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THE DE RHAM PRODUCT DECOMPOSITION

R. MALTZ

1. Introduction

The main purpose of this paper is to present a simple proof of the de Rham
product decomposition theorem for semi-Riemannian manifolds. In fact, we
extend the theorem to the case of metric connections with torsion. As a by-
product of our methods, we also obtain a simple proof of the Ambrose-Hicks
theorem on parallel translation of curvature.

The original theorem, for Riemannian manifolds, appeared in de Rham [5].
Another proof appeared in Kobayashi and Nomizu [3, Vol. I, pp. 179-193],
which is also the general reference for this paper (see also Vol. II, p. 331).
The semi-Riemannian case is due to H. Wu [7]. Our proof uses an elegant
method of constructing Riemannian covering maps due to B. O'Neill [4]. The
advantage of using this construction lies in the fact that homotopy considera-
tions can be dispensed with, being absorbed in the theory of covering spaces.

In § 2 we give a brief exposition of O'Neill's construction, adapted to the
affine (or semi-Riemannian) case. We then extend his simple proof of the
Ambrose theorem on parallel translation of curvature to the affine case, due
to Hicks [1].

In § 3 we use the same construction to prove a general product theorem for
affine manifolds, due essentially to Kashiwabara [2]. It is worth noting that
this proof remains valid in the appropriate infinite dimensional setting.

The results of § 3 essentially contain the global part of the de Rham theorem;
in § 4 we investigate the local question for an arbitrary metric connection.

In [7] H. Wu used the Ambrose-Singer theorem on holonomy and the
Ambrose-Hicks theorem to prove the de Rham theorem; the global part of
his proof is thus really contained in the Ambrose-Hicks theorem. Since
O'Neill's construction gives a simple proof of the Ambrose-Hicks theorem, it
is not surprising that it also works for the de Rham theorem.

2. Construction of affine and semi-Riemannian coverings

In this section we follow O'Neill's exposition in [4] as closely as possible,
making changes only where necessary to accommodate the more general setting.
We omit or merely outline proofs which are essentially the same as in [4].
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The basic difference between the affine and semi-Riemannian cases on the one
hand, and the Riemannian case on the other, lies in the unavailability of the
Hopf-Rinow theorem; so that geodesies used by O'Neill have to be replaced
systematically by finitely broken geodesies in the arguments which follow. (It
should be noted that the Hopf-Rinow theorem is actually superfluous even in
the Riemannian case, for the applications we have in mind.)

First, we list some well-known facts about affine manifolds and maps needed
in the sequel. Let M and N be C°° manifolds equipped with affine connections
V and V respectively. An affine (or connection-preserving) map φ: M —> N is
a map such that if vector fields X, Y on M are respectively ^-related to vector
fields X', Yf on N, then VXY is ^-related to V'x,Y

f. Alternatively, φ^. commutes
with parallel translation along curves. It follows that φ maps geodesies onto
geodesies and is smooth. Each point p in an affine manifold M has a convex
normal neighborhood U(p). That is, U(p) is the diffeomorphic image under
expp of an open ball in M p , the tangent space of M at p; and any two points
in U(p) can be joined by a unique geodesic segment lying entirely within U(p).
If φ: M —> N is an affine local diffeomorphism, it follows that φ maps suffi-
ciently small convex normal balls diffeomorphically onto convex normal balls,
and therefore that φ is uniquely determined by (φ*)p for any p € M if M is
connected.

An affine manifold is said to be complete (or geodesically complete) if each
geodesic γ is defined on the entire real line.

We will need the following lemma, appearing in Hicks [1, Theorem 3],
and outline a proof indicating explicitly the role played by broken geodesies.

Lemma 1. Let M and N be n-dimensional connected C°° manifolds each
carrying affine connections. Let M be complete, and φ be a connection-
preserving local diffeomorphism of M into N. Then M is a covering space of N.

Proof. First, we show that φ is onto. Let p e M. Then φ(p) can be joined
to an arbitrary point q e N by a broken geodesic γ with k breaks, for some k.
We show that γ can always be lifted to a broken geodesic γ covering it (i.e.,
φof = γ). Hence if q = γ(t0), then q = φ(f(t0)) £ φ(M). If k = 1 then γ is a
geodesic. Suppose f(0) = φ(p), f(0) = w. Then the geodesic f in M satisfying
f(0) = p, f{0) = v, where φ*v — w, covers γ (it is definable for all t, by com-
pleteness of M). The proof is completed by successively lifting each segment
of γ to the endpoint of the preceding lifted segment. It follows also that N is
complete.

Finally, any (convex) normal ball in N is evenly covered by φ, as is easily
shown.

Now we give the affine version of the construction in [4]. The semi-
Riemannian case is practically identical (see § 4). Simply replace "affine diffeo-
morphism" by "isometry" where appropriate.

Let U = {Ua I a e A} be an indexed collection of subsets of some set. By a
semiequivalence relation on the index set A we mean a reflexive, symmetric
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relation ~ such that (1) a ~ β and β ~ γ imply a ~ γ whenever Ua Π Uβ Π
UrΦ 0 and (2) α — /3 in A implies C/β Π Uβ Φ 0.

Remark. If all the above conditions hold with the exception of (2), we can
define a new relation by suppressing all relations a ~ β if Ua Π Uβ = 0 the
new relation obtained is then a semiequivalence.

Proposition 1. Lei £/ = {E/β | a e 4̂} fee Λn open covering of an affine mani-
fold M, and ~ be a semiequivalence relation on A. Then there exist (1) an
affine manifold X, (2) an affine local diffeomorphism ψ : X —• M, and (3) for
each a e A, a cross-section λa: Ua -+ X of ψ on Ua such that λa = λβ on Ua Π
Uβ Φ 0 // and onfy if a — β in A.

Proposition 2. JF/ί/i hypotheses and notation as in Proposition 1, let
{φa: Ua-+ N\a € A} be a collection of affine local dίffeomorphisms into an
affine manifold N. If a ~ β in A implies φa = φβ on Ua Π Uβ, then there
exists a unique affine local diffeomorphism φ: X —> N such that φoAa = φa for
alia 6 A.

Remarks concerning Proposition 2. (1) If the Ua are assumed to be convex,
then Ua Π Uβ are connected. It follows that if a — β implies (φa)*(pa) =
(φβ)*(Pa) f° r some paζ. Ua Π Uβ, then the conclusion of Proposition 2 holds.
(2) If the Ua are assumed to be convex, φa: Ua —> N are given, but there is no
semiequivalence relation on the index set A, then setting a — β if ψa = ψβ on
J7β Π Uβ Φ 0 gives a semiequivalence, and the conclusion of Propositions 1
and 2 are valid.

The proofs of Propositions 1 and 2 are essentially identical to those given in
[4]. The idea, of course, is to construct X by gluing together disjoint copies of
the Ua according to the following rule: Ua and Uβ are glued together byiden-
tifying the two distinct copies of Ua Π Uβ which they contain, provided a — β.

Even if M is connected, X need not be. However, define a chain in the
index set A of U to be a finite sequence ax — ~ an of successively related
indices. Then both X and M are connected, if the elements of U are connected
and any two elements of A are chainable.

We now find a criterion for the completeness of the manifold X. A chain

a ι ~ . . . ~ an in A covers a curve segment a: [0, b] —> M provided there
exist numbers 0 = t0 < tλ < < tn = b such that a\[t^19 ί j lies in Ua. for
1 < i < n. Then we say that (t/, ~ ) w extendable from a point p ζ Ua by
broken geodesies provided that any broken geodesic γ: [0, b] —> M such that
(̂O) = p can be covered by a chain α: = aλ —' ~ an'm the index set of U.

Proposition 3. Let U = {Ua\a€ A} be an open covering of a connected
affine manifold M, with — a semiequivalence relation on A. If M is complete
and ([/, ~ ) is extendable from peUa by broken geodesies, then in X the
component C containing the point λa(p) is complete, and hence ψ | C: C -* M
is an affine covering.

Proof. Let β: [0, b) -> C be a geodesic in C such that β(O) = Λα(<?). It
suffices to show that β has an extension past b. Let γ be a broken geodesic



164 R. MALTZ

joining p to q (by connectedness of M) now ψ o β is a geodesic starting at g
by affineness of ψ, and by completeness of M it can be extended to a geodesic
5: [0, b] —> M. Now by hypothesis the broken geodesic γ*δ (* denotes curve
multiplication) can be covered by a chain a = aλ ~ ~ an9 and hence in
particular δ can be covered by a chain α m — ~ an. That is, there are
numbers ti such that δ\[ti_1,ti] lies in the domain Ua. of Λαi (m < i < ή).
Thus we have well-defined geodesies λaioδ: [^_1? ί j —• X. Since «$_! ~ α< we
n a v e ^αf,! = λβ< on t/α._x Π t/β<; hence these segments constitute a single
geodesic segment β: [0, 6] —> X. By construction, β and β are initially the
same, hence β provides the required geodesic extension of β to (and thus past)
b. The final assertion in the proposition follows from Lemma 1.

Now, as a preliminary application of the preceding theory, we give a proof
of the Ambrose-Hicks theorem on parallel translation of curvature [1]. Again
we follow O'Neill as closely as possible, but our notation is partially inherited
from J. A. Wolf [6].

We will need the following notational conventions. If p is a point in a com-
plete aίfine manifold M, and v e Mp, then let γt(v): [0, 1] —> M be the uniquely
defined geodesic segment satisfying γQ(v) = p, fo(v) = v. Given tangent
vectors vί9 , vk at p the broken geodesic γ(i) — γt(v19 , vk): [0, k] -> M
emanating from p is defined by: γ(f) = ^(t^) for ί e [0,1]; γ(t) = rί-i^ί^i^
• , v J ^ + J for t € 0", i + 1], 1 < i < k, where τ(v19 , vt): M p -> M r (<)

denotes parallel translation along 7 * ^ , , vt) from the initial point f(0) = p
to the final point f(0 Thus the (i + l)-st segment of γ is the geodesic δ: [0,1]
-^ M with 3(0) = r(0 and δ'(0) = r(v1? , v<)v<+1.

Theorem (Ambrose-Hicks). Let M and N be complete n-dimensional affine
manifolds; let p € M and qεN; let I: Mv -* Nq be a nonsingular linear map.
Suppose that for each v19 , vk e Mp the nonsingular linear map L =
liVn * > vk) = τ(lvly , lvk) oloτ~ι(vί9 , vk) maps the curvature and tor-
sion tensors of M on those of N, i.e., Rf

LvLwLu = LRvwu, T(Lv, Lw) = LΓ(v, >v)
/6>r u,v,w e M r ( f c ), w/z^^ i?(i^0, Γ(Γ7) denote the curvature and torsion tensors
of M(N). Then there exist (1) a complete affine manifold X, (2) affine coverings
ψ: X -> M and φ: X -±N, and (3) a point xeX such that ψ(x) = p, φ(x) =
q, and loψ^ = φ^ at x.

Thus if M (also N) is simply connected, then φoψ-1: M —> N is an affine
covering (dίβeomorphism) with differential map I at p.

Proof. F o r e a c h v19 , vk e Mp9 l e t U(v19 " , ^ ) b e a c o n v e x n o r m a l
b a l l a t γk(vl9 9 v k ) . C o n s i d e r t h e n o n s i n g u l a r l i n e a r m a p l(v19 9vk) =
τ(lvλ, , lvk) oloτ-

ι(vλ, - 9vk) from MrkiVlt...tVk) to NWΌU...tlυk). Since

l(v19 , vk, vk+1) preserves curvature and torsion for all vk+1, it follows that
l(vx, - , vk) and U(v19 , vk) satisfy the hypotheses of the Cartan Lemma,
stated below. Its conclusion then gives a unique aίfine local diffeomorphism
f(i>i> '->Vk)'> U ( v 1 9 > - 9 v k ) - * N s u c h t h a t φ ( v l 9 , v k ) * a t γ k ( v 1 9 - , v k )
is/O^i, ->9vk).
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Thus U = {U(v19 , vk) I Vi e Mp, k = 1, 2, . } is a convex open covering
of M, and we define a relation ~ on its index set by: (v19 , vk) ~
O i , , w4) if φ(v19 , 1;*) = ^ ! , , wk) on U(v19 , vk) Π [/(w^ , wfc)
=£ 0. By the second remark following Proposition 2, — is a semiequivalence.

We assert that (U, ~ ) is extendable from p e £/(0) by broken geodesies,
where 0 € Mp. Let 7: [ 0 , ^ ] - > M be a broken geodesic such that γ(0) = p.
Cover γ by a finite number of overlapping neighborhoods from £/, which we
can assume are of the form Uo = U(0), [^ = E ^ ) , C/2 = U(v19v2)9 —9Ut

= U(v1," ,vι) for some vt^Mv. Then we have aίfine local diίϊeo-
morphisms φt = 0(^1? , vt): Ut -^ N, 1 < i < I. Now choose numbers
ί* € [0,1] such that pt = γ(i — 1 + tt) e Ui_x Π t/ t. We assert that (^.O^p,
= (φi)*Pi- This is because the differentials of φi_x and ̂  commute with parallel
translation, so (φd*Pi = Kv» »vt_x, ί4vt) by construction of / since (φi)*rii)

= /(Vi, , Vi). Similarly, (φi^γli - 1) = /Oi, , v*_i), hence again
(φi-i)*pt — Kv\, - - ' j^i-u ίί^ί) It follows by the first remark following
Proposition 2 that ^ = ^ on [/M ίl [/<, and hence £/<_! ~ E/f as required.

This argument also shows that any index (Vj, , vk) is chainable to 0 e Mp.
The theorem follows now by applying Propositions 2 and 3.

Lemma 2 (Cartan). Let U be a normal ball at a point p of an n-dimensional
affine manifold M,N be a complete n-dimensional affine manifold, and I: Mp

—> Nq be a nonsingular linear map. If l(w) = Γ(/W)O/OΓ(H')"1, considered as
a map between the tensor algebras of the tangent spaces concerned, maps the
curvature and torsion tensors of M onto those of N for each w € Mp such that
expp w € U, then there exists a unique affine local diffeomorphism φ: U —> N
such that (φ#)p = /.

For a proof, see e.g. [6, pp. 27-30].

3. A global product theorem

In this section we use the method of § 2 to prove the following result for
affine manifolds, obtained by Kashiwabara [2] using homotopy methods.
Again the semi-Riemannian version is almost identical and is omitted (see § 4).

Theorem. Let M be a simply-connected complete affine manifold, and
suppose that there exist two globally defined complementary parallel fields of
planes Tx and T2. Suppose further that the Tt are completely ίntegrable, and
that for each p e M the leaves Miip) of Tt through p give a local affine product
structure, i.e., there exist neighborhoods Όt of p in Mt(p) and U of p in M
such that U is affinely diβeomorphic to ΌxχU2. Then M is affinely diffeo-
morphic to the affine product Mιχ M2.

Before giving the proof, we recall a few facts about affine product structures
which will be needed.

First, a submanifold N of an affine manifold N with connection V is said to
be autoparallel if tangency to N is preserved by parallel translation along curves
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in N. It follows that if X, Y are vector fields on N, and X, Y are extensions to
N, then there is a naturally induced connection on N defined by FYX = FψX.
It follows also that N is totally geodesic, i.e., geodesies of N are geodesies
of JV.

Now, if Ni and N2 are affine manifolds with connections F1 and F2, then there
is a connection F, the product connection, on Nλ X N2 = N such that the
tangent spaces of the submanifolds of form Nι X q (respectively p X JV2)
through (p,q) ^ N1 X N2 are parallel (hence Nλχ q (respectively p X iV2) are
autoparallel for all (/?, q) e N1 X N2), and V induces connections F\q) and F\p)
onNλχ q and p X N2 respectively such that the diίfeomorphisms N1-*N1χ q
and N2-+ p X N2 are affine.

In order to define V we need the following remarks. The tangent space
(Nι X N2)(p>q) is the direct sum (iVχ)p + (N2)Q. If ^ 6 (Λ^p and v2 e (iV2)β, we
write (^1? v2) or ̂  + i;2 to denote their sum in (N1 X N 2 ) ( P f β ) . It follows that
the module ?ί(Nι X N2) of C°° vector fields on N1 X N2 consists of elements of
form (fX19 gX2) where f,ge ^(Nλ X N2), the ring of C°° functions on Nx X N29

and Xt € 3c(Ni), the set of C°° vector fields on N€. Note that the mappings
Xγ -> ( ^ , 0 ) , resp. X2 -> (0,Z 2) imbed X ^ ) , resp. £(ΛQ, in 3 6 ^ X N2).
Under this identification dciNJ and dc(N2) generate dc(Nλ X N2) over the ring
^(Nλ X N2). By a well-known theorem [3, pp. 25 and 30] it suffices to define
F(VlfV2) on g(Nx X iV2) and on ϊ ^ ) and 3£(N2), and then extend F(VltV2) to a
derivation on the set of tensor fields of Λ^ X N2. To this end, set F{VltV2)f =
(v19 v2)/ for / € g W X N2), and Γ^,,,,,^ = F J ^ , Γ(f,lfβi)JT2 = F^2Z2.' It is
immediate that F has the properties of the preceding paragraph.

It follows that if at are curves in Nt and Xi are parallel vector fields along
ai9 then (Xλ,X2) is parallel along (ax,a2) and conversely. In particular (α 1 5α 2)
is a geodesic of iVj, X N2 if and only if at are geodesies in iV4.

If (x19 ,^ r ) and (xr+ι, > > >,xr+s), r + s = n, are local coordinates in
neighborhoods Vλ of /? e iVΊ and U2 of q e N2, then we restrict 1 < /, j,k < r
to be the early indices, r + 1 < a, β, γ < n to be the late indices, and 1 <
I,J,K < n will denote general indices, so that Xt = djdx1 and Xa = d/dxa

span 2ί(U1 X U2) and the connection F is determined on Όx X U2 by FΣlXj =
Σ ΓIJXK It follows immediately that the Γfi as well as (d/dXL)Γ£ vanish
if /, /, K, L are not all early or all late, and this condition on the Γβ charac-
terizes the product connection on a product manifold. The components Tfj
and RjjK of the torsion and curvature tensors satisfy the same condition.

Let Vi € (NJp, wt € (N2)q for / = 1, 2, , k. Then the broken geodesies
γt(Vi> ' > vk> wi> ' *' > wk) = ϊ(t), ϊt(Wι, , W*J v15 , vk) = f(/) issuing from
(/?, <?) have the same endpoints ^(2/:) = γ(2k). This is because γk(v1 +

Wi,- ' , V k + w * ) = ( r * O i > ? ^ ) 5 r * ( w i > ' w k ) ) = Ϊ2k(vu - - - , v k , w 1 9

. . . , >vfc) = fcaCwx, , w t, v15 , vk). Also parallel translation along the
broken geodesic γ(t) agrees with that along γ(t), since they both agree with
that along γt(vγ + wl9 , vk + wk).
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Proof of theorem. Fix p e M. By definition the leaves Λf4 = Mt(p) are
autoparallel in M, and hence totally geodesic. It follows easily that they are
complete. We will set up local affine difϊeomorphisms ψa defined on convex
normal balls Ua in MxχM2, define a semiequivalence relation on the index a
and apply the results of § 2.

For convenience, we will say that curves, tangent vectors, etc., tangent to
Tλ(T2) in M, or parallel to M1(M2) in M1 X M2, are horizontal (vertical). A
vector tangent to M will be denoted by (v, w) or v + w where v is horizontal,
and w vertical.

We now prove the following lemmas, generalizing similar statements for
M1 X M2.

Lemma 1. Given a horizontal curve γt: [0, k] —> M, there exist (1) a
vertical CNN (convex normal neighborhood) U2(γ0) in M2(γ0) which is affinely
diffeomorphic to a vertical CNN (convex normal neighborhood) U2(γk) of γk

in M2(γk), (2) a neighborhood Ux(γ) of γ in Mfo) such that Ufy) X U2(γ0) is
affine diffeomorphic to a neighborhood of γ. The same statements hold with
horizontal, vertical, and 1, 2 interchanged.

Proof. Cover γ with a finite number of CNPN (convex normal product
neighborhoods) Ut = Uλ(γt) X U2(γtt), 0 = t0 < tγ < . . . < tm = k, using
compactness of f([0, A:]). On the overlap Uo Π Uι the vertical factors of Uo and
Ui must coincide, so we can assume, by reducing the vertical size of Uo and
Uί if necessary, that U2(γQ) is affinely diffeomorphic to U2(γtl).

Now we repeat the argument on Uι and U2, again reducing vertical size if
necessary. By again reducing the vertical size of Uo accordingly, we find U2(γ0)
affinely diffeomorphic to U2(γt2). After k repetitions of this argument, we find
a neighborhood U2(γ0) (having been reduced in size from the original U2(γQ))
affinely diffeomorphic to U2(γk), similarly redefined.

To prove (2), set Ux(γ) = U UfyJ. Then Vfy) X U2(γ0) is clearly a PN
(product neighborhood) of γ.

Lemma 2. Let γ(i) = γt(v19 , vk, w19 , wk) and γ(t) = γt(wλ, . . , wk,
V19 ",vk) be two broken geodesies issuing from p, for vi9 wt e Mp, vt

horizontal, wt vertical. Then the end-points γ(2k) = γ(2k) coincide.
Proof. First, note that we can assume that the wt are small enough to

carry out the argument to follow, since we can introduce artificial breaks in γ
and γ if necessary. This process will change the parametrizations of γ and γ,
but will not affect the paths which they determine.

For each t € [0, k] consider the horizontal broken geodesic δs(t) =
ys+t(wλ, , (t — l)wL, v19 , vk), 0 < s < k, where t lies between integers
/ and / + 1. We apply Lemma 1 to δ(t) to obtain a vertical CNN U2(δ0(t)) of
δo(t) such that UMO) X U2(δ0(t)) is a PN of δ(t) for some Utfit)). Now we
choose a finite number of CNN U2(δ0(tί)) covering γ(wx, , wk) for 0 = t0 <
tx < <tm — k. We can arrange that each segment of γ(w19 , wk) be con-
tained in one and only one C/2(50(^)), by choosing wt and £/2(<5(̂ )) small enough.
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H e n c e γ(w19 v19 , vk) a n d γ(v19 -9vk9w^ b o t h l ie in t h e P N Ui(δ(t0)) X
U2(δ0(t0)); hence γk+ι(w19 v19 , vfc) = ^jt+iί^i, , vk, wλ)9 and since parallel
translation along these two broken geodesies agrees, γt(w19 vl9 , vk9 w29 -wk)
— TtiVii - - -, vk9 w19 , wk) for k + 1 < t < 2k. Now we repeat the reason-
ing on the two once-broken geodesies γt(w19 w2, v19 , vk) and γt(w19v19

- ->Vk>wd> 1 < t < k + 2, lying in the product neighborhood UiiδitJ) X
U2(δ0(t2))9 t o find γ 2 k ( w l 9 w 2 9 V19> 9 v k 9 w 3 , , w k ) = γ 2 k ( w l 9 v 1 9 -9 v k 9 w 2 9

• , wk). Repeating this argument proves Lemma 2.
Lemma 3. Let γ(vl9 , vk9 w19 , wk) be a broken geodesic with

Vι e Mv horizontal and wt € Mp vertical. Then there exists a CNN
U(v19 , vk9 w19 , wk) which is affinely diffeomorphic to the affine product
U\(V\> , vk) X U2(w19 , wk)9 where Ux(vl9 , vk) is a CNN of γk(v19 - 9vk)
in M1 — Mλ(p) and U2(w19 , wk) is a CNN of γk(wιy , wk) in M2(p) = M2.

Proof. Combine Lemmas 1 and 2.
Now let Li: M^ ->M be the affine diffeomorphisms identifying Mt with M4(p)

in M, and let J5 = (p1? p2) e Mx x M2 be the point such that L^Pi) = p ε M.
By the local product assumption on M, there exist CNN Ut of pt in M^ such
that L = Lx X L2: Uι X U2 -^ M is an affine product diffeomorphism. Set
/ = ( L ^ . Note that L^^^i, , vk)) = ^(/^i, , fefc), L2(j(w15 , wk)) =
γ(lWi, , Zwfc) for v% € (M^^^ >v̂  € (M2)Pa. Now each point (q19 q2) of Mi x M2

is of form γk(vx + wl9 , vk + wk) = γ2k(v19 , vk9 w19 , wk) for some
set a of k vectors (vi9 wt) e (M1 X M2)~ for some k. Furthermore, (q19 q2) has
a C N N t/β = U(v19 " ' 9 v k 9 w 1 9 ' " 9 wk) of form Ux(vl9 , vk) X U2(w19 , wk)

w h e r e Ux(vl9 - 9vk) a n d ̂ ( w ^ , wk) a r e re spect ive ly C N N of γk(v19 •• -9vk)
i n M1 a n d ^ ( w ^ •• ,>i ;

fc) in M 2 ; w e c a n t a k e Ua s m a l l e n o u g h so t h a t
LiiUiiVi, , vk)) — Ux(lvl9 , lvk) and ^(^(Wi, , wk)) — U2(lw19 , /wfc)
are the CNN guaranteed by Lemma 3 for the broken geodesic γ(lv19 , lvk9

lWi, , /wΛ). Now let φa map t/β = Uj(v19 , vk) X U2(w19 , w4) as the
product map Li X L2 onto Uλ(lvl9 , /̂ /t) X t/ 2 (^u > ̂ Λ ) «̂ is a n affine
diffeomorphism since the Lt are, and φa maps the CNPN Ua onto a local CNPN
in M. It follows that if φa(q19 q2) = ^(<3Ί, <?2) f° r s o m e (<?i5 Q2) e ^ i X ^ 2 J then
the φβ agrees with ?̂̂  on some CNPN Ua Π £/̂  of (q19 q2), and hence the <pa

induce a semiequivalence relation on the Uaby a ~ β iί φa = φβ on Ua Π ί/̂
^: 0. Note that the £/β cover Mj X M2. Furthermore yt{vγ + w19 , vk + wΛ)
is extendable from (p1? /?2) by covering it with a finite number of sufficiently
small CNPN V^ So the affine manifold X with affine covering maps ψ: X —>
Mλ X M2 and 9: X —• M is defined furthermore M is simply connected so X
is affinely diffeomorphic to M. It follows that ψ: M —• Mx X M2 is the affine
universal covering of M1 x M2. But then M is affinely diffeomorphic to Mx x
A3Γ2, Mi is the affine universal covering of Mi9 and | = ψ^ X ψ2 where ψ i : M 4

—> Mi are the universal covering maps.
Now M — MxχM2 has (possibly) another set of complementary autoparallel

integrable distributions T1 and T2 by assumption. We must show that these two
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sets of local product structures coincide so that M4 = Mt{p) = Mt. By auto-
parallelism it suffices to show they agree at one point. We use the relation
φoXa = φa of Proposition 1, § 1, where λa is a local cross-section on Ua of
ΨΊ X ψ2. Take a = {0}, 0 e (Mx X M2)^. Then pα = L = 1^ x L2 on a CNN
C/i X U2oί p. Since Λα is a cross-section for f X | 2 , λa maps [^ X t/2 affinely
diffeomorphically onto a CNN Uλ X t/2 in M1 X M2. Now >̂oΛα = ?̂α implies
φ(U1 X £/2) = LίC/j X U2), showing that the two sets of foliations agree at
p e M. Hence M = Mx X M2.

4. The local product theory and the de Rham theorem

In this section we prove the following generalization of the de Rham product
decomposition theorem for Riemannian manifolds, which also includes the
semi-Riemannian version by H. Wu.

Theorem. Suppose that M is a simply-connected semi-Riemannian manifold
with a complete metric connection F, and that for p ζ. M, there exists a non-
degenerate proper sub space Tλ(p) of Mp with the following property. For every
curve τ : [a, b] —• M with τ(a) = p, τ~ιRτΌtτW o τ and (τ~ιT(τv, τw), ύ) vanish
unless u,v,wε Tλ{p) or u,v,we Tλ

L{p) = T2(p), where τ also denotes parallel
translation along τ from τ{a) to τ(b), R and T denote the curvature and torsion
tensor of M respectively.

Then M is isometric and affinely diffeomorphic to the semi-Riemannian product
manifold Mx X M2 with the product affine connection, where M^ = Mt{p) are
the maximal integral manifolds through p of the mutually orthogonal auto-
parallel fields of planes Tλ and T2 generated by Tλ(p) and T2(p), in the induced
metrics and connections.

Remark. The condition on the curvature is equivalent to: the linear
holonomy group Φ(p) at p leaves invariant the subspace Tx{p) (hence also
UP)).

Before giving the proof, we will need to extend the results of §§ 2 and 3 to
the case of semi-Riemannian manifolds and metric connections. A C°° manifold
M equipped with a nondegenerate metric tensor (inner product) < , > defined
on each tangent space, and such that (X, Y> e C00 if X, Y are C°° vector fields
on M, is called a C°° semi-Riemannian manifold. An affine connection V on
M satisfying X(Y, Z> = (FXY, Z> + <Y, FXZ>, X, Y, Z € 36(M), is called a
metric connection for <( , ) . Geometrically, this condition means that parallel
translations along curves in M are isometries with respect to the metric tensor.
If in addition, the torsion tensor T(X, Y) = VXY - VYX - [X, Y] vanishes,
then V is called the Levi-Civita connection associated with V. The Levi-Civita
connection exists, is unique for any semi-Riemannian manifold, and is given
by the formula

2<FX Y, Z> = X{ Y, Z> + Y<Z, Z> - Z<Z, Y>

Γ, Y],Z> + <[Z,Z], Y> + <[Z, Y],Z> .
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Note that nondegeneracy of the inner product is needed in order that VXY be
well-defined by this formula.

A semi-Riemannian manifold, unless further qualified, will be assumed from
now on to carry its Levi-Civita connection. A semi-Riemannian manifold with
a metric connection will be called a metrically connected manifold. The appro-
priate structure-preserving map for semi-Riemannian manifolds is the isometry.
An isometry is a mapping φ: M —» N satisfying (φ%v, φ^w)f = (v, w}, where
< , > and < , >' denote the metric tensors of M and N respectively, and
v,w e Mp for any p e M. If M and N are both π-dimensional semi-Riemannian
manifolds, then every isometry φ: M —• N is also affine, as is shown using the
formula for the Levi-Civita connection, φ is also a local difϊeomorphism, and
if φ is bijective as well, then φ is said to be isometric, and M and N are isometric
(equivalent). Since an isometry ψ is affine, it is also geodesic: if γ is a geodesic
of M, then φ o γ is a geodesic of N. The converse can also be shown: a geodesic
map φ with ψ^ injective is affine. On the other hand, an affine map ψ: M-^N
for semi-Riemannian M and N is not necessarily isometric; for example, a
homothety, a map ψ satisfying (ψ*v, ψ#>v> = K(v, w> where K is a constant,
is affine, as is seen again by using the formula for the Levi-Civita connection.
However, if an affine map is an isometry at one point, it is an isometry (see
Lemma 1).

If M and N have arbitrary metric connections, then the situation is more
complicated. An isometry φ: M —> N is not necessarily affine; and as before,
an affine map is not necessarily isometric. The appropriate structure-preserving
map in this case must therefore be a map ψ which is at once an isometry and
affine with respect to the metric connections. We will say that φ is metric-affine.
Affine maps are still geodesic, but the converse no longer holds. Isometries
are also not necessarily geodesic, and geodesity is essential to the techniques
of § 2. The following lemma will be sufficient for our purpose:

Lemma 1. If φ: M -* N is an affine map, M and N being metrically con-
nected manifolds, then the metric character of φ is completely determined by
that of (<p*)p for any p eM. E.g., if (φ#)p is an isometry, then ψ is metric-
affine; if (φ*)p is a homothety, then ψ is a homothety also.

Proof. If q e M is arbitrary, let a: [0,1] —> M be a curve with a(0) = p,
a{\) = q. Since M and N are metrically connected, the parallel translations τ
and τf along a and φoa respectively are isometries. The result follows from
the relation (<p*)q = τf o (<p%)p o τ~ι expressing the affineness of ψ.

Lemma 1 provides an easy way to establish metric analogues of the results
of § 2 and § 3. The semi-Riemannian versions of these results are then obtained
as special cases. In § 2, the construction is modified as follows: M and N are
assumed metrically connected, and the manifold X of Proposition 2.1 is
endowed locally with the metric and connection defined on the Ua. Z is thus
a metrically connected manifold, and ψ and λa are metric-affine. If the ψa in
Proposition 2.2 are metric-affine, then ψ: X —> N is also metric-affine. Lemma
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2.1 holds in the metric version, since metric-affine maps map sufficiently small
convex normal balls geodesically onto convex normal balls when M and N are
n-dimensional, as before. Consequently Proposition 2.3 generalizes. We now
use Lemma 4.1 to get the metric analogue of the Cartan Lemma. If l{w)
satisfies the conditions of Lemma 2.2 for M and N metrically connected, and
if (l*)p is an isometry, then φ is metric-affine. The metric version of the
Ambrose-Hicks theorem is now immediate: if L satisfies the conditions of that
theorem, and M and N are metrically connected, and in addition if (1%)P is an
isometry, then ψ and ψ are metric-affine. If the connections on M and N are
Levi-Civita, then ψ and ψ are isometries.

In order to extend the theorem of § 3 and to obtain a de Rham theorem,
we now briefly discuss product metrics. If Mx and M2 are semi-Riemannian
manifolds with inner products < , \ and < , ) 2 respectively, then the product
metric < , > is defined by: <(Z 1 ? Z 2 ) , (Y19 Y2)> = <(Z1 ? Yfo + <(Z2, Y2)>2.
If Mγ and M2 also carry metric connections F1 and F2, then the product con-
nection F (see § 3) of F1 and F2 is metric for < , >. In particular, the product of
Levi-Civita connections is a Levi-Civita connection, as can be verified from the
Levi-Civita formula. Using the index conventions for a product chart (JC1, , xn)
defined on a product neighborhood U1 X U2 of Mx X Λf2, as established in § 3,
we see that the product metric on Mx x M2 is characterized by: gZJ = 0 and
(.d/dxκ)gu = 0iiI,J,K are not all early or all late where gla = (d/dx1, d/dxjy
and gtj = <d/dx\ d/dxJ\9 gaβ = <β/dxa, dldxβ}2 on U, X q, p X U2 respectively
for some (p,q) € Όx X U2.

If M is a submanifold of a semi-Riemannian manifold N with inner product
<( , y and metric connection F, and if M p is a nondegenerate subspace of Λ/̂
for every peM (i.e., < , > restricted to M p x M p is nondegenerate), then
< , y induces a metric tensor < , ) on M. If P denotes the tensor field defined
on M inducing the orthogonal projection of Np —> Mp for each p e M, then
(VzY)p = (P'PXΫ^P defines a metric connection on M for Z J e 3£(M) and
local extensions X, Y of X and Y to a neighborhood of p in iV. If F is a Levi-
Civita connection so is F. Note that nondegeneracy is essential in order for P
and < , > to be defined.

The theorem of § 3 carries over immediately to the metric case. We must
assume that M is metrically connected, the Tt(p) are nondegenerate and the
neighborhoods U are metric-affinely diίfeomorphic to the metric-affine product
Uλ X U29 the Ui equipped with the induced metrics and connections from M.
Then M is metric-affinely difϊeomorphic to the metric-affine product Mx x M2,
the Mi with their metrics and connections being induced from M.

The theorem of § 3 is essentially the best possible an example by Ozeki
[3, vol. I, p. 290] shows that even for a torsion-free connection, an affinely
connected manifold satisfying all the conditions of that theorem except for the
local product condition need not be an affine product manifold. The theorem
to be proved shows that under a mild restriction on the torsion, the local
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product condition can be dispensed with, provided the connection is metric.
See [7] for a torsion-free example showing that nondegeneracy of Tλ{p) is
essential even to get an affine product decomposition a metric decomposition
is strictly speaking out of the question in any case, since Mλ and M2 inherit
degenerate metrics.

Proof of theorem. We show that the conditions of the metric version of
the theorem of § 3 are satisfied; the conclusion of that result is the metric-affine
product decomposition which we seek.

We first show the equivalence of the condition given in the remark with the
condition on the curvature tensor. First assume that the condition on the
curvature holds. Let {ej(p)} denote an (orthonormal) base for Mp such that
et e T,(p), ea e T2(p), where, as in § 3, 1 < /, /, K < n, 1 < i, j,k < r, and

r + 1 < a, β, γ < r + s = n, r and s being the dimensions of Tx(p) and T2(p)

respectively. With respect to this basis, we find (using the curvature symmetries
(RXY(Z), W> = -<Rxγ{W),Zy and <RXY{Z), W> = <RZW(X), Y} valid for
metric connections) that the matrix for τ"1©/? oτ must be of the form

o 0/ o r (o Bl a c c o r ^ n β a s both / and / are early or late; otherwise the

matrix vanishes. Here A and B are respectively r X r and s X s matrices. It
follows by the Ambrose-Singer Theorem on holonomy [3, Theorem 9.1, p. 1511
that the holonomy Lie algebra, generated by the above matrices, consists of

matrices of form L „ ) . Hence the same is true for the linear holonomy

group Φ(p) (identified with its representation as a group of matrices, induced
by {£/(/?)}). It follows that Φ(p) leaves Tλ(p) and T2(p) invariant. To prove the
converse, note that if Φ(p) leaves 7\(p) invariant, then it consists of matrices

of form L J\, and the holonomy algebra is also of that form, hence

<r~\Rre/>re (re*), eay = 0. Since the connection is metric, 0 = (τ~ιRτe^τej{τ^i)^ eϊ)
= (Rj^iτet), τeay = (R^Jτej), «v> for all /, /, so r ^ ^ J o τ = 0.

For the remainder of the proof we follow [3, pp. 180-183], taking the
torsion into account. First, we remark that the distributions Ίx and T2 on M
are well-defined at each point q e M by parallelly translating Tt(p) to the sub-
space Ti(q) at q using any piecewise C00 curve τ joining p and q, by the con-
dition on the holonomy. Note that Tλ(q) is orthogonal to T^(q) since the
connection is metric. Differentiability of the Tt follows [3, p. 180], and
integrability of Tλ follows from the identity [X, Y] = VXY - VYX - T(X, Y),
where X and Y are taken to be vector fields both lying in 7\. The condition
on the torsion guarantees that T(X, Y) e Tλ also, while VXY and VYX lie in Tλ

since if a(t) is the integral curve of X starting from a point q, then VXY —
lim(l/ί)(r$Γ(α(ί)) — Yq)9 where τj denotes parallel translation along a from
ί-»0

a(t) to a(0) = q. Since Y(a(f)) and Yq belong to T19 VXY does also; similarly
for FYX. T2 is integrable also by the same reasoning.
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Now let q e M be arbitrary. On a neighborhood V of q there exists a
Frobenius coordinate system (JC1, , xn) for Tl9 i.e., such that 3/3JC* € 7\ ;
and on a neighborhood W oi q a Frobenius coordinate system ( / , , yn) for
T2 such that d/dyαeT2. Then on a neighborhood £/ of q, (x\ , xr,
yr+1, , yn) form a coordinate system such that 3/3JC* = Z€ form a local base
for Tj and d/dyα = Xα form a local base for T2.

Now we have T(Xi9Xα) = FxXα - F^X, - [Xi9Xα] = FXiXα - FXctXi9

since [ Z ^ Z J = 0. But T(Xi9Xα) = 0 by the assumption on T, so Fx.Xα =
FXαXt. But F x .X α € Γ2 while FXαX* € 7\ by autoparallelism of the T% (as in the
integrability proof above); and the Γ4 are mutually orthogonal (or 7\(g) Π
T2(q) = {0} C Mα), so F X i Z α = Γ X α Z, = 0.

(The reasoning used so far holds for non-metric connections as well, provided
the hypotheses on the curvature and torsion are changed appropriately, and we
assume explicitly that Mp is the direct sum of subspaces Tx(p) and T2(p) each
invariant under Φ(p). It remains only to establish the existence of local product
neighborhoods, and for this the metric is essential.)

We first show that the gu — <Z7,Zj)> have the characteristic properties of
a product metric. But giα = ζXi9 Xαy = 0 since the Tt are mutually orthogonal;
and Xα(gij) = Xα<JCuXsy = <VXX^X>) + < Z 4 , F ^ > = 0, and similarly
for Xi(gαβ). Hence U is isometric with a product neighborhood.

Now we show that ΓT

JK — 0 and XτΓ^κ = 0 unless /, /, K, L are all early
or all late. The first condition on ΓjK is immediate, since VXjXκ = ΓτjKXτ

(we will use the Einstein summation convention from now on), Vx XβeT2,
F^Xj e Γ l s and VXiXα = FXαXt = 0.

Now let (gIJ) denote the inverse matrix of (gu), so ihatgIKgKJ = δj. Since
(gij) and (gαβ) are invertible by nondegeneracy of the Γ<(p), and (giα) and (gαi)
vanish, we find that (gίj) and (gαβ) are the inverses of (gtj) and (gαβ), i.e.,
o okj — fij Q oϊβ — fiβ
Sikδ — °i>5αro — °«

With this notation, we can prove the second condition on the ΓjK. First,
V XV xXj — Vx.VXcXj + RXαXXj the curvature term vanishes by assumption,
and V x Xj vanishes identically on U, so V xy xXj — 0. Hence FXαFx.Xj = 0.
NowXXFXiXj,Xky - {FxFXίXj,Xk} +\FXiXj,FXαXky = 0. On the other
hand, Xα{FXίXj,Xky = X/JΓ^XuX^ - (XJ^giu + ΓljXαglk. The term
Γ\jXαglk vanishes, leaving (XαΓ\3)glk = 0. Hence ( * β Γ { y W » » = XαΓljδ?
= XαΓ?j = 0. Similarly XtΓ

τ

αβ = 0. Since Γfj vanish identically on U for
mixed /, /, K, the XLΓfj have the property required.

We have therefore verified all the hypotheses of the metric-affine version of
Kashiwabara's theorem, obtaining a metric-affine generalization of the de Rham
theorem.

We wish to thank Professor B. O'Neill for suggesting the non-Riemannian
setting.
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