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THE SPACE OF KÄHLER METRICS II

E. CALABI & X.X. CHEN

Abstract
This paper, the second of a series, deals with the function space H of all
smooth Kähler metrics in any given n-dimensional, closed complex manifold
V, these metrics being restricted to a given, fixed, real cohomology class,
called a polarization of V . This function space is equipped with a pre-
Hilbert metric structure introduced by T. Mabuchi [10], who also showed
that, formally, this metric has nonpositive curvature. In the first paper of
this series [4], the second author showed that the same space is a path length
space. He also proved that H is geodesically convex in the sense that, for
any two points of H, there is a unique geodesic path joining them, which
is always length minimizing and of class C1,1. This partially verifies two
conjectures of Donaldson [8] on the subject. In the present paper, we show
first of all, that the space is, as expected, a path length space of nonpositive
curvature in the sense of A. D. Aleksandrov. A second result is related to
the theory of extremal Kähler metrics, namely that the gradient flow in
H of the “K energy” of V has the property that it strictly decreases the
length of all paths in H, except those induced by one parameter families of
holomorphic automorphisms of M .

1. Introduction and main results

1.1 Riemannian metrics and nonpositively curved space.

Let (V, ω0) be an n-dimensional, compact Kähler manifold without
boundary. Consider the space of Kähler distortion potentials

H = {ϕ ∈ C∞(V ) : ωϕ = ω0 + ∂∂ϕ > 0 on V }.
Clearly, each fibre of the tangent space TH of H is C∞(V ), and

each Kähler metric ωϕ defined by any potential ϕ ∈ H defines a measure
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dµϕ = 1
n!ω

n
ϕ. The L2 norm of functions in V determined by the measure

dµϕ and applied to TH defines a Weil-Peterson type metric on the
function space H (see Section 2.1 for historical remarks on this metric).

In 1997, following a program of Donaldson [8], the second author
proved that this space is convex with respect to geodesics of class C1,1,
and used this fact to prove that such geodesics (and only they) achieve
the infimum length of all paths joining their end points. The strongest
result on these geodesics established so far is that they are of class
C1,1. If one could prove that they are, as expected, of class at least
C4, then the formal calculations in [10] would imply that the curvature
of H is nonpositive in the geometric sense of A. D. Aleksandrov. It
is an interesting question whether one could prove that the geometric
curvature of H is nonpositive regardless of the regularity of geodesics.
The following theorem confirms that this is indeed the case.

Theorem 1.1. The space of Kähler potentials in any given, polar-
ized manifold V is a nonpositive curved space in the following sense.
Let A, B, C be three points in the space of Kähler potentials and de-
note d(·, ·) : H × H → R+ the distance (in terms of the metric afore-
mentioned). For any λ, with 0 ≤ λ ≤ 1, let Pλ be the point on a
geodesic path joining B and C with d(B,Pλ) = λd(B,C) and d(Pλ, C) =
(1 − λ)d(B,C). Then the following inequality holds:

d(A,Pλ)2 ≤ (1 − λ)d(A,B)2 + λd(A,C)2 − λ · (1 − λ)d(B,C)2.

In [4], the second author proved that every geodesic segnent achieves
the minimum length of all paths connecting its end points. However, the
problem remained unsettled whether any length minimizing sequence of
paths joining any two points of H must include a subsequence converging
to the unique geodesic. That question is now settled, according to the
following statement:

Theorem 1.2. Let ϕi ∈ H(i = 1, 2) be two Kähler distortion poten-
tials, generating two corresponding Kähler metrics in V, and let {Ci}
be any sequence of paths in H from ϕ0 to ϕ1 and whose length con-
verge to the least possible limit. Then {Ci} converges, in the topology of
Hausdorff distance, to the unique geodesic of class C1,1 from ϕ0 to ϕ1.

1.2 The gradient flow

The notion of extremal Kähler metrics was first introduced in [2] by
the first author of the present article. In order to attack the problem
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of the existence of extremal Kähler metrics, he proposed a “steepest
descent” process, consisting of the initial value problem corresponding
to the following parabolic equation of order four:

∂ ϕ

∂ s
= R(ϕ) −R.(1.1)

Here R(ϕ) denotes the scalar curvature of the Kähler metric ωϕ and R
is the average value over V — a constant depending only the polarized
class. The flow in H represented by the solutions of (1.1) has sometimes
been refered as the Calabi flow. In general, a solution to the initial
value problem for (1.1) is known to exist for a short interval of the
“time” paremeters. In the case of Riemann surfaces (n = 1), Chrusciel
[7] proved, using the fact that metric of constant curvature are known
a prori to exist, that the solution of (1.1) exists for all s and converges
at infinity.1 It is remarkable that, under the flow in H represented
by solutions of (1.1), each smooth path in H has decreasing length, as
stated more precisely below.

Theorem 1.3. Let ϕi ∈ H(i = 0, 1) be two Kähler distortion po-
tentials, generating two corresponding Kähler metrics in V , and let
ϕ(t)(0 ≤ t ≤ 1) be a smooth path in H from ϕ(0) = ϕ0 to ϕ(1) =
ϕ1. Suppose that, for some constant s0 > 0, there is a smooth fam-
ily of Kähler distortion potentials φ(s, t)(0 ≤ s ≤ s0, 0 ≤ t ≤ 1)
such that, for each t ∈ [0, 1], φ(s, t) satisfies th initial value problem
∂ φ
∂ s = R(φ) − R, φ(0, t) = ϕ(t). Then the length L(s) of the path
{φ(s, t) : 0 ≤ t ≤ 1} in H is strictly decreasing function of s, ex-
cept for the case where the complex vector field gλµ(φ(s, t))∂

2φ(s,t)

∂t∂zµ

∂
∂zλ

in V is holomorphic for each (s, t) in a neighborhood of a segement
{(s, t) : 0 ≤ t ≤ 1}.

The proof of this statement consists of a formal calculation involv-
ing the second order differential operator on real or complex functions,
defined below and named after André Lichnérowicz.

Definition 1.4. For any smooth function f : V → C and any
Kähler metric g in V, the Lichnérowicz operator D is defined in local

terms by Dgf =
n∑

α,β=1

f,αβdz
α ⊗ dzβ where the local functions f

,αβ

1The second author gave a new geometric proof to Chrusciel’s theorem [6]. Follow-
ing the approach taken in [6], M. Struwe [13] gave a unified treatment of both Ricci
flow and Calabi flow in Riemann surfaces. For higher dimensional Kähler manifolds,
very little is known about the global existence of the flow.
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are components of the second covariant derivatives of f in terms of g:

f
,αβ

=
n∑

λ,µ=1

gλα
∂

∂zβ

(
gλµ

∂f

∂zµ

)
.

The length L(s) of the path {φ(s, t) : 0 ≤ t ≤ 1} in H is, by
definition,

L(s) =
∫ 1

0

(∫
V

(
∂φ(s, t)
∂t

)2

dµφ(s,t)

) 1
2

d t.

If one differentiates both sides with respect to s, one readily obtains
from the standard variational formulas the desired expression

dL

d s
= −

∫ 1

0

(∫
V

∣∣∣∣D∂φ∂t
∣∣∣∣
2

φ(s,t)

dµφ(s,t)

)
·
(∫

V

∣∣∣∣∂φ∂t
∣∣∣∣
2

dµφ(s,t)

)− 1
2

d t.

Theorem 1.5. The following two statements are immediate conse-
quences of Theorem 1.3.

1. If the flow in H generated by (1.1) exists for all time for any
smooth initial data, then the distance between any two Kähler met-
rics decreases under that flow.

2. If the K-energy2 is a weakly convex function along geodesics,3

and in particular if the first Chern class of V is nonpositive, then
the same flow decreases the distance between metrics.

The flowing question/conjecture is highly interesting:

Question/Conjecture 1.6. Is the distance function in H strictly
decreasing under the gradient flow (1.1), in particular, if the two metrics
are not equivalent up to some holomorphic isometric transformation?

Remark 1.7. The only conceivable paths in H that do not shrink
under the flow under discussion are those induced by paths in the group

2The K-energy is defined by T. Mabuchi in 1987 [10] while the flow was introduced
by the first author in 1982 [2]. And it is commonly known as the “Calabi flow” in
the literature.

3A function f(t)(0 ≤ t ≤ 1) is weakly convex if for any t, we have f(t) ≤ (1 −
t) f(0) + t f(1). For this theorem, we additionally assume that f is differentiable at
both end points, i.e., f ′(1) ≥ f ′(0).
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of holomorphic transformations of V that are of hyperbolic type at each
point. A path in that group is said to be of hyperbolic type with respect
to a given Kähler metric if the holomorphic vector field in V represented
by the tangent to a given Kähler metric is a multiple of a vector field
generating a group of holomorphic isometries. A rigorous verification of
this conjecture would require locally uniform estimates of the regularity
of the flow (1.1), independent of second derivatives of the initial metrics.

Acknowledgements. The second author wishes to express his
thanks to S. Donaldson for many enlightening discussions, to L. Si-
mon and R. Schoen for their encouragement throughout the project,
and Guofang Wang for a careful reading of an earlier version of this
paper. Both of us would like to thank the referee for some interesting
suggestions.

2. H is a nonpositively curved space

In this section, we want to show that H is a nonpositively curved
space in the sense of Aleksandrov.

2.1 A Riemannian metric in the infinite dimensional
space.

In 1987, T. Mabuchi introduced ([10]) the infinite dimensional Rieman-
nian (or pre-Hilbert) structure, in the function space of Kähler metrics
in V and showed that the space with this metric is, formally, a locally
symmetric space with nonpositive curvature. The same metric was re-
discovered, apparently unaware of Mabuchi’s work, by S. Semmes [12]
and Donaldson [8], each describing it from somewhat different view-
points. We shall briefly review the definition and elemntary properties
of this metric.

For each Kähler metric g in V, any smooth, real-valued function ψ
in V represents a tangent vector to the space of all Kähler metrics.4

Thus any “basis” {ψλ} for the space of all smooth functions, attached
to each Kähler distortion potential ϕ0 ∈ H, constitutes a global field
of tangential frames. Since any two of these vector fields obviously

4Since constants, and only constants, represent trivial infinitesimal deformations
of metric, it is convenient to replace the actual space of Kähler metrics with the
product of H with the real line R, so that, for each metric g, constants act by
translation on R alone, while function ϕ orthogonal to constants are regarded as
infinitesimal Kähler distortion potentials, acting trivially on R.
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commute, the total frame may be considered, formally, as a sort of a
global, flat affine coordinate system for H, in the following sense: the
“point” ϕ0 ∈ H being the origin, the numerical range of the coordinates
consists of the set of arrays (yλ) such that the function ϕ1 = ϕ0 +∑
λ

yλψλ satisfies the condition to be the Kähler distortion potential

for a Kähler metric, that is then assigned to the array (yλ).
Given any tangent vector on H, represented by a smooth function

ψ : H × V → R, the square length of ψ at the point ϕ ∈ H is defined
to be

‖ψ‖2
ϕ =

∫
V
ψ2 dµϕ,

where dµϕ = 1
n!ω

n
ϕ. The corresponding symmetric bilinear form for any

two tangent “vectors” f1, f2 at the point ϕ ∈ H, is written as

〈f1, f2〉ϕ =
∫
V
f1 · f2 dµϕ.

When no confusion is arisen, we just write

〈f1, f2〉 =
∫
V
f1 · f2 dµϕ.

The “tensor notation” for the metric, in terms of the global tangent
frame {ψλ} is then Gψλ ψµ = 〈ψλ, ψµ〉, dS2 = Gψλ ψµ dy

λd yµ.

One can calculate directly the Christoffel symbols of the first kind
by differentiating formally }ψλ ψµ in the direction represented by any
ψν :

∂ψνGψλ ψµ =
∫
V
ψλψµ�ϕψν dµϕ,

where

{ψλ, ψµ;ψnu} =
1
2
(
∂ψλ

Gψν ψµ + ∂ψνGψλ ψµ − ∂ψνGψλ ψµ

)
=

1
2

∫
V

(ψµψν�ϕψλ + ψλψν�ϕψµ − ψλψµ�ϕψν ) dµϕ

= −1
2

∫
V
ψλg

αβ
ϕ

(
∂ψµ
∂zα

∂ψν
∂zβ

+
∂ψν
∂zα

∂ψµ
∂zβ

)
dµϕ.
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The last expression then yields the covariant derivative formula for tan-
gent vector fields ψλ:

∇ψµψλ(ϕ) = ∇ψλ
ψµ(ϕ) =

1
2
gαβϕ

(
∂ψµ
∂zα

∂ψλ
∂zβ

+
∂ψλ
∂zα

∂ψµ
∂zβ

)
.

Similarly, the equation for a geodesic path ϕ(t) in H in terms of a
parameter t(0 ≤ t ≤ 1) proportional to the arc length is

∂2ϕ

∂t2
= gαβϕ

∂2ϕ

∂t∂zα
(t)

∂2ϕ

∂t∂zβ
(t) =

1
2

∣∣∣∣∇∂ϕ

∂t

∣∣∣∣
2

ϕ(t)

,(2.1)

where the norm of the gradient in the right-hand side is taken in V with
respect to the metric associated with the form ωϕ(t). One may derive
the same equation, alternatively, as the Euler-Lagrange equation for the
variational problem of minimizing the energy integral∫ 1

0

〈
∂ϕ

∂t
(t),

∂ϕ

∂t
(t)
〉2

ϕ(t)

dt =
∫ 1

0

∫
V

(
∂ϕ

∂t

)2

dµϕ(t) dt,

over the set of smooth paths in H connecting the fixed end points ϕ(0)
and ϕ(1). A calculation with the derivatives of the Christoffel symbols,
analogous to the familiar formalism of the Ricci calculus, enables us to
verify, formally, that each 2-dimensional plane in the tangent bundle of
H has nonpositive curvature. The details may be found in [10], [12] and
[8].

In [8], S. K. Donaldson also formulated serval important conjectures
about geometric properties and their possible relation with properties of
the complex manifold V . In 1997, the second author proved some of his
conjectures, whose contents are summarized by the following theorem:

Theorem B ([4]). The following statements are true:

1. The space of Kähler potentials H is convex by C1,1 geodesics. More
specifically, if ϕ0, ϕ1 ∈ H and ϕ(t) (0 ≤ t ≤ 1) is a geodesic
connecting these two points in H, then the second order mixed
covariant derivatives of ϕ(t) are uniformly bounded from above.

2. H is a metric space.5 In other words, the infimum of the lengths of
all possible curves between any two different points in H is strictly
positive.

3. If C1(V ) < 0, then the extremal Kähler metric is unique in each
Kähler class.

5This is a conjecture of Donaldson[8].
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2.2 A lemma on approximate geodesics

In a local coordinate system of V, let ω0 =
n∑

α,β=1

g0αβ dzα dzβ and

ωϕ =
n∑

α,β=1

gαβ dzα dzβ, where gαβ = g0αβ +
∂2ϕ

∂zα∂zβ
.

In this subsection, z1, z2, . . . , zn are local coordinates in V . For any path
ϕ(·, t) : [0, 1] → H, we can view it as a function defined in the product
manifold V × [0, 1]. Following an idea of S. Semmes, we introduce a
dummy variable θ such that V × ([0, 1] × S1) is a (n + 1)-dimensional
Kähler manifold and t = re(zn+1). Here S1 is the unit circle, and we
always use the following notations:

i, j, k = 1, 2, . . . , n, n+ 1 and α, β, γ = 1, 2, . . . , n.

Consider the projection

π : V × ([0, 1] × S1) → V
(z, t, θ) → z.

Consider the pullback metric π∗g0. Note that π∗ω0 is a degenerate
Kähler form of co-rank 1 in V × ([0, 1] × S1).

Definition 2.1. A path ϕ(t)(0 < t < 1) in H is a convex path if

det
(
π∗g0ij +

∂2ϕ

∂zi∂zj

)
(n+1)(n+1)

> 0, in V × (I × S1).

Definition 2.2. A convex path ϕ(t) in the space of Kähler metrics
is called an ε-approximate geodesic if the following holds:

det
(
π∗g0ij +

∂2ϕ

∂zi∂zj

)
(n+1)(n+1)

=

(
∂2ϕ

∂t2
− 1

2

∣∣∣∣∇∂ϕ

∂t

∣∣∣∣
2

g(t)

)
det g(t)

(2.2)

= ε · det g0

where g(t)αβ = g0αβ + ∂2ϕ
∂zα∂zβ

(1 ≤ α, β ≤ n).

Also from [4], we have the following, which plays a crucial role in
the proof in the next subsection.
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Lemma 2.3 (Geodesic approximation lemma, [4]). Suppose given
two smooth curves φ1(·, s), φ2(·, s) : [0, 1] → H. For ε0 small enough,
there exist two-parameter smooth families of curves

ϕ(·, t, s, ε) : [0, 1] × [0, 1] × (0, ε0](0 ≤ t, s ≤ 1, and 0 < ε ≤ ε0) → H
(from φ1(·, s) to φ2(·, s)) such that the following properties hold:

1. For any fixed s and ε, ϕ(·, t, s, ε) is an ε-approximate geodesic
connecting ϕ1(·, s) and ϕ2(·, s). More precisely, ϕ(·, t, s, ε) solves
the corresponding Monge-Ampere equation

det
(
π∗g0ij +

∂2ϕ

∂zi∂zj

)
= ε · det (g0), in V × R;(2.3)

and

ϕ(·, 0, s, ε) = φ1(·, s), ϕ(·, 1, s, ε) = φ2(·, s).
Here ϕ is independent of Im(zn+1).

2. There exists a uniform constant C which depends only on φ1(·, s), φ2(·, s)
such that

|ϕ| +
∣∣∣∣∂ϕ∂s

∣∣∣∣+
∣∣∣∣∂ϕ∂t

∣∣∣∣ < C; 0 <
∂2ϕ

∂t2
< C,

∂2ϕ

∂s2
< C.

3. For fixed s, as ε→ 0, the ε-approximating geodesic ϕ(·, t, s, ε) con-
verges to the unique geodesic between φ1(·, s) and φ2(·, s) in weak
C1,1 topology.

4. Define the energy element along ϕ(·, t, s, ε) by

E(t, s, ε) =
∫
V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

dg(t, s, ε),

where g(t, s, ε) is the corresponding Kähler metric defined by the
Kähler potentials ϕ(t, s, ε). Then there exists a uniform constant
C such that

max
t,s

∣∣∣∣∂ E∂ t
∣∣∣∣ ≤ ε · C.

In other words, both the energy and length element converge to a
constant along each convex curve if ε→ 0.
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2.3 Length of Jacobi vector field grows supre-linearly

In this subsection, we use the same notation as in Lemma 2.3. We
want to prove that the Jacobi vector field along any geodesic grows
supre-linearly.

Lemma 2.4. Let ϕ(·, t, s, ε) be the two-parameter families of ap-
proximating geodesics defined as in Lemma 2.3. Let Y (·, t, s, ε) = ∂ϕ

∂s be
the deformation vector fields and X(·, t, s, ε) = ∂ϕ

∂t the tangential vector
fields along the approximating geodesics. Then the second derivatives of
Y along the approximating geodesics are positive:

∇X∇XY ≥ 0.

Note that Y converges to a Jacobi vector field as ε → 0. Moreover, we
have

〈Y,∇XY 〉 ≥ 〈Y, Y 〉.

Proof. The equation for a family of ε-approximate geodesics is:(
∂2ϕ

∂t2
− 1

2

∣∣∣∣∇∂ϕ

∂t

∣∣∣∣
2

g(t)

)
det g(t) = ε · det g0, 0 ≤ s, t ≤ 1.

Denote

X =
∂

∂t
, Y =

∂

∂s
, Y ′ = ∇XY,

and

H =
det g0
det g

, f =
∂2ϕ

∂t2
− 1

2

∣∣∣∣∇∂ϕ

∂t

∣∣∣∣
2

g(t)

= ∇XX.

Then the approximating geodesic equation becomes

f = ∇XX = ε ·H.

Note that any two-parameter family of smooth functions F (s, t) can be
viewed as a two parameter family of tangent vectors at Tϕ(·,t,s,ε)H. Then
the Riemannian metric in H gives the following covariant derivatives:

∇XF = ∇ ∂
∂t
F (s, t) =

∂F

∂t
− 1

2
∇g

∂ϕ

∂t
· ∇g

∂F (s, t)
∂t
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and

∇Y F = ∇ ∂
∂s
F (s, t) =

∂F

∂s
− 1

2
∇g

∂ϕ

∂s
· ∇g

∂F (s, t)
∂s

.

Clearly, as ε → 0, Y is the Jacobi vector field along the geodesic. By
definition, the length of Y at t is:

|Y |2(t, s) =
∫
V

∣∣∣∣∂ϕ∂s
∣∣∣∣
2

det g.

Then
1
2
∂

∂ t
|Y |2 = 〈∇XY, Y 〉 = 〈∇YX,Y 〉.

Let K(X,Y ) denote the sectional curvature of the space of Kähler met-
rics at point ϕ(·, t, s, ε). By a formal calulation (cf. [10], [12] and [8]),
we have6

K(X,Y ) = −|{X,Y }ϕ|2g ≤ 0.

Therefore, we have

1
2
∂2

∂ t2
|Y |2 = 〈∇YX,∇XY 〉 + 〈∇X ∇YX,Y 〉

= |Y ′|2 −K(X,Y ) + 〈∇Y ∇XX,Y 〉
≥ |Y ′|2 +

∫
V
ε
∂ϕ

∂s
∇ ∂

∂s
H det g

= |Y ′|2 +
∫
V
ε
∂ϕ

∂s
·
(
∂H

∂s
− 1

2
∇∂ϕ

∂s
· ∇H

)
det g

= |Y ′|2 +
ε

2

∫
V

∣∣∣∣∇∂ϕ

∂s

∣∣∣∣
2

H · det g ≥ |Y ′|2.

The last equality holds since

∂H

∂s
=

∂

∂s

(
det g0
det g

)
= −�g

∂ϕ

∂s
·H

and

−
∫
V

∂ϕ

∂s
�g

∂ϕ

∂s
·H det g

=
1
2

∫
V

∣∣∣∣∇∂ϕ

∂s

∣∣∣∣
2

H · det g +
1
2

∫
V

∂ϕ

∂s
∇∂ϕ

∂s
∇H det g.

6 For any two functions f1, f2 and a Kähler form ωϕ, the term {f1, f2}ϕ is defined
to be the Possion bracket of f1 and f2 with respect to the sympletic form ωϕ.
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It follows that

∂2

∂ t2
|Y | ≥ 0.

In other words, |Y (t)|(0 ≤ t ≤ 1) is a convex function of t. Since
Y (0) = 0, we have

∂

∂t
|Y (t)|t=1 ≥ |Y (1)|

1
.

or at time t = 1

〈Y, Y ′〉 ≥ 〈Y, Y 〉.(2.4)

q.e.d.

2.4 Proofs of Theorems 1.1 and 1.2

In this subsection, we want to show that H is a nonpositively curved
space. We follow again the notations in Lemma 2.3 and the preceding
subsection.

Proof of Theorem 1.1. Consider a special case of Lemma 2.3 when
φ1(·, s) = φ1 is one point on H (instead of a curve). We denote this
point as P. Let Q = φ2(·, 0) ∈ H and R = φ2(·, 1) ∈ H. Furthermore,
we assume that φ2(·, s) (denoted as by QR) is an ε-approximate geodesic
connecting Q and R. In other words, it satisfies the following equation:

∇Y Y · det g =

(
∂2ϕ

∂t2 ss
− 1

2

∣∣∣∣∇∂ϕ

∂t s

∣∣∣∣
2

g

)
det g = ε · det g0.

Let Q(s) denote the point φ2(·, s) and denote by E(s) the energy of the
ε-approximate geodesic from P to Q(s). As ε → 0, E(s) → a constant
which, by our normalization, is the square of the geodesic distance from
P to Q(s). Thus it is enough to work with E(s). Next

E(s) =
∫ 1

0
〈X,X〉dt =

∫ 1

0

∫
V

(
∂ϕ

∂t

)2

det g dt

and

E(QR) =
∫ 1

0
〈Y, Y 〉ds =

∫ 1

0

∫
V

(
∂ϕ

∂s

)2

det g ds.
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Thus

1
2
dE(s)
d s

=
∫ 1

0
〈∇YX,X〉dt =

∫ 1

0
(X〈X,Y 〉 − 〈∇XX,Y 〉)dt

= 〈X,Y 〉t=1 −
∫ 1

0

∫
V

∂ϕ

∂s
· ε H det g dt

= 〈X,Y 〉t=1 − ε ·
∫ 1

0

∫
V

∂ϕ

∂s
det g0 dt.

Now the second derivatives:

1
2
d2E(s)
d s2

=
d

d s
〈X,Y 〉t=1 − ε ·

∫ 1

0

∫
V

∂2ϕ

∂s2
det g0 dt

≥ 〈Y ′, Y 〉t=1 + 〈X,∇Y Y 〉t=1 − C ε

∫
V

det g0

≥ 〈Y, Y 〉t=1 +
∫
V

∂ϕ

∂t
ε ·H · det g − C ε

∫
V

det g0

≥ 〈Y, Y 〉t=1 +
∫
V

∂ϕ

∂t
ε · det g0 − C ε

∫
V

det g0

≥ E(QR) − C · ε · vol(V ).

Here we have used the inequality (2.4) in the second inequality from
the top. And E(QR) denotes the energy of the path φ2(·, s). For the
energy elements of curves, the following inequality holds:

E(s) ≤ (1 − s)E(0) + sE(1) − s(1 − s)(E(QR) − C · ε · vol(V )).

Now fix s;7 as ε → 0, each energy element of a path approaches the
square of the length of that path. Thus the above inequality reduces to

|PQ(s)|2 ≤ (1 − s)|PQ|2 + s|PR|2 − s(1 − s)|QR|2.(2.5)

Thus the space of Kähler metrics satisfies the defining inequality for a
nonpositively curved space and hence it is a nonpositive space. Here
|PQ(s)| represents the distance from P to Q(s); |PQ| represents the
distance from P to Q; |PR| represents the distance from P to R; and
|QR| represents the distance from Q to R. q.e.d.

Next we prove Theorem 1.2.
7Actually, using successive subdivision one sees that knowing the inequality (2.5)

holds for s = 1
2

is enough to prove it for all 0 < λ < 1, cf. [9].
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Proof of Theorem 1.2. Let ϕ0 and ϕ1 be two points in H with
distance l > 0. Suppose that ϕ(·, t)(0 ≤ t ≤ 1) is a C1,1 geodesic which
connects these two points in H. Let ϕi(t)(0 ≤ t ≤ 1) be an arbitrary
family (i = 1, 2, . . . , n, . . . ) of curves between ϕ0 and ϕ1 with length
li ≥ l > 0. Next we assume that this is a distance minimizing sequence
of curves. In other words,

lim
i→∞

li = l.

Then, we need to show that ϕi(·, t)(0 ≤ t ≤ 1) converges to ϕ(·, t)(0 ≤
t ≤ 1) in some reasonable topology. For convenience, we assume that
every curve involved has been parameterized proportionally to the arc-
length. Then we only need to show that for each fixed s > 0, we have

lim
i→∞

d(ϕi(·, s), ϕ(·, s)) → 0.

Since H is a nonpositively curved space, we have (comparing with the
Euclidean space):

d(ϕi(·, s), ϕ(·, s)) ≤
√
l2i − l2

4
→ 0.

Theorem 1.2 is then proved. q.e.d.

3. The gradient flow of the K-energy

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. We follow the notations in Theorem 1.3. Let
φ(·, t) : [0, 1] → H be any smooth curve in H and let φ(·, t, s) be the
image of this curve under the gradient flow after time s. Recall

∂φ

∂s
= R(φ) −R.

Denote by g(s, t) the Kähler metric associated with the Kähler poten-
tials φ(s, t). Use � to denote the complex Laplacian operator of metric
g(s, t). Following a calculation in [2], we have

∂R

∂t
= −D∗D

∂φ

∂t
+

n∑
α=1

(
∂φ

∂t

)
φαR,α
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and

∂

∂t
det g(s, t) = � ∂φ

∂t
det g.

Recall that the energy of the path φ(·, t, s) (at time s fixed) is:

E(s) =
∫ 1

0

∫
V

(
∂φ

∂t

)2

det g dt.

Under the gradient flow (1.1), we have

dE

d s
=
∫ 1

0

∫
V

2
∂φ

∂t

∂2φ

∂t∂s
det g dt+

∫ 1

0

∫
V

(
∂φ

∂t

)2

�∂φ

∂s
det g dt

=
∫ 1

0

∫
V

2
∂φ

∂t

∂R

∂t
det g dt−

∫ 1

0

∫
V

2
∂φ

∂t

(
∂φ

∂t

)α(∂φ
∂s

)
α

det g dt

=
∫ 1

0

∫
V

2
∂φ

∂t

(
−D∗D

∂φ

∂t
+ φ,αR,α

)
det g dt

−
∫ 1

0

∫
V

2
∂φ

∂t

(
∂φ

∂t

)α
Rα det g dt

= −
∫ 1

0

∫
V

∣∣∣∣D∂φ∂t
∣∣∣∣
2

g

det g dt.

It follows that

dL

d s
= −

∫ 1

0


∫

V

∣∣∣∣D∂φ∂t
∣∣∣∣
2

φ(s,t)

dg(s, t) ·
√∫

V

∣∣∣∣∂φ∂t
∣∣∣∣
2

dg(s, t)

− 1
2


 dt,

where L(s) is the length of the evolved curve at time s > 0. From this
formula, if the length of a smooth curve is not decreasing, then

∫ 1

0


∫

V

∣∣∣∣D∂φ∂t
∣∣∣∣
2

φ(s,t)

det g(s, t)

√∫
V

∣∣∣∣∂φ∂t
∣∣∣∣
2

dg(s, t)

− 1
2


 dt = 0.

It follows that ∫ 1

0

∫
V

∣∣∣∣D∂φ∂t
∣∣∣∣
2

φ(s,t)

= 0
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or (
∂φ

∂t

)
,αβ

≡ 0, ∀ α, β = 1, 2, . . . n; ∀ t ∈ [0, 1].

In other words, the curve φ(t)(0 ≤ t ≤ 1) is either trivial (depending
only on t) or it represents a family of holomorphic transformations.
Theorem 1.3 is then proved. q.e.d.

Next we give a proof of the first part of Theorem 1.5.

Proof of Theorem 1.5(1). For any ϕ0, ϕ1 ∈ H, consider the space of
all smooth curves which connect ϕ0 with ϕ1. We denote it by L(ϕ0, ϕ1).
For any curve c ∈ L(ϕ0, ϕ1), we denote its length by L(c). Then the
distance between the two points ϕ0 and ϕ1 can be defined as

d(ϕ0, ϕ1) = inf
c∈L(ϕ0,ϕ1)

L(c).

We also define a map in H via the gradient flow (1.1): for a fixed time
s, and for any ϕ ∈ H, we define that the image of ϕ under the map πs
is the image of ϕ along the gradient flow after time s > 0, provided the
gradient flow initiated at ϕ does exist for time s > 0. It is clear that for
any ϕ, the map is defined for small s > 0. However, for a fixed s > 0, πs
is not necessarily defined for all ϕ ∈ H since we don’t know the global
existence of the gradient flow.

On the other hand, if the gradient flow exists for all the time for
any smooth initial metric, then this induces a well-defined map from
L(ϕ0, ϕ1) to L(πs(ϕ0), πs(ϕ1)) for any s > 0. Since the length of any
smooth curve in H is decreased under the gradient flow, we have

inf
c∈L(πs(ϕ0),πs(ϕ1))

L(c) ≤ inf
c∈L(ϕ0,ϕ1)

L(c), ∀ s > 0.

Thus,

d(πs(ϕ0), πs(ϕ1)) ≤ d(ϕ0, ϕ1), ∀ s > 0.

q.e.d.

Before proving the second part of Theorem 1.5, we need to use a
theorem in [4] where an explicit formula for the first derivatives of the
distance function in H is given. For the convenience of the readers,
we will include this theorem here. The second part of Theorem 1.5 is
essentially a corollary of this theorem.
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Theorem 3.1 ([4]). For any two Kähler potentials ϕ0, ϕ1, the dis-
tance function d(ϕ0, ϕ1) is at least C1. More specifically, if ϕ0, ϕ1 move
along two curves ϕ0(s), and ϕ1(s) respectively, and if we denote the
distance between ϕ1(s) and ϕ2(s) by L(s), then

d L(s)
d s

∣∣∣∣
s=0

= 〈X,Y1〉|X|− 1
2

∣∣∣
t=1

− 〈X,Y0〉|X|− 1
2

∣∣∣
t=0

=
∫
V

∂ϕ1

∂s

∂ ϕ

∂ t
dg(s) ·

{∫
V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

dg(s)

}− 1
2

∣∣∣∣∣∣
t=1

−
∫
V

∂ϕ0

∂s

∂ ϕ

∂ t
dg(s) ·

{∫
V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

dg(s)

}− 1
2

∣∣∣∣∣∣
t=0

.

Here ϕ(t)(0 ≤ t ≤ 1) denotes the C1,1 geodesic connecting the two
metrics ϕ0 and ϕ1; and X = ∂ϕ

∂t ∈ Tϕ(t)H and Yi = ∂ϕi

∂s ∈ TϕiH (i =
0, 1).

Now we complete the proof of Theorem 1.5.

Proof of Theorem 1.5(2). If the gradient flow (1.1) exists for all the
time, then it is straightforward to show that flow (1.1) decreases the
distance between any two points in H unless they are connected by a
holomorphic transformation. Thus, we only deal with the case when
the K-energy is weakly convex. By definition, for any curve ϕ(t) ∈ H,
the K-energy is defined as

dM(ϕ(t))
dt

= −
∫
V

∂ϕ

∂t
(R−R) det g.

Along a C1,1 geodesic, the second derivative of the K-energy is convex
in the weak sense that

d2M(ϕ(t))
d t2

≥ 0.

In particular, we have

dM(ϕ(t))
dt

∣∣∣∣
t=1

≥ dM(ϕ(t))
dt

∣∣∣∣
t=0

.(3.1)

Suppose that ϕ(t)(0 ≤ t ≤ 1) is the unique C1,1 geodesic which
connects ϕ1 and ϕ2, and suppose it is parameterized proportionally to
arc length. If we flow ϕ1 and ϕ2 by the gradient flow (1.1), we have
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∂ϕ1

∂s
= R(ϕ1(s)) −R and

∂ϕ2

∂s
= R(ϕ2(s)) −R.

Plugging this into the corresponding formula in Theorem 3.1, we have

d L(s)
ds

=

{∫
V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

d g(s)

}− 1
2

·
(∫

V
(R(ϕ2) −R)

∂ϕ

∂t
dg(s)

∣∣∣∣
t=1

−
∫
V

(R(ϕ1) −R)
∂ϕ

∂t
dg(s)

∣∣∣∣
t=0

)

= −
{∫

V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

d g(s)

}− 1
2

·
(
dM

dt

∣∣∣∣
t=1

− dM

dt

∣∣∣∣
t=0

)

= −
{∫

V

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

dg(s)

}− 1
2

·
∫ 1

t=0

d2M

dt2
dt ≤ 0.

q.e.d.

4. Some further corollaries, remarks and the relationship
with stability

Corollary 4.1 ([8]). If all geodesics are smooth, then any extremal
Kähler metric is unique up to a holomorphic automorphism.

Proof. Suppose that there exist two extremal Kähler metrics in a fixed
Kähler class. It was proved in [3] that any extremal Kähler metric must
be symmetric with respect to a maximal compact subgroup. Without
loss of generality, one may assume that both metrics are symmetric un-
der the same maximal compact subgroup. Then every metric in the
geodesic which connects this two extremal metrics must also have the
same symmetry group (via the Maximum Principle). If the scalar cur-
vature is constant, then an argument of Donaldson [8] on the convexity
of the K energy implies that the extremal metric must be unique. If the
scalar curvature is not a constant, then the gradient vector field of the
scalar curvature is a holomorphic vector field and it is unique in each
Kähler class once the maximal compact subgroup is fixed. In particular,
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the gradient flow (1.1) restricted to the two extremal metrics induces
the same holomorphic transformation. Thus the distance of these two
extremal Kähler metrics under the gradient flow is unchanged. Suppose
ϕ1, ϕ2 are the two extremal metrics and ϕ(·, s) is the unique geodesic
connecting them. Since the distance of ϕ1 and ϕ2 is not decreased un-
der the gradient flow, by Theorem 1.3, the path ϕ(·, s) must either be
totally trivial or represent a holomorphic transformation. q.e.d.

Remark 4.2. For the uniqueness of the extremal Kähler metrics,
the known results are as follows:

1) In the 1950s, the first author showed the uniqueness of Kähler-
Einstein metric if C1 ≤ 0.

2) In 1987, T. Mabuchi and S. Bando [1] showed the uniqueness of
Kähler-Einstein metric up to a holomorphic transformation if the
first Chern class is positive.

3) In [4], the second author proved that any metric with constant
scalar curvature is unique in each Kähler class if C1(V ) < 0.

The problem for the general case is still open. However, the second
author [5] had examples of nonuniqueness of some degenerated extremal
Kähler metrics in S2.

S.-T. Yau predicted in [14] that the existence of a Kähler-Einstein
metric is related to the stability in the sense of Hilbert schemes and ge-
ometric invariant theory. His conjecture should be extended to include
the case of extremal Kähler metrics. From Theorem 1.3, we observe
some kind of link, perhaps still a bit mysterious, between the the ex-
istence of extremal metrics and “stability” of the infinite dimensional
space H in some sense. At least formally, it fits nicely in the general
picture that Yau’s conjecture describes. The following paragraph is es-
sentially speculative in trying to explain this point. If we are willing to
put aside the regularity issue, then Theorem 1.3 implies that the gra-
dient flow of the K energy is a distance contracting flow in H. In this
infinite dimensional path length space H, we choose a large enough ball,
which hopefully contains any possible candidates for extremal Kähler
metrics. Now flow the entire ball by this gradient flow. If a global so-
lution of the gradient flow always exists for all smooth initial metrics,
then the contracting nature of the flow will shrink the size of the ball.
In the limit, the ball will shrink to a point, which must be an extremal



192 e. calabi & x.x. chen

Kähler metric we are looking for. However, this formal picture is not
quite complete. A dichotomy can possibly take place: As the size of
the ball shrinks, the ball may also drift away to infinity. In the first
possibility when the ball stays in a finite domain, the infinite dimen-
sional manifold is considered “stable” in some sense and we arrive at
the unique extremal Kähler metric in the limit of the flow. In the second
case when the ball drifts to infinity, then the infinite dimensional space
is considered “unstable” in some sense, and the gradient flow converges
to an extremal Kähler metric in a different Kähler manifold.
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