 € L(F|U).

Assume now that F is an integrable holomorphic sub-vector-bundle of 7.
Form the quotient bundle T'/F and denote by y: T — T /F the projection of T
onto T/F. Let u e C=(F) and s € C*(T/F). Choose § € C*(T) such that

(3.15) 728 =s.

Then, since C=(F) is closed under bracket,

(3.16) ylu, 5] depends only on u and s.
Denote y[u, 5] by {u, s>. Then from (3.8)-(3.11) it is clear that:

3.17) Kuy + Uy, 5 = Uy, 8y + Uy, 8y
(3.18) {fu,sy = Ku, sy ,

(3.19) uys; + 80 = uy 5 + U, 8,
(3.20) ) lu, fsy = ulfls + Ku, sy,

whenever u, u,, u, ¢ C*(F), s, s,, s, € C>(T|F), and f € A°.

Comparing (3.17)-(3.20) to (2.19)—(2.22) and noting that T'/F is a holo-
morphic vector-bundle on M, we then have

(3.21) Proposition. Let F be an integrable holomorphic sub-vector-bundle
of T. Then there exists a unique partial connection (F ® T, ) for T |F such
that
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(3.22) i(wds = <u, s> ,
(3.23) i(w)ds = i(v)3s ,

whenever u ¢ C=(F), v e C*(T), and s ¢ C=(T|F).

(3.24) Definition. A basic connection for T /F is a connection for T'/F
which extends (F® T, §).

Remarks. (a) A connection D for T'/F is basic if and only if

(3.25) iW)D(yy) = plu, 7] whenever u ¢ C*(F) and 7 € C~(T1),
(3.26) D is of type (1,0) .

(b) By Lemma (2.5) a basic connection D exists for T'/F.

(3.27) Proposition. Let M be a complex manifold, and F an integrable
holomorphic sub-vector-bundle of T. Set n = dimy;M, k = dimg F,. Let
peC[X,, -, X,] be symmetric and homogeneous of degree |, where n — k <
I < n. Let D be a basic connection for T |F, and set K = K(D). Then

(3.28) oK) =0.

Proof. Given p e M, let U be an open neighborhood of p in M such that
on U there is a complex-analytic coordinate system z,, - - -, Z, With
(3.29) 0/02,,0/02,, -+ +,0/0z, € '(F|U) .

Let A(U) be the set of all C* complex-valued differential forms on U. A(U) is

a ring under the usual addition and wedge product of differential forms. In

A(U), let I(F, U) be the ideal generated by dz;,,, - - -, dz,. This ideal has the

properties :

(3.30) If we I(F, U), then dw ¢ I(F, U).

(3.31) Ifw,- - ,wy g, are any n — k + 1 elements of I(F, U), then w, A
ceo A Oner = 0.

Let »: T — T/F be the projection, and § = ||§,;|| the connection matrix of D
with respect to the frame 79 /0z;,,, « « -, 0/02,. D is basic, so (3.26) implies
that each 6, is of type (1,0). (3.25) and (3.12) imply that for each 6,

(3.32) 0 = i(3/62)0;; = - -+ = i(3]32:)0; .

Hence each 6,; is in I(F, U). Let £ = ||;;|| be the curvature matrix of D with
respect to 79 /02,1, - -+, 70/9z,. From (3.30) and (1.13) it is clear that each
Kij is in I(F, U)

(3.33) ki€ I(F,U) .
As in (1.17) define o,(k), - - -, a,(x) by
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(3.34) det(I + te) =1+ to(g) + -+ + t"0,(x) .
Set ¢ = ¢(oy, -+ +, ), and | = deg ¢. Then on U,
(3.35) oK) |U = @(0,(x), - -+ a:(x)) .

Since Il > n — k + 1, (3.31) and (3.33) now imply that ¢(K) vanishes on U.
This proves (3.28).
Due to (1.24), (0.51) is now evident.

4. Exact sequences

Some well-known facts about connections and exact sequences of vector
bundles are collected here. As in § 1, the matters considered here are purely
C~. So in this section let M be a C* manifold. Let m = dim, M, and let n be
the largest integer with n < m/2.

If E is a C~ complex vector-bundle on M, let ¢(E) denote the total Chern
class of E in H*(M ; C), so that

4.1 CE) =1+ ¢(E) + -+ + c(E) .

Note that in the ring H*(M; C) = H' M ; C) P HM; C)D - .- DH™M; C),
c(E) is invertible.

If E,, E, are two C* vector-bundles on M, then the total Chern class of the
virtual bundle E, — E, is defined by

“4.2) c(E, — E) = c(Ey) [c(E) .
Thus the Chern classes ¢,(E, — E,), - - -, c,(E, — E,) are determined by

4.3) c;(E, — E)e HY(M; C) ,
(44) C(EO)/C(EI) =1 + cl(EO - E1) + ot ‘[‘ Cn(Eo - El) .

More generally, let E,, E,_,, - - -, E, be C~ complex vector-bundles on M. Set
(i) = (—1)*. Then the total Chern class of the virtual bundle Y7 ,(—1)E; is
defined by

@5 oL DE) =11 @@y, )= (D

Set £ = Y%, (—1)E,. Thus the Chern classes ¢,(0), - - -, ¢,() are determined
by

(4.6) c,Q) e H¥M; C),

%) T EN® =14 + - + a0
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Let o € C[X}, - - -, X,] be symmetric and homogeneous of degree I. Assume
I < n. Setp = @0y, - - -,0a,). Then ¢({) is defined by

(4.8) () = ¢c(D), - -+, () .

Hence ¢({) e HY(M ; C).
Suppose now that D,, D,_,, - -+, D, are connections for E,, E,_;, - -+, E,
respectively. Set K; = K(D,), and define differential forms ¢,(K, |K,_,|- - - | K))

by
(4.9) 0; (K| Koo |-+ | Kp) € A%, i=1,.---,n,

! 1 K. e(1)
@10 1@l + KD

=1 + Ul(quKq-ll"‘lKo) + -0 + o'n(KqIKq—ll"',Ko) .
(1.19) implies

(4.11) do(Ky|Kq_y |-+ K)) =0.
(1.20) and (4.7) imply
(4.12) [0,(Ky|Kqoy |-+ | Kl = @a/v/ —1)cy(0) .

As above let ¢ be symmetric and homogeneous of degree I < n. Set ¢ = @¢(ay,
-++,0) and w; = 6 (Kq|K,_, |- -|K,). Define a 2l-form o(K,|K,_,|---|Ky)
on M by

(4.13) oKy | Ky |-+ | Kp) = @y, - -+, @)
Then

(4.14) do(Kq|Kqy |-+ - [ Ky) = 0,

(4.15) [p(K, | Kqy |- -+ | KDl = Qa /v —=D(0) ,

where as above { = > 2, (—1)E,.

(4.16) Definition. Let0 -E, —->E, ,— --- —>E;—E_, — 0 be an exact
sequence of C~ vector-bundles on M. Denote by 7, the map from E; to E;_,.
LetD,,D,_,, - - -, Dy, D_, be connections for E, E,_,, - - -, E,, E_, respectively.
Then (Dgy, D,_y, - - -, Dy, D_,) is compatible with the exact sequence if for each
i=gq,q—1,...,0 the diagram

C>(E) — C(z* Q E?)

ﬁil ll & 7

Cw(Eiq) —_— Cm(f* ® Ei-l)

is commutative.
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(4.17) Lemma. LetO0—>E,—>E, ,—---—E,—E_ — 0 be an exact
sequence of C= vector bundles on M, and D_, be a connection for E_,. Then
there exist connections Dy, D,_,, --+,D, for E,, E,_,, - - -, E, such that (D,,
D,_,, ---,Dy, D_)) is compatible with the exact sequence.

Proof. Proceed by induction on gq. If g = 0, the exact sequence is 0 — E,
— E_; — 0. D_, then determines a unique connection D, for E, such that
(D,, D_,) is compatible with the exact sequence.

Assume now that the lemma is valid for ¢ — 1. Consider an exact sequence
0O—-E,—-E,,— -+ —>E —E_—0. Let 5,(E,) be the image of »,: E;, —
E,_,. Choose a C* sub-vector-bundle J of E,_,; such that

(4.18) E,,=T®n(E,) .

By the induction hypotheses there exist connections D,_,, D,_,, - - -, D, for J,
E,_,, - -, E, such that

4.19 (D,., Dy, - --,Dy, D_)) is compatible with the exact sequence 0 —
J—>E, ,—» . ---—>E, —>E_ —0.

Choose a connection D for 3,(E,). Let D, be the unique connection for E,
such that

(4.20) (D,, D) is compatible with the exact sequence 0 — E, — 7,(E,) — 0.
OnE, ,=7J®y(E,) let D,_, ® D be the direct sum connection. Thus
(4.21) (Dq—l @ D)(s, + 5,) = Dy_ss, + Ds, ,

whenever s, e C*(J) and s, € C*(5,(E}). Then (D,,D,_,®D,D,_,,- - -,Dy, D_))
is compatible with the exact sequence 0 - E, - E,_, — --- > E,— E, — 0.
This proves the lemma.

(4.22) Lemma. Let0—>E,—>E, ,— ---—E;,—E_| — 0 be an exact
sequence of C= vector bundles on M, and D, D,_,, - - -, Dy, D_, be connec-
tions for E,, E,_y, - - -, Ey, E_,. Assume that (D,,D,_,, ---,D,, D_)) is com-
patible with the exact sequence. Let ¢ be symmetric and homogeneous of degree
I < n. Set K, = K(D,). Then

(4.23) p(K_) = oKy | Kq_i |-+ - | Kp) -
Proof. Set e(i) = (—1)%. To prove (4.23) it suffices to show

(4.24) det(I + K_)) = fl (det (I + K,))=@ .

To prove (4.24) proceed by induction on g. If g = 0, the exact sequence is
0— E,— E_, — 0 and (4.24) is obvious in this case.
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Assume now that (4.24) is valid for g — 1', and consider an exact sequence
O—-E,—-E,,—>.---—>E —-E_— 0. Let 5,(E,) be the image of 7,: E, —
E,_,. Choose a C* sub-vector-bundle J of E,_, such that

(4.25) E,_,=T®n(E) .

Let p: E,_, — J be the projection of E,_, onto J resulting from this direct sum
decomposition. So we have

(4.26) I®p:*QE,_, —>*QJ.

Define a connection V for J by

4.27) V=>0®pD,_, .
Then
(4.28) det(I + K,_) = det(I + K,)det(I + K()) ,

4.29) F,D,_,, --+,Dy, D_)) is compatible with the exact sequence 0 — J —
E,,—>-+—E—>E_ —0.

The induction hypotheses and (4.29) imply

(4.30) det( + K_)) = det( + K(l7))“‘1'“:]::[.2 (det (I + K;))*® .
(4.30) and (4.28) combine to give

(4.31) det(I + K_) = ﬁo (det (I + K))@ .

This completes the inductive step and the proof.
(4.32) Lemma. On M let

0 0 0 0

l ! l l
0->E, >E,,—>---—>E,—-FE -0

! ! ! l
O-E, -E,,—»:---—>E —-E_—0

| l Voo
N

! l ! l

0 0 0 0

be a commutative diagram of C> vector bundles in which each row and each
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column are exact. Let (,(E}) be the image of the map ¢;: E; — E;. Then there

exist C* sub-vector-bundles Fy, F,_,, ---,F,, F_ of E,, E,_,, - - -, E\, E_, such
that
(4'33) Ej:Fj@‘j(E{i)> ]'=q,51~1,"',0,—1,

(4.34) the map 5;: E; — E;_ maps F; intoF;_;,j=q,q —1,---,0.

Proof. Construct F,, F,_,,---,F,, F_, by a downward induction. First,
let F, be any C> sub-vector-bundle of E, such that

(4.35) E,=F,®((E) .

Next, suppose that F,, F,_,, - - -, F, have been constructed so that
(4'36) Ej=F1®!j(E;')9 j:qu_l,"',r,
(4.37) ﬂj(Fj)CFj_l, i=qq—1,---,r+1.

7,(F,) is then a C~ sub-vector-bundle of E, ,. A diagram chase shows that
(4.38) 7.(F.) N ¢, 4(E;_) = {0} .
Hence there exists a C~ sub-vector-bundle F,_, of E,_, such that

(4.39) E._,=F,., @ ‘r—l(E;-—I) >
(4.40) w(F)CF,_, .

This completes the inductive step and the proof.

(4.41) Lemma. Let E be a C* vector-bundle on M, and B a closed sub-
set of M. On M — B let D be a connection for E|M — B. Let 3 be a closed
subset of M such that B is contained in the interior of 2. Then on M there
exists a connection D for E such that

(4.42) D and D agree on EM—-2%.

Proof. On M letV be a connection for E. Let i: M — R be a C~ function
such that

(4.43) + vanishes on a neighborhood of B,
(4.44) =1 on M—2%.

Set D = vD + (1 — )P D satisfies (4.42).

(4.45) Lemma. On M let 0 > E' - E — E” — 0 be an exact sequence of
C= vector-bundles. Denote by «(E’) the image of :: E' — E. Let B be a closed
subset of M. On M — B let F be a C sub-vector-bundle of E|M — B such that
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(4.46) E|M —B=F®«(E'|M— B) .

Let X be a closed subset of M such that B is cgntained in the interior of X.
Then on M there exists a C* sub-vector-bundle F of E such that

(4.47) E=F®UE),
(4.48) FIM—-Y=F|M-12%.

Proof. Denote by p: E — E” the map from E to E”. On M — B there is
a unique map «: E”|M — B — E|M — B such that

(4.49) o(E'\M —B)=F,

(4.50) poe=1.

On M let 8: E” — E be a map of C~ vector-bundles such that
(4.51) pp=1.

Let 4+: M — R be a C~ function with (4.43) and (4.44) valid for ». On M
define @: E” — E by

(4.52) a=ya+ (1 —g.

Set FF = a(E"). F satisfies (4.47) and (4.48).
(4.53) Remark. Let M, X be C* manifolds, E be a C* vector-bundle on
X, and g: M — X be a C* map. Then on M there is the pull-back bundle

g(E):
(4.54) ¢(E), =E,, peM.

Let U be an open subset of X, and let s ¢ C*(E|U). Then on g~}(U) there is
g'(s) e C=(g'(E) | g7 '(V)):

(4.55) g'(9)p = s(gp) , peM.

If D is a connection for E, then there is the pull-back connection g'(D) for
g\(E).

Lete, ---,e, be a C~ frame of g'(E), § = |6, be the connection matrix of
D with respect to e, - - -, e,, and o = ||w;,|| be the connection matrix of g'(D)
with respect to g'(e,), - - -, g'(e,). Then for each 6,

(4.56) o = 8%0;; .
(4.56) characterizes g'(D). Here g* is the usual map

(4.57) g C=(c*X|U) — C°(z*M | g7'(V)) .
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If E’ is another C* vector-bundle on X, and 5: E’ — E is a map of C* vector-
bundles, then there is

(4.58) g(: g(E) — g(E) .

For peM, g(p): g(E), — g(E), is 9: E,, — E,.

Example. Suppose that M is complex-analytic, and that F is a holomorphic
integrable sub-vector-bundle of 7. Assume that the foliation determined by F
is a fibration. Let X be the base of this fibration, and =: M — X the projection
of M onto X. Then

(4.59) T/F = z(TX) .
On X let D be a connection of type (1,0) for TX. z'(D) is then a basic connec-
tion for T/F.

5. Z-sequences

As in the introduction let M be complex-analytic, and & an integrable sub-
sheaf of T. Let k be the leaf dimension of &, and S the singular set. On M — S,
let F be the unique holomorphic sub-vector-bundle of T such that

G F=¢M-—-S.
Here F denotes the sheaf of germs of holomorphic sections of F. On M — S set
(5.2 v=T/F .

(5.3) Lemma. Let W be an open subset of M — S. On W, lft D and D’
be two basic connections for v|W. Set W =W x[0,1]. Let o: W — W and
t: W — [0, 1] be the projections. On W define a connection V for o'(v| W) by
(5.4) V =1t'(D) + (1 — Dp'(D) .

Set K = K(). Let p € C[X,, - -+, X,] be symmetric and homogeneous of de-
gree l. Assume n — k <1 < n. Then

Proof. The proof is very much like the proof of (3.28). Given p e W, let
W, be an open neighborhood of p in W such that W, is the domain of a com-
plex-analytic coordinate system z,, - - -, z,, wWith

(5.6) 0/0z, ++-,0/0z, € [(F|Wp)

Set W, =W, x [0, 1]. Let A(W,) be the ring of all C* complex-valued differ-
ential forms on W,. In A(W,) let I(F,W,) be the ideal generated by
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p*(dzy,y), - - -, p*(dz,). This ideal has the properties:

(5.7 If wel(F,W,), then dwecl(F,W,).
5.8 Ifw, - -+, w, 4, are any n — k + 1 elements of I(F, Wp), then o, N\
N Ongn = 0.

On W, let 5: T — v be the projection of T onto v. Let § = ||0,;|| and &' = ||6;]|
be the connection matrices of D and D’ with respect to the frame 79/9z;,,,
-+, 70/0z,. Let @ = ||w;;|| be the connection matrix of I/ with respect to the
frame p'99/02;,1, - * +» p'99/02,. Then according to (5.4), for each w;;:

(5.9 w;; = to*(0}) + (1 — Dp*@;,) .

Since D and D’ are basic, (3.25) and (3.26) now imply that each w;; is in
I(F, Wp) :

(5.10) w; e (F,W,) .

Let £ = ||x;,|| be the curvature matrix of I/ with respect to the frame 3‘773 [0Z 415
-+, p'99/02,. Then (5.7) and (1.13) imply that each &, is in I(F, W ):

(5.11) ki, € ICF, W) .

Let gy, - - -, g, be the elementary symmetric functions of X, - - -, X,. Set ¢ =
@y, - +,0). On Wp define differential forms ¢,(x), - - -, ¢,(x) by requiring:

(5.12) g;(¥) in a 2j-form on Wp, ji=1,.--,n,
(5.13) det(I 4+ r6)=1+0) + -+ + g.(x) .
Then

(5.14) oK) | W, = ¢(0,(x), - - -, 0,(k)) .

Since deg o > n — k, (5.14), (5.11) and (5.8) imply that ¢(K) vanishes on I¥,,.
This proves the lemma.

(5.15) Definition. Let Z be a connected component of the singular set S.
A Z-sequence § is a triple 8 = (U, (Eg, Eq_y, -+, Eg)y (> 1> * + = 70)) such
that the following five conditions are satisfied :

(5.16) U is an open subset of M such that U N § = Z and Z is a deforma-
tion retract of U.
(.17 E E,,, ---, E, are C* complex vector-bundles on U.

(5.18) Fori=gq,q—1, ---, 1,7, is aC~ vector-bundle map from E;|U — Z
toE,_,|U — Z.
(5.19) 7, is a C~ vector-bundle map from E,|U — Z to y|U — Z.
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(5.20) On U — Z the sequence
0—-EJ|U—-—Z—>E,,|U—Z— --- >E|U—-Z—->y|lU—-—Z-0

is exact.

Remark. Note that although each E; is a vector-bundle on all of U, »;
exists only on U — Z:

5.21) 9:EJ|U—-Z—E, ||U-2Z, i=qq—1,---,1,
(5.22) 2. E|lU—-Z—y|U—-Z.

(5.23) Definition. Let Z be a connected component of S. Assume that Z
is compact. Let 8 = (U, (E, E_y, - - +5 Eo), (9> 9g-15 - - - 7)) be a Z-sequence.
On U let D,, D,_,, - - -, D, be connections for E,, E,_,, -+, E;. On U — Z,
let D_, be a connection for v|U — Z. Then (D,,D,_,, - - -, Dy, D_)) is fitted to
Bif
(5.24) D_, is a basic connection for v|U — Z,

(5.25) there exists a compact subset X of U with Z contained in the interior

of ¥ such thaton U — %, (D,,D,_,, - -, Dy, D_)) is compatible with
the exact sequence

O-E)|U—-—2Y>E,_|U—-—2Y— .- 5E|U—-2Y>y|U—-23—-0.

(5.26) Lemma. Let Z be a connected component of S. Assume that Z is
compact. Let B = (U,(Ej, E,_y, -+, E)y (g>9g15 + + +» 7)) be a Z-sequence,
and D_, a basic connection for v|U — Z. Then on U there exist connections
D, D, ---,D,for Ej,E,_,,---,E, such that

(5.27) (Dy, Dy v, -+ Dy D) is fitted to .

Proof. According to Lemma (4.17) on U — Z there exist connections V,
Vors - sVyfor E,|JU — Z,E,_||U — Z, - - -, E,|U — Z such that

5.28) W,V,y -,V D_y) is compatible with the exact sequence
0O—-EJ|\U—-Z—>E, \|U—Z— --- >E|U—-Z—->v|U—-Z-0.

Let X be a compact subset of U with Z contained in the interior of Y. Accord-
ing to Lemma (4.41) on U there exist connections D, D,_;, - - -, D, for E,
E,_,, ---, E, such that

(5.29) D;andV;agreeon E;|U -~ Z,i=q,q—1,---,0.

(Dy; Dy_y, -+ -, Dy, D_)) is then fitted to 8.
(5.30) Remark. Note thatgiven 8= (U,(E;, E;_1, - -+, Ep)y (g 1> * - *»
7)) and given any compact subset X of U with Z contained in the interior of



HOLOMORPHIC FOLIATIONS 305

2, one can then construct D,, D,_;, - - -, Dy, D_, such that (5.25) is valid for
these D; and the given X.

(5.31) Proposition. Let Z be a connected component of S. Assume that Z
is compact. Let B=(U,(E;, E;_1, - -+, Ey), (g:9g_15 * * = » 7)) be a Z-sequence.
Assume that (Dy,Dy_y, - - -, Dy, D_,) is fitted to . Let p € C[X,, X,, - - -, X,]
be symmetric and homogeneous of degree I, where n — k < | < n. Set K, =
K(D,). On U consider the 2l-form o(K,|K,_,|- - -|Ky). Then

(5.32) oK | Ky_y |-+ | Kp) has compact support.

Moreover, suppose (D, D;,_,, - - -, Dy, D”)) is also fitted to B. Set K; = K(D).
Then there exists a 21 — 1 form w on U such that

(5.33) ® has compact support,
(5.34) do = SD(K;|K:1—1I o | Ky — oKy [Kq_y |-+ - | Ky) -

Proof. Given (D,,D,_,, -+ -, Dy, D_,) let X' be as in (5.25). Then according
to (4.23) on U — 2%,

(5.35) (K[ Kgi| -+ [ K)|U — 2 = o(K_)|U — 3.

Hence by (3.28), ¢(K,|K,_, |- - - | K,) vanishes on U — 3. This proves (5.32).
To prove (5.33) and (5.34) we may assume that on U — ¥, (D, D}_,, - - -,
D;, D)) is also compatible with the exact sequence

(5.36) 0>E,|JU—-Y—E,,|U—-3— ... 5E|U—-23Y—y|U-3—-0.
Define U, S,Zby

(5.37) U=1UxIo01],
(5.38) S =3 xIo0,11,
(5.39) Z=27Zx1I[0,1].

Let p: U—Uandt:U— [0, 1] be the projections. On U there is the pull-back
bundle p!(Ei), and there are the pull-back connections p'(D;) and p'(D,) for
0'(E;). On U define a connection F; for p'(E;) by

(5.40) V= t0D) + (1 — g D), i=gqg—1,---,0.
Set K, = K(7,). On U — Z set

(5.41) b= 6O,

(5.42) Vo=t + 1A —0'D_y ,

(5.43) K, =KrV_).

Define i,: U — U and i,: U— U by
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(5.44) ix) = (x,0), xelU,
(5.45) L(x) = (x,1), xeU,

Then (5.40) and (4.56) imply

(5.46) i¥o(Ky| Ky i+ | K) = o(Kg| Ky |-+ 1Ky »
(5.47) iFo(Kg| Koy |-+ | Ky) = oKy | Ky |-+ - | KD) -

Hence in order to prove (5.33) and (5.34) it suffices to prove

(5.48) oK, K,_,|---|K,) vanisheson U — 3 .

If the exact sequence (5.36) is pulled back by p' to U — 3, thenon U — 3
FesVq1s - -+, Vo, V_y) is_compatible with the pulled-back exact sequence. So
according to (4.23), on U — X

(5.49) (K| Kyy|- - | K)IT — 3 =R )T -3 .

By (5.5), o(K_)) = 0. This completes the proof.

Remark. Let Z be compact, and f = (U, (Ey, E,_y, - -+, Eg)s 59gs 9g_1s = - *»
70)) be a Z-sequence. Let H¥(U ; C) denote the cohomology of U with compact
supports and coefficients C. Then there are isomorphisms:

(5.50) Hi(U;C)—H,,_jU;C) —H,_j(Z;C) .

The isomorphism Hi(U; C) — H,,_;(U; C) is the usual Poincaré duality iso-
morphism. The isomorphism H,,_;(U; C) « H,,_,(Z; C) is given by the in-
clusion of Z in U. Recall that by (5.16), Z is a deformation retract of U. Thus
a closed j-form w on U with compact support determines an element of
HZn-j(Z > C)

We come now to the main definition of this section.

(5.51) Definition. Let Z be a connected component of S. Assume that Z
is compact. Let = (U, (E, E;_y, + + -5 Ey)y (g> 9q_1> - + +» 7)) be a Z-sequnce.
Choose connections Dy, D,_y, - - -, Dy, D_, such that (Dy, D,_,, - -+, Dy, D_,) is
fitted to 8. Set K; = K(D,). Let ¢ be symmetric and homogeneous of degree /,
where n — k < 1 < n. Define Res, (¢, Z, f) € H,,_,(Z; C) to be the element
of H,, ,(Z; C) determined by (v —1/(27))'o(K, | K,_, | - - | Ko)-

Remarks. (a) (5.33) and (5.34) imply that Res, (¢, Z, p) depends only on
v, & Z, and B. Res, (¢, Z, p) does not depend on the choice of Dy, Dy_y, - - -,
D,,D_,.

(b) Since Z is a compact holomorphic subvariety of M, Z has the prop-
erty:

(5.52) Let V be any open subset of M with ¥V D Z. Then there exists an open
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subset V', of M such that ¥V D V, D Z and Z is a deformation retract
of V,.

(o) For Res, (¢, Z, p) only the local structure of £ and § near Z is relevant.

Let 8= (U,(Ep, Eq_ys + + s Eg)y (gs 9g—1» * - *» 7). Let W be an open subset of
M with UDW D Z, and Z a deformation retract of W. Set B|W =

(W, (Eq|W,E;_\|W, -, E|W), (9q|W,9g_1| W, -+ -5| W)). Then
(5.53) Res, (§,Z,8) = Res, (§,Z,B|W) .

(5.53) can be proved by applying Remark (5.30). Choose (Dy, D,_;, - - -, Dy,
D_)) fitted to 8 so that the X of (5.25) is contained in W. (D, |W,D,_,|W, - - -,
D,|W,D_,| W) is then fitted to 8| W. Hence the element of H,,_,(Z;C) deter-
mined by (v —1/Q2x)'o(K,|Ks_;|---|Ky) is Res,(Z,§,p) and is also
Res, (Z,§, 8| W).

The next proposition will be used in § 7.

(5.54) Definition. Let 8 and y be two Z-sequences. Set

ﬂ = (U: (Eqa Eq-la c ’Eo)’ (77qa Ng-1> " "> 7]0))
and
T = (V, (Is; Is-n vt 910)3 (ﬂsa Ps—15 ** "> [10)) .

Assume s = q. An admissible epimorphism or y onto j is a pair of consisting
of an open subset W of M and a diagram

0 0 0O o
! ! Vool
0O-L,—-L,,—---—>L,—-0-0
! l L
(5.55) 01, -1, — - > I, 5v—0
! ! Lo
O—-E,—-E, ;—--+->E —-v—>0
l ! Voo
0 0 0O o

of C= vector-bundles such that the following six conditions are satisfied:

(5.56) UNVOoOWDZ.

(5.57) Each column 0 — L; — I; — E; — 0 is defined and exact on all of W.
]:q9q'_ 19"'a0'

(5.58) The map v — v is the identity of v|W — Z.
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(5.59) ThetoprowO0—>L,—L, ,— --- — Ly— 0— 0 is defined and exact
on all of W.

(5.60) The middle row is y| W. The bottom row is | W.
(5.61) The diagram commutes on W — Z.

(5.62) Proposition. If there is an admissible eipimorphism of y onto B,
then for all ¢ withn — k < degp < n

(5.63) Res, (Z,&,8 = Res, (Z,&,7) .

Proof. Set 8= (U,(E,Eq_y, -5 Ep)y (9gs g1 -+ > 70) and 7 = (V, (I,
Iy g -5 0y, (pg ttqoys + -+ 5 1)) Let W be as in Definition (5.54), and consider
the diagram (5.55). In view (5.52) and of (5.53) we may assume

(5.64) U=V =W.

On U choose connections V,, Vy_y, - -+, V, for L,, L,_,, - - -, L, such that on
U

(5.65) Wy V4, ---,V,) is compatible with the exact sequence 0— L, —L,_,

— .. > L, —0.

Let D_, be a basic connection for v|U — Z. On U choose connections Dy,
Dy, --+,Dyfor E,, E,_,, - - -, E, such that

(5.66) (DyDy_yy -+, Dy isfitted to p.

Hence there exists a compact subset 3 of U with (5.25) valid for X.

Denote by ¢;(L;) the image of ¢;: L; — I;. According to Lemma (4.32) on
U — Z there exist C~ sub-vector-bundles F,, F,_,,---,F, of I,|U — Z,
1, ,|U-2Z,...,I,|U — Z such that
(5'67) IJ|U—Z:FJ@{]'(L]|U_Z), qu’q—l,"'509
(5'68) /v‘j(Fj)‘CFj_ls j=q,CI-1,""1-

According to Lemma (4.45) on U there exist C* sub-vector-bundles Fq, Fq_l,
N i I, 1,_y,---,1, such that

(5'69) Ijzﬁj@!j(lzj), j=q9q_1,"',0,

(5.70) FjlU—-Z3=F;|U—-23, i=g4,9—1,.--,0.

On U let D, be the unique connection for F; such that

(5.71) (ﬁj, D) is compatible with the exact sequence
0—>F,-E, -0, j=qg,q—1,---,0.



HOLOMORPHIC FOLIATIONS 309

On U let /, be the unique connection for ¢,(L;) such that

572y @y, v ;) is compatible with the exact sequence
0_’Lj-"(j(Lj)—’O’ qu’q_‘ly""O-

Let D, be the direct sum connection for I;:

(5.73) D,=D,®V;.

Thus

(5.74) Dy(s, + ) = Dys, + V;s,,  s,€ C=(F)), 5,e C=(¢,(Ly) .
(5.65) and (5.66) imply

(5.75) (Dgy Dy_yy -+, Dy, D_)  isfitted to 7 .

Set K, = K(D;), K; = K(D;). (5.73) implies

(5.76) det(I + K;) =det(I + K;)det + K(¥)) .

Set (i) = (—1)%, (5.65) and (4.24) imply

5.77) ﬁ det(I + K(F))»® =1 .
i=0
Therefore
(5.78) ﬁ (det (I + K))y® = ﬁ (det (I + K,)) .
i=0 1=0

(5.78) and (4.13) imply
(5.79) oKy Kooi] - 1K) = o(Kg|Koi] -+ | Ky -
Due to (5.66) and (5.75), (5.63) has been proved.

6. Coherent real-analytic sheaves

In order to prove the residue existence theorem stated in the introduction,
we shall have to use real-analytic sheaves. Following [1] let us state the basic
facts which we need.

Let M be a complex-analytic manifold, and n = dim; M. Denote by @ the
sheaf of germs of holomorphic functions on M, and by .o/ the sheaf of germs
of real-analytic functions on M. Given x ¢ M, let z,, - - -, z, be complex-ana-
lytic coordinates defined about x with z;(x) = 0. Then & is isomorphic to the
ring C{z,, + - -, 24, Zy» * + +» 2o} Of convergent power series in z;, Z;. Any module
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over &7, has a projective resolution of length <2n. @ and & are both sheaves
of rings, and there is the natural injection @ — /. If & is a sheaf of @-modules,
then & ®, % is a sheaf of .o/-modules.

(6.1) Proposition. Let &# be a coherent sheaf of O-modules. Then
A K, F is a coherent sheaf of </-modules. Moreover, if F, — F,— F,is
an exact sequence of coherent sheaves of O-modules, then of @, F |, — A R, F,
— o ®, F, is an exact sequence of coherent sheaves of s/-modules.

Proof. See [1, Proposition 2.9, p. 30] and also [2, Proposition (1.5), p.
153].

(6.2) Definition. Let U be open in M. On U, let & be a coherent sheaf
of «/-modules. A resolution of F is an exact sequence

0'_’Hzn_’Hzn—1‘—’"' —-Hy,—% —0

of coherent sheaves of «/-modules on U such that each H, is locally free.

(6.3) Proposition (Existence of resolutions). Let U be an open subset of
M, and F a coherent sheaf of s/-modules on U. Let W be an open subset of
U such that there is a compact B with U D B D W. Then on W, &% |W has a
resolution.

Proof. See [1, Proposition 2.6, p. 29].

(6.4) Definition. On U, let R,, R, be two resolutions of F#. A morphism
of R, to R, is a commutative diagram

0_’Hzn'—’H27L—1'—> _)HO_)g‘——)O

! | ! !
0_’Jzn_’-’2n-1_’"""]0—"g:—’0

of sheaves of «/-modules on U such that the upper row is R,, the lower row is
R,, and the vertical arrow farthest to the right is the identity map. The
morphism is said to be a morphism of R, onto R, if the vertical arrows are all
surjections.

(6.5) Proposition (Comparison of resolutions). Let U be openin M. On
U, let F be a coherent sheaf of o/-modules, and R,, R, be two resolutions of
% . Let W be an open subset of U such that there is a compact set B with
UDBDW. Let R,|W, R,| W be the restrictions of R, R, to W. Then on W
there is a resolution R, of & |W such that

(6.6) there exists a morphism of R, onto R,|W,
(6.7) there exists a morphism of R, onto R,|W.

Proof. See [7, Lemmas 13 and 14, p. 107]. In [7] these are proved on an
algebraic variety using coherent algebraic sheaves. But due to [1, Corollary 2.5,
p- 29] the same reasoning is valid in the real-analytic framework.

(6.8) Remarks. (a) If H is a coherent sheaf of .«/-modules, then H is
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locally free if and only if each stalk H, is a free &/ ,-module.

(b) If E is a real-analytic vector-bundle, let E denote the sheaf of germs
of real-analytic sections of E. Then E ~~— E is a functor which gives an equiv-
alence between the category of real-analytic vector-bundles on M and the cate-
gory of locally free coherent sheaves of .2/-modules on M.

(¢) If M is compact and % is a coherent sheaf of ¢-modules, then Proposi-
tions (6.1),( 6.3), and (6.5) can be used to define the Chern classes of %.
To do this, on M let

0——)H2n—>H2n_1—>---—>H0—>JZ{®3z——>O

be a resolution of &/ ®,%. Let E; be the real-analytic vector-bundle with
E, = H,. In K(M) let { be the virtual bundle:

(6.9 ¢= _zgno(—l)"Ei .
¢,(&F) is defined by

(6'10) CZ(}_) = Cz(C) ’ i= 13 RPN (3

It follows easily from Proposition (6.5) that { depends only on & . Hence ¢,(%)
is well-defined. For a detailed proof of this see [7, Lemma 11, p. 106].

More generally, let ¢ be symmetric and homogeneous with deg ¢ < n. o(%)
is defined by

(6.11) o(F) = (e F), -+ -, el F)) ,

where ¢ = @(0y, - - -, 0;), and | = deg¢.

(d) We are forced to use real-analytic sheaves because it is not known
whether the propositions on existence and comparison of resolutions are true
in the holomorphic category. By Proposition (6.1) a resolution in the holo-
morphic category, when tensored with &7, gives a resolution in the real-analytic
category.

7. Proof of the residue existence theorem

As in the statement of Theorem 2 let M be complex-analytic, and ¢ a full
integrable sub-sheaf of T'. Set Q = T'/¢. Let ¢ be symmetric and homogeneous
of degree [ where n — k < I < n.

(7.1) Definition. Let Z be a connected component of the singular set S.
Assume that Z is compact. Choose an open subset U of M with U N S = Z
and Z a deformation retract of U such that on U there exists a resolution R:
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0—-E,—E,,—  —>E—>4®0—0
4

of & ®,0|U.

Fori=2n,2n—1,..-,1lety;: E;|U — Z—E,_,|U — Z be the vector-
bundle map which gives E;|U—~Z—E,; ||U—Z.Lety,: E)|U—-Z—y|U—-Z
be the vector-bundle map which gives E,|U — Z — &/ ®, Q|U — Z. Then
(U, (Eyns Egn_ys + + 5 E))y (ans Donys * + +5 7)) is @ Z-sequence. Call this Z-se-
quence A(R), and define Res, (&, Z) by

(7.2) Res, (§,Z) = Res, (§, Z, f(R)) .

(7.3) Remarks. (a) The existence of U, R as in Definition (7.1) is im-
plied by (5.52) and Proposition (6.3).

(b) In order for (7.2) to be legitimate it must be shown that Res, (¢, Z, B(R))
does not depend on the choice of U and R. This is implied by (5.62) and
Proposition (6.5). A morphism of a resolution R, onto a resolution R, gives an
admissible epimorphism of f(R;) onto B(R,).

Proof of (0.22). From (7.3)b and (5.53) it is clear that Res, (£, Z) depends
only on ¢ and on the local structure of Q near Z. Since & is full, (0.18) implies
that the local structure of Q near Z is determined by the local behavior of the
leaves of & near Z. (0.22) is now evident.

Proof of (0.23). If M is compact, then on M let

0—’£2n_’E2n-1_’"‘_’£0'—>M®Q_’0
[

be a resolution of .« ®,Q. Let Z,, ---,Z, be the connected components of
the singular set S. Choose open subsets U, - - -, U, of M such that

(7.4) u,Nns=2,, i=1---,r,

(7.6) Z, is a deformation retract of U,.

Choose compact subsets Y, - - -, 2, of M such that

7.7 Uu,o2%,, i=1,---,r,

(7.8) Z, is contained in the interior of X;, i =1, ---,r.

SetX =3, U ... U2X,.OnM — Slet D_, be a basic connection for v. On
M let D,,, D,,_,, - - -, D, be connections for E,,, E,,_,, - - -, E, such that

(7.9 OnM — 3, (D,,,D;,_,, - -,D,, D_,) is compatible with the exact se-
quence

0 Ep|M -3 —Ey |M—3— - > EIM—2—yM—-2-0.
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Set K; = K(D;). According to (4.15) and (6.11),

(7.10) [p(K;n | Kznoy | - - - | K] = Qr/v/ —D(Q) .
(7.9), (4.23), and (3.28) imply

(7.11) 0Ky | Kyn_q |+ | Kp) vanishes on M — 5 .

Therefore ¢(K,,|K,,_,|---|Kp|U; is a 2l-form on U, with compact support.
By (7.2) the element of H,,_,,(Z; C) determined by ¢(K,,|K,,_,|---| Ky |U;
is 2z/+/ =1 Res, (£, Z,). Let o, be the 2I-form on M defined by

(7.12) ;| U; = (Ko | Kpn_1 |-+ - | KD | Uy
(7.13) w; vanishes on M — U, .

From definition (0.21) of x, we then have

(7.14) ] = Qz/v/ —1D'p, Res, (§,Z) , i=1,--,r.
But

(7.15) (Koo | Kony |-+ | K) =0 + -+ + o, .

(7.15), (7.14), and (7.10) imply (0.23). This completes the proof of Theorem 2.
Remark. In Definition (7.1) the exact sequence of sheaves has 2n locally
free sheaves. The next lemma asserts that Res, (£, Z) can be obtained from a
suitable exact sheaf sequence of any length.
(7.16) Lemma. Let U be an open set containing Z with U N S = Z and
Z a deformation retract of U. On U let

(7.17) 0-E,—E;,—  —E—-4RQ2—-0

be an exact sequence of sheaves of «/-modules. Let 8 be the resulting Z-se-
quence. Then

(7.18) Res, (£, Z, §) = Res, (&, 2) .

Proof. 1If g < 2n, add on 2n — q zeroes to the left of (7.17) to obtain
(7.19) 0_,0_,..._,0_+£q_,£q_1_,...ﬁgoﬁd@Q—eo.
Let g’ be the Z-sequence resulting from (7.19). g’ has length 2n so by (7.1)
(7.20) Res, (§,Z) = Res, (§,Z,8) .

But it is obvious that
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(7.21) Res, (§,Z,8) = Res, (£, Z,5) .

This proves (7.18) when g < 2n.

If g > 2n, then by the syzygy theorem [13, Chapter VIII, Theorem 6.5,
p. 158], the kernel of E,,_, — E,,_, is locally free. Denote this kernel by E.
Thus

(7.22) 0—>£—>£zn-1—>£zn_z—>"'—>£o-*v‘2¢®Q—+0

is a resolution of &/ ®, Q. Denote this resolution by R. The map E,, — E,,_,

gives a surjection E,, — E — 0. Consider the commutative diagram:

0_’£q_’—_Eq—1—’ _’éznn—"gzn_’gznq“" _’go_’&{®oQ-’0
|| L ool

0-0—->0 -+ 0 5 E>E;,» - —>E—->I4Q0—-0

This diagram gives an admissible epimorphism of Z-sequences. Therefore by
(5.63)

(7.23) Res, (¢, Z, p) = Res, (£, Z, B(R)) .

This proves (7.18) when g > 2n. If g = 2n, then (7.18) is immediate from
(7.1). '

(7.24) Corollary. Suppose that E,, E,_,, - - -, E, are holomorphic vector-
bundles on U. Let

(725) 0—>Eq—>Eq_1—).--—)Eo—)Q—>O

be an exact sequence of sheaves of O-modules on U. Denote the resulting Z-
sequence by B. Then

(7.26) Res, (§,Z) = Res, (§,Z,p) .

Proof. View each E; as a real-analytic vector-bundle. According to Propo-
sition (6.1), (7.25) gives an exact sequence

(7.27) 0_>£q—>£q_l—)...—)£0—>d®Q—)0

of sheaves of .&/-modules on U. Hence Lemma (7.16) applies, and the corollary
is proved.
8. Proof of Theorem 1

Recall the data of the theorem. M is compact and complex-analytic. L is a
holomorphic line bundle on M. »: L — T is a holomorphic vector-bundle map.
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Each zero of 7 is isolated. ¢ is symmetric and homogeneous of degree n =
dim; M. Set & = 5(L). For p e Zero(y) there is the usual identification
H\(p; C) = C. Let ¢(y, p) be as in the introduction. Then due to (0.23) and
(0,14), (0.10) will be implied by

8.1 o(p, p) = Res, (§,p) .

The remainder of this section will be devoted to proving (8.1). The proof

will have two steps:
Step 1. Replace a situation involving several vector-bundles and several
connections by a much simpler situation involving only one vector-bundle and

one connection.
Step 2. An explicit computation using one vector-bundle and one connec-

tion.
To begin Step 1, let W be an open subset of M. On W let X be a holomor-

phic section of T'| W such that X has no zeroes. According to (3.10) and (3.11),

(82) [Xy Y + sz] = [Xa Sl] + [X; Sz] )
(8.3) [X, fs] = (XHs + flX,s],
whenever s, s, 5, ¢ C*(T|W), and f: W — C is a C* function.
If (X) denotes the sub-line-bundle of T'|W spanned by X, then (8.2) and

(8.3) imply that there is a unique partial connection (X) @ T | W, o) for T|W
such that

8.49) i(X)os = [X, s], seC(T|\wW),
8.5) i(y)ds = i(y)as , seC(T\W), reC=(T\W).

This partial connection for T|W will be referred to as the partial connection
for T|W determined by X. Note that (8.4) implies

(8.6) i(fX)és = flX,s], f:wW-cC.

(8.7) Definition. Let X be a holomorphic section of T'| W such that X has
no zeroes. An X-connection for T|W is a connection for T | W, which extends
the partial connection for 7| W determined by X.

(8.8) Remarks. (a) A connection D for T'|W is an X-connection if and
only if

8.9) i(X)Ds = [X, 5], seC=(T|wW),
(8.10) D is of type (1,0) .

(b) Lemma (2.5) guarantees the existence of X-connections. Since [X, X]
= 0 and X = 0, Lemma (2.11) implies that there exist X-connections D with
DX = 0.
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(8.11) Lemma. Let X be a holomorphic section of T|W such that X has
no zeroes. Let D be an X-connection for T|W. Set K = K(D). Assume deg ¢
= n. Then

(8.12) oK) =0 .

Proof. Given p e W, let W, be an open neighborhood of p in W such that
W, is the domain of a complex-analytic coordinate system z,, - - -, z,, With

(8.13) 3/0z, = X|W, .

Let A(W,) be the ring of all C~ complex-valued differential forms on W,. In
A(W,) let I(X, W,) be the ideal generated by dz,, - - -, dz,. This ideal has the
properties :

(8.14) If we I(X,W,), then dw e I(X, W,).
(8.15) If w, - - -, w, are any n elements of I(X, W,), then o, A - -+ N w, =0.

Let 0 =|6;;|| be the connection matrix of D with respect to the frame 9/4z,,
-++,8/0z,. Then (8.9), (8.10), and (3.12) imply that each §,; is in I(X, W,):

(8.16) 0, € IX, W,) .

Let £ = ||| be the curvature matrix of D with respect to the frame 9/4z,,
-++,0/0Z,. (8.16), (8.14), and (1.13) imply that each «;; is in I(X, W}):

(8.17) 2% GI(X, Wp) .
Since deg¢ = n, (8.17) and (8.15) imply that ¢(K) vanishes on W,. This
proves the lemma.

(8.18) Lemma. Let X be a holomorphic section of T|W {uch that X has
no zeroes. Let D and D’ be two X-connections for T|W. Set W = W x [0,1].

Let p: W —W and t: W —[0,1] be the projections. On W define a connection
V for o'(T|W) by

8.19) V =1t'(D) + (1 — Dp'(D) .
Set K = K(V). Assume deg o = n. Then
(8.20) oK) =0.

Proof. Given p e W, let W, be an open neighborhood of p in W such that
W, is the domain of a complex-analytic coordinate system z,, - - -, z, With

(8.21) 3/0z, = X|W, .
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Set W, =W, X [0,1]. Let ,:I(Wp) be the ring of all C* complex-valued differ-
ential forms on W,. In A(W,) let I(X, W) be the ideal generated by p*(dz,),

ey 0%(d2y).
Let 0 = ||6,,|| and ¢ = | 6;;| be the connection matrices of D and D’ with
respect to the frame 9/dz,, - - -, 3/9z,. Let w = ||w;;|| be the connection matrix

of I’ with respect to the frame p'(6/0z,), -« - -, 0'(d/3z,). Then (8.19) and (4.56)
imply for each w,

(8.22) w0y = tp*(0;;) + (1 — Dp*(G;)) .

Since D and D’ are both X-connections, it now follows that each w;; is in
IX,W,):

(8.23) oy e X, W,) .

Let ¥ = ||x;;|| be the curvature matrix of F with respect to the frame
0'@/9z2), - - -, 0'(@/9z,). I(X, W) is closed under d, so each «;; is in I(X, W,):

(8.24) ke (X, W,) .

The wedge product of any n elements of I(X, W,,) is zero. Since deg ¢ = n,
(8.24) now implies that ¢(K) vanishes on W,,. This proves the lemma.

(8.25) Definition. Let U be an open subset of M. On U let X be a holo-
morphic section of T|U. Set Z = {p e U|X(p) = 0}. Assume that Z is com-
pact and connected. On U let D be a connection for T'|U. Then D is fitted to
X if
(8.26) there exists a compact subset X' of U with Z contained in the interior

of X such that on U — %, D is an X-connection for T'|U — 2.

Remark. Given U, X as in Definition (8.25), choose any compact subset
2 of U with Z contained in the interior of 3. Then according to Lemma (4.41)
there exists a connection D for T|U such that (8.26) is valid for D and the
chosen X

(8.27) Lemma. Let U be an open subset of M. On U let X be a holo-
morphic section of T|U. Assume that the zero set Z of X is compact and con-
nected. Let D be a connection for T |U such that D is fitted to X. Set K = K(D).
Assume deg ¢ = n. Then

(8.28) ¢(K) has compact support.

Moreover, suppose that D' is another connection for T |U such that D’ is also
fitted to X. Set K’ = K(D’). Then

(8.29) f oK) = f o(K’) .
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Proof. To prove (8.28), let 2 be as in (8.26). Thenon U — % D is an
X-connection for T|U — Y. Hence by (8.12), ¢(K) vanishes on U — 3. This
proves (8.28).

To prove (8.29) we may assume that on U — 5, D’ is also an X-connection
for T|U — 3. Let U = U x [0,1]. Let p: U — U and ¢: U — [0,1] be the
projections. On U define a connection /7 for p'(T'| U) by

(8.30) V =1(D) + (1 — 1)p'(D) .
Set K = K(V), and define i,, i,: U — U by

(8.31) i(x) = (x,0), xeU,
(8.32) x) =1, xeU.
Then

(8.33) oK) = i¥p(K) ,
(8.34) o(K") = itp(K) .

According to (8.20), go(IZ) vanishes on U — 3 x [0,1]. Therefore
(8.35) o(K) has compact support.
(8.33), (8.34), and (8.35) imply that there exists a (2n — 1)-form w on U with

(8.36)  has compact support,
8.37) do = ¢(K") — ¢(K) .

(8.29) is now evident.

(8.38) Proposition. Let U be an open subset of M. On U let X be a
holomorphic section of T|U. Assume that the zero set Z of X is compact and
connected. Let D be a connection for T|U such that D is fitted to X. Set K =
K(D). Let & be the subsheaf of T|U spanned by X. Assume deg ¢ = n. Then

(8.39) Res, (¢, 2) = (V—1/Q2m)" f oK) .

Proof. Due to (8.29) it will suffice to exhibit a connection D’ for T |U such
that D’ is fitted to X and such that for K’ = K(D’) it is immediate and obvious
that

(8.40) Res, (¢, 2) = (V—=1/Qx)" f oK) .

U

To construct such a D’, let V be an open subset of U, and 4 be a compact
subset of U with
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(8.41) UDVDO4>D2Z,
(8.42) Z is contained in the interior of 4,
(8.43) Z is a deformation retract of V.

Let D’ be a connection for 7| U such that

(8.44) on U — 4, D’ is an X-connection for T|U — 4,
(8.45) on U—4, DX=0.

The existence of such a D’ is implied by Lemma (2.11) and (4.41). Set K’ =
K(D).

To verify (8.40), let (1) denote the trivial line bundle U X C. Define
7: (1) > T|U by

(8.46) 7(p, 2) = zX(p) , peU,zeC.

Define a section s of (1) by

(8.47) s(p) =@, 1), pelU.
Thus
(8.48) s=X.

Let D, be the unique connection for (1) with
(8.49) Ds=0.

OnU — Zsety = T/y(1). Let u: T|U — Z—p be the projection. On V — Z
consider

(8.50) 0-(1)»T—-v—0.

Let B denote the Z-sequence obtained from (8.50).
For v|U — 4 there is a unique connection D_, such that

(8.51) D_y(g) = 1@ WD,

whenever y e C*(T|U — 4). D_, is a basic connection for v|U — 4. By en-
larging 4 slightly and applying Lemma (4.41) we may assume that on U — Z
there is a basic connection D_, for v such that

(8.52) D_,and D_, agree on v|U — 4 .

Thus (D,, D', D_) is fitted to the Z-sequence f. Set Q = T /&. At the sheaf
level (8.50) gives on V' an exact sequence of sheaves of @-modules:
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(8.53) 0-D—>T|V-Q0|V-0.
Set K, = K(D,). Then from (7.26) it follows directly and immediately that
(8.54) Res, (§,2) = (v —1/Q2n)" f o(K,|K") .

U

But (8.49) implies

(8.55) K, =0.
Therefore
(8.56) o(K;|K") = o(K’) .

(8.56) and (8.54) imply (8.40), so the proof is complete.

Remark. Definition (7.1) of Res, (&, Z) requires choosing a resolution and
then choosing connections for the vector-bundles in the resolution. Thus sev-
eral vector-bundles and several connections are involved. The point of (8.39)
is that it replaces this complicated situation involving several vector-bundles
and several connections by a much simpler situation involving only one vector-
bundle and one connection.

The next proposition will use (8.39) to explicitly compute Res, (&, p) when
p is an isolated zero of X. But first, a lemma which will permit an application
of the Lebesgue bounded convergence theorem.

(8.57) Lemma. Let g:[0,1)—[0,1) be a nondecreasing C* function with

(8.58) gr) =r, for0<r<1/3,
(8.59) g =1, for2/3<r<1.

Form = 1,2, ... define g,,: [0,1) — [0, 1) by
(8.60) gn(r) = ¥el™) , rel0,1).

Then there exists a positive real number b such that for all r e [0,1) and all
m=1,2,...

(8.61) |(dgn/dr)(r)] < b .

Proof. Choose a real number b such that

(8.62) 3|(dg/dn(H| < b, forall r ¢ [0, 1) .
Then (8.61) will be implied by
(8.63) |(dgn/dn(r)| < 3|(dg/dn(™)|, forallre[0,1) .

On [0, ¥1/3] g,(r) = r. So on [0, ¥/1/3],
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(8.64) 1= |(dgn/dN()| < 3|(dg/dn™| =3, rel0, ¥1/3].

On [¥/1/3, 1) differentiation of g, gives

(8.65) (dgn [dr)(r) = (dg/dr)(r™)g,(Nr™*/g(r™) .
g is nondecreasing so g(r™) > 1/3 for all r e [’{‘/1/_3, 1). Hence (8.65) implies
(8.66) [(dg,/dr)(r)| < 3|(dg/dr)(™)|, re[%¥1/3,1).

(8.66) and (8.64) combine to give (8.63). The lemma is proved.

(8.67) Proposition. Let U be an open subset of M. On U let X be a
holomorphic section of T|U. Assume that the zero set of X consists of one
point p. Let z,, - - -, 2z, be a complex-analytic coordinate system with domain
U and origin p. Denote by & the subsheaf of T |U spanned by X. Assume
deg o = n. Then

p(A)dz, - - - dz,.]

a,; ©5 Ay

(8.68) Res, (£, p) = Resp[

where X = >, a,0/9z; and A = ||da;/0z,||.

Proof. Since p is an isolated zero of the a;, there exist positive integers «,,
-+, a, such that z{ is in the ideal generated by a,, ---,a,. So there exist
holomorphic functions b;; defined about p with

(8.69) 2 = ;31 bia, .

Passing to a smaller U, if necessary, it may be assumed that each b, is defined
on all of U. Hence (8.69) holds throughout U.
Letz: U— C™ be

(8.70) () = @), -+, zx),  xeU.
In C™ denote by B, the set

(8'71) Ba - {(CU ) Cn) € Cn il (Cizi)ﬂi < 1t .
We may assume

8.72) B, C z(U) .

For if B, ¢ z(U), then replace z,, - - -, z, by bz, - - -, bz, where b is a large
positive real number. Set w, = bz;. Then

(8.73) X = 3 (ba)ofow, ,
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(8.74) l0(bay) [ow;|| = ||9a;/dz]|
o(A)dw, - - - dw,| _ o(Ad)dz, - - - dz,
(8.75) Res, [ a - ba, ] = Res, [ G- ena, ] .

So it is legitimate to assume that (8.72) is valid.
In U let B denote the subset

(8.76) B={xeU|z(x)eB,} .
On B define a 1-form w by
(8.77) w = Z (Zi)aibijdz]‘ .

1<i,j<n
On B let D be the connection for T'| B given by
(8.78) D@%/9z;) = 0 ® [X,0/0z] , i=1,.---,n.
Set K = K(D). Then (8.68) will be proved if it can be shown that

(8.79) Res, (¢, p) = (v—1/20)" f oK)

B

(80  (/=T/@0)" [o) = Res, [P ]

Ay, - x50y

To prove (8.79) construct a sequence of connections D;, D,, - - - for T|B as
follows. On B denote by (z, z)* the function

(8.81) @2 = 3 )" -
Let z be the 1-form on B — {p} defined by
(8.82) r=w/(z,2)".
Then on B — {p}

(8.83) x is of type (1,0) ,
(8.84) Xz =1,

Note that (8.84) is implied by (8.69). Form = 1,2, - - -, let g,: [0, 1) — [0, 1)
be as in (8.60). Define y-,,: B — [0, 1) by

(8.85) V(%) = gn((z, 2)°X) , xeB.

Then on B take D, to be the connection for T'|B such that
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(8.86) D,(0/9z;) = Ymr ® [X,3/0z;] , i=1-.-,n.

Note that near p +,x agrees with w, so D,, is well-defined on all of B. Set
K,, = K(D,,). (8.83), (8.84), and (8.59) imply

(8.87) D,, is fitted to X.
So by (8.39),
(8.88) Res, (&,p) = (V—1/Qn)" f oK) -

Now for all r € [0, 1),

(8.89) ,],,i_l.?e gn() =r.
Hence for all x e B,

(8.90) ,Lilll V) = (z,2)%x .

Soif xeBandveT,® T,, then

(8.91) 7131101° e = i(Wo .
Moreover, if xe Band v,, - -+, ¥,, € T, ® T,, then
(8.92) Tim iy, « -+, V2)0(K) = iV, « -+, V2)0(K) .

Due to (8.61) the Lebesgue bounded convergence theorem [17, Chapter V,
Theorem D, p. 110] applies to give

(8.93) lim f oK) = f o(K) .

(8.93) and (8.88) imply (8.79), so (8.79) has been proved.
To prove (8.80), let 4, £ denote respectively the connection and curvature
matrices of D with respect to the frame 9/6z;, - - -, 9/3z,. Then

(8.94) 0= —wA .
From (8.94) it is clear that 8 A\ 8 = 0, so £k = d6,
(8.95) £t = —(dw)A + (w)dA .

w is of type (1,0), so by (8.95) each entry of ¢ is a sum of 2-forms of type
(1,1) and type (2,0). In ¢(x), which is of type (n, n), the terms of type (2,0)
will play no role. Set do = d'w + d”w where
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(8.96) d'o is of type (2,0) ,

(8.97) d"w is of type (1,1) .

Then

(8.98) (k) = p(—(d"w)A4) ,

(8-99) d”w = Z az(iz)”—ldzlbudlj .
i

Since ¢ is homogeneous of degree n, (8.98) implies

(8.100) (k) = (—d"w)"p(A) .

Set 2 = dz,d7,- - -dz,dZ,. A straightforward calculation from (8.99) shows
(8.101) (—d"o)" = nlay - a,(Z)27" - - (Z) " det| by 2 .
Therefore

(8.102)  o(r) = nlay- - - (Z) ' - - (Z) ™ 'p(A) det || by 2 .

Now (8.72) implies

(8.103) f(zlil)’“"- c(ZaZ)™ 0 = (nlay- - )R/ = 1)

Also, if 8 = (B,,- - -, B) is an n-tuple of nonnegative integers with (8, - -, 8,)
* (e, — 1, -+, a, — 1), then (8.72) implies

(8.104) fz‘;l—lzfl. .zamizbn) — (.

B

Expand ¢(A) det ||b;|| in a power series in z,, - - -, Z,. Denote by 2 the coeffi-
cient of zy1*. . .zz»~', Then (8.102)—(8.104) imply

(8.105) A= W—=1/Qn)" f o(K) .

If (8.105) is compared to the algorithm for computing Res, [S"(f;)dzl- -(-Idzn]
1" Un

given by (0.9), then it is evident that (8.80) has been proved.

The proof of the proposition is complete.

From (0.2) and (0.6) it is clear that (8.68) implies (8.1). Theorem 1 is
proved.
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9. Proof of Theorem 3

Let U be an open subset of M. On U, let & be a full integrable subsheaf of
T|U.Set Z={xeU|T,/&, is not a free 0 ,-module}. Assume that Z is com-
pact and connected. Assume also that (0.27) and (0.28) are valid for Z.
Throughout this section deggp = n — k + 1.

Let Z, -.., Z, be the irreducible complex-analytic components of Z of
dimension k£ — 1. If [Z;] denotes the element of H,;_ ,(Z; C) given by the
fundamental cycle of Z;, then [Z], ---, [Z,] is a vector-space basis for
H,._,(Z; C). Hence there exist complex numbers 4,, - - -, 4, with
©.1) Res, (6,2) = 3 4lZ] .

In order to prove (0.42) we must compute 4, - - -, A;.

Let V be an open subset of U such that

(9.2) V contains Z, and Z is a deformation retract of V,
(9.3) on V there is an exact sequence
O—»éqagq_la ———>£‘———>d®§-—>0
of sheaves of .«7-modules.

On V there is the short exact sequence

(9.4) 0> A REST|IV A RQ—0.

Combining (9.3) and (9.4) gives
9.5) 0—>£q—>£q_l-—>---——>£1—>£|V—>&¢®Q—>O.
o

Denote by 8 the Z-sequence resulting from (9.5). On ¥V, let D,, D,_,, - - -, D,,
D_, be connections for E,, E,_,, - -+, E;, T|V, v such that

9.6) Dy Dy_y, - -+, Dy, D_y) is fitted to .

Set K; = K(D,). As in (5.50) a closed j-form w on Z with compact support
determines an element of H,,_;,(Z; C). (9.5) is exact, so by (7.18)

9.7) (W=1/Qa)" **'o(K,|Ky_,|* | Kp) determines Res, (¢, Z) .

Since (0.27) and (0.28) are valid for Z, Theorem (0.30) applies. Let
peZ, —(Z; N (Z®» U N)). Let U, be an open neighborhood of p in ¥ such
that on U, there are defined a complex-analytic coordinate system z,, - - -, 2,
and holomorphic functions ay, - - -, a, as in (0.31)-(0.35). Define a holomor-
phic normal disc D, by
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(CRY) {Dp =xeUplzi(x) = z2,(p), -+, 2pa(X) = 2a(D)} -

Leti: D, — V be the inclusion. It may be assumed that ¥ and U, have been
chosen so that i is proper. Hence there is the induced map of cohomology
with compact supports

9.9 *:H¥V; C)—> H¥D,; C) .

Consider the homomorphism I,,: H,,_,(Z; C) — C given by

(9.10)  Hyo(Z; C) = H**(V,C) — H* ™ *¥(Dy; C) = C .
(9.1) implies

9.11) I,(Res, (§,Z)) = 4; .

But then (9.7) implies

9.12) 4= (W=T/@a)rr f *o(Ky | Kqor| - - | Ko -

Dp
On D, let A be the (n — k + 1) X (n — k + 1) matrix
(9.13) A = ||0a;/0z;|| , k<i,j<n.
Due to (9.12), (0.42) will be implied by

(9.14) (,\/—_j/(zﬁ))n—k+1fi*so(Kq qu—1 | e IKo) — Resp [SD(/:Z)de. . .;ldz,,] .

9 ot
To prove (9.14), observe that D, is itself a complex manifold with

(9.15) dim;D, =n—k+ 1.

Let T(D,) denote the holomorphic tangent bundle of D,. On D, set

(9.16) T(D,) = sheaf of germs of holomorphic sections of T(D,),

9.17) X =3 ad/oz;
i=k
(9.18) ¢ = subsheaf of T(D,) spanned by X.

Then according to (8.68),

9.19) Resw (5, p) = Resp [ﬁD(A)de e dzn] )

Qg *+ 50

So (9.14) will follow from
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(9.20) Res, ¢ p = (\/:T/(ZTF))n_kH fi*SD(Kq |Kq_1]- -+ | Kp) -
Dy
To prove (9.20), on D, set;

(9.21) & = sheaf of germs of holomorphicifunctions,
(9.22) &/ = sheaf of germs of real-analytic functions,

(9.23) 0=1TD,y/¢,
(9.24) E, =NE), j=¢q9—-1,---,1,
(9.25) T = XT) .

Thus E; is a sheaf of &/ modules on D,. Now use (9.5) to construct on D, an
exact sequence

(9.26) 0-E—Ey— - > E-T->d®0-0
¢

of sheaves of .«/-modules.

The sequence (9.26) is obtained by first noting that (0.35) implies
(9.27) &, is a free O -module for all x e U,.
Let E be the unique holomorphic vector bundle on U, with
(9.28) E=¢0U,.
Then (9.3) gives on U, an exact sequence of vector-bundles
(9.29) 0O-E,—-E,_,—..-—>E —->E—Q0.

Set E = i!(E). Applying ! to (9.29) gives on D, an exact sequence of vector-
bundles

(9.30) 0—>E"q——>E.'q_1-—>~--—>El—>E——>0.
So on D, the sequence
(9.31) 0-E —E_ - - —-E-E-O0

is exact.
On U, the inclusion £|U, C T |U, gives a vector-bundle map »: E—~T|U,
such that

(9.32) on U, there is a holomorphic frame e,, - - -, ¢, of E with

ne; = 8jdz fori=1, .-,k — 1 and ye, = 3, a;3/0z; ,
i=k



328 PAUL BAUM & RAQOUL BOTT

(9.33) 0O-E->T|U,—-Q|U,—0 is exact .

Restricting 5 to D, gives £ — T and thus gives a map of #-modules £ — 7.
On D, let J be the holomorphic sub-vector-bundle of 7 spanned by 9/dz,, - - -,
0/0z4_,. Then

(9.34) T =J®TD,) .

This direct sum decomposition gives a projection 7' — T(D,). Map T to Q by
(9.35) T—-TIWD,)—9Q.

Then (9.32) and (9.23) imply

(9.36) 0-E—-T-—>0—>0 isexact.

Hence by (6.1)

9.37) 0—>§->Z—>M®Q'—>O is exact.

Now (9.26) is the exact sequence obtained by combining (9.. 37) and (9.31).
On D, let 3 be the p-sequence resulting from (9.26). Set D; = i*(D;). (9.26)
implies

(9.38) (Dgs Dy_yy -+, Dy, D) is fitted to .

Set K; = K(D;). Since (9.26) is exact, (7.18) implies

(9.39)  Res, (§,p).= (W—1/Q2m)*+! fso(Kq | Koo ]+ Ko
But
(9.40) PRy | Kooy |-+ | Kp) = i*o(Ky| Kqy |+ -+ | Kp)

So (9.20) has been proved. This concludes the proof of Theorem 3.
Remark. The argument of this section really verifies a very special case of
the functoriality of Res, (&, Z).

10. Proof of the rigidity theorem

Let F be a holomorphic integrable sub-vector-bundle of T, X = dim. F,, and
v=T/F. If U is an open subset of M, let A(U) denote the ring of all C*
complex-valued differential forms on U. In A(U) let I(F, U) be the ideal gen-
erated by all C= 1-forms w on U such that
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(10.1) w is of type (1,0) ,
(10.2) iPw=20 for every y e C=(F|U) .
(10.3) Lemma. Let D be a basic connection for v. On U let e,, - - -, €,_;

be a C frame of v. Let k = ||k;;|| be the curvature matrix of D with respect to
the frame e,, - - -, e,_,. Then for each k;,

(10.4) k; € I(F,U) .

Proof. Lety: T — T/F be the projection. Given p € U, let U, be an open
neighborhood of p in U such that on U, there is a complex-analytic coordinate
system z;, - - -, 2, With

(10.5) 3/z,, + -+, 80z, € ['(F|U,) .

Let £’ = ||«};|| be the curvature matrix of D with respect to the frame 70 /02,
-+, 3/0z,. Then according to (3.33) each «;; is in I(F, U):

(10.6) ¥, e I(F,U) .

(10.4) is now implied by (1.16), and the lemma is proved.

Next, let U be open in M, and [a, b] a closed interval of real numbers. Set
U = U X [a, b], and let o: U—U, t: U — Ia, b] be the projections. For each
r e [a, b] define i,: U — U by

(10.7) i(x) =(x,r), xeU, rela,b].

(10.8) Definition. A C> 1-parameter family of holomorphic foliations of
U is a 1-parameter family {F,}, a < r < b, such that

(10.9) for each re[a, b], F, is a holomorphic integrable sub-vector-bundle
of T|U,

(10.10) on U there exists a C> sub-vector-bundle F of 0T | U) with iL(F) =
F, for each r ¢ [a, b].

(10.11) Lemma. Let {F,}, a <r< b, be a C> 1-parameter family of
holomorphic foliations of U. On U let D be a connection for p'(T)/ F such
that

(10.12) for each r e [a, b], (D) is a basic connection for T|F,.
Set K = K(D), and assume n — k + 1 < deg¢o < n. Then
(10.13) oK) =0.

Proof. Given p e U, let U, be an open neighborhood of p in U such that
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p is a deformation retract of U,. Set U, = U, X [a, b]. In A(U,) let I be the
ideal

(10.14) I = {w e A(U,)|For each r ¢ [a, b], i¥(w) € I(F,, U)} .

OnU,letu, ---,u,_, be aC> frame of p(T)/F. Let & = ||r;;|| be the curva-
ture matrix of D with respect to u, ---, u,_,. Then (10.12), (10.4), and
(4.56) imply that each «;; is in I:

(10.15) kgyel.
Hence (10.13) will follow from

(10.16) if w;, - -+, w,_z,, are any n — k -+ 2 elements of I, then o, A ---
N On_ gz = 0.

To prove (10.16) let TzU and Tgla, b] be the C= tangent bundles of U and
[a, b]. Define T U, Tla, b] by

(10.17) TU =CRTU,

R
(10.18) Tcla, b] = C ® Tgla, b] .

R
Then
(10.19) T U = p'(T) @ p\(T) ® 1T la, b] .
OnU,letw, -, v,,,, be a C* frame of T,U such that
(10.20) vy, -, v, € C2(F|U,)
(10'21) Vis1r ** 5 Un € CM(P’(T) , ﬁp) )
(10.22) Vasps ++ 05 Vi € C(0(M|T ) ,
(10.23) Vynsr € C*(t'Tla, b1|U,) .

Let v¥, - . -, v¥ ., denote the dual frame for the dual bundle (TCU')* | U ». Then
(10.14) implies that I is the ideal in 4(U,) generated by v%,,, - - -, v¥ and
v¥ ... Since there are n — k + 1 of these, (10.16) is clear. This completes the
proof.

Remark. If {F,} is as in Lemma (10.11), then there always exist connec-
tions D for p!(T)/F such that (10.12) is valid for D. To see this, set 5 = o'(T)/ F
and vy, = T/F,. As in Proposition (3.21) for each v, there is a partial connec-
tion

(10.24) 5,: C°(v,) > C(F,®D)*Qv,) .

These 4, fit together to give a partial connection § for §:
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(10.25) 8:C>() —» C(F® pT)*® %) .

A connection D for & which extends this § will satisfy (10.12).

(10.26) Definition. On U let & be a full integrable subsheaf of T|U. Let
E,E,,, ---, E, be real-analytic vector-bundles on U such that there is an
exact sequence of sheaves of «/-modules

(10.27) 0O>E,»E, ,— - E->dRE-0
o

on U. From (10.27) a complex
(10.28) O-E,—»E,,— ..+ —>E ->T|U

of real-analytic vector-bundles on U is obtained. By viewing each E; and T as
C= vector-bundles, (10.28) may then be taken to be a complex of C* vector-
bundles on U. Any complex of C~ vector-bundles on U which arises in this
way will be referred to as a complex for &.

Remark. Up to this point we have not precisely defined a C~ 1-parameter
family of sheaves. This is made precise by

(10.29) Definition. A C= 1-parameter family {¢,}, a < r < b, of full
integrable subsheaves of T |U is a 1-parameter family such that

(10.30) for each r ¢ [a, b], &, is a full integrable subsheaf of T |U,
(10.31) on U = U X [a, b] there exists a complex
O>E,>E,_;— -+ —>E — o) —0
of C= vector-bundles such that for each r ¢ [a, b],
0 — iUE)) — IMEq) — -+ — (E) > T|U

is a complex for &,.

Proof of Theorem 4. Let {¢,}, a < r < b, be a C* 1-parameter family of
full integrable subsheaves of T|U. For re[a,bl, let Z, = {x e U|(T/¢,), is
not a free @,-module}. Assume that each Z, is compact and connected. Asin
(0.43) assume that there is a compact subset B of U with :

(10.32) Z,CB for all r € [a, b] .

Let iy: H(Z,; C) —» H,(U; C) be the homology map induced by the inclu-
sionof Z,inU. If n — k + 1 < degy < n, we then wish to prove

(10.33) iy Res, (§4,Zo) = iy Res, (§,,7Z,) .
To prove (10.33) set U = U X [a, b], and on U let

(10.34) 0-E,—»E, ;> -+ > E - oD
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be as in (10.31). On U — Z, let F, be the unique holomorphic sub-vector-
bundle of T|U — Z, such that

(10.35) F,=¢&|U—Z,.

OnU—2Z,, sety, =T/F,. Let V, be an open subset of U with Z, contained
in ¥V, and Z, a deformation retract of V,. Then

(10.36) when restricted to V,,
0—-i(E) > i(Eq) = -+ > (E)>T—v,—0

is a Z,-sequence.

Set Z={(x,neU|xeZ}. On U — Z, let F be the unique C* sub-vector-
bundle of p'(T) such that

(10.37) i(F)=F, foreachrela,b].
On U — Z, set 5 = p!(T)/F. Let D_, be a connection for & with
(10.38) &(D_) is a basic connection for v, for each r ¢ [a, b] .

With B as in (10.32) choose a compact subset > of U with B contained in the
interior of 3. Set 3 = 3 X [a,b]. On U let D,D,_,.---,D,, D, be connec-
tions for E,, E,_,, - - -, E, p'(T) such that

(10.39) onU — 3, (Dy, Dy_y, - -+, Dy, D_y) is compatible with the exact se-
quence

O-E,—-E, ,—: -+ —>E —pd(I)—-9—-0.
Set K; = K(D;). Then according to (4.23),
(10.40) On U — 3, oK, K,| - K) = o(K_) .
Since n — k + 1 < deg¢y < n, (10.38) and (10.13) imply
(10.41) ¢(K_) vanishes on Uv-3%.
Hence
(10.42) (K, |K,_,|---|Ky) is a closed form on U with compact support.

Set D} = iL(D;), K; = K(D;). Let I = degp. On U there is the Poincaré
duality isomorphism: -

(10.43) a: Hy,_y(U; €) — HX(U; C) .
(10.36)-(10.39) imply
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(10.44) for each re [a, b], (K5 |K5_,|---|K}) is a 2l-form on U with com-
pact support,

(10.45) the element of H2(U; C) given by (v —1/(2n))'(K;|K5_,|- - - | K})
is aiy Res, (§,, Z,).

Since « is an isomorphism, (10.33) will be proved if it can be shown that
o(K&|K2_,|---|K§) and (K2 |KL_, |- - - | K?) give the same element of H'(U).
But (4.56) implies

(10.46) i*p(K,;|K,_q|-- | Kp) = o(K4|KZ_,|---|K;)  for each re [a,b] .

From (10.46) and (10.42) it is clear that the proof is complete.

Proof of Corollary 0.44. Let Z be as in Corollary (0.45). Choose an open
subset V' of U with Z contained in V and Z a deformation retract of V. Let
iy: H(Z; C) —» H,(V; C) be the homology map induced by the inclusion of
Z in V. Then according to (0.43),

(10.47) iy Res, (§,,2) =i, Res, (§,2) .

Since i, : H (Z; C) —» H,(V; C) is an isomorphism, (10.47) implies
(10.48) Res, (&5, Z) = Res, (§,,2) .

This proves the corollary.

11. [Examples

Example 1. Let 4, -- -, 2, be nonzero complex numbers. On C?*, with its
usual coordinate system, let X be the homomorphic vector-field:

i=1

The origin is the only zero of X. Let & be the subsheaf of T spanned by X.
Assume deg ¢ = n. Identify, as usual, H,(0,C) = C. Then

(11°2) Resy‘(g, O) = 50(21’ 22’ ety zn)/(llzz . Zn) .

Example 2. Let a,, ---, a, be n 4 1 distinct complex numbers. Define a
holomorphic flow

(11.3) C X CP" — CP"
by

(11.4) (2, [z 20 -+ 1 2,)) — [e®%z,: e¥2z,: « -2 ez, ] .
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Let X be the holomorphic vector field on CP*, which generates this flow. The
zeroes of X are the n + 1 points p,, p,, - - -, p, Where
Dy=1[1:0:0:...:0],
pp=1[0:1:0:...:0],

Prn=10:0:0:...:1].

Each p; is a non-degenerate zero of X. Let & be the subsheaf of T spanned
by X. Identify Hy(p;, C) = C, and assume deg ¢ = n. Then

Res, (§, p)
(115) i So(ao — Ay Ay — Qgy v o0, Q5 — Qg Qg — Ay v 0, 0y — ai)

B (@, — a)a, — ap)---(a;_, — a)a;,, —a)---(a, — ay) '

Example 3. Fix integers k and n with 1 <k <n.Let A beak X (n+1)
matrix of complex numbers

Gy Ay ain
(11.6) 4 — Ay Ay ‘fzn
gy QAgy - almJ
For eachi= 0,1, - .-, n denote by 4; the k X n matrix obtained by subtract-

ing the i-th column of 4 from all the other columns of 4

Ay — @y Gy — Gy Gy — Gy

Ay — Gy Ay — Gyg » -+ Gy — Gy
(11.7) A; = . . .

Ago — Qg Qg — Qg *** Qgn — Qg
Assume

(11.8) for each i = 0,1, .-, n all the k X k sub-matrices of A4; are non-
singular.

The set of all matrices 4 for which (11.8) is valid is open and dense in the
vector-space of all k X (n + 1) matrices of complex numbers.

So given A satisfying (11.8) let ¥, be the holomorphic vector field on CP*
which generates the flow

(11.9) (Z,[zo:2,: -+ 1 2,]) — (e%0%°z, : e%it%z & - - . 1 e%in?z,) .
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Let & be the subsheaf of T spanned by V', - - -, V. & is integrable and full.
To describe the singular set of &, let @ = (a;, - - -, &, _y,,) be an (n — k + 1)-
tuple of integers with

(11.10) 0Ly < - <appgu<n.

Define CP%™! by

(11.11) CP: ' ={[zy:2y: - :2,] € CP*"|0 = 2,, = -+ = Zpp_1,1} -
The singular set Z of & is

(11.12) Z = UCP:t,

where the union is taken over all « satisfying (11.10). The CP%~! are the irre-
ducible complex-analytic components of Z. (0.27) and (0.28) are valid for Z.
If degp = n — k + 1, then Theorem 3 applies. Hence according to (0.42)

(11.13) Res, (§,2) = 3 #(p, &, CPTHICPET .

#(p, & CP%™) can be explicitly computed as follows. First, shuffle the columns
of A to obtain a new matrix A, whose first » — k + 1 columns are the «,-th,
«++, ®y_p.-th columns of A. Next, form a k£ X n matrix B, by subtracting the
last column of A, from all the other columns of A4,. Define complex numbers
A%+ -+, A% _1 4, by letting 27 be the determinant of the £ X k sub-matrix of B,
consisting of the i-th column of B, and the last kK — 1 columns of B,. Then
by (0.37):

(1114) #(SD, 5’ CP];_I) = ?(2‘115 M) 2;—k+1a O, Tty 0)/(2{' . ‘2;_1“.1) .
Combining (11.14) and (11.13) gives

(11'15) ReSfP (E’ Z) = Z {0(2{', Tt 2;—k+1’ 09 e 50)/(2f‘ : '1Z-k+1)[CPf_l] .

If n—k + 1 < deg¢ < n, then the situation is quite different. In this case,
set | = deg¢ and let x e H*(CP"; C) be the element of H*(CP*; C) dual to a
hyperplane. Define a complex number w(p) by

(11.16) o(T) = wlp)x* .
Choose an I-tuple 8 = (B,, - - -, B,) of integers with
11.17) 0<p<---<B<Ln.

Define CP;~* by
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(11.18) CPyt={lz,:2,:++-:2,]eCP" |0 =2, = --- =2,} .

Denote by [CP""'] the element of H,,_,,(Z, C) given by the fundamental cycle
of CP;~'. [CP""'] does not depend on the choice of 8. Then

(11.19) Res, (&, Z) = w(p)[CP* ], n—k+1<dego<n.

Note how (11.15) and (11.19) illustrate the rigidity theorem. If A4 is varied,
then the right-hand side of (11.15) varies, but that of (11.19) remains con-
stant.

Example 4. Fix integers k£ and n with 1 < k < n. Let Z be a compact
connected complex-analytic manifold with

(11.20) dm,Z =k — 1.

Set r =n — k + 1. Let L be a holomorphic line bundle on Z. Choose non-
zero integers n,, ---, n,. Let M be the total space of the vector-bundle
L™@® ...®L". Here L™ denotes the tensor product of L with itself n; times.
Then M is a complex manifold with

(11.21) dim,M = n .

Letz: Lm@® ... @ L"™ — Z be the projection. The zero section of the vector-
bundle gives an inclusion Z C M.
Choose a cover {U,},.; of Z by open sets with:

(11.22) U, is the domain of a complex-analytic coordinate system wg, .- -,

Wi

(11.23) on U, there is a holomorphic section s, of L|U, such that s, has no
Zeroes.

Let s»¢ denote the tensor product of s, with itself »; times. Then s™, - - -, s7 is

a holomorphic frame of L™ @ ... @ L™ on U,.
Set U, ==n"'(U,). On U, let z¢, - - -, z% be the coordinate system resulting
from wg, - - -, wi_, and s™,. - .,s". Thus if ¥ € U,, then

(11.24) () = wi(zv) , i=1,.-.,k—1,
(11.25) v =3 28, W)s () .
=1

On U, let & be the subsheaf of T|U, spanned by 9/dzf, - - -, 8/0z_1s
Z£=l niZ§+k_1a/aZ§-'+k_1. Then

(11.26) £1U,NU,=¢&|U,NU,.

So the {&,},c; fit together to form a subsheaf & of T, which is integrable and
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full. Also, (11.26) implies that & does not depend on the choice of the cover
{U,}ser- The singular set of £ is Z.

Set x = ¢,(L), so that xe H¥(Z; C). Then for any ¢ with n —k 4+ 1 <
degp < n,

(11.27) Res, (&, Z) is the element of H,,_,,(Z, C) which by Poincaré duality

in Z is dual to oy, -, 1,0, - -+, 0) xt-r r=n—k+1.
n .-,

Example 5. Let k, n, Z be as in Example 4. Set r =n — k 4+ 1. Let M
be Z X Cr,andn,: Z X C"—>2Z, m,: Z X C"™— C" be the projections. Then
there is the splitting

(11.28) T(Z X C7) = z{(TZ2) @ ={(TC") .

Let 4, - - -, 4, be nonzero complex numbers. On C* with its usual coordinate
system set

(11.29) X = z 2,2:0/02; .

On Z X C7 set

(11.30) X =X .

Let & be the subsheaf of T spanned by X and all local holomorphic sections
of #i(TZ). ¢ is integrable and full, and its singular set is Z X {0}. Identify
Z x {0} = Z.

(11.31) If degp = r, then Res, (§,2) = o2y, - 2 ) 21,02, .. .,0)[2] '

1°°° Ay

(11.32) If r < deg¢y < n, then Res, (§,Z2) = 0.

Example 6. Fix integers d and n with 1 <d <n. Let Z be a compact con-
nected complex manifold with

(11.33) dimyZ =d .

Sets =n —d. Let L,, ---, L, be holomorphic line bundles on Z, and M the
total space of the vector-bundle L, @ - - - @ L,. Then M is a complex manifold
with

(11.34) dimM = n .

The zero section of the vector bundle gives an inclusion Z C M. Denote a
point of M by (u,, - - -, uy), so that u; e L;. Let 4, - - -, 2, be nonzero complex
numbers. Construct a holomorphic flow
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(11.35) CXM-—>M
by
(11.36) (z, (uy, - - -, uy)) — (eM?uy, - - -, e¥2uy) .

Let X be the vector-field on M, which generates this flow. Let X be the sub-
sheaf of T spanned by X. The singular set of & is Z. Identify H,(Z,C) = C.
Assume n = deg¢. Let x;, ---, x, be the formal Chern roots of TZ. Set
¥; = ¢(L;): Take the 2d-dimensional component of ¢(x,, - - -, X4, 4, + Y1, * * +,
As + ¥ /14 + ¥)- -4 + ¥)]. Evaluate this element of H*(Z,C) on the
fundamental cycle of Z. This gives

) ,2 +y,"',ls+.)’)
(11.37)  Res, (¢, 2) = 2% Xe 4 + 9 izl .
(21 + yl)"'(zs + ys)

For a proof of (11.37) see [8] or [14], and also [6], [3, Theorem (8.11) and
Proposition (8.13), pp. 597-599], [20], [21].

Remark. In the general problem of computing Res, (¢, Z) let Z = Z® D
.-+ D Z™ be as (0.26). Consider the special case when dim;Z = k — 1 and
Z® = ¢. It can be shown that for this special case Examples 4 and S above
essentially solve the problem of computing Res, (¢, Z).

12. On the space BI'¢

In the homotopy theory of complex foliations as developed by Haefliger-
Phillips-Gromov [15], [16] a complex foliation F on a manifold M determines
a classifying map

(12.1) fp: M — BI'C

Here g = n — k is the codimension of F. In this section we would like to ex-
plain the relation of our residue classes Res, (§, Z) to this homotopy theory.
First recall that there is a natural map

(12.2) v: BI'¢ — BGL(q) ,

which corresponds to assigning the normal bundle of a foliation. As usual
BGL(q) denotes the classifying space of the general linear group GL(q, C). In
terms of these concepts the vanishing theorem simply asserts

(12.3) v*: HY¥(BGL(q); C) — H*(BI'¢; C) vanishes whenever j > q .

In contrast to this, it is not difficult to show that
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v¥: H(BGL(q); Z) — HY(BI'S; C)

(12.4) e e . .
is injective for all j = 0,1,2, - - -,

and (12.3) and (12.4) together imply

(12.5) For each j> g, H,;_(B['¢; Z) is an abelian group which is not finite-
ly generated.

See [12] for details of these first consequences of (12.3). More delicate results

arise in the following manner:
Let BGL be the classifying space of the infinite general linear group. If ¢,
c,, - - - are the universal Chern classes, then

(12.6) H*(BGL; C) = C[cl,cz, ..

Let y,: BI', — BGL be the composition of v with the inclusion BGL(q) C BGL.
Then (12.3) is equivalent to

(12.7) v¥: H¥(BGL; C) — H¥(BI'¢; C) vanishes whenever j > gq.

We are interested in v, only up to homotopy type, so v, can be taken as an
inclusion BI', € BGL. Thus there is the pair of spaces (BGL, BI")). In this
context the constructions of § 5 (e.g., Definition (5.51)) can be interpreted as
lifting each ¢ € H¥(BGL; C), j > q, to a definite and well-defined class
¢ € H¥(BGL, BI'; C).

More precisely, let & be a full integrable sheaf on a complex manifold M.
Set O = T'/&. Let S be the singular set of £. The procedure givenin § 5 and § 7
(e.g., Definition (7.1)) lifts each ¢(Q) € H¥(M; C), j > n — k, in a canonical
fashion to a class $(Q) € H¥(M,M — S; C). Now & determines a homotopy
commutative diagram

M—s%, Br,
(12.8) l i
M —> BGL
fe

where f5 classifies the foliation of M — S, and f, classifies the element of K(M)

given by Q.
The exactness of a resolution of Q gives on M — S an exact sequence of

vector-bundles
(12.9) 0_)E7_)E1‘—1'_)"'_)E0_)1J—)0,

which can be thought of as an explicit homotopy between the two maps of
M — S into BGL of (12.8). Therefore & defines a map of pairs:
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(12.10) fe:M,M — U) - (BGL,BI') ,

where U is a small neighborhood of S in M.
The universal liftings ¢ ¢ H*(BGL, BI';; C) are now uniquely characterized
by

(12.11) ¥@) = ¢(Q) .

Quite equivalently this is expressed by the formula
(12.12) Res, (§,2) = n,f¥() ,
where

mz: H*(M,M — S; C) - H(Z,C)

is induced by excision followed by Poincaré duality.
Granting (12.12) one may use the examples of § 11 to prove the following:
Proposition. Let d(n) be the dimension of H**(BGL(n — 1); C) over C.
Then there exists a surjection of abelian groups

(12.13) h: 7y (BIC_) — C¢™ .

This result was already announced in [9] and is an easy analogue in the
complex case of the recent results of Thurston [22], concerning real foliations
with varying Godbillion-Vey invariants.

To prove (12.13) we first construct a homomorphism

(12.14) h: ny_BGL,BI",_) — C¢™

in the following manner. Let ¢, - - -, ¢4, be a basis for the symmetric poly-
nomials in n-variables X, - - -, X,, which are of degree n, and lie in the ideal
generated by the first n — 1 elementary symmetric functions gy, - - -, g,_, of
the X’s. We identify the ¢’s with classes in H*(BGL) by interpreting the g; as
the i-th Chern classes, and den0t~e by &, - - -, $am, the liftings of these classes
to H*(BGL, BI'¢_)). Now then 4 is defined to be the evaluation of this basis
on a relative class:

(12.15) h@) = (@), - -5 Pam(@)}

where « denotes both the element in r,,_, and its image in H,,_, under the
Hurewicz map.

We next evaluate % on the relative elements f, determined by the foliation
F, of § 11. Recall that here 2 = (4,, - - -, 4,,) is an n-tuple of nonzero complex
numbers, and F, the foliation of C™ — {0} given by the vector-field X2,z,0/9z;.
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According to (11.2) and (12.12) we obtain

h(t) = (0D /0., -+, a0, D} .

The surjectivity now follows from the folloing proposition whose simple proof
is given in an Appendix: .

Lemma. The set A e C*™ consisting of the values h(f,)), 2¢ (C — {0
additively generates all of C¢™.

To proceed to (12.14) consider the diagram:

7,u(BGL) — 7,,(BGL, BI'S_)) — 7y, _y(BI'S_)) — 7,,,_,(BGL)

lﬁ

Cd(n)

It is well known that =,, ,(BGL) = 0, and that ,,(BGL) = Z. liurthermore
any decomposable element vanishes on a spherical class. Hence 4 is zero on
the image of x,, and induces the desired surjection A: r,,_(BI'S_) — C%™.

Appendix

In § 12 we needed to show that a certain subset of affine space additively
generated the whole space. The general principle behind this fact is expressed
in the following

Proposition. Suppose that A C C™ is a connected complex analytic subset
of C™ of dim >1, which is not contained in any affine hyperplane of C*. Then
A generates C™ additively.

Proof. Let M C A denote the submanifold of nonsingular points in A. M
will still satisfy our conditions by well known arguments. Hence it is sufficient
to show that M generates C™.

Now let span (M) denote the vector space spanned by the translates to 0 of
all the tangent spaces to M. If span (M) does not equal C*, then there is a
linear form z on C" which vanishes identically on span (M). Hence the restric-
tion of the one form dz to M vanishes identically whence—as M is connected,
M lies in a hyperplane z = const. contradicting our hypothesis.

Therefore span (M) = C*, and we can find a finite number of points m;, - - -
m,; € M whose tangent spaces already generate C". Now consider the map

b

F
MXxX -+ XM—>C"

obtained by sending a k-tuple in M to its sum. Clearly the differential of this
map is onto at the point (m,, - - -, m,). Hence the image of F contains an open
ball about m, + - - - 4+ m;. But such a ball clearly generates all of C*. q.e.d.
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To apply this principle in our case, observe that the image of the map 1 —
h(f) is equal to the image of a map H: C'— C¢™, which sends the
(n — 1)-tuple {x;} to the d(n)-tuple {m,(x)}, where a ranges over the multi-
indexes of weight n and m,(x) denotes the monomial xg*- - -xz»3*. The linear
independence of these monomials now clearly implies that the image of M does
not lie in a hyperplane.
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