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ZERMELO NAVIGATION
ON RIEMANNIAN MANIFOLDS

David Bao, Colleen Robles & Zhongmin Shen

Abstract

In this paper, we study Zermelo navigation on Riemannian
manifolds and use that to solve a long standing problem in Finsler
geometry, namely the complete classification of strongly convex
Randers metrics of constant flag curvature.

0. Introduction

0.1. Purpose. We have four goals in this paper. The first is to describe
Zermelo’s problem of navigation on Riemannian manifolds. Zermelo
aims to find the paths of shortest travel time in a Riemannian manifold
(M,h), under the influence of a wind or a current which is represented by
a vector field W on M , with |W | :=

√
h(W,W ) < 1. We point out that

the solutions are the geodesics of a strongly convex Finsler metric, which
is of Randers type and is necessarily non-Riemannian unless W is zero.
Conversely, we show constructively that every strongly convex Randers
metric arises as the solution to Zermelo’s navigational problem on some
Riemannian landscape (M,h), under the influence of an appropriate
wind W on M with |W | < 1. This is the content of Proposition 1.1 in
Section 1.3.

Randers metrics are interesting not only as solutions to Zermelo’s
problem of navigation. They form a ubiquitous class of metrics with a
strong presence in both the theory and applications of Finsler geome-
try. Of particular interest are Randers metrics of constant flag curva-
ture, the latter being the Finslerian analog of the Riemannian sectional
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curvature. It is the second goal of this paper to describe strongly con-
vex Randers metrics of constant flag curvature via Zermelo navigation.
Unlike previous characterization results [5, 22], the navigation descrip-
tion has the advantage of clearly illuminating the underlying geometry.
More precisely, suppose (h,W ), with |W | < 1, is the navigation data
of a strongly convex Randers metric F on M . Then: F has constant
flag curvature K, if and only if there exists a constant σ, such that h
has constant sectional curvature K+ 1

16σ
2, and W satisfies the equation

LWh = −σh (namely, W is an infinitesimal homothety of h). This is
Theorem 3.1.

The correspondence between strongly convex Randers metrics and
their navigation data is a natural one, in the following sense. Let
(M1, F1), (M2, F2) be strongly convex Randers metrics with naviga-
tion data (h1,W1), (h2,W2), respectively. Then, F1 and F2 are iso-
metric as Finsler metrics if and only if there exists a diffeomorphism
φ : M1 → M2 such that φ∗h2 = h1 and φ∗W1 = W2; furthermore, the
equation LWh = −σh behaves functorially under φ∗. This, in conjunc-
tion with Theorem 3.1, brings us one step closer to a complete list, up
to local isometry, of strongly convex Randers metrics with constant flag
curvature. In fact, let (M,F ) be any such metric, with navigation data
(h,W ) such that |W | < 1. Then, every point p ∈M has an open subset
U on which h is isometric to some neighborhood Ũ (depending on p
and U) in a standard Riemannian space form (round sphere, Euclidean
space, or hyperbolic space), and W restricted to U corresponds to an
infinitesimal homothety on that space form. Furthermore, the Randers
metric on U is Finslerian isometric to its concrete counterpart on Ũ .

Our third goal is to work out the formulae for all the infinitesimal
homotheties W of the three standard Riemannian space forms h. This
is done in Theorem 5.1. The resulting list serves as the genesis, up
to local isometry, of strongly convex Randers metrics of constant flag
curvature. This classification problem was proposed by Ingarden about
half a century ago. (Until 2002, it was erroneously thought to have
been solved by Yasuda–Shimada in 1977; see [3, 5, 22] for references
therein.) Every vector field W in our list will perturb its companion
Riemannian space form h into a strongly convex Randers metric of
constant flag curvature. Also, let D denote the maximal domain on
which W satisfies the essential constraint |W | :=

√
h(W,W ) < 1. Each

such triplet (h,W,D) will be called a standard “model” for constant
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flag curvature Randers metrics. It remains to identify the inequivalent
ones among these standard models.

For each standard Riemannian space form h in dimension n, we parti-
tion its infinitesimal homotheties W into equivalence classes: W1 �W2

if and only if the Randers metrics on the maximal domains D1 and
D2, generated by the navigation data (h,W1) and (h,W2), are globally
isometric. These equivalence classes comprise what we call the moduli
space MK for strongly convex n-dimensional Randers metrics of con-
stant flag curvature K. Our fourth goal in the paper is to parametrize
MK and thereby determine its dimension. It is found that for each
non-negative value of K, the Randers moduli space is of dimension n/2
when n is even, and (n + 1)/2 when n is odd. For each K < 0: the
dimension of MK is n/2 for even n; but for odd n, the moduli space is a
stratified set, with one component of dimension (n+ 1)/2, and another
component of dimension (n− 1)/2. The specifics are detailed in Propo-
sitions 6.1, 6.2, and 6.3, respectively for K positive, zero, or negative.
This picture is in striking contrast with the Riemannian setting, where
the moduli space consists of a single equivalence class for each value of
K; the class in question is represented either by the round sphere, or
Euclidean space, or the hyperbolic metric, depending on the sign of K.

To conclude the paper, we illustrate the usefulness of the classifica-
tion and the moduli space analysis by applying them to two special
cases. First, those standard models (h,W,D) which effect projectively
flat strongly convex Randers metrics of constant flag curvature K are
singled out. (Beltrami’s theorem assures us that a Riemannian space
is of constant curvature if and only if it is projectively flat. The anal-
ogous statement does not hold among Randers metrics.) We find that
up to isometry, the non-Riemannian ones (namely, those with W �= 0)
consist of a 1-parameter family of Minkowski metrics when K = 0, and
a single variant of the Funk metric for each K < 0. In particular, while
the Riemannian standard sphere is projectively flat, its perturbation by
any non-zero W is not. This discussion constitutes Section 7.3. Our
conclusion in the K < 0 case is then used to shed new light on the main
result of Shen in [29].

Next, the moduli space analysis is specialized to the setting in which
the tensor θi := bs curlsi vanishes. This enables us to describe explicitly
all the Randers metrics addressed by systems of non-linear partial dif-
ferential equations in the corrected Yasuda–Shimada theorem [5, 22, 3].
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Such is the thesis of Section 8.2. We find that by perturbing Riemann-
ian standard models h, the resulting strongly convex non-Riemannian
Randers metrics of constant flag curvature K and θ = 0 comprise, up
to isometry, three small but distinguished camps.

◦ K < 0: there is just a single variant of the Funk metric for each
value of K.

◦ K = 0: there is simply a 1-parameter family of Minkowski metrics.
◦ K > 0: this is the most enigmatic case. There is exactly a 1-

parameter family of the θ = 0 metrics on S2k+1, and none on S2k,
regardless of whether the metrics being sought are local or global.

The classification of the K > 0 metrics within the θ = 0 family has pre-
viously been done by Bejancu–Farran [9, 10]. However, our description
of the isometry classes offers a totally different perspective.

The described dimension counts are summarized below:

Table 1.

Moduli space’s dimension
K < 0CFC metrics dim M K > 0 K = 0

σ = 0 σ �= 0
Riemannian
b = 0/W = 0

n � 2 0 empty

Projectively flat
db = 0/dW � = 0

n � 2 0∗ 1 0∗ 0†

Yasuda–Shimada even n 0∗
θ = 0 odd n 1

1 0∗ 0†

Unrestricted even n n/2
Randers odd n (n+ 1)/2 (n− 1)/2

The moduli spaces of dimension 0 consist of a single point.
∗ The single isometry class is Riemannian.
† The single isometry class is non-Riemannian, of Funk type.

0.2. Summary of contents. Section 1 presents Zermelo’s problem of
navigation on Riemannian manifolds, and its solution.

We specialize to concrete 3-dimensional Riemannian space forms in
Section 2. These examples deal with Zermelo navigation on spheres,
Euclidean space, and the Klein model of hyperbolic geometry. The
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resulting Finsler metrics of Randers type are categorized into three sub-
sections, depending on the sign of their flag curvature. In Section 2.4,
we review the definition of Finsler metrics of constant flag curvature.

Section 3 begins by recalling a previously published characterization
result. This is followed by the navigation description of strongly convex
Randers metrics of constant flag curvature K. It also includes a Mat-
sumoto identity which exhibits the interplay between the constant σ (in
the equation LWh = −σh) and the constant flag curvature K.

Before presenting the classification theorem, we pause in Section 4 to
derive a complete list of allowable vector fields for each of the three stan-
dard models of Riemannian space forms. With the list in hand, Section 5
gives the classification of strongly convex Randers metrics of constant
flag curvature; both local (Section 5.1) and global (Sections 5.2–5.4)
aspects are treated.

The moduli space MK for strongly convex Randers metrics of con-
stant flag curvature K is the focus of Section 6. We make explicit the
requisite Lie theory (mostly for a non-compact subgroup of the Lorentz
group) in the Appendix, and (then) give concrete descriptions of MK

and its dimension.
Section 7 contains a discussion of projectively flat Randers metrics

of constant flag curvature, and shows that our formalism is able to give
important information about the metrics in [29]. Finally, in Section 8,
we specialize our classification to the θ = 0 case, and use that to catalog
all the solutions of the partial differential equations in [5, 22].

1. Zermelo navigation

1.1. Perturbing Riemannian metrics by vector fields.

1.1.1. Background metric and perturbing vector field. Given
any Riemannian metric h on a differentiable manifold M , denote the
corresponding norm-squared of tangent vectors y ∈ TxM by

|y|2 := hij y
iyj = h(y, y).

Think of |y| as the time it takes, using an engine with a fixed power
output, to travel from the base(point) of the vector y to its tip. Note
the symmetry property | − y| = |y|.

The unit tangent sphere in each TxM consists of all those tangent
vectors u such that |u| = 1. Now, introduce a vector field W such that
|W | < 1, thought of as the spatial velocity vector of a mild wind on the
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Riemannian landscape (M,h). Before W sets in, a journey from the
base to the tip of any u would take 1 unit of time, say, 1 second. The
effect of the wind is to cause the journey to veer off course (or merely off
target if u is collinear with W ). Within the same 1 second, we traverse
not u but the resultant v = u+W instead.

As an example, suppose |W | = 1
2 . If u points along W (that is, u =

2W ), then v = 3
2u. Alternatively, if u points opposite toW (namely, u =

−2W ), then v = 1
2u. In these two scenarios, |v| equals 3

2 and 1
2 instead

of 1. So, with the wind present, our Riemannian metric h no longer
gives the travel time along vectors. This prompts the introduction of
a function F on the tangent bundle TM , in order to keep track of the
travel time needed to traverse tangent vectors y under windy conditions.
For all those resultants v = u+W mentioned above, we have F (v) = 1.
In other words, within each tangent space TxM , the unit sphere of F is
simply the W -translate of the unit sphere of h. Since this W -translate
is no longer centrally symmetric, F cannot possibly be Riemannian.

1.1.2. Formula for the new Minkowski norm F . Start with the
fact |u| = 1; equivalently, h(u, u) = 1. Into this, we substitute u =
v −W and then h(v,W ) = |v| |W | cos θ. After using the abbreviation
λ := 1 − |W |2 to reduce clutter, we have |v|2 − (2 |W | cos θ) |v| − λ = 0.
Since |W | < 1, the resultant v is never zero, hence |v| > 0. This leads
to |v| = |W | cos θ +

√
|W |2 cos2 θ + λ , which we abbreviate as p + q.

Since F (v) = 1, we see that

F (v) = |v| 1
q + p

= |v| q − p

q2 − p2
=

√
[h(W,v)]2 + |v|2λ

λ
− h(W,v)

λ
.

It remains to deduce F (y) for an arbitrary y ∈ TM . Note that
every non-zero y is expressible as a positive multiple c of some v with
F (v) = 1. For c > 0, traversing cv under the windy conditions should
take c seconds. Consequently, F is positively homogeneous. Using this
homogeneity and the formula derived for F (v), we find that:

F (y) =

√
[h(W,y)]2 + |y|2λ

λ
− h(W,y)

λ
.

It is now manifest that F (−y) �= F (y). By hypothesis, |W | < 1, hence
λ > 0. We see from the formula for F (y) that it is positive whenever
y �= 0. Also, F (0) = 0 as expected.
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1.1.3. New Riemannian metric and 1-form. Our formula for F
has two parts.

• The first term is the norm of y with respect to a new Riemannian
metric

aij =
hij

λ
+
Wi

λ

Wj

λ
,

where Wi := hij W
j and λ = 1 −W iWi.

• The second term is the value on y of a differential 1-form

bi =
−Wi

λ
.

Under the influence of W , the most efficient navigational paths are no
longer the geodesics of the Riemannian metric h; instead, they are the
geodesics of the Finsler metric F . For R

2, this phenomenon is treated
by Carathéodory [15] as Zermelo’s navigation problem [32]. Shen [30]
showed that the same phenomenon holds for arbitrary Riemannian back-
grounds in all dimensions. See also the exposition in [6].

1.2. Ubiquitous class of Finsler metrics. The Finsler metric F de-
rived from the perturbation has the simple form F := α+ β, where

α(x, y) :=
√
aij(x) yiyj , β(x, y) := bi(x) yi.

This is the defining feature of Randers metrics, which were introduced
by Randers in 1941 [25] in the context of general relativity, and later
named by Ingarden [20].

The function F is positive on the manifold TM \ 0, whose points are
of the form (x, y), with 0 �= y ∈ TxM . Over each point (x, y) of TM \ 0
(treated as a parameter space), we designate the vector space TxM as a
fiber, and name the resulting vector bundle π∗TM . There is a canonical
symmetric bilinear form gij dx

i ⊗ dxj on the fibers of π∗TM , with

gij := 1
2

(
F 2

)
yiyj .

The subscripts yi, yj signify partial differentiation, and the matrix (gij)
is known as the fundamental tensor. A Finsler metric F is said to be
strongly convex if the said bilinear form is positive definite, in which
case it defines an inner product on each fiber of π∗TM .

For a Randers metric to be strongly convex, it is necessary and suf-
ficient to have

‖b‖ :=
√
bi bi < 1, where bi := aij bj .
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See [4] or [1] for the proof of this fact. In our case, using the formulae
aij = λ(hij −W iW j) and bi = −λW i, we find that

‖b‖2 := aij bibj = hij W
iW j =: |W |2,

which is less than 1 by hypothesis. Therefore, the described perturba-
tion of Riemannian metrics h by vector fields W , with |W | < 1, always
generates strongly convex Randers metrics.

1.3. An inverse problem. A question naturally arises: can every
strongly convex Randers metric be realized through the perturbation of
some Riemannian metric h by some vector field W satisfying |W | < 1?

Happily, the answer to this question is yes. Indeed, let us be given an
arbitrary Randers metric F with data a and b, respectively a Riemann-
ian metric and a differential 1-form, such that ‖b‖2 := aij bibj < 1. Set
bi := aij bj , and ε := 1 − ‖b‖2. Construct h and W as follows:

hij := ε (aij − bibj), W i := −bi/ε.
Note that F is Riemannian if and only if W = 0, in which case h = a.

Also, we have Wi := hij W
j = −ε bi. Using this, it can be directly

checked that perturbing the above h by the stipulated W gives back the
Randers metric we started with. Furthermore,

|W |2 := hij W
iW j = aij bibj =: ‖b‖2 < 1.

Let us summarize:

Proposition 1.1. A strongly convex Finsler metric F is of Ran-
ders type if and only if it solves the Zermelo navigation problem on a
Riemannian manifold (M,h), under the influence of a wind W which
satisfies h(W,W ) < 1. Also, F is Riemannian if and only if W = 0.

Incidentally, the inverse of hij is hij = ε−1 aij + ε−2 bibj. This hij ,
together with W i, defines a Cartan metric F ∗ of Randers type on the
cotangent bundle T ∗M . A comparison with [19] shows that F ∗ is the
Legendre dual of the Finsler–Randers metric F on TM . It is remarkable
that the Zermelo navigation data of any strongly convex Randers metric
F is so simply related to its Legendre dual. See also [33] and [30].

1.4. Remark about isometries. Two Finsler spaces (M1, F1) and
(M2, F2) are said to be isometric if there exists a diffeomorphism φ :
M1 → M2 which, when lifted to a map between TM1 and TM2, satis-
fies φ∗F2 = F1.
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Now, consider two strongly convex Randers metrics F1 and F2, where
Fi has Riemannian data (ai, bi). By the above proposition, they arise as
solutions to Zermelo’s navigation problem with (h1,W1) and (h2,W2),
respectively. A moment’s thought (via applying y �→ −y to tangent
vectors y in the equation φ∗F2 = F1) gives the lemma below.

Lemma 1.2. Let φ : M1 → M2 be a diffeomorphism. The following
three statements are equivalent:

• φ lifts to an isometry between F1 and F2.
• φ∗a2 = a1 and φ∗b2 = b1.
• φ∗h2 = h1 and φ∗W1 = W2.

2. Zermelo navigation on Riemannian space forms

This section illustrates a variety of perturbations on 3-dimensional
Riemannian space forms. In each example, with the exception of the
radial perturbation on the Euclidean metric (Section 2.3.1), W is an
infinitesimal isometry of h. It happens that all the resulting strongly
convex Randers metrics are of constant flag curvature (denoted K). The
concept of flag curvature is a natural extension of Riemannian sectional
curvatures to the Finslerian realm (see Section 2.4 for a review).

Since all our examples are in three dimensions, we let (x, y, z) denote
position coordinates, and expand arbitrary tangent vectors as u∂x +
v∂y + w∂z. We give expressions for the norm α :=

√
a(y, y) instead of

aij because the former are more compact. The Riemannian metric a
(defined in Section 1.2) can be recovered via aij = (1

2α
2)yiyj .

2.1. Constant positive flag curvature.
2.1.1. Rotational perturbation of S3. Let S3 denote the standard
unit sphere in R

4. Using its tangent spaces at the east and west poles,
we may parametrize the sphere by

(x, y, z) �→ 1√
1 + x2 + y2 + z2

(s, x, y, z);

here, s = ±1, respectively, for the eastern and western hemispheres.
Note that the equator corresponds to asymptotic infinity on the above
tangent spaces. Fix any constant 0 < τ < 1 and perturb via the infini-
tesimal rotation

W = τ (y,−x, 0) with |W | = τ

√
x2 + y2

1 + x2 + y2 + z2
< 1 .
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The bound on τ is needed to maintain |W | < 1 globally on S3. The
resulting Randers metric F = α+ β has constant flag curvature K = 1.
Explicitly, with ψ abbreviating xu+ yv, we have

α2 =
ρ2(u2 + v2) − (ρ+ τ2ϕ)ψ2 + η

{
(ρ− z2)w2 − 2zwψ

}
ρ η2

,

β =
τ (−yu+ xv)

η
,

where ϕ := 1+z2, ρ := 1+x2+y2+z2, and η := 1+(1−τ2)(x2+y2)+z2.
2.1.2. Perturbing by a privileged Killing field of S3. Again, start
with the unit sphere S3 in R

4, parametrized as above. For each constant
K > 1, let h be 1

K times the standard Riemannian metric induced on
S3. The re-scaled metric has sectional curvature K.

Perturb h by the Killing vector field

W =
√
K − 1

(
− s(1 + x2), z − sxy,−y − sxz

)
with |W | =

√
K − 1
K

.

This W is tangent to the S1 fibers in the Hopf fibration of S3. The
resulting Randers metric F has constant flag curvature K (see [8]).
Explicitly, F = α+ β, where

α =

√
K(su− zv + yw)2 + (zu+ sv − xw)2 + (−yu+ xv + sw)2

1 + x2 + y2 + z2
,

β =
√
K − 1 (su− zv + yw)

1 + x2 + y2 + z2
.

2.2. Zero flag curvature.
2.2.1. Perturbing R

3 by a translation. The Riemannian metric h
to be perturbed is the standard Euclidean metric δij on R

3. Choose any
three constants p, q, r which satisfy p2 + q2 + r2 < 1. We perturb h by
the vector field

W = (p, q, r) with |W | =
√
p2 + q2 + r2.

The resulting Randers metric F = α+ β has the form

α =

√
(pu+ qv + rw)2 + (u2 + v2 +w2){1 − (p2 + q2 + r2)}

1 − (p2 + q2 + r2)
,

β =
−(pu+ qv + rw)
1 − (p2 + q2 + r2)

.

This F has constant flag curvature K = 0, and is a Minkowski metric.
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2.2.2. Rotational perturbation of R
3. As above, h is the Euclidean

metric on R
3. The perturbing vector field is the infinitesimal rotation

W := y ∂x − x ∂y + 0 ∂z . The resulting Randers metric [30] F = α +
β solves the least time problem for fish that are surface-feeding in a
cylindrical tank with a rotational current. F is defined on the open
cylinder x2 + y2 < 1 in R3, and has constant flag curvature K = 0.
Explicitly,

α =

√
(−yu+ xv)2 + (u2 + v2 + w2)(1 − x2 − y2)

1 − x2 − y2
,

β =
−yu+ xv

1 − x2 − y2
with |W |2 = x2 + y2.

2.3. Constant negative flag curvature.

2.3.1. Radial perturbation of R
3. Again, we perturb the Euclidean

metric, but this timeM is the open ball of radiusR in R
3, centered at the

origin. The perturbing vector field is the radial W = τ(x∂x +y∂y +z∂z),
where τ is a constant. Impose the constraint |τ | � 1

R to ensure that
|W | < 1 on M . The resulting Randers metric F = α+ β is of constant
flag curvature K = −1

4τ
2, and is given by

α =

√
τ2(xu+ yv + zw)2 + (u2 + v2 +w2){1 − τ2(x2 + y2 + z2)}

1 − τ2(x2 + y2 + z2)
,

β =
−τ(xu+ yv + zw)

1 − τ2(x2 + y2 + z2)
with |W | =

√
τ2(x2 + y2 + z2).

When R = 1 and τ = −1, the perturbation generates the Funk metric
[18] on the unit ball in R

3, with constant flag curvature K = −1
4 . See

also [23, 28]. The Funk metric is isometric to the so-called Finslerian
Poincaré ball. A 2-dimensional version of the latter is analyzed in [4].

2.3.2. Rotational perturbation of Hyperbolic space. Consider
the Klein metric

hij =
(1 − x2 − y2 − z2)δij + xixj

(1 − x2 − y2 − z2)2

on the unit ball B
3 := {(x, y, z) ∈ R

3 : x2 + y2 + z2 < 1}. Here
xi := δisx

s. We perturb by the infinitesimal rotation

W = (y,−x, 0) with |W | =

√
x2 + y2

1 − x2 − y2 − z2
.
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In order that |W | < 1, we restrict to the domain {2x2 + 2y2 + z2 < 1}.
Define ϕ := 1− 2x2 − 2y2 − z2. Perturbing h by W produces a Randers
metric F = α+ β, with

α2 =
ϕ

[
ρ(u2 + v2) + (1 − η)w2 + 2zw(xu + yv)

]
+ η(yu− xv)2

(1 − x2 − y2 − z2)ϕ2

β =
−yu+ xv

ϕ
,

and ρ := 1− z2, η := x2 + y2. This Randers metric F is of constant flag
curvature K = −1.
2.4. Finsler metrics of constant flag curvature. Given any Finsler
metric F , the Chern connection on the pulled-back tangent bundle
π∗TM gives rise to two curvature tensors, one of which, Rj

i
kl, is analo-

gous to the curvature tensor in Riemannian geometry. Indices on R are
raised and lowered by the fundamental tensor gij and its inverse gij .

At any point x on M , a flag consists of a flagpole 0 �= y ∈ TxM , a
transverse edge V ∈ TxM , and y∧V . The corresponding flag curvature
depends on x, y, span{y, V }, and is defined as

K(x, y, V ) :=
V i (yj Rjikl y

l)V k

g(y, y) g(V, V ) − [g(y, V )]2
.

In the generic Finslerian setting, both the Chern hh-curvature R and
the inner product g (given by the fundamental tensor gij) depend on
the flagpole y. This dependence is absent whenever we specialize to
the Riemannian realm, in which case the flag curvature becomes the
familiar sectional curvature. For details and conventions, see [4]. A
Finsler metric is said to have constant flag curvature K if K(x, y, V )
has the constant value K for all locations x ∈ M , flagpoles y, and
transverse edges V .

We note an interesting phenomenon shared by all our examples. In
each case, the constant flag curvature of the resulting Randers metric
F does not exceed the constant sectional curvature of the original Rie-
mannian metric h which underwent the perturbation. This turns out to
be a general phenomenon (see Theorem 3.1).

3. Randers metrics of constant flag curvature

3.1. Characterization. Let F = α + β, with α2 := aij y
iyj and β :=

bi y
i, be a Randers metric. Using aij to raise the index on the com-

ponents bj of the 1-form b, we obtain a vector field b� = bi∂xi . Let us
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introduce the abbreviations

curlij := ∂xjbi − ∂xibj and θj := bi curlij .

Note that the tensor curl := curlij dxi ⊗ dxj equals the 2-form −db, and
interior multiplication of curl by the vector field b� gives the 1-form θ.

Define the geometric quantity

σ :=
2div b�

n− ‖b‖2
,

where the divergence is taken with respect to a. A theorem in [5] states
that the Randers metric F has constant flag curvature K if and only if
the following three conditions hold: σ is constant,

Lb�a = σ(a− b⊗ b) − (b⊗ θ + θ ⊗ b)

(where Lb�a = bk ∂xkaij + akj ∂xibk + aik ∂xjbk is a Lie derivative), and
the Riemann tensor of a has the form

aRhijk = ξ (aij ahk − aik ahj)

− 1
4 aij curlth curltk + 1

4 aik curlth curltj
+ 1

4 ahj curlti curltk − 1
4 ahk curlti curltj

− 1
4 curlij curlhk + 1

4 curlik curlhj + 1
2 curlhi curljk

with
ξ := (K − 3

16σ
2) + (K + 1

16σ
2) ‖b‖2 − 1

4 θ
iθi.

In these equations, all tensor indices are raised and lowered by a. For
later purposes, let us refer to the above as the Basic equation and the
Curvature equation, respectively.

The Basic equation alone is equivalent to the statement that the S-
curvature (divided by F ) has the constant value 1

4σ(n + 1); see [16].
While the Basic equation only makes sense for Randers metrics, its
characterization in terms of the S-curvature gives a well-defined criterion
which can be imposed on Finsler metrics in general.

In the original statement [5] of the characterization above, there is a
third equation that a and b must satisfy. As such, the said theorem is
equivalent in content to one in [22]. Recent work shows that this third
equation is derivable from the Basic and Curvature equations with σ
constant. Hence it is omitted here. See [6] for more discussions.
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3.2. Navigation description. According to Proposition 1.1, our strong-
ly convex Randers metric F can be realized as the perturbation of a
Riemannian metric h by a vector field W which satisfies h(W,W ) < 1.
Using this fact and Section 1.1.3, the tensors a and b that comprise F
are expressible as

aij =
hij

λ
+
Wi

λ

Wj

λ
, bi =

−Wi

λ
,

where Wi := hij W
j and λ := 1 − h(W,W ) > 0. For aij and bi, see

Section 1.2.

3.2.1. Navigation version of the Basic equation. The Basic equa-
tion in the stated characterization involves a, b, Lb�a, and θ. Substi-
tuting the above formulae for a, b and computing the requisite partial
derivatives in the remaining two tensors, we obtain a much simpler LW

equation:
LWh = −σ h.

The left-hand side can be rewritten in terms of the covariant derivative
operator “:” associated to h, in which case the LW equation reads

Wi:j +Wj:i = −σ hij .

From this follows the ‘navigation description’ of σ as −2 div(W )/n,
where the divergence is taken with respect to h.

Conversely, using h = ε(a − b ⊗ b), W = −b�/ε, with ε := 1 − ‖b‖2

(see Section 1.3), it has been checked that the Basic equation results
from the LW equation. Hence the two are equivalent.

In the LW equation,

“σ must vanish whenever h is not flat.”

Indeed, let ϕt denote the time t flow of the vector field W . The LW

equation tells us that ϕ∗
th = e−σth. Since ϕt is a diffeomorphism, e−σth

and h must be isometric; therefore, they have the same sectional curva-
tures. If h is not flat, this condition on sectional curvatures mandates
that e−σt = 1, hence σ = 0. The above argument was pointed out to us
by Robert Bryant.

3.2.2. Riemannian connections of a and h. To minimize some an-
ticipated clutter, let us introduce the abbreviations

Cij := ∂xjWi − ∂xiWj = Wi:j −Wj:i, Tj := W i Cij ,
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and agree to let the subscript 0 denote contraction of any index with
yi. For example, T0 := Tj y

j. Indices on C, T are to be manipulated by
the Riemannian metric h only.

Let aγi
jk and aGi := 1

2
aγi

00 be, respectively, the Christoffel symbols
and geodesic spray coefficients of the Riemannian metric a. Likewise,
let hGi := 1

2
hγi

00 be the geodesic spray coefficients of h. (The factor
of 1

2 here is absent in some references such as [4].) A straight-forward
computation, or an application of Rapcsák’s identity [26], together with
the LW equation, shows [6] that

aGi = hGi +
yi

2λ
(T0 − σW0) − T i

(
h00

4λ
+
W0W0

2λ2

)
+

Ci
0W0

2λ
,

where λ := 1 − h(W,W ).

3.2.3. Navigation version of the Curvature equation. Abbreviate
the above formula as aGi = hGi + ζi. We now use it to relate the
curvature tensor aR of a to the curvature tensor hR of h. To this end,
consider the spray curvature [12] tensors aKi

j = aR0
i
j0 and hKi

j =
hR0

i
j0. The Riemann tensor can be recovered from the spray curvature

through aRhijk = 1
3{(aKij)ykyh − (aKik)yjyh}, where the up index on aK

has been lowered by a. A similar formula holds for hRhijk and hKij ,
with the index on hK lowered by h. The advantage of working with the
spray curvature is that it has less indices than the full Riemann tensor.

The Curvature equation of Section 3.1 can be recast into the form
aKi

j = ξ (α2 δi
j − yi ayj)

+ 1
4 curls0 (curlsi ayj + yi curlsj − curls0 δi

j)

− 1
4 α

2 curlsi curlsj − 3
4 curli0 curlj0,

where ξ is as defined in Section 3.1 and ayj := ajky
k. Into (the left-hand

side of) this, we substitute one version of the split covariantized Berwald
formula (see [6, 28] for expositions and references therein), which says
that

aKi
j = hKi

j + (2 ζi):j − (ζi)ys(ζs)yj − ys(ζi
:s)yj + 2 ζs(ζi)ysyj .

Here, the subscripts “yk” mean ∂yk . This is followed by a tedious calcu-
lation, in which all quantities are rewritten in terms of the navigation
variables h, W , and the LW equation is used prodigiously. A formula for
hKi

j then results, from which we compute the Riemann tensor hRhijk.
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The outcome of that calculation is remarkable. It says that given the
LW equation, the said Curvature equation is equivalent to the statement
that h is a Riemannian metric of constant sectional curvature K+ 1

16σ
2.

Namely,
hRhijk = (K + 1

16σ
2)(hij hhk − hik hhj).

Conversely, it has been verified that the use of h = ε(a − b ⊗ b),
W = −b�/ε, ε := 1−‖b‖2 (see Section 1.3), in conjunction with the LW

equation, converts the above formula of hRhijk into the Curvature equa-
tion of Section 3.1. Thus, the navigation description we have derived is
indeed equivalent to the characterization presented in Section 3.1.

3.3. Main geometric content.

Theorem 3.1. A strongly convex Randers metric F has constant flag
curvature K if and only if:

• F solves Zermelo’s navigation problem on a Riemannian space
(M,h) of constant sectional curvature K+ 1

16σ
2 for some constant

σ, under the influence of a vector field (“wind”) W .
• The wind W satisfies h(W,W ) < 1, and is coupled to h and σ in

such a way that LWh = −σ h, where L denotes Lie differentiation.

For non-flat h, σ must vanish, in which case W must be a Killing vector
field of h.

The last statement has already been observed in Section 3.2.1. Since
the sectional curvature of h is K + 1

16σ
2, that statement is equivalent

to the following interplay between the constants σ and K:

σ(K + 1
16σ

2) = 0.

This is sometimes known as a Matsumoto identity (see [5] and [6]).
Note that K, the flag curvature of F , is bounded above by the sec-

tional curvature K + 1
16σ

2 of h. This proves the phenomenon we noted
at the end of Section 2.4. Since σ (K+ 1

16σ
2) = 0, we have the following

trichotomy.

(+) For K > 0: The quantity K + 1
16σ

2 is positive, hence σ = 0.
Consequently, the sectional curvature of h must equal K, the flag
curvature of F .

( 0 ) For K = 0: The sectional curvature of h reduces to 1
16σ

2. Mat-
sumoto’s identity then implies that σ = 0. So, h must be flat.
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(−) For K < 0: There are two viable scenarios. The first is σ =
±4

√
|K|, in which case h is flat. For the second scenario, the

quantity K + 1
16σ

2 �= 0; hence σ = 0 and h must have negative
sectional curvature K.

4. Complete list of allowable vector fields

Our goal here is towards a classification of Randers metrics of con-
stant flag curvature. By the navigation description, these metrics arise
as perturbations of constant curvature Riemannian metrics h by vector
fields W satisfying Wi:j + Wj:i = −σ hij . For each of the three stan-
dard Riemannian space forms (Euclidean, spherical and hyperbolic), we
derive a formula for W .

4.1. Setting some notation with a basic lemma.

Lemma 4.1. Let Pi = Pi(x) be solutions of the following system:

∂Pi

∂xj
+
∂Pj

∂xi
= 0.

Then

Pi = Qij x
j + Ci,

where (Ci) is an arbitrary constant row vector and Q = (Qij) is an
arbitrary constant skew-symmetric matrix (Qji = −Qij).

Proof. Using the defining differential equation three times, we have

∂2Pi

∂xk∂xj
= − ∂2Pj

∂xk∂xi
=

∂2Pk

∂xi∂xj
= − ∂2Pi

∂xj∂xk
.

This shows that all second-order partial derivatives of Pi must vanish.
Hence Pi must be linear; that is, it has the form Pi = Qijx

j + Ci, with
constants Qij and Ci. Inserting this expression into the defining PDE
shows that Qij +Qji = 0. q.e.d.

For the rest of the paper: “·” refers to the standard dot
product on R

n; indices on Q and C are raised and lowered
by the Kronecker delta δij ; and Qx+C means (Qi

j x
j +Ci).

We regard (Ci) as a row vector and (Ci) as a column vector.
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4.2. The Euclidean case. The first Riemannian space form we con-
sider is the standard Euclidean metric. The admissible perturbing vec-
tor fields W are described in the following proposition.

Proposition 4.2. Let F = α+β be a strongly convex Randers metric
which results from perturbing the flat metric hij = δij on R

n by a vector
field W = (W i). Then F is of constant flag curvature K if and only if
W has the form

W i(x) = −1
2σ x

i +Qi
j x

j + Ci,

where (Qi
j) is a constant skew-symmetric matrix, (Ci) is a constant

column vector, σ is a constant such that σ2 = −16K, and

(Qx+ C) · (Qx+ C) + σx ·
(

1
4σx−C

)
< 1.

Remark. Since σ2 = −16K, we see that K must be � 0.

Proof. Being flat, h satisfies the curvature criterion of the navigation
description (Theorem 3.1), with K + 1

16σ
2 = 0. The rest of the proof

studies the second criterion, which is the equation LWh = −σ h.
(⇐) Suppose W , with its index lowered by hij = δij , is of the form

Wi = −1
2σ δij x

j +Qij x
j + Ci.

Keeping in mind that the covariant derivative “:” associated with
the Euclidean h is simply partial differentiation, together with the
skew-symmetry of Q, we immediately obtain

(∗) Wi:j +Wj:i = −σ δij .
Thus the LW equation in the navigation description is satisfied,
and F has constant flag curvature K by Theorem 3.1.

(⇒) Conversely, suppose F has constant flag curvature K. By the
navigation description, W must be a solution of (∗). Note that

Wi = −1
2σ δij x

j

is a particular solution. Adding to it the solutions of the homoge-
neous system

∂Pi

∂xj
+
∂Pj

∂xj
= 0

gives the general solution. According to Lemma 4.1, the latter
have the form Pi = Qij x

j + Ci, where each Ci is constant and
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(Qij) is a constant skew-symmetric matrix. Using hij = δij , we
raise the index on Wi to effect the W i as claimed.

The inequality satisfied by Q, C, and σ comes from the strong convexity
requirement |W | < 1. q.e.d.

4.3. The spherical and hyperbolic cases. We now perturb standard
models of Riemannian metrics with constant sectional curvature κ �= 0.
The list of allowable W is given in the following proposition.

Proposition 4.3. Let F = α+β be a strongly convex Randers metric
which results from perturbing the standard, complete, simply connected,
n-dimensional Riemannian space (M,h) of constant sectional curvature
κ �= 0 by a vector field W . Then, F is of constant flag curvature K if
and only if K = κ and W is Killing, with the following description in
terms of a constant vector (Ci) and a constant skew-symmetric matrix
(Qi

j).
(a) K = κ > 0. Employ a projective coordinate system on the unit

n-sphere, one which comes from parametrizing each hemisphere
using the tangent space at the pole. Multiply the standard Rie-
mannian metric by 1

K to effect constant sectional curvature K.
The h-norm of any tangent vector y ∈ TxR

n � R
n is given by

|y| :=
√
h(y, y) =

1√
K

√
(y · y)(1 + x · x) − (x · y)2

1 + x · x .

With respect to this coordinate system,

W i(x) = Qi
j x

j + Ci + (x · C)xi.

(b) K = κ < 0. Let h be the Klein model of constant sectional curva-
ture K on the unit ball B

n, with the Cartesian coordinates of R
n.

The h-norm of any tangent vector y ∈ TxR
n � R

n is given by

|y| :=
√
h(y, y) =

1√
|K|

√
(y · y)(1 − x · x) + (x · y)2

1 − x · x .

With respect to this coordinate system,

W i(x) = Qi
j x

j + Ci − (x · C)xi.

In each case, W is subject to the constraint
1

1 + ψ(x · x) {(Qx+C) · (Qx+C) + ψ(x ·C)2} < |K| with ψ :=
K

|K| .
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Proof. Our Riemannian metric h has constant sectional curvature
κ �= 0. Therefore, it satisfies the curvature criterion of the navigation
description (Theorem 3.1), with K + σ2

16 = κ. In particular, we have
K + σ2

16 �= 0. The Matsumoto identity (Section 3.3) then implies that σ
must vanish. Consequently, K = κ.

According to our navigation description, perturbing the above h by
a vector field W (with |W | < 1) generates a Randers metric of constant
flag curvature K if and only if the equation LWh = −σ h is satisfied.
Since σ = 0 here, that equation reduces to the statement that W is
a Killing vector field of h. The proof of this proposition, therefore,
concerns the classification of solutions of the Killing field equation:

Wi:j +Wj:i = 0.

• To minimize notational clutter, let us introduce the abbreviations

xi := δij x
j, ρ := 1 + ψ(x · x),

where

ψ :=
K

|K| .

Then,

hij =
1
|K|

(
δij
ρ

− ψ
xixj

ρ2

)
, hij = ρ |K| {δij + ψ xixj}.

The Christoffel symbols of h are given by

hγk
ij = −ψ xi δ

k
j + xj δ

k
i

ρ
.

Hence

Wi:j =
∂Wi

∂xj
+ ψ

xiWj + xjWi

ρ
.

The Killing field equation now reads

∂Wi

∂xj
+
∂Wj

∂xi
+

2ψ
ρ

(xiWj + xjWi) = 0.

• To solve it, let us replace the dependent variables Wi by new ones
that are named Pi, as follows:

Wi =
1

ρ |K| Pi .
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(The division by |K| effects a simplification later, when we use hij

to raise the index on Wi.) Computations give:

∂Wi

∂xj
+
∂Wj

∂xi
=

1
ρ |K|

(
∂Pi

∂xj
+
∂Pj

∂xi

)
− 2ψ

ρ2 |K| (xiPj + xjPi),

2ψ
ρ

(xiWj + xjWi) =
2ψ

ρ2 |K| (xiPj + xjPi).

This change of dependent variables transforms the above equation
into

∂Pi

∂xj
+
∂Pj

∂xi
= 0.

By Lemma 4.1, the solutions Pi have the form

Pi = Qij x
j + Ci,

where (Qij) is a constant skew-symmetric matrix, and the Ci are
constants.

Thus the covariant form (that is, with index down) of the Killing field
W is

Wi =
Qij x

j + Ci

ρ |K| .

To obtain the contravariant form (namely, with index up) of W , we raise
its index using hij = ρ |K| {δij + ψ xixj}. The result reads:

W i := hijWj = Qi
j x

j + Ci + ψ(x · C)xi,

where Qi
j := δisQsj and Ci := δisCs.

Finally, the constraint on Q and C comes from |W | < 1, namely, the
strong convexity of F . q.e.d.

4.4. Identifying the vector field W in examples. Note that in the
case of flat h, bothWi andW i are polynomials of degree 1 in the position
variables x. For non-flat h, Wi is a rational function in x of degree −1,
while W i is a polynomial of degree 2 in x whenever C �= 0.

We tabulate below the constant skew-symmetric matrix Q, the con-
stant vector C, the value of the constant σ, and the constant flag cur-
vature K, for all the examples of Section 2. To reduce clutter, let 03×3

denote the 3-by-3 zero matrix, and

J :=
(

0 1
−1 0

)
.
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Table 2.

Example (Qij) (Ci) σ K
2.1.1 τJ ⊕ 0 (0,0,0) 0 1
2.1.2 0 ⊕

√
K − 1 J (−s

√
K − 1, 0, 0) 0 > 1

2.2.1 03×3 (p, q, r) 0 0
2.2.2 J ⊕ 0 (0,0,0) 0 0
2.3.1 03×3 (0,0,0) −2τ −1

4τ
2

2.3.2 J ⊕ 0 (0,0,0) 0 −1

5. Classification of strongly convex Randers metrics
with constant flag curvature

5.1. The classification theorem. We now combine the navigation
description (see Section 3.3) and the work of Section 4 to classify Ran-
ders metrics of constant flag curvature. Before stating the theorem, we
recall that:

• the skew-symmetric matrix Q = (Qi
j) and the vector C = (Ci)

are constant;
• Qx denotes (Qi

j x
j), and x := (xi);

• all indices on Q, C, x are manipulated by the Kronecker deltas δij
and δij ;

• “·” is the standard Euclidean dot product.

Theorem 5.1 (Classification). Let F (x, y) =
√
aij(x) yi yj + bi(x) yi

be a strongly convex Randers metric on a smooth manifold M of dimen-
sion n � 2. Then, F is of constant flag curvature K if and only if the
following conditions are satisfied.

(1) The Riemannian metric a and 1-form b have the representation

aij =
hij

λ
+
Wi

λ

Wj

λ
, bi =

−Wi

λ
,

where h is a Riemannian metric of constant sectional curvature and
W = W i∂xi is an infinitesimal homothety (LWh = −σh) of h, both
globally defined on M . Here, Wi := hijW

j and λ := 1 − h(W,W ) > 0.

(2) Up to local isometry, the constant curvature Riemannian metric h
and the vector field W must belong to one of the following four families.
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(+) When K > 0: h is 1
K times the standard metric on the unit n-

sphere Sn in projective coordinates, and W = Qx+ C + (x · C)x
is Killing, with

1
1 + (x · x) {(Qx+ C) · (Qx+ C) + (x · C)2} < K.

In those coordinates, the quadratic form of h, evaluated on y ∈
TxS

n, reads

h(y, y) =
1
K

{
(y · y)(1 + x · x) − (x · y)2

(1 + x · x)2
}
.

( 0 ) When K = 0: h is the Euclidean metric δij on R
n and W = Qx+C

is Killing, with

(Qx+ C) · (Qx+ C) < 1.

(−) When K < 0:
(−)e either h is the Euclidean metric δij on Rn, and the infinitesimal

homothety W = −1
2σx+Qx+ C satisfies

(Qx+ C) · (Qx+ C) + σx · (1
4σx− C) < 1

with σ = ±4
√

|K| ;
(−)k or h is the Klein model of sectional curvature K on the unit

ball B
n (of R

n) in projective coordinates, and the Killing field
W = Qx+ C − (x · C)x satisfies

1
1 − (x · x) {(Qx+ C) · (Qx+ C) − (x · C)2} < |K|.

In those coordinates, the quadratic form of h, evaluated on y ∈
TxB

n, reads

h(y, y) =
1
|K|

{
(y · y)(1 − x · x) + (x · y)2

(1 − x · x)2
}
.

Proof. • By Proposition 1.1, every strongly convex Randers met-
ric has the representation, stipulated in (1), in terms of the Zer-
melo navigation variables (h,W ).

• Theorem 3.1 tells us that h must be a Riemannian metric of con-
stant sectional curvature. The discussion after the statement of
Theorem 3.1 reduces the landscape to only four families, in keep-
ing with (2). They are as follows.
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(+) For K > 0: h must have sectional curvature K and W is
Killing.

( 0 ) For K = 0: h must be flat and W is Killing.
(−) For K < 0: there are two scenarios,

(−)e either h is flat, σ = ±4
√

|K|, and LWh = −σ h (in which
case W turns out to be −1

2σ times the radial vector x =
(xi), plus an arbitrary Killing field);

(−)k or h has sectional curvature K and W is Killing.
• Up to (Riemannian) isometry, there are only three standard

models for Riemannian metrics h of constant sectional curvature
K. They are: 1

K times the standard metric on the unit n-sphere,
Euclidean R

n, and the Klein metric with sectional curvature K on
the unit ball in R

n. By Lemma 1.2 (see also Sections 0.1 and 6.1),
when classifying F up to Finslerian isometry, it suffices to list the
allowable vector fields W for each of the three specific models. For
the families (+) and (−)k, this has been done by Proposition 4.3.
Families (0) and (−)e are handled by Proposition 4.2, with σ = 0
and σ = ±4

√
|K|, respectively.

• In each of the four families, the constraint that must be satisfied
by Q, C and x is equivalent to |W | < 1, which characterizes the
strong convexity of the Randers metric in question. The table
in Section 4.4 shows that this constraint admits non-trivial solu-
tions for all four families. In Sections 6.2–6.4 we enumerate, with
the help of normal forms, all the Q, C for which there exists a
neighborhood D of x on which |W | < 1.

q.e.d.

5.2. Globally defined solutions on the standard Sn. We see in the
previous section that all strongly convex Randers metrics of constant
flag curvature K > 0 arise locally as solutions to Zermelo’s problem of
navigation on the unit sphere Sn, under the influence of a Killing field
(an infinitesimal isometry) of 1

K times the standard metric on Sn. Let
us show that each strongly convex solution on any closed hemisphere
has a unique smooth extension to a globally defined strongly convex
solution on Sn. There is no restriction on the dimension n.

5.2.1. An extension. Without loss of generality, let us assume that
the hemisphere in question is the closed eastern hemisphere. Parame-
trize the eastern (s = +1) and western (s = −1) open hemispheres, as
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submanifolds of the ambient R
n+1, by the maps

x �→ ψ±(x) :=
1√

1 + x · x
(s, x) with x ∈ R

n.

Geometrically, the tangent space at the east pole (resp. west pole)
is identified with R

n. Each point q on an open hemisphere lies on a
unique ray which emanates from the center of the sphere. This ray
intersects the copy of R

n tangent to the pole, at a point x. The above
parametrization expresses q in terms of x.

According to Theorem 5.1, on the open eastern hemisphere, the given
Randers metric has navigation data (h,W ), where h is 1

K times the
standard Riemannian metric of Sn, and W (x) = Qx+C+(x ·C)x. We
find that it is easier to visualize W (x) by considering its image under
ψ+∗ . Motivated by a Lie-theoretic reason that will be pointed out in
Section 6.2, we convert the image point p := ψ+(x) into a position row
vector pt of R

n+1. A computation gives

[ψ+
∗ W (x)]t = pt Ω ,

where

Ω =
(

0 Ct

−C −Q

)

is an (n+ 1)× (n+ 1) skew-symmetric constant matrix, C is a constant
column vector in R

n, and t means transpose. The continuity ofW on the
closed hemisphere implies that its value at any point p on the equator
is also the matrix product pt Ω.

We extend W to the open western hemisphere by insisting that the
equation

[ψ−
∗ W (x)]t = [ψ−(x)]t Ω (with the above Ω)

holds. The result is W (x) = Qx+ sC + (x · sC)x with s = −1.
It is an artifact of local coordinates that W is constructed from the

data (Q,C) on the eastern hemisphere, but from (Q,−C) on the western
hemisphere. The actual Killing field on the embedded unit sphere in
R

n+1 has the value pt Ω at any point p, including the equator. Since
the matrix Ω is constant, there is no question that the constructed W
is globally defined and smooth.
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5.2.2. Uniqueness of the extension. Let W be any global extension
of the given Killing field. The isometries of (Sn, h) consist of rigid
rotations, implemented by constant (n+1)×(n+1) orthogonal matrices
right multiplying the row vectors of R

n+1. Since W is an infinitesimal
isometry, it is the initial tangent to a curve of isometries. Thus, it also
corresponds to a constant matrix which right multiplies all row vectors.
For points p of the eastern hemisphere, we have determined the matrix
in question to be the above Ω. Constancy dictates that the same Ω
must be used for the western hemisphere as well. This proves that
every global extension agrees with the one we presented. In particular,
any global W with data (Q,C) on some hemisphere must have data
(Q,−C) on the complement.

5.2.3. Strong convexity. The strong convexity criterion reads |W | <
1. On the two open hemispheres, Proposition 4.3 helps us deduce that

|W (x)|2 =
1

K{ 1 + (x · x)} {(Qx+ sC) · (Qx+ sC) + (x · sC)2}.

Using this formula, it is straight-forward to check that |W (x)|2 is equal
to (pt Ω) · (pt Ω), where p = ψ±(x). Before the extension, our Randers
metric is strongly convex on the closed eastern hemisphere. In parti-
cular, (pt Ω) · (pt Ω) < 1 for all points p of the open eastern hemisphere.
Replacing p by −p generates all the points of the open western hemi-
sphere, but does not alter (pt Ω) · (pt Ω). Therefore, the extended metric
is also strongly convex on the open western hemisphere, and hence on
all of Sn.

5.2.4. Discussion. The examples of Sections 2.1.1 and 2.1.2 determine
globally defined Randers metrics of constant positive flag curvature on
S3. The first example illustrates the necessity of assuming strong con-
vexity on a closed hemisphere. Had we permitted τ = 1, the norm of W
would have been less than 1 on the open (eastern and western) hemi-
spheres; but strong convexity would fail at the points (0, p1, p2, p3) on
the equator.

5.3. Globally defined solutions on Euclidean R
n. Because Euclid-

ean R
n is covered by a single coordinate chart, globality is relatively easy

to address. According to scenarios (0) and (−)e of Theorem 5.1, naviga-
tion on R

n under an infinitesimal homothety W produces a strongly con-
vex Randers metric of constant flag curvature K � 0 wherever |W | < 1.
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In particular, the Randers metric is defined globally on R
n if and only

if

|W (x)|2 = (Qx+ C) · (Qx+ C) + σx · (1
4σx− C) < 1 for all x ∈ R

n.

Here, σ is zero if K = 0, and has the values ±4
√

|K| if K < 0. Since
|W (x)|2 is polynomial in x, the displayed criterion is possible if and only
if both σ and Q vanish, in which case W = C, with C · C < 1. The
resulting Randers metric is Minkowski.

This conclusion is consistent with Section 2.2, where the only globally
defined example is that of Section 2.2.1.

5.4. Globally defined solutions on the Klein model. It remains to
discuss global solutions to Zermelo’s problem of navigation on the Klein
model with constant sectional curvature K < 0, under the influence of
a Killing vector field W . Theorem 5.1 says that the resulting Randers
metric has constant negative flag curvature K. Strong convexity of the
Randers metric is equivalent to |W | < 1. In this subsection, we will
show that requiring strong convexity on the entire open unit ball forces
W = 0, whence the negatively curved Randers metric is simply the
Klein model itself.

Suppose |W | < 1 holds on the entire open unit ball. It is implicit in
Proposition 4.3 that

|W (x)|2 =
(Qx+ C) · (Qx+ C) − (x · C)2

|K| (1 − x · x) .

Note that |K|(1 − x · x) > 0 because K is negative and x is confined to
the unit ball. Multiplying the inequality 0 � |W |2 < 1 by this positive
denominator yields

0 � (Qx+ C) · (Qx+ C) − (x · C)2 < |K| (1 − x · x).

Letting x · x → 1 leads to (Qx + C) · (Qx + C) − (x · C)2 = 0 for all
unit x. In particular, (Qx+ C) · (Qx+ C) = (−Qx+ C) · (−Qx+ C),
which is equivalent to Qx ·C = 0. The equality above then simplifies to
Qx ·Qx+C · C − (x · C)2 = 0, again for all unit x.

Since we are in dimension at least two, there exists a unit x0 such
that x0 · C = 0. The ensuing equation Qx0 · Qx0 + C · C = 0 tells us
that C must have been zero to begin with. This reduces our original
equality to Qx = 0 for all unit x, implying that Q = 0. Thus, W is
identically zero, and our assertion follows.
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6. The moduli space MK

6.1. The strategy. Theorem 3.1 characterizes the navigation data (h,W )
of strongly convex Randers metrics with constant flag curvature K. It
says that h must be a Riemannian metric with constant sectional cur-
vature K+ 1

16σ
2, and W must be an infinitesimal homothety of h. Also,

we observed that σ can be non-zero only when h is flat.
Consider any Randers metric (M,F ) of constant flag curvature K,

with navigation data (h,W ). There exists a Riemannian local isometry
ϕ between (M,h) and one of the three standard Riemannian space
forms:

• the sphere (Sn, h+) of constant curvature K when K > 0;
• Euclidean space (Rn, h0) when K = 0, or when K < 0 and σ =
±4

√
|K|;

• the Klein model (Bn, h−) of constant curvature K when K < 0
and σ = 0.

Lemma 1.2 assures us that ϕ lifts to a local Finslerian isometry between
(M,F ) and the Randers metric on Sn/Rn/Bn generated by the navi-
gation data (h+/h0/h− , ϕ∗W ). Thus, there is no loss of generality by
working with the latter picture, which is more concrete.

Given each Riemannian space form, which for notational simplicity
we again denote by h, Theorem 5.1 lists its infinitesimal homotheties
W , with implicit maximal domains D on which |W | :=

√
h(W,W ) < 1.

That list contains a good amount of redundancy, because it includes
isometric (in the Finslerian sense) Randers metrics. The redundancy
comes from the symmetry/isometry group G of h, consisting of diffeo-
morphisms φ that leave h invariant. Since φ∗h = h, the action of the Lie
group G on the navigation data is (h,W,D) �→ (h, φ∗W,φD). According
to Lemma 1.2, the standard “models” (h,W,D) and (h, φ∗W,φD) gen-
erate isometric Randers metrics on D and φD. That is, all navigation
data which lie on the same G-orbit correspond to mutually isometric
Randers metrics. The redundancy we described can therefore be elim-
inated by collapsing each G-orbit to a point. These “points” consti-
tute the elements of our moduli space MK for strongly convex Randers
metrics with constant flag curvature K. It is the goal of this section to
parametrize MK and thereby count its dimension.

To this end, we begin with a standard Riemannian space form h (=
h+, or h0, or h−). Identify the isometry group G of h with a matrix
subgroup of GLn+1R. The infinitesimal homotheties W of h comprise a
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representation of a matrix Lie subalgebra h of gln+1R. The push-forward
action W �→ φ∗W := φ∗ ◦W ◦ φ−1 on the manifold then corresponds to
the “adjoint action”

Ω �→ AdgΩ := gΩ g−1

of G on h. Here:

(1) g ∈ GLn+1R is the matrix which corresponds to the isometry map
φ, and Ω ∈ h is the matrix analog of the infinitesimal homothety
W (which is a vector field on the manifold).

(2) Ad : h → h is well defined because the equation LWh = −σh,
being tensorial, becomes Lφ∗Wh = −σh under the action of the
isometry map φ. Thus, φ∗W is an infinitesimal homothety of h
whenever W is, and the value of σ is invariant under isometries.

(3) According to Theorem 3.1, when h is not flat, its infinitesimal
homotheties are simply its Killing vector fields. In that case, h
equals the Lie algebra g of G, and Ad is the standard adjoint
action of a Lie group on its Lie algebra.

The adjoint action Ad described above partitions h into orbits. Each
orbit corresponds to a distinct isometry class of Randers metrics with
constant flag curvature K. For each orbit, matrix theory singles out a
privileged representative Ω̃, to be referred to as a normal form. These
normal forms provide a concrete parametrization of the points in the
moduli space MK , and the number of parameters constitutes its dimen-
sion. The linear algebra behind the construction of MK depends on the
sign of K. Here is an overview.

• For K > 0, h = h+ is 1
K times the standard metric on the unit n-

sphere. The orbits are those which result from the adjoint action
of the orthogonal group O(n+ 1) on its Lie algebra o(n+ 1).

• For K = 0, we have h = h0, the standard flat metric on R
n. The

orbits come from the adjoint action of the Euclidean group E(n)
on its Lie algebra e(n). Here, E(n) is comprised of O(n) and the
additive group R

n of translations.
• For K < 0, the orbits consist of two camps. (i) h = h− is the Klein

model, and the Ad orbits arise from the orthochronous subgroup
of the Lorentz group O(1, n), acting on the Lie algebra o(1, n). (ii)
h = h0 is the standard Euclidean metric, and the Ad orbits are
those of E(n) acting on a matrix description of the infinitesimal
homotheties, with σ = ±4

√
|K|.
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The Lie theory necessary for determining the normal form Ω̃ is relegated
to the Appendix. The material there will be called upon frequently in
the following three subsections as we enumerate the elements of MK .

6.2. The n-sphere. The isometry group G of (Sn, h+) is O(n + 1),
whose elements are orthogonal matrices which implement rigid rota-
tions by right multiplying the row vectors of R

n+1. As explained in
Section 5.2, each Killing vector field W of (Sn, h+) also corresponds to
a constant matrix which right multiplies those row vectors, and we have
identified that skew-symmetric (n+ 1) × (n+ 1) matrix to be

Ω :=
(

0 Ct

−C −Q

)
,

an element of the Lie algebra o(n + 1). This correspondence between
the Killing fields of (Sn, h+) and o(n+ 1) is a Lie algebra isomorphism.
(Incidentally, if we had let the group O(n + 1) act on column vectors
instead, then the matrix −Ω would correspond to W , while the negative
of the commutator [−Ω1,−Ω2] would represent the Lie bracket [W1,W2],
rendering the correspondence a Lie algebra anti-isomorphism.)

Applying Section 9.2 (with � := n+ 1) to Ω, we see that there exists
a g ∈ O(n+ 1) so that Ω̃ = gΩg−1 is in normal form. Explicitly:

when n is even, Ω̃ = a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = n/2,
when n is odd, Ω̃ = a1J ⊕ · · · ⊕ amJ with m = (n+ 1)/2.

Here, a1 � a2 � · · · � am � 0 and

J =
(

0 1
−1 0

)
.

The matrix Ω̃ represents the Killing field W̃ = φ∗W , where φ is
the map which corresponds to the orthogonal matrix g (Section 6.1).
According to Theorem 5.1, W̃ has the form Q̃x + C̃ + (x · C̃)x with
respect to the projective coordinates x which parametrize the eastern
hemisphere. Comparing the matrix analog(

0 C̃t

−C̃ −Q̃

)

of W̃ with Ω̃, we conclude that C̃t = (a1, 0, . . . , 0) and

for n even, −Q̃ = 0 ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0, with m = n/2,
for n odd, −Q̃ = 0 ⊕ a2J ⊕ · · · ⊕ amJ with m = (n+ 1)/2.
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The Randers metric which solves Zermelo’s problem of navigation on
(Sn, h+) under the influence of W̃ must satisfy the strong convexity
criterion |W̃ | < 1. In terms of the data (Q̃, C̃) for W̃ , inequality (2,+)
of Theorem 5.1 expresses this criterion as follows.
For n even:
a2

1(1 + x2
1) + a2

2(x
2
2 + x2

3) + · · · + a2
m(x2

n−2 + x2
n−1) < K(1 + x · x).

For n odd:
a2

1(1 + x2
1) + a2

2(x
2
2 + x2

3) + · · · + a2
m(x2

n−1 + x2
n) < K(1 + x · x).

We wish to demarcate those ai which allow the above inequalities to
hold on some open subset of Sn.

6.2.1. Locally defined metrics when n is even. Consider the point
x = (0, . . . , 0, xn). Here, the condition |W̃ (x)| < 1 simplifies to a2

1 <
K(1 + x2

n), which can be made to hold for arbitrary, but fixed, a1 by
choosing |xn| large enough. Once we have |W̃ (x)| < 1, the continuity of
W̃ effects |W̃ | < 1 on a neighborhood about this x. Thus, for even n,
the moduli space is parametrized by

a1 � . . . � am � 0

with no upper bound on any ai.

6.2.2. Locally defined metrics when n is odd. Suppose |W | < 1
holds at some point x. Then 0 � am � ai implies that
a2

m(1 + x · x) � a2
1(1 + x2

1) + a2
2(x

2
2 + x2

3) + · · · + a2
m(x2

n−1 + x2
n)

< K(1 + x · x).
In particular, we obtain the necessary condition am <

√
K. Con-

versely, given am <
√
K, let us consider a point x of the form (0, . . . , 0,

xn). At this x, the desired condition |W̃ (x)| < 1 simplifies and can be
rearranged to read a2

1 < K+(K−a2
m)x2

n. Since a2
m < K, the inequality

can be made to hold by choosing |xn| large enough. Continuity then
extends |W̃ | < 1 from this x to a neighborhood containing it. There-
fore, the isometry classes of locally defined Randers metrics on the odd
dimensional spheres are parametrized by

a1 � . . . � am � 0 with am <
√
K.

6.2.3. Globally defined metrics. Here, the criterion |W̃ (x)| < 1
must hold on the entire sphere. In particular, it must hold for all
x ∈ R

n parametrizing the open eastern hemisphere. Setting x = 0
in the inequalities immediately before Section 6.2.1 gives a1 <

√
K.
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Conversely, if a1 <
√
K, then those inequalities are satisfied for all x

because a1 � ai � 0. Hence the constraint a1 <
√
K is both necessary

and sufficient for strong convexity on the open eastern hemisphere. By
virtue of Section 5.2.3, the same bound on a1 effects |W̃ | < 1 on the
open western hemisphere. Thus, strong convexity holds on the open
hemispheres if and only if the condition a1 <

√
K is met.

It turns out that a1 <
√
K ensures strong convexity on the equator as

well. To see this, let u be any unit vector in the copy of R
n tangent to the

poles. Our parametrization (see Section 5.2.1) of the open hemispheres
says that limt→∞ tu corresponds asymptotically to some point p on the
equator. In fact, p = limt→∞(1+ tu · tu)−1/2(s, tu) = (0, u). Calculating
with the norm |y|2 := h(y, y) given in part (a) of Proposition 4.3, we
find that

|W̃ (p)|2 = lim
t→∞ |W̃ (tu)|2 =

1
K

{
(u · sC̃ )2 + | Q̃u |2

}
,

which is independent of s = ±1. A direct computation, using the fact
that a1 dominates all other ai, and u ·u = 1, yields the strong convexity
criterion |W̃ (p)|2 � (a1)2/K < 1.

Thus, the moduli space for the isometry classes of globally defined
constant flag curvature K > 0 Randers metrics on Sn is given by the
polytope √

K > a1 � · · · � am � 0.

6.2.4. Global versus local. For the locally defined metrics, the upper
bound a1 <

√
K is not necessary because the strong convexity criterion

|W̃ | < 1 only has to hold on some open subset of Sn. However, when n
is odd, all local solutions have to satisfy am <

√
K.

The metric of Section 2.1.1 illustrates these nuances well. The table
in Section 4.4 tells us that Ct = (0, 0, 0) and Q = τJ⊕0. Using the data
(Q,C), construct Ω as in Section 6.2. Almost by inspection, the normal
form is Ω̃ = τJ ⊕ 0J , thus a1 = τ and am ≡ a2 = 0. Since K here is
1, the theory assures us that a locally defined strongly convex solution
exists for any τ , while strongly convex global solutions are characterized
by τ < 1.

Indeed, Section 5.2.3 tells us that W̃ (p) = pt Ω̃, and |W̃ (p)|2 is equal
to (pt Ω̃) · (pt Ω̃) = τ2(p2

0 + p2
1), where pt = (p0, p1, p2, p3) gives the

coordinates of an arbitrary point on the embedded S3 in R
4. So |W̃ | < 1

globally, as long as τ < 1. On the other hand, if τ � 1, then |W̃ (p)| < 1
holds only at those points p on S3 where p2

0 + p2
1 < 1/τ2.
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6.2.5. The moduli space for K > 0.

Proposition 6.1. The moduli space MK for n-dimensional strongly
convex Randers metrics of constant flag curvature K > 0 is parametri-
zed by a = (a1, . . . , am) ∈ R

m as follows.
◦ When n is even, m = n/2 and the parameter space is given by

a1 � · · · � am � 0.

◦ When n is odd, m = (n + 1)/2 and the parameter space is given
by

a1 � · · · � am � 0, with
√
K > am.

◦ The globally defined metrics on Sn are parametrized by the polytope
√
K > a1 � · · · � am � 0.

6.3. Euclidean space. The isometry group of (Rn, h0) consists of ro-
tations, reflections, and translations; it is the Euclidean group E(n).
Though the action of E(n) on R

n is affine, it can be implemented by
matrix multiplication. To this end, we first represent elements φ of E(n)
by matrices g ∈ GLn+1R of the form

g =
(
A 0
bt 1

)
,

where

A ∈ O(n) and b ∈ R
n.

Next, we embed Euclidean n-space into R
n+1 by assigning to each point

x the column position vector ψ(x) =
(x
1

)
=: p. The matrix action we

have in mind is then

pt �→ ptg = (xtA+ bt, 1).

Here, bt, the input pt, and the output ptg are all row vectors.
The image of an infinitesimal homothety W = −1

2σx+Qx+C under
the described representation is [ψ∗W (x)]t = pt Ω, where

Ω :=
(

−1
2σIn −Q 0
Ct 0

)
and Ct is a row vector.

Such matrices, with σ ∈ R, C ∈ R
n and Q ∈ o(n), form a Lie subalgebra

h of gln+1. The correspondence between the infinitesimal homotheties
W of (Rn, h0) and the subalgebra h is a Lie algebra isomorphism. When
σ = 0, h is the Lie algebra e(n) of E(n).



410 D. BAO, C. ROBLES & Z. SHEN

The vector field W̃ = −1
2 σ̃x+Q̃x+C̃ is the push forward of W under

an isometry φ ∈ G if and only if its matrix representative Ω̃ is given by
gΩg−1. Since

g−1 =
(

At 0
−btAt 1

)
,

we have(
−1

2 σ̃In − Q̃ 0
C̃t 0

)
= Ω̃ = gΩg−1 =

(
−1

2σIn −AQAt 0
[AW (b)]t 0

)
,

where W (b) = −1
2σb + Qb + C. Thus, σ̃ = σ, Q̃ = AQAt, and

C̃ = AW (b); in particular, the value of σ remains unchanged under
any isometry, a general fact we pointed out in Section 6.1. Our objec-
tive is to find A and b, equivalently g ∈ E(n), so that Ω̃ takes on a
simplest form.

6.3.1. The case of σ = 0 and the moduli space for K = 0. The
Randers metrics of constant flag curvature zero arise as perturbation of
the Euclidean metric under an infinitesimal isometry. This corresponds
to the σ = 0 case in the above discussion.

To conserve space, we abbreviate group elements g ∈ E(n) as {A, b},
Lie algebra elements Ω ∈ e(n) as {−Q,C}, and write column vectors
horizontally.

(1) By Section 9.2, we can find an R ∈ O(n) which puts −Q into the
normal form −Q̃ = ρ1J⊕· · ·⊕ρhJ⊕0n−2h, with ρ1 � · · · � ρh > 0.
Thus, g1 := {R, 0} conjugates Ω into Ω̃1 := {−Q̃,RC}.

(2) Choose r ∈ O(n − 2h) to transform the last n − 2h components
of RC into (0, . . . , 0, ξ � 0), without affecting its first 2h compo-
nents D := (D1, . . . ,Dh), listed pairwise for convenience as Di =
[C2i−1, C2i]. The corresponding group element g2 := {I2h ⊕ r, 0}
conjugates Ω̃1 into Ω̃2 := {−Q̃, (D, 0, . . . , 0, ξ)}.

(3) Pick b := (−JD1
ρ1

, . . . , −JDh
ρh

, 0, . . . , 0) and observe that we have
Q̃b = (−D, 0, . . . , 0). Then g3 := {In, b} conjugates Ω̃2 into the
element Ω̃3 := {−Q̃, (0, . . . , 0, ξ)}.

In short, using g := g3g2g1 ∈ E(n), letting 0p,q denote the p-by-q zero
matrix, and abbreviating 0p,p as 0p, we get

Ω̃ := gΩg−1 =


 ρ1J ⊕ · · · ⊕ ρhJ 02h,n−2h 0

0n−2h,2h 0n−2h 0
0 . . . . . . 0 ξ 0


 .
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Thus C̃t = (0, . . . , 0, ξ). A moment’s thought tells us that ξ = 0 when-
ever C ∈ RangeQ, and ξ > 0 otherwise. The strong convexity condition
|W̃ | < 1 restricts our domain to those x which satisfy

|W̃ (x)|2 = (Q̃x+ C̃) · (Q̃x+ C̃) = ξ2 +
h∑

i=1

ρ2
i (x

2
2i−1 + x2

2i) < 1 .

In particular, we must have ξ < 1. Conversely, as long as ξ < 1, strong
convexity will always hold on some neighborhood of the origin in R

n,
and globally on R

n only if all ρi are zero.
The 0n−2h in Ω̃ contains the direct sum of copies of 0 times J . This

realization, followed by some appropriate relabeling, simplifies Ω̃ to(
a1J ⊕ · · · ⊕ amJ 0
0 . . . . . . . . . 0 a0 0

)
for

even n

,

(
a2J ⊕ · · · ⊕ amJ 0 0

0 . . . . . . . . . 0 a1 0

)
for

odd n

.

Here, a priori we have
1 > a0 � 0, a1 � · · · � am � 0 and m = n/2 for even n,
1 > a1 � 0, a2 � · · · � am � 0 and m = (n+ 1)/2 for odd n.

However:
• When n is even, a0 and am cannot both be non-zero for any fixed

Ω. Indeed, if a0 > 0, then C is not in RangeQ and we must at
least have am = 0. On the other hand, if am �= 0, then Q is
surjective; chasing through steps (1), (2), (3) with 2h = n shows
that the last row of Ω̃ is zero, that is, a0 must vanish.

• When n is odd, the displayed normal form precludes any sort of
rigid coupling between a1 and am.

For the even n case, whenever a0 > 0 (so that am = 0), let us agree to
relabel the remaining parameters a0, a1, . . . , am−1 as a1, a2, . . . , am.

Proposition 6.2. The moduli space MK for n-dimensional strongly
convex Randers metrics of constant flag curvature K = 0 is parametri-
zed by a = (a1, . . . , am) ∈ R

m as follows.
◦ When n is even, m = n/2 and the parameter space is the disjoint

union of

a1 � · · · � am � 0 and 1 > a1 > 0 , a2 � · · · am � 0.

◦ When n is odd, m = (n + 1)/2 and the parameter space is given
by

1 > a1 � 0, a2 � · · · � am � 0.
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◦ The globally defined metrics on R
n are parametrized by

1 > a1 � 0 , a2 = · · · = am = 0 .

6.3.2. When σ is non-zero. Refer to the general discussion at the be-
ginning of Section 6.3, and the abbreviation introduced in Section 6.3.1.
Conjugating Ω = {−1

2σIn − Q,C} by any g := {A, b} ∈ E(n) converts
it to {−1

2σIn − AQAt, AW (b)}. Select A ∈ O(n) to cast −Q into the
following normal form.

When n is even:
−Q̃ = −AQAt = a1J ⊕ · · · ⊕ amJ with m = n/2.

When n is odd:
−Q̃ = −AQAt = a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = (n− 1)/2.

Here, a1 � · · · � am � 0. Note that W (b) = (Q − 1
2σIn)b + C. The

linear operator Q− 1
2σIn is invertible because the spectrum of Q is pure

imaginary (Section 9.2) whereas σ is real and non-zero. Therefore, we
may select b so that W (b) = 0. With this choice of A and b, g := {A, b}
conjugates Ω into the normal form

Ω̃ = gΩg−1 =
(

−1
2σIn − Q̃ 0

0 0

)
.

The corresponding infinitesimal homothety has C̃ = 0 and its formula
is W̃ (x) = −1

2σx+Q̃x. Navigating on Euclidean R
n subject to the wind

W̃ generates a Randers metric of negative flag curvature K = − 1
16σ

2.
This metric is strongly convex wherever

|W̃ (x)|2 = Q̃x · Q̃x+ 1
4σ

2x · x = 1
4σ

2x · x +
m∑

i=1

a2
i (x

2
2i−1 + x2

2i) < 1 .

◦ For any choice of σ �= 0 and ai, this condition will be satisfied on
some neighborhood of the origin in R

n. That is, strong convexity
does not create any further constraint on the ai. Therefore, the
space of normal forms is parametrized by the original chamber
obtained through Q:

a1 � · · · � am � 0 ,

with m = n/2 when n is even, and m = (n− 1)/2 when n is odd.
◦ Since |W̃ (x)|2 is a non-trivial (σ �= 0) quadratic form in x, we see

that strong convexity will never hold globally on R
n.
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The above arguments handle the moduli space analysis for the (−)e
family described in Theorem 5.1. In order to complete our parame-
trization of the moduli space for Randers spaces with constant negative
flag curvature, it remains to analyze the (−)k family in Theorem 5.1,
namely, perturbations of the Klein model.

6.4. Hyperbolic space. In analogy with the spherical (Sections 5.2
and 6.2) and Euclidean (Section 6.3) cases, we embed the Klein model of
hyperbolic geometry into an ambient (n+1) dimensional space. To that
end, consider R

n+1 equipped with the scalar product 〈v,w〉 := vtEw,
where E = −1 ⊕ In. The isometry group of this space is the Lorentz
group O(1, n).

For K < 0, define the subspace HK := {p ∈ R
n+1 | 〈p, p〉 = 1

K }. We
make three observations [24]:

◦ HK consists of two components, each diffeomorphic to R
n.

◦ 〈 , 〉 restricts to a Riemannian metric of constant sectional curva-
ture K on HK .

◦ O(1, n) preserves HK , but is only a proper subgroup of the isom-
etry group of HK .

Let H+
K denote the component which passes through (1/

√
|K|, 0, . . . , 0).

Then, H+
K is a complete, simply connected model of hyperbolic space.

The isometry group G of H+
K consists of those matrices g ∈ O(1, n) such

that g(H+
K) = H+

K . This identifies G as the orthochronous subgroup
O+(1, n) of O(1, n) (see [24]). Its Lie algebra is o(1, n) (see Section 9.3).

Let us determine the relationship between Killing vector fields on the
Klein model and the Lie algebra o(1, n). Introduce the diffeomorphism

ψ(x) =
1√

|K|
√

1 − x · x
(1, x),

which maps the open unit ball B
n (in R

n) onto H+
K . The map ψ is an

isometry between the Klein model and H+
K. Let p := ψ(x) abbreviate

the position column vector of the image point. Then, Killing vector
fields W (x) = Qx+C − (x ·C)x of the Klein model are associated with
elements

Ω :=
(

0 Ct

C −Q

)
∈ o(1, n)

via [ψ∗W (x)]t = pt Ω, where the column C ∈ R
n and Q is real n × n

skew-symmetric. This correspondence is a Lie algebra isomorphism.
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In Section 9.3 of the Appendix, we show that there exists a g ∈
O+(1, n) so that Ω̃ = gΩg−1 assumes one of three possible block diagonal
forms, as follows.

• iΩ has a timelike eigenvector.
n even: Ω̃ = 0 ⊕ a1J ⊕ · · · ⊕ amJ , m = n/2,
n odd: Ω̃ = 0 ⊕ a1J ⊕ · · · ⊕ amJ ⊕ 0, m = (n− 1)/2.

Here, a1 � a2 � · · · � am � 0. See Section 2.3.2 for an example.
• iΩ has a null eigenvector with non-zero eigenvalue. (This as-

sumption automatically rules out timelike eigenvectors; see Sec-
tion 9.3.5.)

n even: Ω̃ = a1S ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0, m = n/2,
n odd: Ω̃ = a1S ⊕ a2J ⊕ · · · ⊕ amJ , m = (n+ 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0. See [7] for an example.
• iΩ has a null eigenvector with zero eigenvalue but no timelike

eigenvector.
n even: Ω̃ = a1T ⊕ a2J ⊕ · · · ⊕ amJ , m = n/2,
n odd: Ω̃ = a1T ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0, m = (n− 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0. See [7] for an example.
In the above description, J , S and T denote the matrices

J =
(

0 1
−1 0

)
, S =

(
0 1
1 0

)
, T =


 0 1 0

1 0 1
0 −1 0


 .

We declare this Ω̃ to be the normal form of Ω. It remains to deter-
mine how the criterion |W̃ |2 < 1, with W̃ (x) = Q̃x + C̃ − (x · C̃)x,
constrains the parameters that describe these normal forms. By (−)k
of Theorem 5.1, that inequality reads: (Q̃x+ C̃) · (Q̃x+ C̃)− (x · C̃)2 <
|K|(1 − x · x).
6.4.1. When iΩ has a timelike eigenvector. The type (J) normal
form Ω̃ is derived in Section 9.3.4. The corresponding Killing field is
given by C̃ = 0 and

when n is even, −Q̃ = a1J ⊕ · · · ⊕ amJ with m = n/2,
when n is odd, −Q̃ = a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = (n − 1)/2.

Here, a1 � a2 � · · · � am � 0. Since the strong convexity criterion
|W̃ |2 < 1 now reads (Q̃x)·(Q̃x) < |K|(1−x·x), it will always be satisfied
in some neighborhood of the origin in B

n. Therefore, the moduli space
is parametrized by

a1 � · · · � am � 0 .



ZERMELO NAVIGATION ON RIEMANNIAN MANIFOLDS 415

6.4.2. When iΩ has a null eigenvector with non-zero eigen-
value. The type (S) normal form Ω̃ is given in Section 9.3.5. The
associated Killing field has data C̃t = (a1, 0, . . . , 0) and

for n even, −Q̃ = 0 ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0 with m = n/2,
for n odd, −Q̃ = 0 ⊕ a2J ⊕ · · · ⊕ amJ with m = (n+ 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0. The condition |W̃ | < 1 is
equivalent to

a2
1(1 − x2

1) +
m∑

j=2

a2
j(x

2
2j−2 + x2

2j−1) < |K|(1 − x · x) .

In particular, we must have a2
1(1 − x2

1) < |K|(1 − x · x), which implies
a2

1(1 − x2
1) < |K|(1 − x2

1). This forces a1 <
√

|K| because x ∈ B
n.

Conversely, as long as a1 satisfies this bound, we shall have |W̃ | < 1 on
a neighborhood of the origin. Hence, the moduli space is parametrized
by √

|K| > a1 > 0 , a2 � · · · � am � 0 .

6.4.3. When iΩ has a null eigenvector with zero eigenvalue but
no timelike eigenvector. For this case, the normal form Ω̃ is of type
(T ) and is determined in Section 9.3.6. The corresponding Killing field
W̃ has C̃t = (a1, 0, . . . , 0) and

when n is even, −Q̃ = a1J ⊕ · · · ⊕ amJ with m = n/2,
when n is odd, −Q̃ = a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = (n − 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0. Given this data, it can be checked
that |W̃ | < 1 precisely when

a2
1(1 − x2)2 +

m∑
j=2

a2
j(x

2
2j−1 + x2

2j) < |K|(1 − x · x) .

(All a2
1x

2
1 terms cancel out.) At any x ∈ B

n of the type (0, x2, 0, . . . , 0),
our inequality simplifies to a2

1(1−x2) < |K|(1+x2), which always holds
provided that x2 is sufficiently close to 1. Continuity then extends
the inequality to a neighborhood of that x. Thus, demanding strong
convexity locally does not impose any additional constraint on the ai.
We conclude that the moduli space is parametrized by

a1 > 0 , a2 � · · · � am � 0 .
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6.4.4. The moduli space for K < 0. Unlike those of positive and
zero flag curvature, Randers spaces of negative constant flag curvature
may arise in two different fashions, corresponding to the cases σ �= 0
and σ = 0. Since σ is invariant under isometries (Section 6.1), it makes
sense to talk about the isometry classes, and hence the moduli spaces,
for these two families.

• Zermelo navigation on Euclidean space under an infinitesimal ho-
mothety with σ �= 0 produces a metric with flag curvature K =
− 1

16σ
2. The moduli space for these metrics has been parametrized

in Section 6.3.2.
• For σ = 0, the perturbation of the Klein model of negative sec-

tional curvature K by infinitesimal isometries generates metrics
with flag curvature K. The moduli space is parametrized, up to
isometry, in Sections 6.4.1–6.4.3. A quick glance at the explicit
form of |W̃ (x)|2 < 1, with x ∈ B

n, shows that having strong con-
vexity globally on B

n is only possible in the scenario Section 6.4.1,
with a1 = · · · = am = 0; in that case, our Randers metric is simply
the Klein model itself.

Together, the Euclidean and hyperbolic parametrizations provide a com-
plete description of the isometry classes.

Proposition 6.3. The moduli space MK for n-dimensional strongly
convex Randers metrics of constant flag curvature K < 0 is parametrized
by a = (a1, . . . , am) ∈ R

m as follows:

(e) For those obtained by perturbing the standard Euclidean metric
on R

n, using infinitesimal homotheties with σ = ±4
√

|K|, the
parameter space is

a1 � · · · � am � 0,

where m = n/2 when n is even, and m = (n−1)/2 when n is odd.
These metrics cannot be extended to all of R

n.
(k) For those obtained by perturbing the Klein model on the open unit

ball B
n, the parameter space is the disjoint union of three sets.

◦ When n is even, m = n/2 and the three sets are

a1 � · · · � am � 0,√
|K| > a1 > 0, a2 � · · · am � 0

and a1 > 0, a2 � · · · � am � 0.
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◦ When n is odd, m = (n+ 1)/2 and the three sets are

a1 � · · · � am−1 � 0 =: am,√
|K| > a1 > 0, a2 � · · · am � 0

and a1 > 0, a2 � · · · � am−1 � 0 =: am.

Among such Randers metrics, the only globally defined one on B
n

is the Klein model itself, corresponding to a1 = · · · = am = 0.

7. Restricting to projectively flat metrics

Let M be an n-dimensional differentiable manifold. A metric on M
is said to be projectively flat if M can be covered by coordinate charts
in which the geodesics of the metric are straight lines. For Riemannian
metrics, Beltrami’s theorem says that the only projectively flat ones are
those with constant sectional curvature. There are Finsler metrics of
constant flag curvature which are not projectively flat; see for example
[13, 14] and [8]. Thus, Beltrami’s theorem does not extend to the
Finslerian setting.

7.1. Douglas’ theorem. A theorem due to Douglas [17] states that a
Finsler metric F is projectively flat if and only if two special curvature
tensors are zero. The first is the Douglas tensor. The second is the
projective Weyl tensor for n � 3, and the Berwald–Weyl tensor [11] for
n = 2. (The projective Weyl tensor automatically vanishes when n = 2,
thereby predicating the need for a different invariant in that dimension.)
A complete statement of Douglas’ theorem can be found on p. 144 of
[27].

The projective Weyl tensor vanishes when and only when the flag
curvature of F is merely a function of the position x and the flagpole
y (that is, no dependence on span{y, V }, with V transversal to y); see
Section 2.4 and [31, 21, 1]. That vanishing is automatic in dimension 2
because, once x and y are specified, the said span is always the tangent
plane TxM , independent of V .

The Berwald–Weyl tensor is defined for all n, though only relevant
in Douglas’ theorem when n = 2. It is explicitly given in formula (8.27)
on p. 144 of [27]. The criterion of a Finsler metric F having constant
flag curvature K may be recast into the form Ki

k = K(δi
k − �i�k)F 2;

for an exposition, see [6, 4]. From this, a straightforward computation
shows that the Berwald–Weyl tensor vanishes for all such metrics.
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7.2. Specializing to Randers metrics. For Randers metrics of con-
stant flag curvature, there is certainly no dependence on the transverse
edges, hence the projective Weyl tensor vanishes. Also, as remarked
above, the Berwald–Weyl tensor in two dimensions is zero as well.

According to [2], a Randers metric F has vanishing Douglas tensor if
and only if the 1-form b := bi dx

i is closed. Let W � denote the 1-form
Wi dx

i := hijW
j dxi, where (h,W ) is the Zermelo navigation data of F .

Using the equation LWh = −σ h with constant σ, it can be checked that
the 2-forms curl := −db (Section 3.1) and C := −dW � (Section 3.2.2)
are related through curlij = −λ Cij (indices on curl, C are raised, resp.,
by a�, h�), where λ := 1 − |W |2 is positive because of strong convexity
(Section 1.2). In particular, db = 0 ⇔ dW � = 0, whenever the above
LW equation holds.

If the Randers metric F has constant flag curvature, then Theorem 3.1
(Section 3.3) avails us of this LW equation; in that case, the vanishing
of the Douglas tensor is equivalent to the condition dW � = 0.

7.3. Projectively flat strongly convex Randers metrics of con-
stant flag curvature. By virtue of Douglas’ theorem, we see that
a Randers metric F of constant flag curvature and navigation data
(h,W ) is projectively flat if and only if the 1-form W � is closed, namely,
∂xjWi − ∂xiWj = 0. Let us apply this criterion to the models (h,W,D)
discussed in Section 6.1.

• Suppose F is obtained by perturbing the Euclidean metric. Using
the formula for Wi given in the proof of Proposition 4.2, we see
that W � is closed if and only if (Qij) is the zero matrix. Hence W
simplifies to −1

2σx+ C, with σ = ±4
√

|K|.
• Suppose F is obtained by perturbing the standard sphere or the

Klein model. Since W is Killing (Theorem 3.1) and W � is closed, it
must be parallel; that is, Wi:j = 0. In this case, the standard Ricci
identity W j

:j:i−W j
:i:j = −hRici

sWs, in conjunction with hRici
s =

(n − 1)K δi
s (because h is a space form), reduces to KWi = 0.

Since K �= 0, W must vanish identically on the maximal domain
D.

The above information, together with the classification given in The-
orem 5.1, tells us the following. Each projectively flat strongly convex
non-Riemannian Randers metrics of constant flag curvature K is locally
isometric to one of the two types listed below:
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(1) K = 0: Zermelo navigation on Euclidean space with a constant
vector field W = C satisfying 0 < |C| < 1. These are Minkowski
spaces (see Section 2.2.1). A rotation transforms the vector field
W into (0, . . . , 0, |C|) without causing the Minkowski metric in
question to leave its isometry class. Thus |C| parametrizes the
moduli space (0, 1) ⊂ R. Alternatively, Proposition 6.2 with
Q = 0 handles the projectively flat metrics; among those, the
non-Riemannian ones are parametrized by 1 > a1 > 0, which is
consistent with the above conclusion.

(2) K < 0: Zermelo navigation on Euclidean R
n with W = −1

2σx+C,
σ = ±4

√
|K|, and C ·C+σx · (1

4σx−C) < 1. This camp includes
the Funk metric of Section 2.3.1. A translation transforms W
into W̃ = −1

2σx̃. By Sections 6.3 (with Q = 0) and 6.1, the
corresponding metrics F and F̃ are isometric. Closer examination
of F̃ reveals that it is a x̃-scaled variant of the Funk metric, one
which lives on the open ball of radius 1/(2

√
|K|) centered at the

origin of R
n. In particular, the moduli space consists of only one

point, as predicted by case (e) of Proposition 6.3 (with all ai set
to zero because Q = 0 here).

As a corollary of this itemization,
Every projectively flat, strongly convex Randers metric

of constant positive flag curvature must be locally isometric
to a Riemannian standard sphere.

We see from the table in Section 4.4 that among the examples in
Section 2, only 2.2.1 and 2.3.1 are projectively flat.

7.4. Comments, and a fine point. The above conclusions about pro-
jectively flat Randers metrics F of constant flag curvature are consistent
with the main result of [29]. However, other than the fact that the two
papers use totally different methods, some further distinctions are worth
noting.

• Here, the K < 0 camp has simple navigation data (h,W ), where h
is the Kronecker delta; but the resulting F , when generated with
Section 1.1.3, shows a certain amount of complexity. In [29], a
simple expression is derived for F in the K < 0 camp; but, upon
the use of Section 1.3 to recover the navigation data (h,W ), we
find that h, though isometric to the Euclidean metric, takes on a
complicated form.
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• We have just seen that the moduli space for projectively flat
strongly convex Randers metrics of constant flag curvature K < 0
consists of a single point. This is not manifest in [29] because
there, each metric in question was parametrized by a vector �a of
R

n, and no attempt was made to ascertain whether metrics corre-
sponding to different �a were in fact isometric.

We hasten to belabor a nuance. Take any projectively flat strongly
convex Randers space (M,F ) with constant flag curvature K < 0. Let
F̃ be the x̃-scaled variant of the Funk metric which lives on the open
ball B of radius 1/(2

√
|K|) centered at the origin of R

n. The above
discussion says that given any point p ∈M , there exists a point p̃ ∈ B,
and open sets U ⊂ M , Ũ ⊂ B containing p and p̃, respectively, such
that (U,F ) is isometric to (Ũ , F̃ ). If we move to a different vantage
point q ∈M , there would likewise be an isometry between some (V, F )
and (Ṽ , F̃ ), where V contains q. It can be shown (say, by computing a
geometric invariant such as the Cartan tensor) that for the Funk metric,
unlike its Riemannian counterpart the Klein metric, (Ũ , F̃ ) is typically
not isometric to (Ṽ , F̃ ). Consequently, (U,F ) is in general not isometric
to (V, F ).

8. Restricting to the θ = 0 family

Recall the tensor θi := bs curlsi encountered in Section 3.1. Strongly
convex Randers metrics of constant flag curvature and satisfying the
additional condition θ = 0 have previously been characterized by the
corrected Yasuda–Shimada theorem in terms of non-linear partial differ-
ential equations. See [5, 22] for details and references therein, and [3]
for a historical account. Here, we compute the moduli space for all the
solutions of these PDEs.

8.1. Necessary and sufficient conditions for θ = 0. It can be
shown (using the machinery in [6]) that the tensor θ for Randers metrics
of constant flag curvature has the navigation description (1−|W |2)θj =
(|W |2):j + σWj . Since our Randers metrics are always presumed to be
strongly convex (|W | < 1), we see that

θ = 0 ⇔ (|W |2):j + σWj = 0.

8.1.1. The Euclidean case. When h is the standard Euclidean met-
ric, Proposition 4.2 says that W = −1

2σx + Qx + C. The equation
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(|W |2):j +σWj = 0 is polynomial in the local coordinates (xi). By con-
sidering the coefficients of this polynomial, one can establish that θ = 0
if and only if

• Q = 0 when σ �= 0,
• Q2 = 0 and QC = 0 when σ = 0.

It is clear, from the normal form Q̃ (Section 9.2) of Q, that Q2 = 0 if and
only if Q = 0. Hence the two cases can be unified into a single criterion
Q = 0, which is in turn equivalent to the 1-form W � := Widx

i being
closed (Section 7.3). We conclude that, for strongly convex constant
flag curvature Randers metrics which are generated by navigating on
Euclidean R

n under the influence of an infinitesimal homothety W ,
θ = 0 if and only if dW � = 0.

Such metrics are precisely the projectively flat ones enumerated in Sec-
tion 7.3. It is worth recollecting (Section 7.2) that in the present context,
dW � = 0 is equivalent to db = 0.

8.1.2. The spherical and Klein models. When h is either the spher-
ical or hyperbolic metric, σ must vanish (Section 3.3), and we see that

θ = 0 ⇔ (|W |2):j = 0 ⇔ |W |2 is constant.
Proposition 4.3 says that Wi = (Qijx

j + Ci)/{|K|(1 + ψx · x)} and
W i = Qi

kx
k + Ci + ψ(x · C)xi, where ψ := K/|K|. Consequently,

the constancy of |W |2 can be re-expressed as a polynomial equation in
the local coordinates (xi). That polynomial’s coefficients lead to the
following necessary and sufficient conditions for θ = 0:

QC = 0 and Q2 = ψ (CCt − |C|2In) .

Here, C is a column and Ct is a row.
The above equations are invariant in form under any orthogonal

transformation R ∈ O(n). Indeed, multiplying each term by R on the
left, and also by Rt on the right for matrices, those equations become
Q̃C̃ = 0 and Q̃2 = ψ (C̃C̃t − |C̃|2In), where Q̃ = RQRt, C̃ = RC.

• Therefore, without any loss of generality, we may assume that Q
is already in the normal form derived in Section 9.2. Namely,

Q = q1J ⊕ · · · qkJ ⊕ 0n−2k with q1 � · · · � qk > 0.

• With this Q, the equation QC = 0 can be solved immediately to
find that the first 2k components of C are zero. Its remaining
components can be transformed by any r ∈ O(n − 2k) without
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altering Q. Thus, we may assume that the column vector C which
solves QC = 0 has the simplified form

C = (0, . . . , 0, |C|).

We now substitute the displayed Q and C into the equation Q2 =
ψ (CCt − |C|2In). The outcome reads

(∗) −q21I2 ⊕ · · · ⊕ −q2kI2 ⊕ 0n−2k = −ψ |C|2 In−1 ⊕ 0,

where Ij denotes the j × j identity matrix.

• By inspection, all the qi are zero if and only if |C| = 0. In other
words, Q = 0 ⇔ C = 0. The Killing field corresponding to Q = 0,
C = 0 is W = 0. In that case, the associated Randers metric is
simply the original Riemannian space form h.

• It remains to examine the scenario in which C is non-zero. Equa-
tion (∗) then implies that all the qi are non-zero as well, and forces
three restrictions.

(1) ψ := K/|K| = 1, hence K > 0 and h is the spherical metric.
(2) q1 = · · · = qk = |C|.
(3) 2k = n− 1; equivalently, n = 2k + 1 is odd.
Up to isometry, the strongly convex Randers metric in question
must have arisen from navigation on an odd dimensional sphere,
under the influence of a one parameter family (indexed by |C|) of
winds W .

We hasten to reiterate that these restrictions are obtained from local
considerations only, on spheres and open balls; globality is not needed
in their derivation.

8.2. The corrected Yasuda–Shimada family. Taken together, Sec-
tions 8.1.1, 8.1.2 and 7.3 allow us to enumerate the moduli space for
strongly convex Randers metrics with constant flag curvature K and
θ = 0. They are obtained by Zermelo navigation on Riemannian space
forms h, subject to the influence of appropriate winds W which satisfy
|W | < 1. The non-Riemannian ones are as follows:

• When K < 0: h is the standard metric on Euclidean R
n, and W =

−1
2σx + C, with σ = ±4

√
|K|. As explained in Section 7.3, the

resulting Randers metric is isometric to a position-scaled variant
of the Funk metric, one which is generated by W̃ = −1

2σx̃ and
lives on the open ball of radius 1/(2

√
|K|).
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• When K = 0: h is the standard metric on Euclidean R
n, and W =

C with 0 < |C| < 1. We saw in Section 7.3 that up to isometry,
this family, which consists of Minkowski metrics, is parametrized
by a single parameter |C|.

• When K > 0: h is 1/K times the standard metric on the unit
sphere Sn, with n = 2k + 1 odd. The wind W is given in pro-
jective coordinates (Sections 4.3 and 5.2.1) as Qx+ C + (x · C)x,
where Q and C are specially related on account of θ = 0. In
fact (Section 8.1.2), there is an R ∈ O(n) such that C̃ := RC =
(0, . . . , 0, |C|) and Q̃ := RQRt = |C|(J ⊕ · · · ⊕ J) ⊕ 0, respec-
tively. This is equivalent to conjugating the matrix representa-
tive (Section 6.2) of W by the element 1 ⊕ R in the isometry
group of h. Thus (Section 6.1) the Randers metric generated by
W̃ := Q̃x + C̃ + (x · C̃)x lies in the same isometry class as that
from W . Applying the analysis in Section 6.2.2 to W̃ , we see that
strong convexity mandates |C| <

√
K, which as a bonus (Sec-

tion 6.2.3) ensures that the metric is global on Sn. Thus, up to
isometry, there is only a one parameter family (indexed by |C|) of
non-Riemannian strongly convex Randers metrics with constant
flag curvature K and θ = 0 on the odd dimensional spheres. By
contrast, no such metric exists on the even dimensional spheres,
regardless of whether it is locally or globally defined.

Strongly convex non-Riemannian Randers metrics with constant flag
curvature K and θ = 0 are characterized by the corrected Yasuda–
Shimada theorem [5, 22, 3]. The conclusion for the K = 0 case is as
described above. For non-zero K, the characterization is in terms of
coupled systems of non-linear partial differential equations. Our discus-
sion above may be viewed as a complete list of solutions to those partial
differential equations.

Bejancu–Farran [9, 10], assisted by the corrected Yasuda–Shimada
theorem, have recently established a bijection between Sasakian space
forms of constant φ-sectional curvature c ∈ (−3, 1), and Randers metrics
of constant flag curvatureK = 1 with θ = 0. In the course of their study,
they showed that the underlying manifold M must be of odd dimension,
and is necessarily diffeomorphic to a sphere when it is simply connected
and complete with respect to a. These results can be made equivalent
to what we have described for the K > 0 case. Our θ is denoted by β
in the Bejancu–Farran papers, and their c is 1 − 4‖b‖2 in our notation.
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It is worth mentioning here that all spheres, of both odd and even
dimensions, admit a wealth of non-Riemannian globally defined Randers
metrics of constant positive flag curvature, provided that the restriction
θ = 0 is lifted. Here is a straightforward example on S4. Following
the treatment of Section 5.2, we let p = (p0, p1, p2, p3, p4) denote the
canonical coordinates on R

5. The infinitesimal rotation

W (p) = τ(−p2∂p1 + p1∂p2) , τ constant,

restricts to a globally defined Killing field on the standard unit sphere
S4. As long as |τ | < 1, we have |W | < 1 on the entire sphere. Hence
W induces a globally defined, strongly convex Randers metric with con-
stant flag curvature +1 on S4. Notice, however, that θ �= 0. This is im-
mediate from the statement displayed at the beginning of Section 8.1.2,
which says that θ vanishes if and only if |W | is constant. The norm of
our W is certainly not constant. Hence θ is non-zero.

9. Appendix: Some Lie theory

Recall from Section 6.1 that the symmetry/isometry groups G (of
the Riemannian space forms) act on the Lie algebras of infinitesimal
homotheties, via the adjoint action Ad. Our analysis of the moduli
space (Section 6) for constant flag curvature Randers metrics requires
detailed knowledge of each Ad orbit, in order to pinpoint a distinguished
representative.

Though the Lie theory for the orthogonal group is well known, it is
invoked in so many different contexts that we feel obligated to at least set
the notation (Section 9.2). In the non-compact case G = O+(1, n), the
orthochronous Lorentz group, the information we need is not available in
a form that we could use without substantial modification or synthesis.
Since this material plays such a pivotal role in our geometric conclusions,
we are compelled to sketch a cohesive account (Section 9.3). Finally,
our exposition is cast in matrix language for the sake of concreteness.

9.1. Scalar products and the “perp argument”. By a scalar prod-
uct on any complex vector space V, we mean a pairing 〈 , 〉 which is C-
linear in the first factor, satisfies 〈u, v〉 = 〈v, u〉, and is non-degenerate
(namely, if 〈u, v〉 = 0 for all v ∈ V, then u must vanish). Inner products
are simply positive definite scalar products. For example, if E is the di-
agonal matrix −1⊕ In, then 〈u, v〉 := utEv is a scalar product on C

1+n,
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whereas replacing that −1 by +1 gives the canonical inner product utv
on C

1+n.
In any scalar product space, a non-zero vector v is said to be
spacelike, null, or timelike, respectively, if 〈v, v〉 is positive,
zero, or negative. The zero vector is by definition spacelike.

Using the fact that 〈u, v〉 = Re〈u, v〉 + iRe〈u, iv〉, together with the
polarization identity Re〈p, q〉 = 1

4{〈p+ q, p+ q〉− 〈p− q, p− q〉}, one can
check by contradiction (of non-degeneracy) that:

If dimV � 1, then every scalar product on V admits either a
timelike vector, or a non-zero spacelike vector.

Let W be any subspace of a scalar product space V. Its perp W⊥ is
{v ∈ V : 〈v,w〉 = 0 for all w ∈ W}. Adapting the arguments in [24] to
complex vector spaces, one can check that

dimW + dimW⊥ = dimV and (W⊥)⊥ = W .

The restriction of 〈 , 〉 to W⊥ may be degenerate when W contains
a null vector. For instance, in C

1+2 with E = diag(−1, 1, 1), if W =
span{(1, 1, 0)}, then 〈 , 〉 is degenerate on W⊥ = span{(1, 1, 0), (0, 0, 1)}.
On the other hand, if W = span{(1, 1, 0), (1,−1, 0)}, then non-degene-
racy holds on W⊥ = span{(0, 0, 1)}. These examples illustrate the
following lemma that we shall invoke repeatedly without mention.

Lemma 9.1. Let W be any subspace in a complex scalar product
space (V, 〈 , 〉). Then, the following three statements are equivalent:

(1) W admits a 〈 , 〉 orthonormal basis (note, |w| :=
√

|〈w,w〉| ).
(2) W ∩W⊥ = {0}.
(3) 〈 , 〉|W⊥ is non-degenerate, hence defines a scalar product on W⊥.

The implications (1) ⇒ (2) ⇒ (3) are simple. Once we have (1) ⇒
(3), it can be used, in conjunction with the automatic existence of non-
null vectors, to establish inductively the following useful fact.

If U is any subspace with dimension � 1 on which 〈 , 〉 is
non-degenerate, then there is a 〈 , 〉 orthonormal basis for U .

This then effects (3) ⇒ (1). Indeed, given (3), the above fact provides
W⊥ with an orthonormal basis. Applying (1) ⇒ (3) to W⊥ (instead of
W), we see that 〈 , 〉 is non-degenerate on (W⊥)⊥ = W. By the above
fact again, W has an orthonormal basis, which is (1). Our reasoning is
synthesized from that in [24], and adapted to the complex case.
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Let A be a self-adjoint linear operator on the scalar product space
V. Suppose the subspace W is invariant under A. Then, so is W⊥,
because 〈Av,w〉 = 〈v,Aw〉. Hence the restriction of A to W⊥ makes
sense. If, in addition, 〈 , 〉 is non-degenerate on W⊥, then the restricted
A is again operating on a scalar product space, albeit a smaller one. We
shall repeatedly invoke this “perp argument”.

9.2. A compact case: skew-symmetric real matrices. Let Ω be
any real � × � skew-symmetric matrix. Then A := iΩ is a self-adjoint
linear operator on the inner product space C

�, with 〈u, v〉 := utv. Thus
each eigenvalue of A is real, and eigenspaces corresponding to distinct
eigenvalues are 〈 , 〉 orthogonal.

Since A = iΩ where Ω is real, the non-zero eigenvalues of A occur in
pairs ±a (a > 0), with 〈 , 〉 orthogonal eigenvectors z and z. The real
vectors v := (z+z)/2 and u := (z−z)/(2i) satisfy Au = −iav, Av = iau,
and 〈z, z〉 = 0 implies that 〈u, u〉 = 〈v, v〉 and 〈u, v〉 = 0. Hence the
normalized versions û, v̂ still satisfy Aû = −iav̂ and Av̂ = iaû.

The “perp argument” (Section 9.1) implies that each eigenvalue of
A with multiplicity s has an eigenspace of the same dimension. Enu-
merating the non-zero eigenvalues of A as ±a1, . . . ,±ak, where a1 �
· · · � ak > 0, we get a real orthonormal set {û1, v̂1, . . . , ûk, v̂k} such
that Aûk = −iakv̂k and Av̂k = iakûk. If 2k < �, then 0 is an eigenvalue
of A with eigenspace spanned by a real orthonormal set {ξ2k+1, . . . , ξ�}
because Ω is real. These two sets comprise a real orthonormal basis in
which the matrix representation of A is ia1J ⊕· · ·⊕ iakJ ⊕0�−2k, where

J =
(

0 1
−1 0

)
.

Correspondingly, that of Ω is Ω̃ := a1J ⊕ · · · ⊕ akJ ⊕ 0�−2k, with 2k
being its rank. Suppressing the rank of Ω, we see that

when � is even, Ω̃ = a1J ⊕ · · · ⊕ amJ with m = �/2,
when � is odd, Ω̃ = a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = (�− 1)/2,

where a1 � a2 � · · · � am � 0. This is the desired normal form of
Ω. Note that Ω̃ = B−1ΩB, where B is the orthogonal matrix whose
columns are given by the vectors in our real orthonormal basis.

In terms of Lie theory, a skew-symmetric matrix Ω is an element in the
Lie algebra o(�) of the orthogonal group O(�). The fact that exp(aiJ)
is the 2× 2 rotation matrix with angle ai tells us that exp(Ω̃) lands in a
maximal torus of O(�), and Ω̃ itself belongs to a Cartan subalgebra H
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of o(�). The condition a1 � · · · � am � 0 singles out the fundamental
closed Weyl chamber of H. Our arguments show that every real skew-
symmetric Ω can be conjugated by the O(�) element g = B−1 into this
closed Weyl chamber.

9.3. A non-compact case. Let E denote the diagonal matrix −1⊕In.
The elements of o(1, n) are real (n+1)×(n+1) matrices Ω which satisfy
the condition Ωt = −EΩE; equivalently, Ω has the defining form

Ω =
(

0 Ct

C −Q

)
,

where Q, C are real, and Q is n×n skew-symmetric. The Lorentz group
O(1, n) is a non-compact Lie group with Lie algebra o(1, n). Elements of
O(1, n) are real (n+1)×(n+1) matrices g such that g−1 = EgtE. With
respect to the scalar product 〈v,w〉 := vtEw of R

n+1, the columns of g
comprise a 〈 , 〉 orthonormal basis, with the first column being timelike,
and the rest spacelike. In particular, the top left entry of g satisfies
(g0

0)2 � 1. We described in Section 6.4 a model H+
K for n-dimensional

hyperbolic space. The isometry group of H+
K is the orthochronous sub-

group G := O+(1, n), whose matrices g have top left entry g0
0 � 1.

9.3.1. An available simplification. Our goal here is to select a sim-
plest representative along the G adjoint orbit of Ω. To that end, we first
invoke Section 9.2 to find an element R ∈ O(n) such that RQR−1 =
q1J ⊕ · · · ⊕ qhJ ⊕ 0n−2h, where q1 � · · · � qh > 0. This has the effect of
changing C to RC. Next, we use an element r ∈ O(n−2h) to transform
the last n− 2h components of RC into (0, . . . , 0, ξ) without affecting its
first 2h components. In terms of matrix conjugation, set g1 := 1 ⊕ R
and g2 := 1 ⊕ I2h ⊕ r, then (g2g1)Ω(g2g1)−1 has the simplified form


0 Dt 0 ξ
D −(q1J ⊕ · · · ⊕ qhJ) 0 0
0 0 0 0
ξ 0 0 0


 .

Here, D is a column of 2h entries listed pairwise; in other words, it
has the form D = (D1, . . . ,Dh), with Dj := [(RC)2j−1, (RC)2j ]. Since
g2g1 ∈ G, the above matrix lies on the same Ad orbit as Ω. When
necessary, we can use this simplified form for Ω with no loss of generality.

9.3.2. Preliminaries about eigenvalues and eigenvectors. Given
any element Ω ∈ o(1, n), the matrix A := iΩ is a self-adjoint linear
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operator on the scalar product space C
1+n, with 〈U, V 〉 := U tEV . Let

V = (v0, v) be an arbitrary (possibly complex) eigenvector of A with
eigenvalue λ. Then

(1) AV = −λ V holds, besides AV = λV ,
(2) we have λv0 = iCtv and λv = iv0C − iQv,
(3) the skew-symmetry of Q, together with item (2), implies that

λ(v2
0 − vtv) = 0.

The following three conclusions are about eigenvectors V with λ �= 0. In
the derivations, keep in mind that by (3), we have v2

0 = vtv.
(4) V must either be spacelike or null. (Consequently, all timelike

eigenvectors must have zero eigenvalue; though the converse might
not be true.) This comes about because 〈V, V 〉 = −|v0|2 + |v|2
and |v0|2 = |vtv| = |(v, v)| � |v| |v| = |v|2, where the Cauchy–
Schwarz inequality is being applied to the canonical inner product
(v,w) := vtw on C

n.
(5) The spacelike eigenvectors have real eigenvalues, which must oc-

cur in pairs ±a (a > 0), with corresponding 〈 , 〉 orthogonal eigen-
vectors V , V . The self-adjointness of A implies that λ〈V, V 〉 =
λ 〈V, V 〉, hence λ is real whenever V is not null. The rest follows
from item (1), λ = a > 0, and 〈AV, V 〉 = 〈V,AV 〉.

(6) The null eigenvectors have pure imaginary eigenvalues, and can
always be standardized into the form V = (1, v) with v real. In-
deed, V = (v0, ṽ) being non-zero and null means that |v0|2 = |ṽ|2
with v0 �= 0; dividing by v0 gives (1, v), where vtv = |v|2 = 1. Yet,
(3) says that vtv = 1. Substituting v = Re v + iIm v into these
two equations gives Im v = 0. Then, (1) tells us that λ = −λ.

9.3.3. Categorizing the normal forms of A = iΩ. Let us first es-
tablish that if A has no timelike eigenvector, then it must admit a null
eigenvector.

Given the absence of timelike eigenvectors, suppose there were no
null eigenvectors either. Then, all eigenvectors of A would have to be
spacelike. Applying the perp argument (Section 9.1) n times would
produce a 〈 , 〉 orthonormal basis B which is entirely spacelike (and
which diagonalizes A). With respect to B, the matrix of 〈 , 〉 would be
In+1 instead of E = −1 ⊕ In, contradicting the invariance of the index
of 〈 , 〉.

Thus, it is reasonable to split our derivation of the normal forms of
A into three camps.
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• When A has a timelike eigenvector, the normal form is of type
(J).

• In the absence of timelike eigenvectors:
* If A has a null eigenvector with non-zero eigenvalue, then its

normal form is of type (S).
* If A has a null eigenvector with eigenvalue zero, then its normal

form is of type (T ).
These types will be defined and discussed separately in Sections 9.3.4–
9.3.6. After those discussions, the following will be apparent:

(a) The three types of normal forms are mutually exclusive.
(b) Having a null eigenvector with non-zero eigenvalue automatically

rules out timelike eigenvectors; hence the assumption about time-
like eigenvectors being absent is not needed in the type (S) case.

(c) On the other hand, the absence of timelike eigenvectors is essential
for the type (T ) normal form to surface.

9.3.4. In the presence of a timelike eigenvector for A. Call this
eigenvector U ; by item (4) of Section 9.3.2, its eigenvalue must be 0.
This puts U in the null space of A and hence that of Ω. Since the latter
is real, U can be chosen real. Being timelike, the first component u0 of
U cannot vanish. Replace U by −U if necessary to effect u0 > 0, and
scale U to unit length.

Set U := span{U}. Since U is timelike, 〈 , 〉|U⊥ is non-degenerate by
Lemma 9.1. According to Section 9.1, U⊥ then admits a 〈 , 〉 ortho-
normal basis B. All vectors in B must be spacelike, or else {U} ∪ B
contradicts the invariance of 〈 , 〉 ’s index. This shows that 〈 , 〉|U⊥ is
positive-definite. Hence the analysis of A|U⊥ reduces to the compact case
considered in Section 9.2. So, there is a real orthonormal basis B for U⊥,
with respect to which A|U⊥ has the normal form ia1J⊕· · ·⊕iakJ⊕0n−2k.

The collection B := {U} ∪ B is a real 〈 , 〉 orthonormal basis which
puts Ω into the normal form Ω̃ := 0 ⊕ a1J ⊕ · · · ⊕ akJ ⊕ 0n−2k, with
a1 � · · · � ak > 0. Denote also by B the matrix whose columns are
the vectors in our real 〈 , 〉 orthonormal basis. Then, Ω̃ = gΩg−1, where
g := B−1. Since u0 > 0, (the matrix B and hence) g belongs to O+(1, n).
Suppressing the rank of Ω gives the following “type (J)” normal form

for n even, Ω̃ = 0 ⊕ a1J ⊕ · · · ⊕ amJ with m = n/2,
for n odd, Ω̃ = 0 ⊕ a1J ⊕ · · · ⊕ amJ ⊕ 0 with m = (n − 1)/2.

Here, a1 � a2 � · · · � am � 0.
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9.3.5. When A has a null eigenvector with non-zero eigenvalue.
Take any such null eigenvector and call it X. According to item (6) of
Section 9.3.2, the eigenvalue in question has the form ia with 0 �= a ∈ R,
and X can be chosen as (1, x), where x is real and |x|2 = 1. Incidentally,
item (2) of Section 9.3.2 characterizes x by the equations a = Ctx and
ax = C −Qx.

There is, in fact, a companion real null eigenvector Y with the stan-
dardized form (1, y), and which has eigenvalue −ia. To see this, it
suffices to solve −a = Cty and −ay = C − Qy for a real y. These
equations and a �= 0 then imply |y|2 = yty = 1.

Since Qt = −Q, we can rewrite the second equation as yt(Q+ aI) =
−Ct. Also, Q + aI is invertible because the spectrum of Q is pure
imaginary (Section 9.2). Thus yt = −Ct(Q+aI)−1, which is real because
Q and C are. Finally, with the help of the hypothesized x, we have
Cty = ytC = yt(Q+ aI)x = −Ctx = −a. This proves that the asserted
Y exists. (Since y is not a multiple of x, we have 〈X,Y 〉 = −1 + x · y <
−1 + |x| |y| = 0; thus X, Y are not 〈 , 〉 orthogonal.)

By interchanging X with Y if necessary, we may assume that a > 0.
For later purposes, relabel it as a1. Define U := X + Y = (2, x + y)t

and V := X − Y = (0, x − y)t. Observe that

* 〈U,U〉 = 2(−1 + x · y) < 0 and 〈V, V 〉 = 2(1 − x · y) > 0,
* U and V are 〈 , 〉 orthogonal,
* AU = ia1V and AV = ia1U . Since |〈U,U〉| = 〈V, V 〉, that pair of

equations remains valid for the normalized vectors Û and V̂ .

Set W := span{Û , V̂ }. Since Û is timelike, a (by now) familiar argu-
ment shows that 〈 , 〉 becomes positive definite on the (n−1)-dimensional
W⊥, which is invariant under the self-adjoint A. In view of Section 9.2,
there is a real orthonormal basis B for W⊥, with respect to which the
restricted A has the normal form ia2J ⊕ · · · ⊕ iakJ ⊕ 0n−1−2(k−1).

The collection B := {Û , V̂ }∪B is a real 〈 , 〉 orthonormal basis which
puts Ω into the normal form Ω̃ := a1S ⊕ a2J ⊕ · · · ⊕ akJ ⊕ 0n+1−2k,
where

S =
(

0 1
1 0

)

and a1 > 0, a2 � · · · � ak > 0. Denote also by B the matrix whose
columns are the vectors in our real 〈 , 〉 orthonormal basis. Then Ω̃ =
gΩg−1, where g := B−1. Since the first component of Û is positive, (the
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matrix B and hence) g belongs to O+(1, n). Suppressing the rank of Ω
gives the following “type (S)” normal form

for n even, Ω̃ = a1S ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0 with m = n/2,
for n odd, Ω̃ = a1S ⊕ a2J ⊕ · · · ⊕ amJ with m = (n+ 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0.
This normal form explains why there was no need to hypothesize

the absence of timelike eigenvectors here. Indeed, any such eigenvector
would have to have zero eigenvalue (by item (4) of Section 9.3.2), putting
it in the null space of Ω̃. But then, its first two components would have
to vanish (on account of a1S), which is incompatible with being timelike.

9.3.6. When A has a null eigenvector with zero eigenvalue but
no timelike eigenvector. Let V be such an eigenvector of A = iΩ.
Since ΩV = 0 and Ω is real, V can be chosen real. Being null, V must
have non-zero first component; hence it can be standardized into the
form (1, v), where v is real and v · v = 1. By (2) of Section 9.3.2, we
also have Qv = C and C · v = 0. Section 9.3.1 says there is no loss of
generality in assuming that Q and C have already been simplified to
q1J ⊕ · · ·⊕ qhJ ⊕ 0n−2h and (D1, . . . ,Dh, 0, . . . , 0, ξ), respectively. Here,
q1 � · · · � qh > 0 and Dj = [C2j−1, C2j ]. The hypothesized existence of
V implies that Qv = C admits a solution. Hence C is in the range of
Q and ξ must vanish. The use of J2 = −I solves the equation Qv = C
to give

v =
(
−JD1

q1
, . . . ,

−JDh

qh
, v2h+1, . . . , vn

)
.

This v automatically satisfies C · v = 0 because of the skew-symmetry
of J , and its last n−2h components are constrained by the requirement
v · v = 1.

For further discussions, set

z :=
(
−JD1

q1
, . . . ,

−JDh

qh
, 0, . . . , 0

)
.

The null space N1 of A = iΩ consists of eigenvectors U = (u0, u) with
eigenvalue 0, which are characterized by Qu = u0C and Ctu = 0. Since
Ω is real, U may be chosen to be real. A calculation like the one above
tells us that N1 admits a basis {(1, z), (0, ej ), j = 2h+ 1, . . . , n}, where
ej has a 1 in the jth entry, and 0 elsewhere. In particular, (1, z) is an
eigenvector of A with eigenvalue 0.
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If (1, z) were not null, then the components v2h+1, . . . , vn of the hy-
pothesized null eigenvector (1, v) could not all be zero, whence |z|2 <
|v|2 = 1. This would force the eigenvector (1, z) to be timelike, a sce-
nario forbidden by our hypothesis. Thus, (1, z) has to be null; that is,
z · z = 1. Since |JDi| = |Di|, the condition z · z = 1 is equivalent to

(∗) |D1|2
q21

+ · · · + |Dh|2
q2h

= 1.

In particular, some |Dj |2 must be positive.
Introduce the column vectors (written here as rows)

z1 :=
(
D1

q21
, . . . ,

Dh

q2h
, 0, . . . , 0

)
, z2 :=

(
JD1

q31
, . . . ,

JDh

q3h
, 0, . . . , 0

)
.

Let Ni be the null space of Ai, equivalently that of Ωi. Abbreviate
the vectors (1, z), (0, ej ), j = 2h+ 1, . . . , n collectively as B0. Using the
simplified form of Ω (Section 9.3.1) with ξ = 0 (as explained above), we
get:

N1 = span{B0},
N2 = span{(0, z1), B0},
N3 = span{(0, z2), (0, z1), B0};
Np = N3 for any p � 3.

The first three follow fromQz = C, Qz1 = −z, Qz2 = −z1, and C ·z = 0,
C · z1 = 1, C · z2 = 0. The fourth is essentially due to the fact that,
while certainly there is a z3 such that Qz3 = −z2, it is unable to satisfy
C · z3 = 0 because (∗) above implies that |Dj |2 > 0 for some j. The
union of all the Ni is the generalized null space N of A. It is invariant
under A.

Normalize (0, z1), (0, z2) to yield two real 〈 , 〉 orthonormal spacelike
vectors X1, X2. A routine calculation produces the unit timelike real
vector

X0 :=
|z2|

|z · z2|
(1, z) +X2 =

√∑h
i=1 |Di|2/q6i√∑h
i=1 |Di|2/q4i

(1, z) +X2,

which is 〈 , 〉 orthogonal to X1, X2. Also, with a1 := |z1|/|z2|, we have
AX0 = ia1X1, AX1 = ia1(X0 −X2), and AX2 = ia1X1. Let B1 be the
real 〈 , 〉 orthonormal basis {X0,X1,X2, (0, ej), j = 2h + 1, . . . , n} for
the generalized null space N . With respect to B1, the matrix of A|N
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has the form ia1T ⊕ 0n−2h, where

T =


 0 1 0

1 0 1
0 −1 0


 .

Correspondingly, the matrix of Ω|N is a1T ⊕ 0n−2h, with a1 > 0.
Since X0 is timelike, a (by now) familiar argument shows that 〈 , 〉 be-

comes positive definite on N⊥, which is invariant under the self-adjoint
A. By Section 9.2, there is a real orthonormal basis B2 for N⊥ which
puts A|N⊥ , and hence Ω|N⊥, into normal form. Incidentally, this normal
form must look like a2J⊕· · ·⊕am′J , where a2 � · · · � am′ > 0, because
the kernel of Ω has already been accounted for in N .

Let B := {X0,X1,X2} ∪ B2 ∪ {(0, ej), j = 2h + 1, . . . , n}. Denote
also by B the matrix whose columns are the vectors in this real 〈 , 〉
orthonormal basis. Then, the normal form of Ω is Ω̃ = gΩg−1, where
g := B−1. Since the first component of X0 is positive, (the matrix B
and hence) g belongs to O+(1, n). Suppressing the rank of Ω gives the
following “type (T )” normal form

for n even, Ω̃ = a1T ⊕ a2J ⊕ · · · ⊕ amJ with m = n/2,
for n odd, Ω̃ = a1T ⊕ a2J ⊕ · · · ⊕ amJ ⊕ 0 with m = (n− 1)/2.

Here, a1 > 0 and a2 � · · · � am � 0.
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[11] L. Berwald, Über Systeme von Gewöhnlichen differentialgleichungen zweiter ord-
nung deren integralkurven mit dem system der geraden linien topologisch aequiv-
alent sind, Ann. Math. (2) 48 (1947) 193–215, MR 0021178, Zbl 0029.16602.
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