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SYSTOLES A N D T O P O L O G I C A L M O R S E 
F U N C T I O N S F O R R I E M A N N S U R F A C E S 

PAUL SCHMUTZ SCHALLER 

1. Introduction 

Let Al be a (g, n)-surface, this is a Riemann surface of genus g with 
n cusps, equipped with a complete metric of constant curvature — 1. Let 
T(g,n) be the Teichmüller space of M., and T(g,n) the corresponding 
mapping class group. 

The aim of this paper is the construction of topological Morse func­
tions on T(g,n) which are invariant with respect to T(g,n) and proper 
on the moduli space T(g,n)/F(g,n). Such functions are useful for the 
study of the topology of the mapping class groups and the moduli spaces. 
Until now, no such functions were known; the functions of this paper 
are the first examples. 

The conception of topological Morse functions has been introduced 
by Morse [18] himself. It generalizes the traditionally smooth Morse 
functions. For example, the function / : R —> R, f(x) = \x\, is a 
topological Morse function. In order to be more precise, let X be a 
connected topological manifold and 

/ : X — • R+ 

a continuous function. Then x$ G X is an ordinary point of / if 
there exists an open neighbourhood U of XQ in X and a homeomor-
phic parametrization of U by N = dimX parameters such that one of 
them is / . Otherwise, xo is a critical point of / . In the latter case, xo is 
non-degenerate if there exists an open neighbourhood U of xo in X, a 
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homeomorphic parametrization of U by parameters y i , . . . , yN , and an 
integer J (0 < J < TV) such that , for all x G ?7, 

J iV 

1=1 i=J+l 

If all critical points of / are non-degenerate, then / is a topological 
Morse function. 

In order to introduce our Morse functions, some preparation is needed. 
Let F = {ui,... , um} be a set of m marked, simple closed geodesies of 
A4 which fills up. For M G T(g,n) let Tan(M) be the tangent space 
of T(g,n) in M. For £ G Tan(M) and u G F let £(it) G R be the 
derivation, induced by £, of the length function L(u). Define the set of 
minima of F as 

Min(F) = {M G T(0 ,n ) : V£ G Tan(M) either £(«) = 0, Vu G F, 

or 3u, ! ) É F , £(it) > 0, £(u) < 0} . 

For M G T(g,n) define the vector space 

WF(M) = { (e(«i) , • • • , £(nm ) ) G Rm : £ G T a n ( M ) } . 

Then M G Min(F) is called F-regular if dim VKp is locally constant on 
Min(F) in M . 

Let now 

syst:T(g,n) —> R+ 

be the function which associates to M G T(g, n) the length of a systole, 
a shortest simple closed geodesic; syst is continuous on T(g,n), but has 
plenty of corners. Let S(M) be the set of systoles of M. 

T h e o r e m A. The function syst is a topological Morse function on 
T(g, n) if the following conditions hold: 

(i) For all M G T(g, n) with M G Min(F) (where F = S(M)), M 
is F-regular. 

(ii) For all M G T(g,n) with M G dMin(F) (where F = S(M)), 
M is strongly F-regular (see Section 2 for definitions). 

If condition (ii) holds, then M G T(g,n) is a critical point o/syst if 
and only if M e Min(S(M)). 

How strong are these restrictions? Note first (see Theorem 23 in 
Section 3) that , up to isometry, there are only finitely many surfaces 
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M G T(g,n) with M G Min(S(M))UdMin(S(M)). Moreover, surfaces 
M G dMin(S(M)) are very rare (if they exist at all, compare the remark 
at the end of Section 3) so that condition (ii) seems to be no serious 
restriction. Concerning condition (i) there is some good and some bad 
news. The bad news is that there exist rather often surfaces M G 
T(g,n) with M G Min(F) (F = S(M)) which are not F-regular; see 
Theorem 47 in Section 6. The good news is that such surfaces are often 
(always?) nevertheless non-degenerate critical points of syst; see again 
Theorem 47. In all studied cases for small values of g and n, syst is 
in fact a topological Morse function; see Section 6; and it seems quite 
probable that syst is a topological Morse function on all Teichmüller 
spaces T(g,n). 

Let now A4 G T(g,n), n > 0. Let O be a cusp of .M and let 
Go(9,n) C T(g,n) be the subgroup (of index n) of elements which fix 
O. Let 1Z be a certain set of closed geodesies in A4 (see Section 4 for 
details). For M G T(g,n), let syst-ji(M) be the length of a shortest 
element of TZ in M. 

T h e o r e m B . On T(g,n), n > 0, syst-ji is a topological Morse 
function, invariant with respect to Go(g,n). 

Once again, we have a stronger result for surfaces with cusps than 
for closed surfaces, as it is usually the case in the study of the topology 
of T(g, n) (see for example [7]). Note that the methods and results of 
this paper apply to many further functions which are similar to syst, 
an example is contained in the proof of Theorem 41 in Section 6. 

The difficulty in the proof of Theorem A (and of Theorem B) lies in 
the fact that we are not in a Euclidean linear situation. This is why we 
need the sets of minima and their convexity properties; in some sense 
they provide a local cell decomposition of T(g, n) which replaces the 
Euclidean linearity. On the sets of minima we have to construct flows, 
this is why some regularity of these sets is required. 

Note that the sets of minima have other interesting applications; 
they can be used for a (global) cell decomposition of T(g,n); see [27], 
[28], [29]. 

The paper is organized as follows. Section 2 introduces and studies 
the sets of minima Min(F). Section 3 contains the proof of Theorem 
A while Section 4 gives the proof of Theorem B. Section 3 also con­
tains a result which is an analogue of Vorono'i's theorem [37] in the 
theory of positive definite quadratic forms; namely, M G T(g, n) is 
a local maximum for the function syst if and only if M is a critical 
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point of syst of index 0. In Section 6 it is shown that for (g, n) G 
{(0,4), (0, 5), (0, 6), (1,1), (1, 2), (2,0)} syst is a topological Morse func­
tion and all critical points are classified with their index. The important 
Theorem 47 is proved with another method for a local cell decomposi­
tion of T(g,n). It is further shown (Theorem 51) that many of the 
critical points of syst correspond to arithmetic Fuchsian groups, and a 
surprising stability property (derived from Theorem D below) of some 
critical points of syst, which correspond to subgroups of Fuchsian tri­
angle groups, is described: 

T h e o r e m C. There exist surfaces in certain T(g,n) which are 
critical points for all (topological) Morse functions on T(g,n), invariant 
with respect to T(g,n). For some of these surfaces, the index as a critical 
point has always the same parity, but not for other. 

Section 5 contains two applications which we are going to discuss 
now. 

If syst is a topological Morse function on T(g, n) , one obtains a mass 
formula. Let C be the set of the mutually non-isometric critical points 
of syst in T(g,n). Denote by J(M) the index of a critical point M of 
syst. Denote by \Isom(M)\ the order of the automorphism group of M 
containing the orientation preserving automorphisms. Then 

T h e o r e m D . 

E 
l)J(M) 

n\ 

uec l^™(M)| 
x(r(#,n)), 

where x(T(g,n)) is the virtual Euler characteristic ofT(g,n). 

This (mass) formula follows by results from the cohomology of groups; 
see in particular [5], [10], [30]. 

In Section 5 the following result is also proved (in a constructive 
way). 

T h e o r e m E. For every g > 2 there exists Mg G T(g, 0) which is a 
non-degenerate critical point o/syst of index 4g — 5. 

It is possible that 4g — 5 is the maximal index of critical points of 
syst in T(g,0). If this is the case (and if syst is a topological Morse 
function on T(g,0)), then syst would induce a contractible simplicial 
complex on T(g, 0), invariant with respect to T(g, 0), of the best possible 
dimension, namely 4g — 5 (since the virtual cohomological dimension vcd 
of T(g, 0) is also 4g — 5 by Harer [6]). Until now, such complexes with 
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the best possible dimension are known only for T(g, n) with n > 0; 
they have been constructed in a combinatorial way; see [7] and [10] for 
overviews; with these complexes, the virtual Euler characteristic as well 
as the virtual cohomological dimension of the mapping class groups had 
been calculated. Note that syst has in general much less critical points, 
compared with these combinatorial complexes; a striking example is 
Theorem B in connection with [27] (see the remark at the end of Section 
4). 

In the original version of this paper I made the mistake to think 
that all M G Min(F) are always F-regular ("proving" so Theorem A 
without the conditions). This mistake is also contained in the survey 
paper [26]. 

Here are some additional remarks concerning related literature. In 
the context of the Euclidean geometry of numbers it has been shown that 
the packing function (for lattice sphere packings) is a topological Morse 
function; see Ash [1],[2], and also [17]. For related problems in different 
geometries of numbers; see Bavard [3],[4]. Sarnak [23] conjectures, based 
on [20],[21], that the function 

- l o g d e t A ( M ) , 

which is the (zeta regularised) product of the non-zero eigenvalues of 
the Laplacian of a closed surface M of genus g, is a Morse function on 
the space of all smooth Riemannian metrics on M. Thurston ([35], see 
also [7]) studies a function related to our function syst, which however 
is critical for every M G T(g, n) where S(M) fills up. Kerckhoff [13] 
introduces lines of minima in T(g, n); see Section 2 for some more com­
ments. Finally, for more on systoles of (g, n)-surfaces and on hyperbolic 
geometry of numbers see Schmutz Schaller [26]. 

2. S e t s of m i n i m a in T e i c h m ü l l e r s p a c e 

First are stated the basic notation and definitions. I have tried to 
collect them in three separate definitions; the first is about surfaces, 
Teichmüller spaces and length functions, the second is about tangent 
spaces and tangent vectors, and the third introduces the set Min(F) 
and a corresponding function (f>p. 

Def in i t ion , (i) A (g, n)-surface A4 is a Riemann surface, of genus 
g with n cusps, equipped with a complete metric of constant curvature 
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— 1. The case {g, ri) = (0,3) will always be excluded without further 
comment. 

A surface is a (g, n)-surface where g and n are not specified. 
(ii) The Teichmüller space of a (g, n)-surface At is denoted by T(M.) 

or T(g,n). 
(iii) Let u be a closed geodesic of a surface M.. Then u is considered 

as marked. The length of u in M G T(.M) is denoted by LM{U). LM{U) 

or L(it) is called a length function. 
(iv) Let F = {ui,... , MTO} be a set of m closed geodesies in a surface 

M Then, for M G T(At), define 

£ M ( F ) = ( £ M ( U I ) , £ M ( U 2 ) , . . . ,LM(Um)) G R™-

(v) A set F of closed geodesies of a surface Al is said to fill up if 
every closed geodesic of M. is intersected by at least one element of F. 

Remark. (i) Let M be a surface and let M G T(M). I do 
not make a difference between T(M) and T(M). I shall denote by M. 
a ("base") surface which will determine the Teichmüller space T(At), 
and by M, M' points of T(M). 

(ii) The topology and the differential structure on T(M) are given 
by a (finite) set of length functions which are real analytic functions. 

Definition. (i) The tangent space of T(M.) in M is denoted by 
Tan(M). Let £ G Tan(M). Let M be a closed geodesic of A l Then 
£(it) G R denotes the real number which is the derivation, induced by 
£, of the length function LM{U). Let F = {ui,... ,uTO} be a set of m 
closed geodesies of A4. Define 

e(i?,) = (e(«i) ,e(«2), . . . ,e(«m))GRm . 
Denote by Wp(M) the vector space 

WF{M) = {((F) : £ G Tan(M)}. 

(ii) Let x = (xi,... ,xm) G Rm. Then x > 0 means that a?j > 0, 
i = 1 , . . . , m, while a; > 0 means a; 7̂  0 and Xj > 0, i = 1, . . . , m. R™ is 
the subset of Rm containing all points x > 0. 

(iii) Let x = (xi,... ,xm) G Rm have k components which are zero. 
Then x denotes the point in Rm_'c where the zero-components have been 
omitted. 

Definition. Let Al be a surface with a set F of m closed geodesies 
which fills up. 
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(i) Fix a G Rm. Then 

qa(M) = (a,LM(F)), MGT(M), 

defines a (real-valued) function on T(M) by the Euclidean inner product 
of a and LM{F). 

(ii) Let a G Rm, a > 0. To ô corresponds a subset of F, denoted 
by F(ä). If F (a) fills up and if a ^ ä, then a is called an admissible 
boundary point. By A(F) is denoted the union of the set R™ and the 
set of the admissible boundary points. 

Let a G Rm . If the function qa{M) has a unique minimum in T(Ai), 
in MQ say, then define 

<t>F{a) = M 0 . 

This defines a function 4>p from a subset of Rm to T(M.) (Lemma 1 will 
show that 4>F is well defined on the whole set A(F)). 

(iii) Pu t 

Pos(F) := {M G T{M) : 3£ G Tan{M) with £(F) > 0}, 

where Pos stands for positive. 
(iv) Put 

Min(F) := {M G T(M) : V^ G Tan{M) either f (F) = 0 or 3u,v G F 

w i t h i n ) > 0 , e ( « ) < 0 } , 

where Min stands for minimum. 
(v) Define dMin{F) := T{M) \ {Pos(F) U Min{F)) . 

N o t a t i o n . For the rest of this section, F will denote a set of m 
simple closed geodesies of a surface M. which fills up. 

Remark . For m = 2 the sets Min(F) C T(.M) have been in­
troduced by Kerckhoff [13] who called them lines of minima. His main 
aim was the proof (in [13]) that for every two different points M, M' in 
T(M) there exists a set F = {u,v} such that M,M' G Min(F). In or­
der to do so one has however to extend the set of simple closed geodesies 
to the set of geodesic laminations (so that u,v G F are geodesic lam­
inations). This generalization would also be possible for sets F with 
more than two elements, but we shall not need it (we will however need 
another generalization; see the remark after Corollary 16 at the end of 
this section). 
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Extending Kerckhoff's terminology I call Min(F) a set of minima. 
The reason for this terminology will become clear from Lemma 1 and 
Theorem 4. 

L e m m a 1. Let a G A(F). Then qa has a unique critical point which 
is a minimum. 

Proof, (i) Let MQ be a critical point of qa. Let £ G Tan(Mo). Then 
(a ,£(F)) = 0. By [11],[13], there exists an earthquake path ö passing 
through MQ which induces £; moreover, qa is strictly convex along 6 
and has thus a minimum in MQ (with respect to ö). Since this is true 
for every £ G Tan(Mo), it follows that ga has a minimum in MQ. This 
shows that every critical point of qa is a minimum. 

(ii) If Mi T^ Mo is another critical point of qa, then relate MQ and Mi 
by an earthquake path 7 (which exists by Thurston [34]). Since again 
qa is strictly convex along 7, this yields a contradiction which proves 
the uniqueness. 

(iii) As for existence, since qa is continuous, it is enough to prove 
that the sets 

K(C) = {M G T(M) : qa(M) < C} , C G R, 

are bounded. Let M G K(C) (in the sequel we allow M to vary in 
K{C)). Since F {a) fills up, 

M\ (J u 
uEF(â) 

is a finite union of polygons and it follows (since M G K{C)) that the 
diameter of each polygon is bounded (the diameter is the maximal dis­
tance between two points of the polygon). Let G be a finite set of simple 
closed geodesies of M. such that the length functions of G parametrize 
T(M) (in the sense that LM{G) = LM>(G), M,M' G T(M), implies 
M = M ' ) . Then each element v G G intersects only a finite number of 
polygons so that the length of v is bounded. This proves that K(C) is 
bounded. q.e.d. 

Remark . In the sequel, I shall use without comment the fact 
that geodesic length functions are convex along earthquake paths and 
that earthquake paths exist between two different points in the same 
Teichmüller space. 

L e m m a 2. There exists an open set B(F) in Rm which contains 
A(F) such that qa has a unique minimum, for each a G B{F). 
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Proof. Let ao G A(F) be an admissible boundary point. By Lemma 
1 it is enough to show that there exists an open neighbourhood U of 
ao in Rm such that qa has a unique minimum for each a G U. Since qa 

is smooth with respect to a, there exists an open neighbourhood of ao 
such that the sets (compare the proof of Lemma 1) 

Ka(C) = {MeT(M):qa(M)<C} 

are still compact (if C < e + ming a o , for an e > 0, say). This proves that 
qa has a minimum for every a G U. Let Mi, i = 1,2, be two different 
points on the boundary of Ka(C). Let 6 be an earthquake path from 
M\ to Mi- Since qao is strictly convex along ö and since qa is smooth 
with respect to a it follows that qa is still strictly convex along ö. By 
this argument we can choose U so that the uniqueness of the minimum 
of qa is assured for every a G U. q.e.d. 

Definit ion. Denote by B(F) a contractible open set in Rm con­
taining A(F) for which Lemma 2 holds. The definition of the function 
4>F will be restricted to B(F). 

Corollary 3 . Let a G B(F). Then the following hold: 
(i) MQ is the unique minimum of qa if and only if {a,£(F)) = 0 for 

every £ G Tan(Mo). 
(ii) If a G A(F), then <pF(a) G Min(F) U dMin(F) and <pF(a) G 

Min(F) ifa>0. 

Proof. Part (i) was shown for a G A(F) during the proof of Lemma 
1. By the proof of Lemma 2, the argument also holds for a G B(F). 
Part (ii) is an immediate consequence of (i) and the definitions. q.e.d. 

T h e o r e m 4. (i) Let M G Min(F). Then there exists an a G R™ 
such that 4>F{O) = M. 

(ii) The image <pF(A(F)) is the set Min(F) UdMin(F). 

(iii) (ftp is continuous on B(F). 

Proof. (i) Let M G Min(F). Then, as a consequence of the 
definition, there exists an x in the orthogonal complement of WF(M) 
in Rm with x > 0. From Corollary 3 it follows that (f)F(x) = M. 

(ii) By Corollary 3 we have <j>F(A(F)) C Min{F) U dMin{F). By 
a similar argument as in part (i), for M G dMin(F), there exists an 
a G A(F), which is an admissible boundary point with (f)F(a) = M. 

(iii) Let a, —> a be a convergent sequence in B(F). By the proofs of 
Lemmas 1 and 2, 4>F(a,i) has a convergent subsequence which we denote 
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by (f>p{aj) and its limit by MQ. Pu t 

{ai}1- := {Xai : A G R } X C FT. 

Then, as point sets, 

(1) { a , } ± — • W ± . 

It follows from Corollary 3 that 

(2) WF(MaÙ) C {en}1. 

For the subsequence a,j, since the dimension of WF(MQ) cannot decrease 
locally, we have 

WF(Maj)) — • WF(M0), 

which implies, due to (1) and (2), that WF(MQ) C {a}^. It then follows 
from Corollary 3 that 4>F(a) = MQ. We therefore have proved that 
every convergent subsequence of (f>F{ai) has the same limit (f>F{a). The 
continuity of 4>F is an immediate consequence. q.e.d. 

N o t a t i o n . (i) Let <j>F be defined on B{F). Then the image 
4>F(B(F)) in T(M.) is denoted by Conv(F), where Conv stands for 
convex. 

(ii) Let M G Conv (F). Then by Corollary 3, (j)F
l{M) is the intersec­

tion of B(F) with a linear subspace of Rm. The dimension of 4>F (M) 
is therefore well defined and is denoted by jp(M). 

L e m m a 5. Let M G Min(F){JdMin(F). Then there exists F' C F 
such that M G Min(F') U dMin(F'), jF>{M) = I, and dimWF'(M) = 
dimWF(M). 

Proof. HJF(M) = 1 take F' = F. So we assume jF(M) > 2. Since 
</)F (M) is the intersection of B(F) with a linear subspace, it follows 
that </)F (M) contains a sequence a, which converges to a point b > 0 
in the boundary of R™. By continuity, 

mîqb = lim (ai,LM(F)) = (b,LM(F)), 
ai—>b 

which shows that b G A(F) (the uniqueness of the minimum of (ft follows 
as in the proof of Lemma 1). Recall that F(b) denotes the subset of 
F corresponding to the non-zero components of b. By construction, we 
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have M G Min(F(b)) and jF^(M) < jF(M) which proves by induction 
that F has a subset F(l) such that M G Min(F(l)) and jF^(M) = 
1. Let mi be the order of ^(1). Then dim WF^(M) = m\ — 1 < 
dim WF(M) = m — jF(M) SO that mi < m + 1 — jF(M). Assume that 
mi — 1 < dim VFi?(M). Then there exists au G i ? \ i ? ( l ) so that, putting 
F(2) = F(l) U {w}, we have 

mi = dimWF(1)(M) + 1 = dimWF(2)(M) and jF(2)(M) = 1. 

It is clear that M G Min(F(2)) UdMin(F(2)). Since we can repeat this 
argument, the lemma follows. q.e.d. 

Definition. M G Conv(F) is called regular or F-regular if J'F is 
locally constant in M. More precisely, if M is regular then there exists 
an open neighbourhood U of M in T(.M) such that j F is constant on 
UnConv(F). 

Lemma 6. Let M G Conv(F) with dimWF(M) = dimT(.M) or 
JF(M) = 1. Then M is regular. 

Proof. By Corollary 3 we have 

|F | =jF{M) + dimWF(M). 

Clearly, dim WF(M) cannot decrease locally and therefore, jF(M) can­
not increase locally. q.e.d. 

Lemma 7. Let M G Conv(F) be F-regular. Then there exists an 
open neighbourhood U' of M in T(M.) such that U := U' fl Conv(F) 
is homeomorphic to a k-ball with k = m — jF(M) and such that j F is 
constant on U. 

Definition. Let M G Conv(F) be F-regular and let U be defined 
as in Lemma 7. Then U is called a regular neighbourhood (or an F-
regular neighbourhood) of M in Conv(F). 

Proof of Lemma 7. (i) Let jF(M) = 1. We restrict the definition 
of 4>F to a G B(F) with ||a|| = 1. Then cpF (M) is unique and it is clear 
that the lemma holds in this case. 

(ii) Let now jF(M) > 2. Note that if F' C F, then Conv(F') C 
Conv(F) by definition. It thus follows from Lemma 5 and its proof 
that there exists F' C F such that M G Conv(F'), jF>(M) = 1, and 
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(HÏÏIWF'(M) = d imW rp(M). By Lemma 6, M is -F'-regular and there­
fore, by (i), the lemma holds for F'. Let thus U' be an open neigh­
bourhood of M in T(M) such that U = U' n Conv(F') is an F'-regular 
neighbourhood of M in Conv(F'). Since M is F-regular, it follows that 
U' can be chosen such that U' fl Conv(F) = [/". q.e.d. 

Defini t ion. Pu t 

nF : T ( M ) —>• Rm , M ^ L M ( F ) . 

L e m m a 8. Xei M G Conv(F) be regular, and U be a regular neigh­
bourhood of M in Conv(F). Then nF restricted to U is a diffeomor-
phism onto its image. 

Proof. Let M G U. Since, by Lemma 2, M is the unique minimum 
for a function qa, it follows that np is injective on U. Obviously, np is 
smooth and, since F fills up, proper, TTF(U) is a diffeomorphism onto 
its image. q.e.d. 

The next lemma will be needed in Section 5. 

L e m m a 9. Let F be such that every subset F' C F, F' ^ F, does 
not fill up. Then jF(M) = 1 for every M G Min(F), dMin(F) = $, 
and for every a G R™ there exists a unique M G Min(F) such that 
LM{F) is a multiple of a. 

Proof. By hypothesis A(F) has no admissible boundary point. This 
implies by Corollary 3 that dMin(F) = 0 and by the argument in the 
proof of Lemma 5 that jF(M) = 1 for all M G Min(F). Restrict (pF to 
the set S™~ = {a G R™ : ||a|| = 1}, denote still by (f>F this restriction; 
by Theorem 4, <f)F is then a homeomorphism onto Min(F). We may 
identify Min(F) with -KF(Min(F)); see Lemma 8. Moreover, the map 
P 

p : LM(F) — • ,,Lr
MÌ

(Ì\,, , M G Min(F), 

is injective (if LM(F) = \LMi(F) for A > 1, then an earthquake path 
from M' to M induces £ G Tan(M) with £(F) > 0) and obviously 
continuous and proper so that p is a homeomorphism onto its image. 
Thus the map p Æ ixF Æ (f>F is a homeomorphism of S™~ into S™~ . 
Since dMin(F) = 0, it follows that the image of p Æ irF Æ (f>F is closed 
in ST~ proving that this image is the whole S™~ . q.e.d. 
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Remark . In the situation of Lemma 9 and its proof where cpp is 
a homeomorphism when restricted to the points of norm 1, cpp is the 
inverse of the Gauss map. 

T h e o r e m 10. Let M0 G Min(F) (or M0 G Conv(F)) be regular 
and let U be a regular neighbourhood of MQ in Conv(F). Then U is 
a differentiable submanifold of T(M.) (of type C1) of dimension k := 
m- jF(M0). 

Proof. By Lemma 5 and its proof U is covered by charts U fl 
Conv(F') where the F' C F are subsets with the properties that MQ G 
Conv(F'), jF,(M0) = 1, and d i m W F , ( M 0 ) = d i m j y F ( M 0 ) . 

We have to prove that the differentiable structure of T(M) induces 
a differentiable structure on U' := U fl Conv(F'). By Lemma 8 we 
may identify U' with its image with respect to up' in Rk+1. Then U' 
is contained in the boundary of a strictly convex body in Rfc+1 such 
that through each point LM(F') G U', there exists a unique supporting 
hyperplane (parallel to WF'(M)). It follows that the length functions of 
F' induce a differentiable structure on U', induced by the differentiable 
structure of T(M). q.e.d. 

Corollary 11 . In regular points, 4>F is a C1 map. 

Proof. Let M G Conv(F) be regular and U a regular neighbour­
hood of M. We have the following situation: 

W C Rm —> U —> Rm 

By Lemma 8, irp is a diffeomorphism onto the image. By Corollary 
3 and Theorem 4 the inverse image cjy^ (ir^ (x)) associates to a point 
x G -KF(Conv(F)) its normal vector space, and the corollary follows by 
Theorem 10. q.e.d. 

Corollary 12. Let M G Conv(F) be regular. Then WF(M) is the 
tangent space of 7rF(Conw(i?)) in TTF(M). 

Proof. Clear by Theorem 10. q.e.d. 

Corollary 13 . If every M G Min(F) (or in Conv(F)) is regular, 
then Min(F) (respectively Conv(F)) is a differentiable submanifold of 
T(M.) (of type Cl) of dimension m — jp(M). 
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Proof. Clear by Theorem 10 since Min(F) and Conv(F) are con­
nected by Theorem 4. q.e.d. 

L e m m a 14. Let M G dMin(F). Then there exists a unique subset 
F0 C F such that M G Min(F0)) and F' C F0 for all F' C F with 
M eMin(F'). 

Proof Since M G dMin(F) there exists £ G Tan(M) with £(.F) > 
0. Among all such £ let £o G Tan(M) be one such that the number of 
zero components of £o(F) is minimal. Let FQ C F correspond to the zero 
components of £o(F). Assume that there exists Ç G Tan(M) such that 
((F0) > 0. Then, for A G R big enough, £'(F) = ((+\Ço){F) > 0 has less 
zero components than £o, a contradiction. It follows that M G MÌTI(FQ). 

Let F' C F such that M G Min(F'). Then £0(-F') = 0 which implies 
F' CF0. q.e.d. 

T h e o r e m 15. Let MQ G dMin(F), and define FQ C F as in Lemma 
14. Let 

Ç = {F}U{G :F0CG CF andBÇe Tan(M0) 

such that £(G) = 0, Ç(F \ G) > 0 }. 

Let Mo be G-regular for every G G Q. Then there exists an F-regular 
neighbourhood U of MQ in Conv(F) such that, in U, 

Min{F) U dMin{F) = ( J Min(G), 
Gag 

and this is a disjoint union. 

Proof, (i) It follows from Lemma 14 that there exists an i^-regular 
neighbourhood U of Mo in Conv(F) such that 

(3) U C (J Min(G). 
GeG 

Let k = d i m i y F ( M o ) . Let k0 = d imjy F o (M 0 ) and let q = k - k0. If 
q = 1 then Q = {FQ,F} and the theorem clearly holds. So assume 
q > 2. By (3) there then exists G G 0, such that dimWG(M0) = k - 1. 
It follows that there exists an, up to a scalar factor, unique £ G Tan(Mo) 
with £(G) = 0 and £(.F \ G) > 0. Since Mo is G-regular, we can choose 
U such that U fl Conv(G) is a G-regular neighbourhood of MQ and 
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such that , for every M G U fl Conv(G), there exists £ G Tan(M) with 
£(G) = 0 a n d £ ( F \ G ) > 0. 

(ii) Let Gt,G2 G £ such that dimWGi(M0) = k - 1, i = 1,2. Let 
M G [7 n Min(Gi) n Min(G2). By (i), it follows that there exists 
& G Tan(M) such that &(Gj) = 0 and ^(F \Gi)>0,i = 1,2. Thus 
Gi = G2- In other words, if Gi and G2 are two different elements of Q 
with dim W G ^ M O ) = A; — 1, then Min(G\) and Min(G2) are disjoint in 
[7. 

The theorem now follows by (i) and by induction with respect to 
q since the hypothesis of the theorem is fulfilled for every G G Q with 
d i m W G (M0) = k - 1. q.e.d. 

Definit ion. Let M G dMin(F). Let & = d i m j y F ( M ) . Then M 
is called strongly F-regular if M is F-regular and if M has an F-regular 
neighbourhood U in Conv(F) such that UndMin(F) is homeomorphic 
to a (A; — l)-ball which separates U into [/" fl Min(F) and [7 fl Pos(F) 
which both are homeomorphic to a A;-ball. 

Remark , (i) Let M G dMin(F) and let jF{M) = 1. By Lemma 
6, M is then i r regular . Moreover, by the map (pp and Theorem 4, M 
is strongly F-regular. 

(ii) Let M G dMin(F). It is quite probable that M is strongly 
-F-regular if and only if M is -F-regular. 

Corollary 16. Let M G dMin(F), let F0 C F and g be defined 
as in Theorem 15. Let M be G-regular for every G G Q. Then M is 
strongly F-regular. 

Proof. Clear by Theorem 15. q.e.d. 

Remark . Let F be a set of m simple closed geodesies of a surface 
M.. Let f i , . . . ,Vd be d further simple closed geodesies of A4. Let 
A i , . . . , Xfi be d fixed non-negative reals. For M G T(M.) put 

d 

LM{U) = ^ A j L M ( w j ) , 
i = l 

where U is treated like a closed geodesic. Let F' = {U} U F. Then the 
theory developed in this section applies for F' since LM{U) is a well-
defined length function which is convex along earthquake paths (since 
A i > 0 , Î = 1 , . . . ,d). 

This generalization will be used in the next section. 
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I add some results concerning the possible size of Min(F) which 
however will not be used in this paper. 

Proposi t ion 17. (i) Pos(F) is never empty. 
(ii) Let M, M' G T(M.). If LMi(v) < L*M(U), for every simple closed 

geodesic u in M., then M = M'. 

Proof. (i) Let u be a simple closed geodesic of M.. Let F(u) 
be the subset of F of geodesies which intersect u. Let MQ G T(Ai). 
Execute a twist deformation (starting in Mo) along u so that in the 
resulting surface M we have Çu(F(u)) > 0 (this is possible since F(u) is 
finite). Further, a Weil-Petersson geodesic from MQ to M induces Ç G 
Tan(M) such that C(u') > 0 for all v! G F\F(u) by the strict convexity 
of the length functions along Weil-Petersson geodesies (Wolpert [39]). 
It follows that there is a positive a such that (aÇu + Ç)(F) > 0 a n d 
therefore, M G Pos(F). 

(ii) Assume that M' ^ M. Let 7 be a Weil-Petersson geodesic from 
M' to M and prolong 7 beyond M. Let N be on this prolongation. Since 
the length functions are strictly convex along Weil-Petersson geodesies, 
we have LM(U) < LN(U), for every simple closed geodesic u of A4. Let 
7' be an earthquake path from M to N and prolong 7' beyond N. By 
the convexity of the length functions along earthquake paths and since 
earthquake paths can always be prolonged, it follows that along 7', the 
length of all simple closed geodesies grows to infinity which contradicts 
the fact that, for all elements of T(.M), the length of a shortest closed 
geodesic has a (finite) common upper bound. q.e.d. 

Proposi t ion 18. Let K be a compact subset ofT(Ai). Then there 
exists a finite set F such that K C Min(F). 

Proof, (i) Let M G T(Ai). For every simple closed geodesic u of 
M put 

BM(u) = {M' G T(M) : LM,{u) < LM(u)}. 

Define further 

BM(F) = (J BM(u). 
u£F 

If B>M{F) contains an open neighbourhood U of M in T(Ai), then M G 
Min(F) (since if there exists £ G Tan(M) with £(-P) > 0, then, by con­
vexity, the points on the Weil-Petersson geodesic starting in M induced 
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by £ are not in BM{F)). Moreover, dimWF(M) = dimT(M) =: N 
since the same argument shows that if £ G Tan(M) with £(F) = 0, 
then £ = 0. 

(ii) Let U be an open (topological) ball around M in T{M); let dU 
be its boundary. Choose U such that the Weil-Petersson geodesies from 
M to the points of dU fill U (this is possible by [39]). By Proposition 17 
(ii) (and since dU is compact) there exists a finite set F(M) of simple 
closed geodesies such that dU C BM(F(M)). From the strict convexity 
of the geodesic length functions along Weil-Petersson geodesies it follows 
that U C BM(F(M)) which, by (i), proves that M G Min(F(M)) and 
that dim WF ( M)(M) = N. This implies by Lemma 6 that M is F(M)-
regular so that M has an open neighbourhood V(M) in T(M) with 
V{M) C Min{F{M)). 

Therefore, 

M—>V(M), MGK, 

provides an open covering of K which has a finite subcovering (K is 
compact) and the proposition follows. q.e.d. 

3. Morse functions and systoles 

Definition. Let Al be a surface. 
(i) Let M G T(M). Then S(M) is the set of the systoles of M where 

a systole of M is a shortest closed geodesic. 
(ii) Define the function 

syst : T(M) —> R+, 

where syst(M) is the length of a systole of M G T{M). 

Remark. A systole u in S(M) is, as always, also considered as a 
marked geodesic, but, of course, in another surface M', u is in general 
not a systole. 

Definition. Let X be a compact connected manifold. Let 

/ : X — • R+ 

be a continuous function. Then x G X is called an ordinary point of / 
if there exist an open neighbourhood U of x in X and a homeomorphic 
parametrization of [/" by N = dim X parameters such that one of them 
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is the function / . One calls x a critical point of / if x is not an ordinary 
point. 

If x is critical, then x is called a non-degenerate critical point if 
there exists an open neighbourhood U of x in X, a homeomorphic 
parametrization of U by N parameters y i , . . . , yjv 5 and an integer J 
(0 < J < JV) such that 

J TV 

zoo-/(*) = £*?- E *? 
i=l i = J + l 

for all x' G Ê7. The integer J is called the index of a;. 
If all critical points of / are non-degenerate, then / is called a topo­

logical Morse function. 

Remark . (i) Usually, the index of a critical point is defined as 
the number of the negative squares. But since the dimension of the 
Teichmüller spaces used in this paper is always even, the definition of 
the index chosen here works well for the function syst. 

(ii) General Morse functions on T{M) are well-known. As an ex­
ample, take the functions qa, defined in Section 2. By Lemma 1, qa has 
a unique critical point which is a minimum (this point clearly is non-
degenerate); therefore, qa is a Morse function (note that qa is proper by 
the proof of Lemma 1). Similar functions have been used for example 
in [11] and [39]. Further examples (the energy of a harmonic map) can 
be found in [38] and [36]. 

(iii) Of particular interest are Morse functions on T(M.) which are 
invariant with respect to the mapping class group T{M); they can be 
used for analysing the topology of the moduli space 

Mod(M) =T(M)/T{M), 

which is much more complicated than that of T(M) (the latter space 
being a cell). The first examples of such functions are those of this 
paper. 

Note that syst is invariant with respect to T(A4). It will be proved 
that , under certain restrictions, syst is a topological Morse function. 
In Section 4 we shall construct topological Morse functions on T(g,n), 
n > 0, which are invariant with respect to a subgroup of T(g, n) of index 
n. 

(iv) Traditionally, Morse functions are defined for compact spaces. 
Of course, T(M) is not compact, but the function syst is invariant with 
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respect to T(M.) and is proper on Mod(M.) (by a result of Mumford 
[19]; see the proof of Theorem 23 below) so that the fact that T(M) is 
not compact does not cause problems. 

Note that syst is not proper on T(M). Namely, let M G T(M) be 
such that a systole u of M is very small. Then a twist deformation along 
u does not change syst = L(u) and sys i - 1 (L( i t ) ) cannot be compact. 

R e m a r k and Definit ion, (i) Let R C T(g, n) be a differentiable 
submanifold. Let £ be a tangent vector field on R. Then £ M denotes 
the induced vector in Tan(M), M G R. 

(ii) Let MQ G T(g,n), and let u be a simple closed geodesic of MQ. 
Let £u G Tan(Mo) be the tangent vector induced by a twist deformation 
of unit speed along u (we also fix the direction in which the twist is 
executed). Since u is considered as a marked geodesic, we can define 
£u G Tan(M) for every M G T(g, n) . This defines a vector field denoted 
by £u or simply by £ if we do not want to mention u. This construction is 
also possible for generalized twist deformations, namely the earthquakes. 
I shall say that these vector fields are derived from an earthquake. 

The vector fields derived from an earthquake are known to be real 
analytic (see [12]). 

T h e o r e m 19 . Let M0 G T(g,n) and F = S{M0). If MQ G Pos(F), 

then MQ is an ordinary point of syst. 

Proof. Let £0 G Tan(M0) such that £0(F) > 0. By [13] there then 
exists a vector field £ (derived from an earthquake) such that £M 0 = 
£o- We choose an open neighbourhood U of MQ in T(g,n) such that 
ÇM{F) > 0 and S(M) C F for all M G U. It follows that along the 
integral curves of the flow induced by £, syst is strictly monotonie in 
U. Therefore, these integral curves can be parametrized in U by syst. 
Since the integral curves give a disjoint partit ion of U (by the general 
theory of ordinary differential equations and since £ is differentiable), 
the theorem follows. q.e.d. 

Corollary 20 . Let M G T(g,n). If S (M) does not fill up, then M 
is an ordinary point of syst. 

Proof. Assume that F = S (M) does not fill up. By Thurston [35] 
(discussed in [7]) there then exists £ G Tan(M) such that £(F) > 0. 
The corollary now follows from Theorem 19. q.e.d. 

Remark . Let F b e a set of simple closed geodesies of a surface 
M. It follows from the proof of Corollary 20 that Min(F) U dMin(F) 
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is empty if F does not fill up. 

Defini t ion. Let M,M' G T(g,n). Let F and F' be finite sets of 
simple closed geodesies in M and M ' , respectively. Then F and F' are 
called equivalent if there exists a homeomorphism from M to M ' which 
maps the homotopy classes of the elements of F to those of F'. 

Corollary 2 1 . Let M,M' G T(g,n) so that M and M' are not 
isometric. If S(M) and S(M') are equivalent, then M and M' cannot 
both be critical points o /syst . 

Proof. Assume that S(M) and S(M') are equivalent. Then there 
exists an N G T(g, n) which is isometric to M' such that S(N) = 
S(M) =: F in the sense of marked geodesies. Since M and M' are not 
isometric, we have M ^ N. Assume without restriction that syst(M) > 
syst(M'). Then there exists an earthquake path 7 from N to M which 
induces £ G Tan(M) with Ç(F) > 0. Let FQ C F be the maximal subset 
of F such that Ç(FQ) = 0. Since this means that L(u) is constant along 
7 for all u G FQ, it follows that FQ does not fill up. As in the proof of 
Corollary 20 there then exists £' G Tan(M) such that £'(-F0) > 0. An 
appropriate linear combination of £ and £' thus produces £ G Tan(M) 
with C(-P) > 0. This hence proves by Theorem 19 that M is an ordinary 
point of syst. q.e.d. 

Defini t ion. Let M G T(g ,n ) such that M G dMin{S{M)). Then 
M is called a boundary point of syst. 

Corollary 22 . Critical points and boundary points o /syst are «so-
/atec? m T(g,n). 

Proof. Let M G T(g,n). Then there exists an open neighbourhood 
U of M in T(#, n) such that S(M') C S'(M) for all M' e U (the elements 
of S(M) and of S(M') taken as marked geodesies). By Corollary 21 
and its proof, syst can only have a finite number of critical points and 
boundary points in U. q.e.d. 

T h e o r e m 23 . Up to isometry, there exists only a finite number of 
critical points and boundary points o/syst in T(g,n). 

Proof. Let M G T(g,n) and let u and v be two simple closed 
geodesies of M of the same length which intersect. Then, by hyperbolic 
trigonometry, their length is bounded from below by an e > 0. By a 
result of Mumford [19], there exists a compact subset Te(g,n) of T(g,n) 
such that for every M G T(g, n) with syst(M) > e, there exists M' G 
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Te(g, n) which is isometric to M . By Corollary 20 we have syst(Mo) > e 
if MQ is a critical or a boundary point of syst. The theorem therefore 
follows by Corollary 22. q.e.d. 

L e m m a 24 . Let M0 G T(g,n), let F = S(M0). Let M0 G Min(F) 
be regular. Then there exist a regular neighbourhood V of MQ in Min(F) 
and a differentiable tangent vector field 6 on V \ {MQ} such that the 
integral curves of 6 all start on dV (the boundary ofV in Min(F)) and 
end in MQ, and syst is strictly growing along these integral curves. 

Proof. Note first that syst restricted to Min(F) has a unique 
maximum in MQ since if syst(M) > syst{Mo) for M ^ MQ, then an 
earthquake path from MQ to M induces a vector £ G Tan(M) with 
£(-F) > 0 which implies M 0 Min(F). We have thus to construct an 
analogue of the gradient flow. 

Let U be a regular neighbourhood of MQ in Min(F). For ö > 0, let 
V(ö) be the connected component, containing MQ, of the set 

{M GU : syst(M) > syst(M0) - 0} 

which is thus an open neighbourhood of MQ in U. We need some condi­
tions for the choice of ö. A non-empty subset S of F is called admissible 
if Mo G Pos (E) . For every admissible E choose a G Tan(Mo) such that 
cr(E) > 0. Denote by â the induced vector field, derived from the earth­
quake associated to a (different subsets E will induce different vector 
fields which, by abuse of notation, will all be denoted by a). Choose 
ö > 0 so small that: 

(1) S(M) C F, VM G V(S), 
(2) for every admissible E, we have CTM(E) > 0, for all M G V(ö). 
We fix such a ö > 0 and put VQ = V{8) \ {MQ}. Since syst\Min(F) 

attains its maximum in Mo, and an earthquake path from M to Mo 
induces a vector £ G Tan(Mo) with £(S(M)) > 0, we note that if 
M G VQ, then S(M) is admissible. 

Let e > 0 and put, for every admissible E, 

17£(S) = {M G Fo : 5 ( M ) C S and LM(u) < syst{M) + e, Vu G S } . 

This defines a finite open covering of VQ since ?7£(E) is obviously open 
and for every M G Vb, we have M G ^ ( E ) for S{M) = E. Choose a 
differentiable partition of unity 

{/s : E admissible} 
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of this covering and put, for every M G VQ, 

9M = / J /sffM , S admissible. 
E 

This defines a differentiable vector field 6 and thus a differentiable flow 
on VQ. Along the integral curves of this flow, syst is strictly increasing; 
therefore, all integral curves start on dV(ö), the boundary of V(8) in 
U, and end in MQ. This proves the lemma. q.e.d. 

T h e o r e m 25 . Let M0 G T(g,n), and let F = S(M0). Then the 
following conditions are equivalent: 

(a) M0 G Min(F) and dim W F ( M 0 ) = d i m T ( # , n ) . 
(b) MQ is a non-degenerate critical point of syst of index zero. 
(c) MQ is a local maximum of syst. 

Proof. (i) We assume that (a) holds. Since dimW rp(Mo) = 
d imT(g ,n ) , it follows that MQ is regular (by Lemma 6) and has a reg­
ular neighbourhood U C Min(F) which is open in T(g,n). Let V be 
an open neighbourhood of MQ as in Lemma 24 with the vector field 9. 
Then by Lemma 24, we have a homeomorphic parametrization of V by 

M — • ^syst(Mo) - syst(M) x, M G V, 

where x = (xi,..., XN) G Rw (TV = d imT(g, n)) is a point of unit norm 
corresponding to a point in dV. This yields, for M G V, 

N 2 

(4) syst(M) - syst(M0) = - ^ ( Vaj/si(M0) - syst(M)^j (xt)
2, 

i=l 

which shows that MQ is a non-degenerate critical point of index zero. 
We thus have proved (a) =^- (b). 

(ii) If MQ is a non-degenerate critical point of syst of index zero, 
then there exists an open neighbourhood U of MQ in T(g, n) such that , 
for M G U, (compare (4)) 

syst(M) - syst(M0) < 0, 

which implies that MQ is a local maximum of syst. This proves (ft) ^=^ 
(c). 

(iii) If Mo is a local maximum of syst, then MQ is a critical point 
of syst and it follows from Corollary 22 that MQ is an isolated max­
imum. Therefore, if £ G Tan(Mo) with £(«) > 0, Vu G F , then £ is 
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identical zero, since otherwise, an earthquake path induced by £ would, 
by the convexity of the length functions along earthquake paths, con­
tradict that MQ is an isolated maximum. Hence MQ G Min(F) and 
d imW>(M 0 ) = d imT(# , n). q.e.d. 

Remark . This theorem, first appeared in Schmutz [24] in a differ­
ent form without the notion of critical points, is an analogue of Vorono'i's 
theorem in [37] stating that positive definite quadratic forms are ex­
tremal if and only if they are critical of index zero (or, in an often used 
language, if and only if they are eutactic and perfect). 

L e m m a 26. Let M0 G T(g,n), and let F = S(M0). Let M0 G 
Min(F) be F-regular, let k = d imW>(M 0 ) , and let N = dimT(g,n) > 
k. Letv be a simple closed geodesic of MQ such that, putting G = FU{v}, 
we have that MQ G Conv(G) is G-regular with dimjyG>(Mo) = k + 1. 
Then there exist a G-regular neighbourhood V of MQ in Conv(G) and 
a Lipschitz continuous tangent vector field r) on V with TIM{V) > 0 ; 

VM G V, such that on each integral curve c of r) there is a unique point 
c(M) G Min(F). Moreover, this point c(M) is the minimum of syst 
restricted to c, and on each connected component of c\ {c(M)}, syst is 
strictly monotonie. 

Proof, (i) By hypothesis we have Min(F) C dMin(G). Therefore, 
we can choose V homeomorphic to a (k + l)-ball such that V\ := V n 
Min(G) and V<2 := VnPos(G) are both homeomorphic to a (& + l)-bail, 
with the common boundary VQ := V f]Min(F) (which is homeomorphic 
to a A;-ball). We further choose V such that S(M) C F for all M eV. 

(ii) Let M e Vi. Then M G Pos (F) so that there exists r\ G Tan(M) 
with r)(F) < 0. Since M G Min(G), it follows that r/(v) > 0. By Theo­
rem 10 and a partition of unity we can therefore choose a differentiable 
vector field r) such that T]M(F) < 0, rjM{v) > 0, and | | Ï ?M(G) | | = 1 for 
all M G Fi. 

Let M G V2. Then there exists r\ G Tan(M) with 77(G) > 0. By the 
same argument as above we obtain a differentiable vector field fj such 
that 7]M{G) > 0, and ||r7M(G)|| = 1 for all M G V2. 

Let M G Vo and let M;b —> M be a convergent sequence, Mi G V\. 
Then, by Theorem 10, r)Mi{G) has a convergent subsequence; for the 
limit vector T]M(G) G WG(M) we have ||r7M(G)|| = 1 and T]M{F) < 0. 
It follows that T]M(F) = 0 and T)M(V) = 1-

Let M G Vo and let Mi —> M be a convergent sequence, Mi G 
V2. By the same argument, each convergent subsequence of r]Mi(G) 
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converges to the vector TJMÌG) G WG{M) with T]M(F) = 0 and TIM{V) = 
1. 

We therefore have defined a continuous vector field fj on V which is 
differentiable in V \ VQ . 

(iii) Let £ = T)M0- To £ is associated an earthquake, let £ be the 
derived vector field. The vector fields derived from earthquakes vary 
continuously with M G T(g,n) and £ G Tan(M0) (see [12]). We there­
fore can choose the vector field fj and the neighbourhood V such that, 
for each M G V and each u G G, the norm of the gradient of T]M(U) 

remains bounded. Thus fj is Lipschitz continuous and gives rise to a 
flow. 

By construction, the integral curves of this flow are as it is claimed 
by the lemma. q.e.d. 

Lemma 27. Let F be a set of m simple closed geodesies of a surface 
M. Let M0 G Min(F) U dMin(F) be F-regular. Let dimjyF(M0) = 
k < N = dimT(A'f). Then there exists a simple closed geodesic v in M. 
such that MQ G Conv(G) is G-regular with dim WG(MQ) = k + 1, where 
G = FU{v}. 

Proof. By Lemma 5 there exists F' C F such that 

M0 G Min(F') U dMin{F') 

with JF'(M0) = 1 and dimjyF/(M0) = dimWF(M0) = k. Since |F ' | = 
k+l there exists w G F' with the following property for F(w) = F'\{w}: 
If £ G Tan{M0) with £(F(w)) = 0, then £(«>) = 0. This implies 
that MQ has an F-regular neighbourhood U in Conv(F) such that 
dim WF(W} (M) = k for all M G U. Since F(w) has k elements, there 
exists simple closed geodesies v\,... ,t>Ar_fc in M. such that, putting 
H = F(w) U {vi,... ,vN-k}, we have divaWH(M) = N for all M in 
an open neighbourhood of MQ in T(M). Choosing v = v\ the lemma 
follows. q.e.d. 

Theorem 28. Let M0 G T(g,n), let F = S(M0), let \F\ = m, 
and let N = dimT(g,n). If MQ G Min(F) is regular, then MQ is a 
non-degenerate critical point of syst of index J = N — (m — JF(MQ)). 

Proof. Put k : = dim WF (M0 ) = m - j F (M0 ). If TV - & = 0, then the 
theorem was already proved by Theorem 25. Therefore, we can assume 
in the sequel that N — k > 0. 

We assume that MQ G Min(F) is regular. 
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We shall see that there exist an open neighbourhood V of MQ G 
T(g,n) and a homeomorphic parametrization of V by N parameters 
y i , . . . ,VN such that 

J N 

syst(M) - syst(M0) = J^vï ~ J2 ^ • 
i = l i=.J+l 

This is sufficient in order to prove the theorem since it then follows by 
Morse [18] that MQ is a critical point of syst. 

(i) We choose an i^-regular neighbourhood V of Mo in Min(F) with 
a flow as in Lemma 24. We then have a homeomorphic parametrization 
ofF0 = F ' \ { M 0 } b y 

M — > ^Jsyst{M0) - syst(M) x, MeV0, 

where x G Rfc is a vector of unit norm. (Recall that V is chosen such 
that S(M) C F, VM G V.) 

(ii) Since N — k > 0, there exists, by Lemma 27, a simple closed 
geodesic v of Mo such that, putting G = F U {u} we have that Mo G 
Conv(G) is G-regular with dimTyG>(Mo) = & + 1- We apply Lemma 26. 
Let V and fj be defined as in this lemma and choose V so small that 
V n Min(F) C F ' . For M G F let c(M) be the point in V n Min(F) 
which lies on the same integral curve of fj as M. 

If N — k = 1, then we have the desired homeomorphic parametriza­
tion of V by 

M —• (Vsyai(M) - syst{c{M)) y, Vaj/st(M0) - aj/st(c(M)) a ) , 

where a; G Rfe was defined in (i), and y is a vector of unit norm in R1. 
(iii) Assume that h := N — k > 1. Then, by Lemma 27, there exist 

simple closed geodesies i>i,... ,f/j of Mo such that dimWiy(M) = A?" 
for every M in an open neighbourhood W of Mo in T(g,n), where 
H = F\J{v1,... ,vh} . Let 

A = { A e R f c : A > 0 , ||A|| = 1}. 

For A = (Ai,. . . , Xh) G A and M e W put 

h 

LM(U(\)) = J2XÌLM(VÌ), 
i=l 
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and F(X) = F U {U(X)} (compare with the remark after Corollary 16 
at the end of Section 2). 

Let A, A' G A, A ^ A'. For M G W n Conv(F(X)) there then exists 
(by construction) £ G Tan(M) with £(-F(A)) = 0 and £(A') > 0. It 
follows that TV n Com>(F(A)) n Conv{F{X!)) = Wn Min{F). 

(iv) Apply Lemma 26 to F and F(X). Let V(A) be the corresponding 
i?(A)-regular neighbourhood of MQ in W n Cora>(.F(A)). Then by (iii) 
and the invariance of domain we have 

W \ Min(F) = \J(Wn V(X) \ Min{F)), 
AGA 

and this is a disjoint union. Therefore, if W is chosen accordingly, every 
M G W\Min(F) lies in Conv(F(X)) for a unique A G A and there exists 
a unique c(M) G W H Min(F) such that M and c(M) lie on the same 
integral curve induced by the flow on Conv(F(X)). We then obtain the 
desired homeomorphic parametrization of W by 

M —>• ^syst(M) - syst(c(M)) y, y/syst(M0) - syst(c(M)) x} , 

where Ï É R ' was defined in (i), and y is in A. q.e.d. 

T h e o r e m 29 . Let M0 G T(g,n), and let F = S(M0). Let M0 G 
dMin(F) be strongly F-regular. Then MQ is an ordinary point of syst. 

Proof. Let N = dimT(g,n), let k = dimWF(M0) and q = N - k. 
Let U be an open neighbourhood of MQ in T(g, n) such that S(M) C F 
for all M G U and such that M G Pos(S(M)) for every M G U \ {MQ} 
(the latter is possible by Corollary 22). Let SQ = syst(Mo). Let 

S(t) = {M eU : syst(M) = s0 + t}. 

(i) Assume that MQ is an ordinary point of syst restricted to Conv(F). 
If q = 0 we are done. So let q > 1. Let « b e a simple closed geodesic of 
MQ such that , putt ing G = FL) {v}, we have that Mo is G-regular with 
dim WG(MQ) = k+1 (v exists by Lemma 27). We can choose a G-regular 
neighbourhood W C U of M0 in Conv(G) such that W0 := VFnConw(i?) 
is homeomorphic to a A;-ball which separates W into W"i := WnMin(G) 
and W2 : = W nPos(G) which both are homeomorphic to a (& + l)-bail. 
On W<2 construct a differentiable vector field fj (as in the proof of Lemma 
26) such that syst is strictly monotonie along the integral curves of the 
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induced flow. Then r) induces a homotopy from W n S{t) to WQ if 
t > 0 is small enough. Therefore, for t > 0 small enough, W (1 S(t) is 
contractible. Since every M G W \ {MQ} is an ordinary point of syst, 
it follows that , for t > 0 small enough, VK n S(t) is homeomorphic to a 
Ai-ball (if W is chosen accordingly). 

It follows from the proof of Lemma 24 that W\ n 5( t ) is homeomor­
phic to a Ai-ball for t < 0, |t| small enough. Together with the vector 
field fj on VF2 this implies that WT\S(t) is homeomorphic to a Ai-ball for 
t < 0, |t| small enough (if VK is chosen accordingly). This proves that 
MQ is an ordinary point of syst restricted to Conv(G). 

It then follows by induction with respect to q that MQ is an ordinary 
point of syst. 

(ii) It remains to prove that MQ is an ordinary point of syst restricted 
to Conv(F). 

By hypothesis we can choose an F-regular neighbourhood V C U 
of MQ in Conv(F) such that VQ := V n dMin(F) is homeomorphic to 
a (A; — l)-ball which separates V into V\ := V n Min(F) and V2 := 
F fi Pos(F) which both are homeomorphic to a A;-ball. It follows as in 
(i) that V can be chosen such that , for t > 0 small enough, V n 5( t ) is 
homeomorphic to a (A; — l)-ball. 

Let Ö be the tangent vector field on V\ constructed in Lemma 24. 
By its definition it follows that 6 can also be defined on an open set 
Y C V containing every M G V\{MQ} with syst(M) < SQ; we continue 
to denote by 6 this extended vector field. Recall that syst is strictly 
growing along the integral curves of 6. Since 5(0) is homeomorphic to a 
(k — l)-ball in V, it follows that , for t < 0, |i | small enough, V n S(t) is 
contractible, since 6 induces a homotopy from VnS(t) to Vn<S(0). Thus 
as in (i), for every t < 0, |i | small enough, V fl S(t) is homeomorphic to 
a (k — l)-ball. We have therefore shown that MQ is an ordinary point 
of syst restricted to Conv(F). q.e.d. 

T h e o r e m 30 . Assume inT(g,n) every M with M G Min(S(M)) is 
S(M)-regular, and every M with M G dMin(S(M)) is strongly S(M)-
regular. Then syst is a topological Morse function on T(g, n). Moreover, 
M G T(g, n) is a critical point for syst if and only if M G Min(S(M)). 

Proof. This follows from Theorems 19, 28, and 29. q.e.d. 

Remark , (i) For n > 0 and L > 0, let T(g, n; L) be the Teichmüller 
space of all surfaces of genus g which have n boundary components which 
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all are simple closed geodesies of length L. Then Theorem 30 also holds 
for T(g,n;L) since it is still t rue (by [34]) that for M,M' G T(g,n;L), 
M y£ M', there is an earthquake path from M to M'. 

(ii) It is shown in [28] that for every L > 0, there exists M(C) G 
T(2 ,1 ; L) such that F := S{M{C)) is a set of 9 elements (in [28], this F 
is called "of type C") . One can show that M(C) is an ordinary point of 
syst for L small while for large L, M(C) is a (non-degenerate) critical 
point of syst. Therefore, by continuity, there exists an LQ such that 
M(C) G T(2,1; Lo) is a boundary point of syst. This is the unique 
example of a boundary point of syst which I know. 

It is quite probable that for n > 0 we can always eliminate boundary 
points of syst on T(g, n; L) by varying L. 

4. A Morse funct ion for surfaces w i t h cusps 

Def ini t ion, (i) Let A4 be a (g, n)-surface, n > 0. If n = 1, denote 
by O the cusp of M.. If n > 1, denote by O, A\,... , An_\ the cusps of 
M. 

Let u be a simple closed geodesic of A4 which is the boundary of an 
embedded (0, 3)-subsurface Y(u) of M. which contains two cusps ^ O, 
the associated cusps of u. Denote by R the set of all simple closed 
geodesies of M. of this type, and by t(u) the unique simple geodesic, 
contained in Y(u), between the two associated cusps of u. 

Let t be a simple geodesic in A4, which starts and ends on the same 
cusp A, with A ^ O if n > 1 (and A = O if n = 1). Let Y(t) cMbe the 
unique embedded (0, 3)-subsurface which contains t. Let t' be the unique 
common orthogonal (in Y(t)) between the two boundary components 
different from A. Pu t t(v) = t where v is the unique closed geodesic, 
contained in Y(t), with two self-intersections, which is symmetric with 
respect to t1', and intersects each of t and t' twice. Denote by R' the set 
of all closed geodesies of M. of this type. Put 

K = n(M) :=RUR'. 

(ii) Define the function syst-ji by 

systn : T(M) —> R+, M 4 min{LM(u) : u G TZ} . 

(iii) A subset F = {u\,... , u^} C 1Z is called admissible if F fills up 
and if t(v,j) and t(uj) have no common inner point, 1 < i < j'• < k. 
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(iv) Let T(g, n) be the mapping class group of M. and let Go(g, n) C 
T(g,n) be the subgroup (of index n) of elements leaving the cusp O 
invariant. 

Theorem 31 . Let M be a (g,n)-surf ace, n > 0. Let F C TZ(M) 
be an admissible subset of maximal possible order. Then the following 
hold: 

(i) \F\ = dimT(#, n) + 1 = 6g + In - 5; 

(ii) the length functions of the elements of F parametrize T(g,n); 

(Hi) jF{M) = 1 for all M G Min(F). 

Proof, (i) and (ii) are proved in [27], the proof is straightforward. 
(iii) then follows from (i) and (ii). q.e.d. 

Corollary 32. Let M be a (g,n)-surface, n > 0. Let F C TZ(M) 
be admissible. Then JF(M) = 1 for all M G Min(F). 

Proof. Clear by Theorem 31. q.e.d. 

Theorem 33. For n > 0, syst-ji is a topological Morse function on 
T(g,n), invariant with respect to the group Go{g,n). 

Proof. Clearly, Theorem 30 holds for syst-ji instead of syst. Note 
that if S-JI(M) is the set of the shortest elements of 1Z in M G T(g,n), 
then S-JI(M) is admissible if S-ji(M) fills up. Therefore, the needed 
regularity holds by Corollary 32, and the theorem follows from Theorem 
30. q.e.d. 

Remark. It is proved in [27] that, for n > 0, 

(5) T(g, n) = ( J Min(F), F C K admissible, 
F 

and this is a disjoint union. This gives rise to a contractible simplicial 
complex, invariant with respect to Go(g,n). The "critical points" of 
this complex are thus all admissible sets in 1Z. On the other hand, for 
general pairs (g,n), not for every admissible set F C 7Z there exists 
M G T(g, n) such that F is the set of the shortest elements of 1Z in M. 
Therefore, syst-ji has less critical points than the complex induced by 
(5). 
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5. A mass formula and other appl icat ions 

Def ini t ion. Let M. be a (g, n)-surface. 
(i) The mapping class group V{M) or T(g,n) is the group of the iso-

topy classes of orientation preserving self-homeomorphisms of M. (per­
mutation of the cusps is allowed). 

(ii) Denote by C the set of mutually non-isometric critical points 
of syst in T(g,n). For M G C, denote by J (M) the index of M (as a 
non-degenerate critical point of syst). 

(iii) Let Isom(M) be the automorphism group of M G T(g, n) con­
taining the orientation preserving isometries. Define 

\Aut(M)\ = lJa°ffM>l . 

(iv) Let r be a torsion free subgroup of finite index j in T(M.). Define 
the virtual Euler characteristic of Y(M.) by 

XF(M)) = - e(T(M)/T), 

where e{T{M)/Y) is the ordinary Euler characteristic of T{M)/Y. 

Remark . The rational number x ( r ( .M) ) does not depend on the 
choice of Y; see for example [5]. 

T h e o r e m 34 . Assume that syst is a Morse function of T(g,n). 
Then 

£fS = x ( r t o , n ) ) -
Proof. By Morse [18], syst gives rise to a complex. The theorem 

now follows by results from the cohomology of groups; see for example 
Brown [5], Ivanov [10], Serre [30]. q.e.d. 

Remark , (i) The formula of Theorem 34 is called a mass formula 
(in the literature also the term weight formula appears) in analogy to 
a formula by Siegel [31] in the theory of quadratic forms. This latter 
formula containing only terms of the same sign; the formula in Theorem 
34 is sometimes called a mass formula with sign. 

(ii) The virtual Euler characteristic of Y(g, n) is given in Theorem 35; 
it has been first proved by, independently, Harer/Zagier [8] and Penner 
[22] (see also Harer [7] and Kontsevich [14]). 
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T h e o r e m 35 . Let B^ be the k-th Bernoulli number. Then 

fi)x(ng,o)) = z$±v 
(ii) For g > 2 we have 

(iv) x ( r ( 0 , n ) ) = ( - l ) « - 1 ( n - 3 ) ! . 

In Section 6, I shall determine the set C for some small values of (g, n) 
calculating thus directly (applying Theorem 34) the number x ( r ( g , n)) . 

Remark . The denominator of the Bernoulli numbers is well know 
(see for example [9]). By Theorems 34 and 35, this can give some 
information about possible orders of automorphism groups of a (g, n)-
surfaces M. in general, and of critical points in T(M.) in particular 
(references for related questions are [15],[16]). However, in the formula 
of Theorem 34, two critical points with the same order of the automor­
phism group mutually annihilate themselves if their index is different 
modulo 2. 

T h e o r e m 36. Let Mg be a (g,0)-surface such that Isom(Mg) is 
a quotient of the (2,4, 2g + 2) triangle group, g > 2. Then Mg is a 
non-degenerate critical point o/syst of index 4g — 5. 

Proof. Fix g for the whole proof. 
(i) It is well-known that Mg exists and is unique up to isometry. 

A fundamental domain P of Mg (respectively of a Fuchsian group as­
sociated to Mg) can be constructed as follows. Let Pg be a regular 
right-angled polygon with 2g + 2 sides. Let X be a vertex of Pg. Take 
four copies Ci, i = 1 , . . . ,4 , of Pg and glue them so that they have 
disjoint interior and that X is a common vertex of them. We thereby 
obtain a right-angled polygon P with 8g — 4 sides. In order to obtain 
Mg from P the identifications of the sides of P must be such that for 
every side u of a copy C,, i = 1 , . . . ,4 , there exists a side « i n a Cj, 
j G {1, 2, 3,4} \ {i}, such that u U v is a simple closed geodesic in Mg. 
Let F be the set of the 2g + 2 simple closed geodesies obtained in this 
way; they all have the same length 2s where s is the length of a side of 

Pg-
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(ii) We now show that F is the set of systoles of Mg. Assume that 
u 0 F is a systole of Mg. The copies Ci, i = 1 , . . . ,4 , induce a partition 
of u into A;, say, parts ui,... ,Uk (the indices respect the natural order of 
the parts). Each part Uj relates two sides of a copy C;b. If these sides are 
not neighbours, then L(UJ) > s. Assume that Uj and Uj+i both relates 
two sides (of the corresponding copy Cì) which are neighbours. Then 
L(uj) + L(uj+i) > s. Since L(u) < 2s it follows that k < 3. If k = 3, 
then the three parts Uj must all relate two sides (of the corresponding 
copy Ci) which are neighbours. But this is impossible for a simple closed 
geodesic u in Mg. So we have k = 2. But then each part Uj relates two 
sides (of the corresponding copy C{) which are not neighbours hence 
L(u) > 2s. This shows that u cannot exist. 

(iii) Let u,v G F such that u and v intersect. Let FQ = F \ {it, u}. 
Note that FQ fills up, but every strict subset of FQ does not fill up. It 
follows by Lemma 9 that dMin(F^) = 0 and that Min(i ?o) is homeo-
morphic to R 2 s _ 1 ; moreover, jp0(M) = 1 for all M G Min(Fo). We now 
show that Mg G Min(F0). 

For every w G F there exists an orientation reversing involution tßw 

of Mg which fixes w pointwise. In F, w has two "neighbours" (elements 
of F which intersect w), therefore, ipw fixes them setwise. By induction 
we obtain that ip(w') = w' for every w' G F. Let M G Min(Fo). 
Since the involutions ipw act as elements of the mapping class group, 
it follows (by the uniqueness in the definition of the map 4>F) that M 
must be invariant with respect to them. Therefore, M contains (like 
Mg) four copies C,, i = 1 , . . . ,4 , which are right-angled (2g + 2)-gons 
(with disjoint interior). In other words, M is determined by a right-
angled (2g + 2)-gon. The space of the right-angled (2g + 2)-gons can 
be parametrized by Ig — 1 parameters, more precisely, this space is 
homeomorphic to R 2 s _ 1 and has empty boundary. Since Min(Fo) is 
also homeomorphic to R2g~l with empty boundary, the two spaces may 
be canonically identified and it follows that Mg G Min(Fo). 

(iv) By Theorem 37 in Section 6, Mg is a critical point of syst. 

It follows by the same argument as in (iii) that Min(F) = Min(Fo). 
This implies that jF(M) = 3 for all M G Min(F). Therefore, Mg is a 
non-degenerate critical point of syst of index Ag — 5. q.e.d. 

Defini t ion. The virtual cohomological dimension vcd oîT(g,n) is 
defined as the cohomological dimension cd of a torsion free subgroup T 
of r(g, n) of finite index. 

If G is a discrete group, then cd(G) is defined as the supremum of 
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those m such that Hm(G,A) ^ 0 for some G-module A (Hm being a 
cohomology group). 

Remark , (i) If G is a discrete group with torsion, then cd(G) = oo. 
On the other hand, vcd(T(g,n)) is finite and does not depend on the 
choice of the torsion free subgroup T of T(g,n) of finite index (see for 
example [30], [5]). The exact value of vcd(T(g,n)) is known for every 
pair (g, n) by Harer [6] (see also [7] and [10]). In particular, we have 

(6) vcd(T(g,0)) = 4g - 5. 

(ii) If syst is a topological Morse function of T(g, 0), then the maximal 
index for a critical point of syst is at least 4g — 5 by Theorem 36. On the 
other hand, it follows from (6) that there cannot exist a Morse function 
on T(g,0), invariant with respect to T(g,0), such that the difference 
between the maximal and the minimal indice of the critical points is 
smaller than 4g — 5 (see for example [30]). 

(iii) Until now, no contractible simplicial complex on T(g, 0), invari­
ant with respect to F(g,0), has been found with the best dimension 
4g — 5 (see for example [7]). It is quite possible that syst gives rise to 
such a complex (for g = 2, this will be proved in Theorem 44). 

6. Classif ication of t h e critical po ints of syst in s o m e cases 

Recall first that if M is a surface with M 0 Pos(S(M)), then S(M) 
must fill up. In closed surfaces or in surfaces with only one cusp, systoles 
can intersect at most once (see [24]), therefore, if the set of systoles fills 
up, all systoles are non-separating in these cases. 

The following result is taken from [24]. 

T h e o r e m 3 7 . Let M be a (g,n)-surface such that Isom(M) is iso­
morphic to a (non-trivial) quotient of a Fuchsian triangle group. Let 
S(M) have a subset which fills up and on which Lsom(M) acts transi­
tively. Then M is a critical point for syst. 

Remark . The theorem holds without the hypothesis that S(M) 
has a subset which fills up and on which Lsom(M) acts transitively. 
Namely, assume that there exists £ G Tan(M) such that Ç(S(M)) > 0. 
Let 

7 
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where 7 runs over Isom(M). Then £0 is invariant with respect to 
Isom(M) and ÇQ(S(M)) 7̂  0. This implies that the earthquake path 
induced by £0 is also invariant with respect to Isom(M). But this is 
impossible since the points with the same automorphism group as M 
are isolated in the Teichmüller space of M . I thank Christophe Bavard 
for helping me with this argument. 

T h e o r e m 38 . I n T ( l , l ) , syst has exactly two non-isometric criti­
cal points MQ and M\ which moreover are non-degenerate and of index 
0 and 1, respectively. MQ has three systoles and corresponds to the mod­
ular torus. M\ has two systoles which intersect orthogonally; Isom(Mi) 
is a quotient of the Fuchsian triangle group (2,4, 00). 

Proof. By [24] MQ is the surface of T ( l , 1) with the longest systole 
and is therefore a critical point of syst; moreover, MQ is non-degenerate 
by Theorem 25. 

All other (non-isometric to Mo) surfaces of T ( l , 1) have at most two 
systoles. For any further M G T ( l , 1) with S(M) 0 Pos{S{M)), S(M) 
has two elements which, moreover, must intersect orthogonally. 

M = M\ is determined by this condition; moreover, by Theorem 37, 
Mi is critical. Non-degeneracy of Mi is clear since Js(Mi)(M) = 1 for 
all M G Min{S{Mi)). q.e.d. 

Remark . For the Euclidean tori (of fixed volume), syst has the 
analogous critical points as in the case of (1, l)-surfaces, namely, the 
hexagonal torus corresponds to MQ and the square torus corresponds to 
Mi of Theorem 38. 

In the introduction I mentioned the function — l o g d e t A ( M ) and 
the conjecture that it is a Morse function. The conjecture is true for 
Euclidean tori, and the hexagonal torus and the square torus are the 
unique critical points for this function (see [23]). 

Corollary 39 . ForT(l, l), syst is a topological Morse function and 
the mass formula of Theorem 34 gives 

- - - = -— = y ( r ( l , l ) ) . 
6 4 12 A M /J 

Proof. That syst is a Morse function, follows by the proof of 
Theorem 38 and by Theorem 30. Note further that | / som(Mo) | = 6 
and \Isom(Mi)\ = 4 where MQ and Mi are defined as in Theorem 38. 

q.e.d. 
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Corollary 40 . (i) For T(0 ,4) , syst has exactly two non-isometric 
critical points MQ and Mi which moreover are non-degenerate and of 
indices 0 and I, respectively. MQ has three systoles and corresponds 
to H / r ( 3 ) ; where H is the upper halfplane and T(3) is the principal 
congruence subgroup of level 3 of the modular group. M\ has two systoles 
which intersect orthogonally; Isom(Mi) is a quotient of the Fuchsian 
triangle group (2,4, oo). 

(ii) In the case of (0,4) -surfaces syst is a topological Morse function, 
and the mass formula of Theorem 34 gives 

2 - 3 = - l = x ( r ( 0 , 4 ) ) . 

Proof. There is a well-known isomorphism between T ( l , 1) and 
T(0,4) , induced by an isomorphism between the simple closed geodesies 
of a (1, l)-surface and the simple closed geodesies of a (0,4)-surface. 
This, together with Theorem 38, proves (i). Concerning (ii) note that 
\Isom(M0)\ = 12 and \Isom{M{)\ = 8. q.e.d. 

T h e o r e m 4 1 . Let f be a (topological) Morse function on T ( l , 1) 
which is invariant with respect to T( l , 1). Then MQ and M\ (defined as 
in Theorem, 38) are critical points of f. Moreover, MQ is a minimum 
or a maximum for f while Mi is extremal or not extremal, depending 
on f. 

Proof. (i) Since / is a Morse function, / induces a complex 
from which we can calculate x ( F ( l , 1)) as in Corollary 39. Let M G 
T ( l , 1), M not isometric to MQ nor to Mi. Then it is well known that 
\Isom{M)\ = 2. Since x ( r ( l , 1)) = - 1 / 1 2 , it follows that M 0 and Mx 

must be critical points of / . Moreover, in the formula of Theorem 34, 
the parity of the index of MQ must be even which implies that MQ is a 
maximum or a minimum for / . 

(ii) If / = syst, then the index of Mi is 1. Let now / be the following 
function. 

/ : T ( l , 1) — • R+, M ^ min{L M (n) + LM{v) : u, v}, 

where u,v are (any) simple closed geodesies of AI G T ( l , 1) which in­
tersect exactly once. Let us look for the critical points of / . Obvi­
ously, MQ is a (local) maximum of / while Mi is the global minimum 
of / . There is a third critical point Mf of / defined as follows. Let 
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«S(Mo) = {1*1,142,^3}. Let 0 < ai < n/2 be the intersection angle be­
tween Ui and Uj+i, i = 1,2, 3, (taking the indices modulo 3). Then Mf 
is given by 

cos « 1 = 2 cos «2 = 2 cos «3 . 

It is easy to verify that Mf is a critical point of / of index 1 and that / 
has no further critical points (or points corresponding to the boundary 
points of syst). The proof of Theorem 30 applies to / and clearly MQ, 
M I and Mf are non-degenerate. Therefore, / is a topological Morse 
function of T ( l , 1), invariant with respect to T( l , 1). The existence of 
this / (and of syst) shows that the parity of the index of Mi as a critical 
point is not constant. q.e.d. 

Remark . The phenomenon described in Theorem 41 is surpris­
ing. There are surfaces which are critical points for all Morse functions 
(which are invariant with respect to the corresponding mapping class 
group). But some of them are stable in the sense that the parity of their 
index does not change while other are unstable (the parity of the index 
changes). What lies behind this stability property? 

T h e o r e m 4 2 . InT(l,2), syst has exactly five mutually nonisomet-

ric critical points Mi, i = 0 , . . . ,4 , which moreover are non-degenerate, 

namely, 

- MQ with five systoles and index 0; 
- Mi with four systoles 01,02,61,62 such that the a, are mutually 

disjoint and the bi are mutually disjoint, i = 1,2; the index of M\ is 1; 

- M2 with four systoles such that two of them intersect all other 

systoles; the index of M^ is 1; 

- M3 with three systoles which all mutually intersect; the index of 

M 3 is 2. 

- M4 with three systoles a, b, c such that a and c are disjoint; the 

index of M^ is 2. 

Proof. (i) Every M G T ( l , 2 ) is hyperelliptic and each non-
separating simple closed geodesic u can be described by two numbers 
in the set {1,2 ,3 ,4} corresponding to the two fixed points on u of the 
hyperelliptic involution. Two systoles in M can intersect at most once 
(compare [24]); therefore, if the set of systoles fills up, then the systoles 
are non-separating and different systoles cannot have two common fixed 
points of the hyperelliptic involution. 
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(ii) MQ is the unique point in T ( l , 2 ) with five systoles and has 
moreover the maximal length of the systole; see [24]. By Theorem 25, 
MQ is non-degenerate. 

(iii) If S(M) fills up and has four systoles a, b, c, d, then there are two 
combinatorial possibilities, namely {a,b,c,d} = {12,34,13,24} which 
corresponds to Mi and {a,b,c,d} = {12,13,23,34} which corresponds 
to Mi (we use the notation defined in (i)). Since we assume that 
M 0 Pos (S (M)) it follows that in the first case, the angles in the 
four intersection points must all be equal which determine M\ uniquely. 
In the second case, the angles in the intersection points of d with b and 
c must be equal determine M<2 uniquely. 

Isom(Mi) is a quotient of the (2,4, oo) triangle group and there­
fore critical by Theorem 37. That M<i is critical can be verified by a 
calculation. 

(iv) A set of two systoles cannot fill up, so we remain with the 
possibility that the set of systoles fills up and has three elements a, b, c. 
There are two combinatorial possibilities, namely {a, b, c} = {12,13,14} 
which corresponds to M3 and {a, 6, c} = {12, 23, 34} which corresponds 
to M4. In the first case, the angles in the intersection point (the three 
systoles intersect in the same point) must all be equal which determine 
M3 uniquely. In the second case, the angles in the intersection points 
of a with b and of b with c must be orthogonal which determine M4 
uniquely. 

That M3 and M4 are critical can be easily verified. 
(v) Note that by (i), jS(M0)(M) = 1 for all M G Min(S(M0)). Since 

S (Mo) contains S (Mi), i = 1 , . . . ,4 , it follows that js^M.^(M) = 1 for 
all M G Min(S(Mi)), i = 1 , . . . ,4 . This proves that all five critical 
points are non-degenerate and that their index is as claimed. q.e.d. 

Corollary 4 3 . ForT(l,2), syst is a topological Morse function and 
the mass formula of Theorem 34 gives 

1 1 1 1 1 , , „ 

2 - 4 - 1 + 3 + 2 = Ï 2 = * ( r ( 1 - 2 » ' 

Proof. Clear by the proof of Theorem 42 and by Theorem 30. 
(Note that we have \Isorn(M0)\ = \Isom(MA)\ = 4, \Isom(M{)\ = 8, 
\Isom(M3)\ = 6, and \Isom(M2)\ = 2.) q.e.d. 

T h e o r e m 44 . J n T ( 2 , 0 ) , syst has exactly four mutually nonisomet-
ric critical points Mi, i = 0 , . . . , 3 , which moreover are non-degenerate, 
namely, 
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- MQ with 12 systoles and index 0; 
- Mi with 9 systoles and index 1; 
- M<2 with 6 systoles and index 3; 

- M3 with 5 systoles and index 2. 

Proof. Surfaces of genus 2 are hyperelliptic, and the systoles can be 
characterized by two numbers in the set {1 ,2 ,3 ,4 ,5 ,6} corresponding 
to the two fixed points of the hyperelliptic involution on the systole. 

(i) By [24] T(2, 0) has a unique surface MQ with maximal length 
of the systoles. It has 12 systoles and \Isom(Mo)\ = 48. MQ is non-
degenerate by Theorem 25. 

(ii) T(2,0) has a one-parameter family of surfaces with a set of 9 
systoles (which can be chosen as the set {12,13, 23, 56,46, 45,14, 25, 36}) 
which contains a point M\ characterized by the following geometric 
property. M\ has a separating simple closed geodesic z which intersects 
the systoles 14, 25, 36 orthogonally in both intersection points and is 
disjoint to the other systoles. The automorphism group of Mi has order 
12 (the two subsurfaces separated by z have the same automorphism 
group of order 6 as MQ in the case of (1, l)-surfaces; moreover, there is 
an automorphism interchanging these two subsurfaces). 

One easily verifies that Mi is critical for syst. 

That Mi is non-degenerate will be proved in Theorem 47 below. 
(iii) T(2,0) contains a surface M2, isometric to the surface also 

denoted by M2 in Theorem 36. Therefore, M2 is critical and non-
degenerate of index 3 and has an automorphism group of order 24 (which 
is a quotient of the (2,4,6) triangle group). 

(iv) T(2, 0) has a surface M3 with an automorphism group of order 
10 which is a quotient of the (2, 5,10) triangle group. M3 has a set of 5 
systoles {12,23,34,45,15} and the angles in all intersection points are 
equal. By Theorem 37, M3 is a critical point of syst. 

It follows from [27] that jS(Ms)(
M) = l for all M G Min(S(M3)). 

Therefore, M3 is non-degenerate of index 2. 
(v) A set of three systoles cannot fill up. If S(M) fills up and has 

four elements {a,b, c, d} such that M 0 Pos (S (M)), then S (M) must 
be of the form {12,23,34,45} and all angles in the intersection points 
are orthogonal. In other words, {a,b,c,d} must be a subset of S(M2), 
but then the surface is automatically M2 by the proof of Theorem 36. 

If S(M) fills up and has five elements such that M 0 Pos (S (M)), 
then, by a similar argument, M = M3. Thus by [25], when M G T(2, 0) 
with M 0 Pos(S(M)) such that \S(M)\ > 6, M is isometric to one of 
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Mh i = 0,1,2. q.e.d. 

Corollary 45. For T(2,0), syst is a topological Morse function and 
the mass formula of Theorem 34 gives 

1 1 1 1 _ 1 _ / r / ^ 
4 8 ~ Ï 2 ~ 2 4 + Ï Ô ~ ~24Ö ~ X ( ( 2 , ° ) ' ) ' 

Corollary 46. (i) In T(0, 6), syst has exactly four mutually non-
isometric critical points Mi, i = 0 , . . . ,3 , which moreover are non-
degenerate, namely, 

- MQ with 12 systoles and index 0, with the automorphism group of 
the octahedron; 

- M\ with 9 systoles and index 1, with the automorphism group of a 
regular prism; 

- M<2 with 6 systoles and index 3 ; with an isometry of order 6 
(Isom{M2) is a quotient of the (2, 6, oo) triangle group); 

- M3 with 5 systoles and index 2, with an isometry of order 5 
(Isom{M%) is a quotient of the (5, 00, 00) triangle group). 

(ii) For T(0, 6), syst is a topological Morse function, and the mass 
formula of Theorem 34 gives 

720 720 720 720 , „ , ., 
a - — - - n r + - = -<5 = *(r(o,6)). 

Proof. Let M G T(0, 6) such that S(M) fills up. Let u G S(M) 
and assume that u separates M into two (0,4)-subsurfaces. But as 
one verifies by a calculation, this is impossible since u is intersected by 
another systole (instead of a calculation one may also use the surface 
M\). Therefore, every u G S (M) separates M into a (0, 5)-subsurface 
and into a (0, 3)-subsurface. The latter contains two different cusps Ai 
and A<i- Therefore, systoles in M can be characterized by these two 
cusps. In other words, if Ai, i = 1,... , 6, are the cusps of M, then the 
elements of S(M) can be characterized by (i,j) with 1 < i < j < 6. 
This is the analogous characterization as for systoles in (2,0)-surfaces 
which are non-separating. Therefore, the well known isometry between 
T(0, 6) and T(2, 0) maps critical points of syst to critical points of syst 
and vice versa. 

The corollary then follows from Theorem 44 (note that surfaces in 
T(0,6) do not have a hyperelliptic involution which fixes all simple 



446 PAUL SCHMUTZ SCHALLER 

closed geodesies: therefore \Isom(Mi)\, Mi G T(0, 6), is only half of 
\Isom(Mi)\, Mi GT(2,0), i = 0 , . . . ,3). q.e.d. 

Theorem 47. Let Mi G T(2,0) 6e defined as in the proof of Theo­
rem 44. Let F = 5(Mi). T/ien: 

(aj Mi is a non-degenerate critical point of syst of index 1, 
(b) Mi is not F-regular. 

Proof, (i) Let 

F = {(12), (13), (23), (56), (46), (45), (14), (25), (36)} 

as in the proof of Theorem 44. Let 

F D G = {(12), (13), (23), (45), (46), (56)} 

and let F D H = {(14), (25), (36)}. Let z be the (separating) sim­
ple closed geodesic of Mi which is disjoint to all elements of G. Let 
F D Fi = GU{(14)}, let F D F2 = Gu{(25)}, let F D F3 = Gu{(36)}. 

Let M G Min(Fi). Then in M, z must intersect orthogonally the el­
ement (14) G -Fi (note that the two intersection angles of z with (14) are 
always equal since surfaces in T(2,0) are hyperelliptic). Since Cz(-^i) = 0 
and since on the other hand, the length functions of the elements of 
-Pi parametrize the surface up to the twist along z, it follows that 
dimWF l(M) = 5 for all M G Min(Fi) (recall that dimT(2,0) = 6). 
The same argument shows that dim VFi^M) = 5 for all M G Min(Fi), 
« = 2,3. 

Assume now that Mi is -P-regular. Then there exists an -F-regular 
neighbourhood U of Mi in Min(F) such that 

Min(Fi) n U = Min{F2) n U = Min(F3) n U, 

since dim W>(M) = dim WFi{M) = 5 for all M G U, i = 1, 2, 3. There­
fore, in M G U, z intersects orthogonally all elements of H. But the 
subspace of T(2, 0) with this property has only dimension 3, a contra­
diction. Therefore, Mi is not -F-regular which proves (b). 

(ii) For every M G T(2, 0) let a(M) be one of the two equal directed 
angles from z to the geodesic (14) G -F, 0 < a(M) < n. For every a 
(0 < a < 7r) put 

T(a) = {M G T(2,0) : a(M) = a}. 
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Since a(M) can be used as a parameter in T(2 ,0) , it is clear that T(a) C 
T(2,0) is a differentiable submanifold of dimension 5. 

Let T C T(2, 0) be the one-parameter family containing the surfaces 
where all elements of F have the same length. Then for every 0 < a < n, 
there is a unique element M (a) in T fl T(a). 

Let U be an open neighbourhood of M\ in T(2 ,0) . Assume that 
syst restricted to U fl T ( a ) has its unique maximum in M (a) . As in 
Lemma 24 we then construct a differentiable tangent vector field 9 on 
[/ fl T(a) \ {M(a)} such that syst is strictly growing along the integral 
curves induced by 9 which moreover all end in M (a). Let e > 0. If 
this holds for every a G [V/2 — e, n/2 + e], then we obtain the desired 
homeomorphic parametrization of U by putting, for M G U fi T(a), 

M —> (^/syst{M{a)) - syst(Mi) x, ^syst{M{a)) - syst(M) y) , 

where x = ± 1 (depending on the sign of n/2 — a ) , and y G R5 is a vector 
of norm 1, induced by the flow of 9 on T(a) fi U. This proves (a). 

(iii) It remains to show that there exists an e > 0 such that for all 
a G [7T/2 — e, 7r/2 + e], M (a) is the unique maximum of syst restricted 
to T(a) n U. 

For a = ir/2 we can choose U so that Ur\T(n/2) C Min(Fi) (com­
pare (i)). It follows that M\ is the unique maximum of syst restricted 
to Un T(TT/2). Fix now a so that \a - n/2\ = e' > 0 is small. In M (a) 
execute a twist deformation along z such that we obtain iV"o G T(n/2). 
For e' small enough, 7V0 is in Min(Fi). Let M' G E / n T ( a ) . Execute 
a twist deformation along z in M' such that we obtain N\ G T(n/2). 
Again, we may assume that N\ G Min(Fi). Therefore, there exists 
u G -Pi such that LjVj(u) < LN0(U). If u G G we are done. Thus, we 
may assume that u = (14). Let At' = L^ (u) and At = L^0(it). We then 
have 

• WT- / \ / ^ s inhi ' . s inht 
smh(LM/(M)/4) = — , smh(LM ( a ) (M)/4) = . 

Since t' < t, u is smaller in M' than in M (a) and we are done. q.e.d. 

T h e o r e m 48 . In T(0, 5), there are, up to isometry, exactly three 
different critical points of syst, which moreover all are non-degenerate, 
namely 

MQ with 6 systoles and index 0: 
Mi with 4 systoles and index 1; 
M<2 with 5 systoles and index 2. 
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Proof. (i) Denote by Ai the cusps of M G T(0, 5), i = 1 , . . . , 5 . 
Every simple closed geodesic u of M can be characterized by the two 
cusps which lie in the (0, 3)-subsurface Y(u) oî M of which u is a bound­
ary geodesic. We note u = (ij) if these two cusps are Ai and Aj, 
1 < i < j < 5. We then call Ai,Aj the associated cusps of u. Clearly, 
two systoles of M cannot have both the same two associated cusps. 

(ii) By [25] there exists MQ G T(0, 5) with 6 systoles which is a local 
maximum for syst. Therefore, MQ is critical and non-degenerate by 
Theorem 25. 

Let M\ G T(0, 5) have the isometry group of a Euclidean pyramid 
with a square as basis. Then M\ is critical for syst by Theorem 37 
(Isom(Mi) is a quotient of the (4, oo, oo) triangle group). A calculation 
yields that S (Mi) can be described as 

5(Mx) = {(12), (23), (34), (14)}. 

Since S (Mi) is admissible in the sense of Section 4, it follows by Corol­
lary 32 that Mi is a non-degenerate critical point for syst of index 1. 

Let Mi G T(0, 5) such that Mi has an isometry of order 5. It follows 
by Theorem 37 that Mi is critical for syst (Isom(Mi) is a quotient of 
the (2, 5, oo) triangle group); moreover, Fi := S (Mi) can be described 
as 

F2 = {(12), (23), (34), (45), (15)}. 

Let M G Min(Fi). There exists an orientation reversing involution 
(p G r ( 0 , 5) with <f)(u) = u for all u G Fi. It follows that (f> is an isometry 
of M and that ^u(v) = 0 for all u,v G Fi. Let u,v G Fi be disjoint. Then 
Çu,£,v £ Tan(M) are linearly independent and ^«(-Fb) = ^C^b) = 0 
which shows that jp2(M) > 3. Since JF2(MI) = 3 as it is easy to see, it 
follows that Mi is a non-degenerate critical point of syst of index 2. 

(iii) It remains to show that for all other M G T(0,5) we have 
M G P o s ( 5 ( M ) ) . So assume that S(M) fills up. Then S(M) has 
at least three elements. If every cusp of M is associated cusp for at 
most two different elements of S(M), then clearly S(M) C S (Mi) or 
S(M) C S (Mi). In the latter case we must have equality since S(M) 
fills up. If S(M) C S (Mi), then 0 is an isometry of M and it is easy to 
see that S(M) = S (Mi). 

By the existence of Mi it is not possible that S(M) has four elements 
which have the same associated cusp. 
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120 120 

We thus can assume that S(M) has three elements which have the 
same associated cusp. A calculation yields that S(M) must be a subset 
of S(MQ) and it is then easy to see that S(M) = S(MQ). q.e.d. 

Corollary 49 . For T(0, 5), syst is a topological Morse. The mass 
formula of Theorem 34 gives 

x(r(o,5)) 

Corollary 50 . Among all (0,5) -surfaces, MQ (defined as in Theo­
rem 48) has the longest possible systole. 

T h e o r e m 5 1 . In the above treated cases the following critical points 
of syst correspond to arithmetic Fuchsian groups. 

(a) Both critical points in the case (g,n) = (1,1) as well as in the 
case (g,n) = (0,4), 

(b) the surfaces M\ and M3 in the case (g,n) = (1,2), 

(c) all four critical points in the case (g,n) = (2,0), 

(d) the surfaces MQ and M^ in the case (g,n) = (0,6), 

(e) the surfaces MQ and Mi in the case (g,n) = (0,5). 

Proof, (i) If a surface M has cusps and a corresponding Fuchsian 
group is arithmetic, then this group has only elements with traces which 
are square roots of rational integers (compare [32]). By a calculation, 
the systoles of the surfaces MQ, M2, M4 in the case (g, n) = (1, 2) as well 
as the surfaces M i , M3 in the case (g, n) = (0, 6) and the surface M2 in 
the case (g, n) = (0, 5) are not of this form and hence the corresponding 
Fuchsian groups are not arithmetic. 

(ii) As already mentioned, MQ and Mi in the case (g,n) = (1,1) 
(as well as in the case (g,n) = (0,4)) correspond to Fuchsian groups 
which are subgroups of the modular group and the (2,4, 00) triangle 
group, respectively. Mi in the case (g,n) = (1,2) also corresponds to 
a Fuchsian group which is a subgroup of the (2,4, 00) triangle group. 
In the case (g,n) = (2,0), the surfaces MQ, M2, M3 have a correspond­
ing Fuchsian group which is subgroup of the (2, 3, 8), (2,4, 6), (2, 5,10) 
triangle group, respectively. If (g, n) = (0, 6) then MQ and M2 have a 
corresponding Fuchsian group which is a subgroup of the (2, 3, 00) and 
the (2, 6, 00) triangle group, respectively. If (g, n) = (0, 5), then Mo, Mi 
correspond to a Fuchsian group which is a subgroup of the (2, 00, 00), 
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(4, oo, oo) triangle group, respectively. All these triangle groups (and 
their subgroups) are arithmetic by Takeuchi [33]. 

(iii) In order to show that all traces of the elements of a Fuchsian 
group are of the necessary form (described in [32]) to give an arithmetic 
group, it is sufficient to control this for a system of generating elements 
(of the Fuchsian group) and some relations. A calculation proves that 
M3 in the case (g, n) = (1,2) and M\ in the case (g,n) = (2,0) are 
arithmetic. q.e.d. 
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