
j . d i f f e r e n t i a l g e o m e t r y 

50 (1998) 147-206 

T H E SU(3) C A S S O N I N V A R I A N T F O R I N T E G R A L 
H O M O L O G Y 3 - S P H E R E S 

HANS U. BODEN & CHRISTOPHER M. HERALD 

Abstract 

We derive a gauge theoretic invariant of integral homology 3-spheres which 
counts gauge orbits of irreducible, perturbed flat SU(3) connections with 
sign given by spectral flow. To compensate for the dependence of this sum 
on perturbations, the invariant includes contributions from the reducible, 
perturbed flat orbits. Our formula for the correction term generalizes that 
given by Walker in his extension of Casson's SU(2) invariant to rational 
homology 3-spheres. 

1. Introduction 

Since its introduction in 1985, Casson's invariant [3], [1] has been 
the focus of intense study. For example, it has been shown that it 
extends as a Q-valued invariant of oriented 3-manifolds which retains 
most of the important properties of the original invariant (for details, 
see [25], [14] and the references contained therein). Its relevance to 
gauge theory was recognized by C. Taubes, who related it to the Euler 
characteristic for the instanton homology groups defined by A. Floer 
[24], [6]. Because Casson's invariant is essentially defined as an algebraic 
count of the number of conjugacy classes of irreducible representations 
g : 7TiX —> SU'(2), it is widely believed that there exists a sequence 
of related invariants \su(n)(X) which "count" the number of conjugacy 
classes of irreducible representations g : -K\X —> SU(n). 

The present article establishes the existence of such an invariant for 
the group SU(3) in case X is an integral homology 3-sphere. The main 
difficulty in defining \su(n)(X) is that one must first perturb so that 
the space of irreducible representations is cut out transversely, but the 
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resulting (signed) count will depend on the perturbation used. To obtain 
a well-defined invariant, one must devise a correction term involving only 
the reducible representations which compensates for this dependence. 

In extending Casson's SU(2) invariant to rational homology 3-spheres, 
K. Walker gave a formula for the correction term using the symplectic 
geometry and stratified structure of representation varieties associated 
to a Heegaard splitting of the 3-manifold [25]. S. Cappell, R. Lee, and 
E. Miller proposed a program for realizing the SU (n) Casson invari­
ants by generalizing Walker's correction term using Maslov indices and 
anomaly cancellation in [4]. 

Although the situation of SU(3) representations of integral homol­
ogy 3-spheres is similar to that of SU(2) representations of rational 
homology 3-spheres (because in both cases there is only one s t ra tum 
of reducibles to worry about) , we adopt a different approach and use 
instead gauge theory. This means that we view conjugacy classes of 
representations as gauge orbits of flat connections via holonomy and 
study the moduli space of solutions to the (perturbed) flatness equation 
as the critical set of the (perturbed) Chern-Simons functional. The ap­
propriate interpretation of our arguments in the SU(2) case would lead 
to a gauge-theoretic formula for Walker's invariant (cf. [18], [15]). 

We now give a brief outline of the contents of this paper. The rest 
of this section presents the fundamental notions of 3-manifold SU(3) 
gauge theory and describes our main result. Section 2 introduces the 
perturbations and the perturbed flatness equation. Section 3 is devoted 
to establishing structure theorems for the moduli space of perturbed flat 
connections and for the parameterized moduli space. It is important to 
notice that regularity for the parameterized moduli space does not imply 
that it is smooth; it typically has non-manifold points which we call 
bifurcation points. These singularities look locally like 'T ' intersections. 

Section 4 introduces the spectral flow orientation on the moduli 
spaces. Subsection 4.4 deserves special mention because it contains a 
comparison of the orientations on different s trata of the parameterized 
moduli space near a bifurcation point. This is a key ingredient in our 
main result, which is a formula for the SU(3) Casson invariant and the 
statement that it defines an invariant of integral homology 3-spheres. 
All of this is explained in Section 5 (cf. Theorem 1). The final section 
contains technical results concerning the existence of perturbations for 
SU(3) gauge theory. 

Both authors would like to acknowledge generous postdoctoral sup­
port from McMaster University and the Max Planck Institute. C.H. is 
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also grateful to Swarthmore College for a research grant. Many thanks 
to Tomasz Mrowka for suggesting this problem and for kindly sharing 
his insight on the subject, and also to Andrew Nicas, Brian Hall and 
Thomas Hunter for numerous illuminating conversations. 

1.1. S U ( 3 ) gauge theory. Suppose X is a closed, oriented 
3-manifold and P is a principal SU(3) bundle over X. For topological 
reasons, P is trivial. Pick a trivialization P = X x SU(3) and denote 
by Qp(X] su(3)) the space of smooth p-forms with values in the adjoint 
bundle ad P = Xxsu(3). Let A be the space of smooth connections i n P ; 
A is an affine space modeled on Q1 (X; su(3)). A gauge transformation 
is a bundle automorphism g : P —> P, and the group of smooth gauge 
transformations G can be identified with C°°(X, SU(3)). This group 
acts on A by g • A = gAg~l + gdg~l with quotient 

B = A/G. 

As usual, the gauge group action is not free. Let A* denote the sub­
set of irreducible connections, i.e., those with stabilizer Z(SU(3)) = Z3, 
and set B* = A* jG. While B is singular at gauge orbits with stabilizer 
different from Z3, if A and G are given the L\ and L\ topologies, respec­
tively, then B* inherits the structure of a pre-Banach manifold. We will 
omit the references to the Sobolev completions in this paper because a 
detailed account of the analysis can be found in [24]. 

Assume from now on that X is an integral homology 3-sphere unless 
otherwise specified. Then the stabilizer of any flat connection is isomor­
phic to SU(3), U(l), or Z3 (among nonflat connections, there are two 
other possibilities, U(1) x U(l) and S(U(2) x U(l))). Let A r denote 
the space of all connections with stabilizer isomorphic to U(l); these 
are the nonabelian connections which reduce to S(U(2) x U(l)) connec­
tions. We adopt the convenient, if not standard, terminology whereby 
A reducible means A G A r • 

The quotient B r = A r/G, while a singular s t ra tum of B, is itself 
a smooth manifold. This may be seen by noticing that A G A r if 
and only if it is gauge equivalent to a connection whose 1-form takes 
values in s(u(2) x u ( l ) ) , and that this 1-form is unique up to gauge 
transformations g G C°°{X, S(U{2) x U(l))). Thus 

B r - A*S(U(2)xU(l)) I S(U(2)xU(l))-

For A G A, the curvature is the element F (A) G Ü2 (X ; su(3)) de­
fined by 

F (A) = dA + A A A. 
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Then A G A is flat in case F (A) = 0, and the moduli space of flat 
connections is 

M = fA G A j F (A) = 0g/G C B. 

Set M* = M n B* and M r = M n B r. A well known theorem iden­
tifies M with the space of representations g : -K\X —> SU(3) modulo 
conjugation. 

The Chern-Simons functional CS {A) is defined by 

CS (A) = A T Z tr(A A dA + %A A A A A). 
8?H X 

There is an isomorphism noG = Z given by g H- degg (see Proposition 
4.2). If g G G, then CS(g • A) = degg + CS (A), so CS descends to a 
map 

CS : B —• R/Z = S1. 

Choose an orientation and a Riemannian metric on X. This provides 
a Hodge star operator * : Qp(X; su(3)) —> Çl3~p(X; su(3)) and an L2 

Riemannian metric on A, given by ha, bi L2 = — Rx tr(a A *b). Taking 
the gradient of CS with respect to this metric, one computes that 

rCS(A) = --±z*F(A), 

and hence the set of critical points of CS, modulo G, is exactly the 
moduli space of flat connections M . 

The linearization of the flatness equation *F(A) = 0 is given by the 
operator *d A '• O,1 (X; su(3)) —> O1 (X; su(3)). As in [24], we extend 
this to the self-adjoint, elliptic operator 

K A : n°(X; su{3)) © fi1 (X; su(3)) —• tt°(X; su(3)) © Q^X; su{3)), 

K A(£,a) = (d*A a,d AÇ + *d A a). 

Notice that kerK A = H A(X;su(3)) © H1A{X\ su(3)), the space of (A­
harmonic (0+l)-forms. 

For X any closed 3-manifold, the moduli space of flat SU(3) con­
nections M is compact and has expected dimension zero since K A is 
self-adjoint. Achieving transversality requires the use of perturbations, 
and we employ the same techniques here that were successful in the 
SU(2) setting [24], [9], [10]. 
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In Section 2 we define a class of admissible perturbation functions 
used to vary the Chern-Simons functional. The construction of an ad­
missible function h involves taking a sum of invariant functions applied 
to the holonomy around a collection of loops (integrated over normal 
disks of tubular neighborhoods of the loops). The perturbed Chern-
Simons functional is then CS h(A) = CS {A) + h(A), and a connection 
is called h-perturbed flat if it is a critical point of CS h • We show in 
Section 3 that it is possible to choose an admissible function h such 
that M*h and M r h are compact O-dimensional submanifolds of B* and 
B r consisting of orbits that meet a cohomological regularity condition. 

1.2. M a i n result . We begin by recalling from [24] the gauge-
theoretic definition of Casson's invariant X(X) in case X is an integral 
homology 3-sphere. First, choose a small perturbation h so that the 
perturbed flat SU(2) moduli space is a compact, smooth, oriented 0-
manifold. Then the number of irreducible, perturbed flat connections 
counted with sign is seen to be independent of the choice of perturba­
tion h by verifuing that for generic, one-parameter families of pertur­
bations, the irreducible part of the parameterized SU(2) moduli space 
is a smooth cobordism between the two moduli spaces at either end. 
Taubes identified the resulting invariant as —2 times Casson's invari­
ant, normalized as in [1] (see [13] for an explanation of the minus sign). 

In the SU(3) case, for generic one-parameter families p(t) = h t of 
perturbations, the irreducible part of the parameterized moduli space 
W* is an oriented 1-manifold, but it is not generally compact. The 
reducible part, Wp, is a compact 1-manifold, and the union W* U Wp is 
compact but not smooth. The problem is illustrated in Figure 1, where 
p(t) is defined for t G [—1,1]. The solid curves depict W* and the dotted 
curves Wp. Because of the noncompact ends of W*, the parameterized 
moduli space subfails to give a smooth cobordism between M*rx\ and 
M*p/iy Thus the algebraic sum of perturbed flat irreducible orbits is 
seen to depend on the perturbation in this case. 

The compactification W* is obtained by adding certain reducible 
orbits, called bifurcation points, to the non-compact ends of W*. In 
Figure 1, the bifurcation points are the places where the dotted and 
solid curves meet. To make the invariant independent of h, one needs a 
correction term which changes, when the perturbation is varied, by the 
number of bifurcation points on Wp, counted with sign given by their 
orientation as boundary points of W*. 

The oriented spectral flow along Wp provides a means to calculate 
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F i g u r e 1. The parameterized moduli space W* U Wp projecting 
vertically to [—1,1]. 

this number, as we now explain. Let h = s(u(2) x u( l ) ) be the Lie subal­
gebra of su(3), and h ̂  its orthogonal complement, which can be identi­
fied with C 2 . For any reducible connection A, the connection 1-form can 
be gauge transformed to take values in h. If A is h-perturbed flat, then 
Çll{X;su{3)) = Sll(X;h) © fi1X; h-1) is the splitting of T A A into tan­
gent vectors tangent to and normal to the reducible s tratum. For generic 
paths p, the bifurcation points are characterized geometrically as those 
reducible orbits in Wp where the kernel of the restriction of K(A, h) to 
the ^ - v a l u e d forms jumps up in dimension. Such a jump occurs each 
time when the deformation complex detects a tangent vector normal 
to the reducible s tratum. Hence, in a neighborhood of the bifurcation 
point in Wp, there is a path of eigenvalues of K(A,h) (on ^ - v a l u e d 
forms) crossing zero transversally, and the sign of its first derivative 
(relative to the orientation on W r) coincides with the boundary orien­
tation of the bifurcation point. Note that S tabA = U{\) equivariance 
of K(A, h) forces the eigenvalue to have multiplicity two. 

Choosing the product connection 9 as a reference point for comput­
ing all spectral flows, we obtain: 

T h e o r e m 1. Suppose X is an integral homology 3-sphere. For 
generic small perturbations h, M*h and M r h are smooth, compact 0-
manifolds. Choose representatives A for each orbit [A] G M h-> and in 
case [A] G M r h, choose also a flat connection A close to A. Define 
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^su(3) (X, h) to be equal to 

E (-l)SmA)-\ E (-l)SmAHSf h,(0,A)-4CS(A) + 2), 
[A]eM*h [A]eM r 

where Sf and Sf h± refer to the spectral flow of the operator K(A,h) on 

su(3) and h1- bundle-valued forms, respectively. Then for h sufficiently 

small, this quantity is independent of h and the Riemannian metric on 

X, and gives a well-defined invariant of integral homology 3-spheres. 

The second sum is our formula for the correction term. Both 
Sf h±(6,A) and CS (A) depend on the choice of representative A. It is 
only the difference Sf h±(6,A) — 4 CS (A) which is well-defined on the 
gauge orbit [A]. The last term in the second sum does not affect the 
argument that \su(3) is well-defined; it simply adds a certain multiple 
of the SU(2) Casson invariant to get a desirable choice of normalization. 

As an invariant, \su(3) is insensitive to the orientation on X. In 

general, if \su(3)(X) ^ 0, then -K\X admits a non-trivial representation 

into SU (2) or SU (3). The conjectured rationality of CS (A) would of 

course imply that \su(3) X G Q as well. 

There are many interesting questions raised by Theorem 1. The 
most intriguing is what sort of surgery relations (if any) does this new 
invariant satisfy. A related question:1 is \su(3) a finite type invari­
ant [20], [8]? By [19], the Casson-Walker invariant equals 6 times Ai, 
the first Ohtsuki invariant [21], so one is especially interested in any 
relationship between Xsu(3) and A2, the second Ohtsuki invariant. Pos­
itive results would be interesting for two reasons: (i) they would render 
^su(3) computable by algebraic means, and (ii) they would clarify what 
geometric information the finite type invariants carry. 

There is, of course, still the difficult problem of defining the general­
ized SU (n) Casson invariants for n > 3 and extending the invariants to 
arbitrary 3-manifolds, using either the symplectic approach of [4] or the 
gauge theory approach adopted here. Assuming both programs are suc­
cessful, it will be interesting to explore the relationship between the two 
approaches. In a different direction, one can at tempt to define SU(3) 
Floer theory. We leave these questions to future investigations. 

1We are grateful to S. Garoufalidis for pointing out the connection here. 
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2. Per turbat ions 

In this section, we present the functions that will be used to perturb 
the Chern-Simons functional. After defining the perturbations and char­
acterizing the perturbed flat connections, we derive those properties of 
the first and second derivatives of the perturbation functions which are 
used later to prove that the critical set of the perturbed Chern-Simons 
functional satisfies certain transversality conditions. 

2.1 . Admiss ib le funct ions . This subsection introduces the 
admissible functions, which are gauge invariant functions A —> R ob­
tained by applying invariant functions SU(3) —> R to the holonomy 
around a collection of loops in X. We first describe the construction for 
a single loop. 

Each smoothly embedded based curve £ : Sl —> X defines a holon­
omy map 

holt : A —> SU(3). 

We can obtain from this a gauge invariant function f : A —> R by 
composing with an invariant function r : SU(3) —> R. For analytical 
reasons, it is necessary to mollify this function by integrating against a 
cut-off function on the 2-disks normal to £ as follows. 

Let x = (x1,x2) be coordinates on D2, the unit 2-dimensional disk. 
Fix once and for all a radially symmetric 2-form 77 on D2 which vanishes 
near the boundary and satisfies R D2 f] = 1. A tubular neighborhood 
of £ is an embedded solid torus 7 : Sl x D2 —> X. For each x G 
D 2 , let hol y (x, A) be the holonomy of A once around the closed curve 
7 ( S 1 x {x}). For any smooth invariant function r : SU(3) —> R, define 
the gauge invariant function p(-y, r ) : A —> R by 

(1) p ( I , T ) ( A ) = Z T(hol1(x,A))r](x)dx. 
D2 

Defini t ion 2 .1 . Fix V = { 7 1 , . . . ,7n} , a set of embeddings of the 
solid torus into X. Then an admiss ib le funct ion relat ive t o T is a 
function h : A —> R defined by 

n n 

h(A) = X p i l i 'Ti) = X Ti(holli(x,A))r](x)dx, 
i=i i=i D2 

where i : SU(3) —> R is an invariant function of the form i = h iotr for 
a C 3 function h i : C —> R. Given V, we denote the space of admissible 
functions by F r and note the identification Tv — C3(C, R ) x n given by 
h H- (hi,... , h n). For h G F p , define ||h||C3 F P n i lihilC3-
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There is no real loss of generality in considering only the invariant 
functions of the type used in the previous definition. One can see this 
by the following result, which we have included for motivation. 

Propos i t i on 2 .2 . 

(i) tr : SU(3) —> C descends to a one-to-one map on conjugacy 
classes. 

(ii) Any smooth invariant function r : SU(3) —> R can be written as 
T = f o tr for some smooth function f : C —> RL 

Proof. The characteristic polynomial of M G SU(3) is given by 

p M(\) = A3 - tr(M)X2 + tr{M)\ - 1. 

Since every matrix in SU(3) is diagonalizable, any two are conjugate if 
and only if their eigenvalues coincide, and (i) follows. 

Part (ii) follows from invariant theory. Consider the case of smooth 
invariant functions on U(3). Restricting to a maximal torus T 3 , these 
can be viewed as S3 invariant functions on T 3 , where S3 acts by per­
mutation of the coordinates. The inclusion T 3 C C3 is an equivariant 
embedding, and a classical result states that the algebra of invariant 
polynomials P(C n)S n is generated by the elementary, symmetric func­
tions a i , . . . ,an (see Chapter 2A, [26]). This, and Theorem 2 of [23], 
proves (ii), since the i are just the coefficients of the characteristic 
polynomial, which, for M G SU(3), are given by tr(M) and tr(M). 

q.e.d. 

2.2. P e r t u r b e d flat connect ions . In this subsection, we intro­
duce the perturbed flatness equation and the deformation complex of 
the perturbed flat moduli space. Suppose that T = { 7 1 , . . . , m g is a 
set of embeddings of the solid torus into X. All the admissible functions 
in this section are to be regarded as admissible relative to T. 

Pick a Riemannian metric on X and let 

* : np(X;su(3)) -)• Q3"p(X; su(3)) 

be the Hodge star operator. This defines an L2 inner product on bundle-
valued p-forms by 

{a, ß)L2 = — tr(a A *ß) 
X 
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and induces an L2 metric on A. For any admissible function 

h:A —> R, 

let r h be the gradient of h with respect to the L2 metric, and define 

Ch-.A^&iXisufi)) 

by ^ ( A ) = *F(A) - 4:TT2rh(A). Notice that (h(A) is just -4n2 times 
the gradient of the function from A to R given by A i->- CS (A) + h ( A ) . 

Defini t ion 2 .3 . Suppose h is an admissible function. Then A G A 
is called h-perturbed flat if it satisfies 

*F(A) - 4-K2rh{A) = 0. 

The p e r t u r b e d flat modul i space is the set of gauge orbits of per­
turbed flat connections, i.e., 

Set M*h = M h n B* and M r h = M h n B r. 

Defini t ion 2.4. Suppose p(t), — 1 < t < 1, is a one-parameter fam­
ily of admissible functions. Then the parameter ized modul i space 
is defined as the quotient 

Wp = f(A,t)£ Ax [-1,1] j<Zpit)(A) = 0g/G C B x [ - l , l ] , 

with slice at t G [-1,1] given by Mp(t) x f tg = Wp D (B x ftg). Set 

W* = Wp n (B* x [-1, i]) and jyr = Wp n (B r x [-1,1]). 
Since X is an integral homology 3-sphere, any reducible flat con­

nection can be regarded as an irreducible, fiat SU(2) connection. This 
is no longer true for perturbed flat reducible connections because they 
typically have holonomy in a subgroup conjugate to S(U(2) x U(l)) and 
do not reduce any further. 

The linearization of h is given by 

*d A,h = *d A - 4TT2 Hess h(A) : tt1 (X; su(3)) —> Q1 (X; su(3)). 

This motivates the final definition of this subsection. 
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Definit ion 2.5. Suppose that h is an admissible function and that 
A is h-perturbed flat. The de format ion c o m p l e x is the elliptic Fred-
holm complex 

Q°{X;su{3)) •Aü1(X;su(3)) *A> Q1{X;su{3)) 

Aü°(X;su(3) ) , 

where d*A is the L2-adjoint of d A. The first two cohomology groups of 
this complex are 

H A(X;su(3)) =kerd A 

and 
H Ajh(X;su(3)) = ker*d Ajh/imd A. 

Notice that this is a self-adjoint complex, and so cohomological groups 
of complementary dimensions are identified. 

Of course, if h = 0, then (2) is just the twisted de Rham com­
plex with the second half rewritten using duality. We will represent 
H A(X;su(3)) and H Ah(X;su(3)) by the spaces H A{X; su(3)) and 
H Ah(X;su(3)) of harmonic forms, where a 1-form a is harmonic if 
d A a = 0 and *d A,h{a) = 0- Geometrically, the former cohomology 
group is the Lie algebra of Stab(A), while the latter is the kernel of the 
linearized perturbed flatness equation restricted to the tangent space to 
the slice of the gauge group action. 

Given a complex line V C C3 , we can decompose C3 into V and V1-. 
This gives an identification, typically different from the standard one, 
between C3 and C © C 2 . This engenders a corresponding decomposition 
of the Lie algebra as su(3) = h © h ̂ , isomorphic (as a vector space) to 
s(u(2) x u(l)) © C 2 . For example, for the standard decomposition, 

i(a + b) c 
—c + id i( 

0 

0 0 
0 0 

- z i -z2 

+ id 
a - b ) 

0 

z l 
z2 

o 

0 
0 

—lia 

• 

and 

In general, h and h1- are given by conjugating the above subspaces. 
If A is a connection in the bundle P = X x SU(3) and S tabA 

= U(l), then the action of S t abA on the canonical C3 bundle 
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E —> X decomposes each fiber of ad P in a similar manner. We shall 
use the notation h and h1- without indicating the actual dependence of 
the splitting of ad P on the subgroup Stab A C G\ one can always gauge 
transform A into As(f7(2)x(7(i))) and then S tabA would just give the 
standard decomposition. 

For A G A r, we decompose 1-forms in a similar manner, and 

^(X; su(3)) = fi1 (X; h) © fi1 (X; h 1 ) 

is a geometric splitting of the tangent space T A A into vectors tangent 
to the reducible s t ra tum A r and vectors normal to that s tratum. If A 
is h-perturbed flat, this leads to a splitting of the cohomology groups as 

H Ah(X; su(3)) = H Ah(X; h) © H Ah(X; h ̂ ) . 

For convenience, set 

tt0+1(X; su(3)) = n°{X; su{3)) © ^(X; su(3)). 

We can fold the deformation complex (2) up into a single operator 

K(A,h) : n0+1(X;su(3)) — • O 0 + 1 ( X ; su(3)) 

by setting, for (f, a) G 0 ° ( X ; su(3)) © ^ ( X ; su(3)), 

K ( A , h ) ( ^ , a ) = (d*A a,d AÇ + *d Ath(a)). 

Notice that K(A,h) is a self-adjoint elliptic operator (with appropriate 
Sobolev norms on the domain and range). When A is reducible, the 
operator K(A,h) respects the decomposition of Çll(X; su(3)) described 
above. In particular, in Sections 4 and 5, we use this to split the spectral 
ûow ofK(A,h). 

2.3. T h e calculus of admiss ible funct ions . In this subsection, 
we describe the first and second derivatives of functions f : A —> R 
obtained by composing the holonomy around a loop with an invariant 
function r : SU(3) —> R as in eqn. (1). 

For such functions, these computations can all be performed on the 
pullback bundles over S1. Hence, throughout this section, A denotes the 
space of connections on the bundle P = S1 x SU(3). Parameterize the 
circle by f : [0,1] ->• S 1 , f (u) = e 2 ™. For A e A, let hol{A) G SU(3) 
be the holonomy once around the circle in a counterclockwise direction, 
based at 1 = f (0) . 
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The derivatives of hol(A) may be computed as follows. For A G A, 
parallel translation by A defines a trivialization of the pullback bun­
dle f * ( a d P ) , which identifies tangent vectors in T A A with functions 
a : [0,1] —> su(3). 

Propos i t i on 2.6. Suppose AG A and a,b G T A A . Then 

(i) d hol{A + ta)\t=0 hol(A) R0 a(u)du, 

(ii) dsdt hol(A + ta + sb) 
(0,0) 

hol (A) j 0 JQ (a(u)b(iJ,) + b(v)a(ß))dßdv. 

Proof. We prove (ii) and leave (i) as an exercise for the reader. 
Let P(s, t; u) G SU(3) denote the parallel translation with respect to 

the fixed trivialization from 0 to u along the interval by the connection 
A + sa + tb. Then P(s, t; u) satisfies the differential equation 

(3) u P ( s , t u) + (sa(u) + tb(u))P(s, t; u) = 0. 

Applying -sTTt to (3) at (s,t) = (0,0), we obtain 

du dsdt P(s,t;u) 
(0,0) 

+ a ( u ) | P ( 0 , t ; u ) | t = 0 

+ b(u)&P(s,0-iu)\s=Q 0. 

Integrating with respect to u and commuting mixed partials gives 

dsdt P(s,t;u) 
(0,0) 

( a H | P ( 0 , t ; ^ ) 
t=0 

+ b(u) &P(s,0;v)\s=Q)dv. 

The equations 

and 

d_ 

d 
ds 

P(s,0;u) 

t=o 
b(ß)dn 

a(ß)d/j, 
s=o o 

can be obtained from (3) in a similar manner, using that P (0 ,0 ; u) is 
the identity. By substituting each of these into the equation above and 
evaluating at u = 1 we obtain the desired result since 
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hol {A + sa + tb) = hol{A)P(sJ t; 1). 

q.e.d. 

This proposition allows us to compute the first and second deriva­
tives of any function f : A —> R of the form f = r o hol, where 
r : SU(3) —> R is a smooth invariant function. An important example 
is the case when r is either the real or imaginary part of 
tr : SU(3) — • C. 

Corollary 2.7. The first and second derivatives of the trace of 
holonomy are given by: 

(i) •d tr(hol(A + ta))\t=Q = f0 tr (hol(A)a(ß)) d/j,, 

(ii) £rt tr(hol(A + sa + tb))\(00) 

= J0 JQ tr{hol(A)(a(v)b(ii) + b(v)a{n))}dßdv. 

Remark . Proposition 2.6 and Corollary 2.7 remain valid for 
SU(n), n > 3. 

In Section 3, we shall show that for a suitable choice of T, regularity 
of M h is a generic condition for h G F r near zero, and similarly for 
regularity of Wp for p G C1([—1,1],JF r). The following proposition 
provides useful bounds on the derivatives of admissible functions. 

Propos i t i on 2.8. 

(i) Fix 7 : S1 x D2 —> X an embedding of the solid torus and let 
ri,T2 be the real and imaginary parts of trace on SU(3). Then 
there exists a constant C\ depending on 7 such that 

|D n p ( 7 , r j ) ( A ) ( a i , . . . ) a n ) | < C i Y a k Lf 

for all A G A and j = 1, 2. 

(ii) Fix r a collection of embedded solid tori. Then there exists a 
constant C<2 depending on Y such that the inequalities hold for all 
h G F v and all A G A 

\Dh(A)(ai)\ < C2khk C3-kaik L?, 

\D2h(A)(ai,a2)\ < C2khk C3 • kaik L2 • ka2k L2, 

\D3h(A)(ai,a2,a3)\ < C2khk C3 • kaik L2 • ka2k L2 • ka3k L2, 
\ 

k V h A ) k L? < C2khk C3. 



t h e su(3) c a s s o n i n v a r i a n t 161 

Proof. See [24, Section 8a]. q.e.d. 

The last proposition of this section allows one to patch together the 
local regularity arguments to give global results in Subsection 3.1. 

Propos i t i on 2 .9 . If C C F is compact, then S h e M h is also 
compact. 

Proof. See Lemma 8.3 in [24]. q.e.d. 

3. Transversal i ty 

The goal of this section is to establish various structure theorems for 
the perturbed flat moduli space M h and for the parameterized moduli 
space Wp for generic h G F and generic p G C1([—1,1], F ) . Before doing 
this, we must fix a collection Y of solid tori so that the resulting space 
of perturbations F is general enough for these transversality results to 
hold. 

The first subsection contains a formulation of the necessary condi­
tions on r and a result which implies that we can always choose Y to 
satisfy these conditions in a neighborhood of M in B x Fr- In the second 
subsection, we proceed with the transversality results for M h and Wp. 

3 .1 . A b u n d a n c e of admiss ible funct ions . For any A G A, 
define 

}CA = kerd*Ann1{X;su{3)) 

and denote by LTA : Q1 (X; su(3)) —> ÏCA the L2 orthogonal projection. 
The slice through A to the gauge action is the affine subspace 

X A = {A + a | a G JCA} C A. 

A small neighborhood of A in X A, divided by the stabilizer of A, gives 
a local model for B near [A]. 

The first proposition reduces the study of the local structure of the 
moduli space to a Fredholm problem. 

Propos i t i on 3 . 1 . Given a perturbed flat connection, there is a 
neighborhood U C X A of A such that A + a G U implies that h(A + a) = 
0 if and only if ïlA(,h(A + a). 

Proof. See Lemma 12.1.2 of [17] and Lemmas 28 and 29 of [9]. 

q.e.d. 
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Defini t ion 3 .2 . Suppose A is a reducible h-perturbed flat con­

nection and denote by HermH ìA h(X; h-1) the set of Stab(A) = U(l) 

invariant symmetric (hence Hermitian) bilinear forms on H Ah(X; h ^ ) . 

Defini t ion 3 .3 . A collection T of embedded solid tori in X is called 
abundant for (A,h), where h G F and A G A* U A r is h-perturbed 
flat, in case there exists a finite subset f f i , . . . , f m g C F r of admissible 
functions such that: 

(i) If A G A*, then the map from m to Hom(H A )h(X;su(3)) ,R) 

given by (xi,... ,x m) \-+ P mI x i Df i(A) is surjective. 

(ii) If A G A r, then the map from R m to 

H o m ( H ( X ; h ) , R ) © H e r m H ^ X ; ^ ) 

given by 

( m m \ 

j2x i Df i(A),J2xHess^An 
i=l i=l 

is surjective. 

Because abundance is a gauge invariant concept, it makes sense to say 
that r is abundant for ([A], h). When h = 0, we say that Y is abundant 
for A or [A]. 

If r is abundant for (A,h) and T C T', then of course T' is also 
abundant for (A, h). The next proposition is the principal result of this 
subsection; it shows that there exists a collection Y which is abundant 
for all nontrivial perturbed flat connections in a neighborhood of the 
flat moduli space. This is a global result and its proof will occupy the 
remainder of the subsection. The statement of the proposition is divided 
into three parts, which can be viewed as the pointwise, local, and global 
versions of the same result. 

Propos i t i on 3 .4 . 

(i) If A G A is a nontrivial flat connection, then there exists a finite 
collection F which is abundant for A. In case A is reducible, F and 
the subset ff\,..., f m g from Definition 3.3 can be chosen so that 
for some k, 

(a) fDf\(A),... ,Df k(A)g spans H o m ( ^ ( X ; h), R) . 
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(b) fHess f f c + i (A) , . . . ,Hess f m(A)g spans Herm H A(X- ^ ) . 

fcj D f j(A) = 0 f o r j = k + l ) . . . ,m . 

(ii) If A G A is a nontrivial flat connection, and Y is abundant for 
A and is chosen as in (i), then there exists an open neighborhood 
UxV C BxFv o f ( [ A ] , 0 ) such thatV is abundant for all ([A'], h) G 
UxV with Ch(A') = 0. 

(iii) There exist a finite collection T and an open neighborhood UxV C 
B x FT of M [9] such that T is abundant for all ([A],h) G UxV 
with (h(A) = n. 

Proof. Part (i) follows from Corollary 6.7 and Proposition 6.8, as 
we now explain. First, assume A is irreducible. Replace all loops £ 
coming from 6.7 (ii) by tubular neighborhoods 7. Next, by shrinking 
the tubular neighborhoods, if necessary, we can approximate functions 
f : A —> C of the form f(A) = tr{holi{A)) arbitrarily closely by the 
complex-valued functions p(7, tr)(A) defined as in equation (1). In case 
A is reducible, apply the same procedure to obtain real-valued functions 
p(l,trM.)(A) from the real part of tr(holi(A)) for the loops in 6.7 (i). 
This proves (i) for A irreducible as well as part (a) for A reducible. 

To finish off part (i) in case A is reducible, thicken the loops obtained 
from an application of Proposition 6.8. This provides a collection of 
functions with Dp(j, tr)(A) = 0 whose Hessians span Herm H A h{X; f)^). 
This proves (b) and (c) and completes the proof of part (i). 

Part (ii) says that abundance is an open condition around flat con­
nections in A x F r and requires several estimates, contained in Lemmas 
3.5 and 3.6. Before presenting those arguments, we explain how (iii) 
follows from (i) and (ii). 

By (i) and (ii), for any nontrivial flat connection A, we have a collec­
tion r which is abundant for all perturbed flat orbits ([A'], h) in a neigh­
borhood U'xV (ZBxFTof{ [A], 0). Applying this for each [A] G M n [9] 
and using compactness, we obtain a finite subcover U[,... ,U l and cor­
responding collections T i , . . . ,Tl. Set T = S i=1Ti. Part (iii) follows 
by applying (ii) once again to A and the collection T to obtain an open 
neighborhood U x V C B x F ? of ([A], 0) such that T is abundant for all 
( [A ' ] ,h ) G U x V with (h(A') = 0. This last step is performed for each 
[A] G M n [0S and compactness once again allows us to extract a finite 
subcover Ui,... ,U k of A4 [9]. The proof of part (iii) is completed by 
setting U = k=1 U i and V n T i=1 V i. 
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As for part (ii), it is easiest to see this in case A is irreducible. On the 
other hand, if A is reducible, then similar reasoning shows that abun­
dance is local in B r x F r , but whether there exists an open neighborhood 
in B x F r is less obvious. The following argument treats irreducible per­
turbed flat connections in a neighborhood of A assuming A is reducible. 
Before continuing with the proof, we need to introduce some notation. 

Since A is a fixed reducible flat connection for the rest of this 
proof, we write K for K A- It is useful to decompose elements a G K 
as a = (a1,a2) according to su(3) = h © h-1. Thus a\ G 01(X;h) 
and a2 G Q1(X;h±) . For i = 1,2, we have the Hodge decomposition 
a i = {a'^a'i where a[ G H A{X\ h) and a'2 G H ̂ (X; h-1) are the cohomo-
logical components, and a", a" are characterized as follows. Define K![ 
to be the orthogonal complement of H A(X\ h) in K n 0 1 ( X ; h), and also 
K" to be the orthogonal complement of HlA(X; \)L) in K fl iV-(X; h ^). 
Denote by Ii" : Q1 (X; su(3)) —> K" the L? orthogonal projection for 
i = 1,2. Then a" = Fl"a G K," and a = (ai, a ̂ ) = (a[, a", a'2, a")- We set 
K" = K!{ © K2' and n " = ( K , n'2'). 

Suppose a, b G Çïl(X; su(3)). The notation [a A b] indicates the prod­
uct obtained by combining the wedge product on the form part with 
the Lie bracket on the coefficients. The following is the su(3) analog 
of the well-known formulas for the Lie bracket in su(2) (with regard to 
the decomposition su(2) = u(l) ©u(l)-1-). If we decompose a = (a1,a2) 
and b = (bi, b2) according to su(3) = h © h1- as above, then 

J *[a iAb j ]Gf ì 1 (X;h) if i = j , 
*[a iAb-]Gfi1(X;h-L) if i ^ j -

The proof proceeds with two lemmas. The first one shows that the 
space of perturbed flat irreducible connections in X A for small h are 
close to the image of the affine subspace A + K![ + H A{X\ su{3)). It also 
gives some control over the distance from the nearby reducibles to the 
affine subspace A+H A(X; su(3)) in terms of the size of the perturbation. 

Lemma 3.5. For any F and any 0 < R < I, there exist K < 00 
and 0 < e < 1 such that if A + a G X A is h-perturbed flat with kak L2 < e 
and khk C3 < e, then 

i ) ka 'k L2 < R k a 2 k L2 and 

(ii) ka'(k L2 < R ( k a k L2 + ka k L ? ) +Kkhk Cs. 
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Proof. Fix 0 < R < 1. Consider the map from X A X F to K" given 
by n " h ( A + a). The linearization at (A,0) restricted to K" with the 
L2 norm on the domain and L2 norm on the range is *d Ai an elliptic 
Fredholm operator with trivial kernel. Therefore there exists A > 0 such 
that || * d A b"\\L2 > X\\b"\\L2 for all b" G K". 

Now assume that HAh,{A + a) = 0 . Expanding the equation 
rr2' Ch(A + a) = Ogives 

0 = *d A(a'2
r) + 2UA * [ai A a2] - 4TT2W2' Vh{A + a). 

By Taylor's theorem, the last term on the right can be replaced by 

-47T2 [n" (Hessh(A + a i ) (a 2 ) + D2Vh(A + ai + t i a 2 ) ( a 2 , a2))] , 

for some 0 < t\ < 1. Here we are exploiting the equivariance of h 
with respect to the Stab(A) action. Rearranging and using the triangle 
inequality on a2 = a'2 + a", we obtain 

A||a'2'||L? < (2C| |ai | |L2+87r2C2 | |h | |C3) (||a'2||L? + ||a2 ' | |L?) , 

where C comes from the Sobolev multiplication theorems and C2 is the 
constant given in Proposition 2.8. By shrinking e to control some of the 
L\ norms on the right side, we obtain the first claim. 

To prove the second claim, expand the equation 0 = n ' 1 ' h ( A + a) 
to get 

0 = *d A(a") + UA * ([ai A ai] + [a2 A a2]) - 4:TT2TI" Vh(A + a). 

Rearranging, we see that 

A|a ' | |L2 < C (\\ai\\2L2 + | |a2| |L2) + 4 7 r 2 C 2 | | h | | C 3 . 

Now apply the triangle inequality on the right to a\ = a[ + a'{ and use 
the first part to obtain the required bound. q.e.d. 

The next lemma is a similar result about tangent vectors at per­
turbed flat connections which are in the kernel of the Hessian of CS +h 
(restricted to X A). We decompose b G T A+a X A into 

b=(b1,b2) = (b'1,b'l,b'2,bï) 

as before. 
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Lemma 3.6. For any T and any 0 < R < 1, there exist K < oo 
and 0 < e < 1 such that if A + a G X A is a nonabelian h-perturbed flat 
with ak L2 < e and khk C3 < e, and if b G T A+a X A is in the kernel of 
Hess k CS +h)(A + a), then 

(i) kb'lk LÌ < Rkb Ìk L2 +Kka'2k L2 • kb'2k L2, 

(ii) kb'k Lf < Rkb k L? + Kka2k LI • kbiL*-

Proof. Setting the h and h1- components of DUAhÌA + a)(b) equal 
to zero gives two coupled equations in bi and b2. Expanding the h 
component leads to 

-*d A b" = LTA* ([ai Abi] + [a2 Ab2])-47T2nA Hessh(A + ai)(bi) 

-4ir2n'lDfHess h(A + ai + t2a2)(b)g(a2). 

Taking the L2 norm of each side of this equation and using the various 
bounds as in the last lemma, it follows that 

Akbik L2 <C ( k a i k L2 • kb ik L2 + ka 2 k L2 • kb2k L2 

+ Kkhk C3 ( k b I k L? + ka k L? • k C3 kb ik L2 -r-ka2k L2 • kbk L2 

Applying the triangle inequality, first to b = b\ + b2 and then to b\ = 
b[ + b'{ everywhere on the right-hand side of this equation and moving 
all occurrences of b'{ to the left, we see that, for e small enough, 

^kb'/k L < 2 C ( e k b ' 1 k L 2 + k a k L2 .kb2k L2 

(4) + K e ( k b 1 k L 2 + 2 k a 2 k L r k b i + b2k L2 

< e const k b'ik L2 + constka /
2k L2 • kb2k L2. 

Similar reasoning applied to the h1- component of DUAhÌA + a)(b) 
gives 

(5) ^ kb2k L2 < econstkb2k L2 + constka2k L2 • kb ik L2. 

The conclusion of the lemma follows from equations (5) and (5). q.e.d. 

We are now ready to complete the proof of Proposition 3.4 (ii). Re­
ferring to part (i), since A is reducible, we have finite subsets f f i , . . . , k g 
and fgi,... , g l g of F such that 
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(i) s p a n f . D i j H ̂ (X;hO ji = l,--- ,kg = Hom(H A(X;h) ,R), 

(ii) spanfD2g j\HiA ̂ X.h±)(S2 j j = 1 , . . . ,lg = Herm ^ ( X ; h-1), 

(iii) Dg j j HiA{X.h) = 0 for j = 1 , . . . ,l. 

Our strategy here is to show that , given a and h sufficiently small with 
A + a a n irreducible h-perturbed flat connection, the functions ff i,g j g 
detect all elements b G ker K(A + a, h) to first order. 

Choose a constant N > 0 such that , for all u G H A(X; h) and all 
v,w G H ^ ( X ; h ̂ ) , the following bounds hold: 

(6) maxfjDf i(A)(u)jg > N k u k L2, 

2 . 

l<i<k 

(7) maxfj ̂  j A)v,w)jg > Nkvk LHkwk L? 

Choose e small enough that these inequalities continue to hold when N 
is replaced by N and A is replaced by A + a for ak L2 < e. 

Suppose that h G F v and that A + a G X k is an irreducible h-
perturbed flat connection, and assume b G Q1 (X; su(3)) is an element 
in the kernel of Hess(CS +h)(A + a). Choose functions f and g from 
ff i g and <7j g, respectively, for which jDf(A + a)(b'1)j > ^N £»x k L2 and 
jD 2 g(A f a){a'2,b'2)j > ±Nka'2k L2 • kb2k L2. If either Df{A k a){b) or 
Dg(A + a) (b) is non-zero, then we are done. So we assume both vanish 
and seek a contradiction. 

Apply the triangle inequality to the equation 

Df(A + a)(bi) = -Df(A + a)(b'{ + b2) 

to get the inequality 

^ kb[k Li < jDf(A + a)(b'[)j 

+ jDf(A + ai)(b2)j + jD2f(A + a i ) (a 2 , b2)j 

+ jD 3 f (A + ai + t i a 2 ) ( a 2 , a 2 , b 2 ) j , 

where 0 < t i < 1. Then Df(A + ai)(b2) is zero by invariance under 
Stab(A + a\) = U(l), and applying bounds to the other terms gives 

N 
ykbik Lf < C2 kfk C3 • kbÏk LÏ +4C2 kfk C3 • ka2k LÎ • kb2k L2. 
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For e suitably small, this inequality and Lemma 3.6 together imply 

N 
(8) y kbÌk L2 < const ka2k L2 • kb'2k L2. 

Next consider Dg(A + a)(b). We first bound the derivative in the b\ 
direction: 

\Dg(A + a)(b)\ = {Dg^b) 

+D2g(A + t i a ) ( a i , bi) + D2g(A + t2a)(a2, bi) | 

= \D2g(A + t i a ) ( a i , bi) + D 2 g(A + t 2 ai) (a2, bi) 

(9) +D3g(A1)(t2a2,a2,b1)\ 

< C2kgk C3 • kb k L 2 ( k a i k L2 + k a 2 k L ^ 

< e C 3 k b i L 2 

< e const kft'ik L + e const ka k L2 ' k b k L2-

In the first line, Dg(A)(bi) = 0 by hypothesis, and in the second, 
D2g(A+t2a\)(a2, b\) vanishes by gauge symmetry. The last step follows 
from part (i) of Lemma 3.6. 

Finally, we bound the derivative of g in the b2 direction away from 
zero: 

\Dg(A + a){b2)\ =\Dg(A + ax){b2) + D2g(A + ai)(a2, b ) 

+ D3g(A2)(a2,a2,b2)\. 

Appling gauge symmetry once more shows that Dg(A + ai)(b2) = 0 in 
the equation above. Bounds on the other terms give, for e sufficiently 
small, 

\Dg(A + a)(b2 

N 
a ̂  k L? ' kb k L? - c o n s t k a 2 k L2 ' kb2k L > —kaók2 • kb k 2 — const k a' k 2 • kb'k 2 

2 
(10) — constka"k L • kb2'k L2 ~~ constka k L2 ' k b k L2 

N 
> —kao k L 2 • kb o k L 2 — const k aó k L 2 • kbi k L2. 

Combining inequalities (9) and (IO), we get 

N 
ka2k L2 ' k b k L2 < e c o n s t k b i k L2, 
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which, combined with inequality (8), yields the desired contradiction. 
q.e.d. 

Since X is an integral homology 3-sphere, there are no noncentral 
abelian flat connections. The following proposition guarantees that this, 
together with the property that Y is abundant, continues to hold for 
small perturbations. It also provides a unique component of the flat 
moduli space near each perturbed flat connection, for small perturba­
tions. 

Propos i t i on 3.7 . Suppose Y satisfies condition (iii) of Proposition 
3.4- There exists an eo > 0 such that: 

(i) If A G A*l)A r is flat and A' G A is abelian, then kA—A'k L2 > 2e0. 

(ii) If hk C3 < eo and A G A is h-perturbed flat, then there exists 
A k A which is flat with kA — Ak L2 < eo-

(iii) If | | / iC 3 < eo and A G A is h-perturbed flat, then Y is abundant 
for(k A],h). 

(iv) If A, A' G A r are flat and lie on different components of the space 
of flat connections in A, then kA — A'k L2 > 2eo-

Proof. For claims (i) and (ii), see Lemma 1.3 and Proposition 1.5 of 
[24]. Claim (iii) follows from claim (ii). For the neighborhoods U and 
V in Proposition 3.4, choose eo small enough that the ball of radius eo 
around 0 G Fp is contained in V and the eo neighborhood of M* U M r 
in B is contained in U. 

For part (iv), suppose to the contrary that there were no eo satis­
fying the conclusion. Then we have two sequences A i and A i of flat 
connections in A with kA i — A k L2 < i such that A i and A i never lie on 
the same component of the space of flat connections. By compactness 
of M, after passing to a subsequence, we can assume that there is a 
sequence of gauge transformations g i such that g i • A i converges to a flat 
connection AQ. Then g i • A i must also converge to AQ. (Note that we 
are using the standard gauge invariant L\ norm here.) 

Consequently, for i large, we see that g i- A i and g i- A i must lie on the 
same component of the space of flat connections as the one containing 
AQ. But this implies that A i and A i lie on the same component, which 
is a contradiction. q.e.d. 

3.2. Regular i ty t h e o r e m s . We are now ready to prove the 
structure theorems for M h and Wp. We begin with the definition of 
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regularity in this context. Throughout this subsection, V denotes a 
fixed collection of solid tori satisfying Proposition 3.4, part (iii). Thus, 
r is abundant for all pairs ([A],h) G B x F ? in a neighborhood of 
(M n [9]) x f0g. Choose eo as in Proposition 3.7 and define F{eo) to 
be the ball of radius eo about 0 in the space F of admissible functions. 

Defini t ion 3 .8 . Suppose h G F(eo) and U C M h is open. Then U 
is r e g u l a r in case H A h(X; su(3)) is trivial for all [A] G U. 

Regularity as defined here makes no assumption on the irreducibility 
of A. 

Propos i t i on 3.9 . IfUc M h is regular, then M*hPiU and M r hPiU 
are 0-dimensional submanifolds of B* and B r, respectively. 

Proof. This follows directly from standard Kuranishi arguments. 

q.e.d. 

We define regularity for the parameterized moduli space next. For 
any triple (A,p,t) G Ax C1([—1,1], F(eo)) x [—1,1], define an index one 
Fredholm operator by the formula 

L(A,p,t) : Q 0 + 1 ( X ; s u ( 3 ) ) © R ^ O 0 + 1 ( X ; s u ( 3 ) ) , 

(£, a, T) H- K(A, pt)^, a) - 4n2rft rpt(A). 

Since X is an integral homology 3-sphere, the only abelian orbit 
in the flat moduli space is [6], and this continues to be true for small 
perturbations thanks to Proposition 3.7. This explains why we dismiss 
the case of abelian orbits in the following definition. Note, however, 
that such orbits may indeed occur for large perturbations, or even for 
small perturbations on arbitrary 3-manifolds. 

Defini t ion 3 .10 . Let p : [—1,1] —> F(eo) be a C 1 curve with 
Mp(±i) regular. An open subset U C Wp is r e g u l a r if the following 
hold: 

(i) HltPt(X;su(3)) is trivial for ([9},t) G U. 

(ii) U contains no noncentral abelian orbits. 

(iii) For all ([A],t) G W* n U, L(A,p,t) is surjective. 

(iv) For all ([A],t) G W rp n U, Q0+1{X;t)) n cokerL(A,p,t) 
= H°A(X;su(3)) ^ u ( l ) . 
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(v) There is a finite subset J of W r n U such that for ([A], t) G W r 

d i m H i ( X ; h x ) = ( 2 i f ( [ A ] , O e J 
A ' t v ' ' 0 otherwise. 

Elements of J are called b i f u r c a t i o n p o i n t s . 

(vi) If ([A s], t s) is a parameterized curve in Wp n U and ([Ao], to) G J-, 
then the (multiplicity two) eigenvalue of K(A s,p(t s)) crosses zero 
transversally at s = 0. 

Note that regularity of Wp does not ensure that Wp is a smooth 
cobordism (cf. Lemma 3.11). Conditions (v) and (vi) of Definition 3.10 
make sense in light of claim (i) of the next lemma. 

L e m m a 3 . 1 1 . IfU rC Wpr is open and n0+1 (X; h) Hcoker L(A, p, t) 
= H^X; su(3)) for all ([A],t) G U r, then U r is a smooth 1-manifold. 

If U C Wp is open and regular, then: 

(i) W*nU and WpCiU are both smooth 1-manifolds without boundary, 

(ii) each bifurcation point in U is the limit of exactly one noncompact 
endpoint of W*, i.e., J = (W* n W*) n U. 

Proof. The first statement and (i) follow from condition (iv) of 
Definition 3.10 using standard Kuranishi arguments. The proof of (ii) 
is given below. 

Fix a bifurcation point, which we assume, for simplicity of notation, 
to be of the form ([A],0). For some neighborhood U C B x [—1,1], 
Wp n U is the quotient by the gauge group of the zero set of the map 

Q : X A x [-1,1] — • fi1 (X; su(3)) 

given by Q{A + a, t) = rACP(t) {A + a). 
The linearization of Q at (A, 0) is an elliptic Fredholm operator with 

index one 
DQ{Afl) : Q1(X; su(3)) © R —>• K A 

and 

DQ(A,O)(a, T) = UA L{A, p, 0)(0, a, r ) . 

Fix a nontrivial v G O x (X; h) © R in the kernel of DQrA0y Then 

ker DQ{Afi) = spanfvg © H Apo {X; h ± ) 
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and 

c o k e r D Q ( A ) 0 ) = H p o ( X ; f ) ± ) . 

We summarize the Kuranishi model in this situation. There is a 
function 

4> : kerDQ {A f i ) —> (kerDQ A ) 1 -

and a neighborhood U C ker DQ/A^\ of zero such that Q restricted 
to the graph of (pj U takes values in cokerDQ(A,O)- Let (fi and 02 
be the Q1 (X; su(3)) and R components of 0, and define the map ip : 
kerDQ(A,O) —^ &A by setting ip(a,r) = a + 0 i ( a , r ) . Now for s G R, 
define ^ s : H (X; f)-1) —> X A by setting ^ ( x ) = A + ip(sv + x). Set 
CS s(A) = CS (A) + p(t s)(A), where t s = 02(sv)- Observe that t0 = 0. 
Then for all s, 

QO^ s = -4TT2V(CS sO^ s), 

a family of gradient vector fields of U(l) invariant functions on 

For small s, the path of orbits ([\I/s(0)],t s) parameterizes W rp near 
([A],0). At the origin in H ApA\X\ f)-1), the Hessian of CS s o^ s is Xs Id, 
where Xs is the eigenvalue referred to in condition (vi) of Definition 
3.10. The proof now reduces to the parameterized Morse Lemma. See 
the proof of Theorem 12 in [11] for a similar argument. q.e.d. 

Our proof of regularity will involve considering the irreducible and 
reducible universal zero sets 

Z* = {([A],h)£B*xF(e0)j<Zh(A)=0} 

and 

Z r = {([Alh)eB rxF(e0)jCh(A)=0}. 

Within Z r lies a subset which we hope to avoid when choosing pertur­
bations, namely, the union over all positive integers k of 

Z k = n([A],h) G Z r j d i m c k e r (K(A,h)jQ1{X.h)) = k} . 

Propos i t i on 3 .12 . The sets Z* and Z r are submanifolds of 
B* x F ( e 0 ) and B r x F(eo) , respectively. For each k, Z r k is a submanifold 
ofZ r. 
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Proof. Fix ([Ao],ho) G Z*. Consider the map 

P : X Ao x F (e 0 ) — • K Ao 

given by P(A,h) = U.A0Ch{A)- The first partial derivative QP(Ao,ho) 

is Fredholm with cokernel A h (X;su(3)), but , since T is abundant 
for ([AQ], ho), the image of H ( A Q , ho) is a subspace which orthogonally 
projects onto this cokernel. Therefore P is a submersion at (Ao,ho)-

The implicit function theorem now proves that the preimage P _ 1 ( 0 ) C 
X A0 x F(eo) is smooth near (Ao,ho), and hence Z* is smooth near 

([A h -
To show smoothness of Z r, apply the same argument to the map 

P r : X A x F(eo) —> K A0 H O x (X; h), which is the restriction of the 
map P to the reducible slice X A = fAo + a j a G K Aor\Q,1(X; h)g. That 
P r takes values in K A0 H Q 1 (X; h) follows from Stab Ao equivariance. 

Next we treat the third case. Suppose that ([Ao],ho) G Z r k. Define 

A0 = minfjAj ^ 0 j A G S p e c ( K 0 ) g -

Choose a neighborhood U x V C X ^ x F(eo) of ([Ao])ho) such that 
for (A, h) G U x V, the operator K (A, h) has no eigenvalue A with 
-^ < jAj < -^-. Form the small eigenspace bundle, which is the complex 
vector bundle E over U x V with fiber ErA^h\ equal to 

span lu G fì041X;^) j K ( A , h ) ( u ) = Au where jAj < ^ 

Let Herm E be the associated fiber bundle of symmetric, S t a b ^ o ) 
invariant (hence Hermitian) bilinear forms on E, and for each k = 
1 , . . . ,dimcH A h X'i h_L)' let Hernk E be the subbundle consisting of 
those bilinear forms with complex rank less than or equal to 
dim<cH A h ( X ' h ± ) ~~ k- Notice that H e r r k E has codimension k2 in 
H e r m E . 

Define K(A, h) : E<A,h) —^ E(A,h) to be the restriction of K(A, h) 
to E(A,h) composed with the orthogonal projection to E ^A,h)i and use 
this to construct the section 

R : U x V —>• H e r m E © (K Ao D ft1X; h)) 

given by R(A, h) = (K(A, h),P r(A, h)) . Then Z r = R 1 (Herm k E®0). 
Now we claim that R is a submersion at (Ao, ho)- Since the linearization 
of R in the first variable has cokernel TQ HermE(Ao,h0) ® H X ; h), it 
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suffices to show that the linearization in the other variable, composed 
with projection to this cokernel, is onto. This is the map 

ToF(eo) — • HermH A0(X; h ̂ ) © H^X; h) 

given by 

Sh M- (-47T2Hess^h(A0), n i Vôh(A0)) , 

where ^ is the projection onto H A (X; h). But surjectivity of this map 
follows since T is abundant for ([Ao],ho)- q.e.d. 

We are finally ready to prove the regularity theorem for the moduli 
space and the parameterized moduli space. For h-i,hi G F(eo), let 
C1([—1,1], F ( e 0 ) ; h _ i , h i ) denote the set of C 1 curves p : [—1,1] —> 
F(eo) with F ( ± l ) = h±. 

T h e o r e m 3 .13 . There exists a Baire set F(eo)' C F{eo) such that 
h G F(eo) implies A4*h U r h is regular. For any h-i,h\ G F(eo) ; the 
set of p G C1([—1,1], F(eo); h _ i , h\) for which Wp is regular is Baire. 

Proof. The projections from Z*, Z r, and Z r k to F(eo) are Fredholm 
of index 0,0, and —k2, respectively. The first two index calculations 
simply follow from the self-adjointness of the partial derivatives in the 
connection variable of the maps P and P r. The third follows easily from 
the second. The rest of the argument is a standard application of the 
Sard-Smale theorem and transversality (see [5], Section 4.3.2). q.e.d. 

4. Orientat ions and spectral flow 

In this section, we introduce orientations on the parameterized mod­
uli space and relate them to the spectral flow of the family of operators 
K(A,h) from the previous section. We use the index bundle of the 
family L to orient W* and Wp. 

The basic idea is a familiar one, used not only in 3-dimensional gauge 
theory by Taubes (see [24]), but also in 4-manifold gauge theory. In fact, 
if Wp were generically a cobordism, then Taubes' approach to defining an 
invariant would work equally well for SU(3). But Wp is not generically 
a cobordism, as explained in Lemma 3.11, and a relationship between 
the orientations on W* and W r near a bifurcation point is provided by 
Theorem 4.7. 

4 .1 . Orientat ions . Suppose that F(eo) is fixed as in the previous 
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section and consider the family of index-one Fredholm operators 

L : A x C 1 ( [ - l , l ] , F ( e o ) ) x [ - l , l ] 

—>• F r e d ^ + ^ X ; su(3)) © M, ft0+1 (X; su(3))) 

introduced in Subsection 3.2. The dimension of the kernel of L(A, p, t) 
is not continuous in (A, p, t), so ker L does not form a vector bundle over 
AxC1^-!, l ] ,F(eo)) x [-1,1] . Instead, we consider the index bundle of 
L, which is the element in the K-theory of AxC1^— 1, l] ,F(eo))x[—1,1] 
defined by ind L = [ker L] — [coker L], a virtual bundle of dimension one. 

Given vector spaces E and F of dimensions n and m, an orientation 
on [E] — [F] is an orientation on the real line 

det([E] - [F]) = Kn E <g> (Am F)*. 

For example, if f e i , . . . , e n g and f f \ , . . . , f m g are bases for E and F, 
then the element (ei A • • • A e n) <8> (fi A • • • A f m)* specifies an orientation 
for [E] — [F]. More generally, if E and F are vector bundles, then an 
orientation on the element [E] — [F] of K-theory is an orientation of the 
line bundle kn E <g> (Am F)*. 

Clearly, i n d L is orientable since the parameter space is contractable. 
The virtual fiber at (0,0,0) is [H°e(X; su(3)) ©M] -[H°e(X;su(3))], and 
our convention for orienting i n d L is to propagate the canonical orien­
tation at (6,0, 0) given by 

(11) (vi A---Av8 Aw) ®(vi A---Av8)*, 

where f v i , . . . ,v8g is a basis for su(3) = H^(X;su(3)) , and w is a 
tangent vector to [—1,1] at t = 0 pointing in the positive direction. 

Suppose that p G C1([—1,1],F(e0)) and W is regular. Then W* 
inherits an orientation because of the natural identification T A t W* = 
kerL(A, p, t). There is also an induced orientation for W r ^ but this is 
less obvious. First, suppose ([A],t) G Wp is not a bifurcation point. An 
orientation is given by declaring that a nontrivial vector v G T([A],t)Wp 
is positively oriented if the element (uAv)<giu* G det ind L(A, p, t) agrees 
with the orientation of i ndL for any u G u(l) = H(SA{X\ su(3)). 

Now suppose that ([A],t) G Wp is a bifurcation point. The di­
mension of ker L and coker L both jump by two at (A,p,t), but we 
obtain an orientation consistent with the one above by requiring that 
(uAxAyAv)®(uAxA y)* agree with the given orientation on 
indL(A,p,t), where fx,yg is a basis for H Ah(X;l)-L), the new part 
of the kernel (and cokernel) of L at (A,p,t). 
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4.2 . Spectral flow. In analogy with Taubes' gauge theoretic de­
scription of the Casson invariant, our formula will involve counting irre­
ducible perturbed flat orbits with sign according to their spectral flow. 
We adopt the following convention for computing the spectral flow. 

Defini t ion 4 .1 . Suppose U is a real, infinite dimensional, separable 
Hilbert space, and K : [0,1] —> SAFred(U) is a continuously differen-
tiable family of self-adjoint Fredholm operators with discrete spectrum 
on U. Note that the eigenvalues of K t vary continuously differentiably. 
Choose 8 such that 

0 < 8 < inffjAj ^ 0 j A G SpecK U SpecKig . 

The spectral flow along K t from KQ to K\, denoted Sf(Ko, K\), is the 
intersection number, in [0,1] x R, of the graphs of the eigenvalues of K t, 
counted with multiplicities, with the line segment from (0, —8) to (1, ö). 
It is a homotopy invariant of the path K t relative to its endpoints. 

Note that with this convention for counting zero modes, 

Sf{KQìKl) + Sf{KlìK2) = Sf(K0,K2) - d i m k e r K i . 

We are primarily interested in the spectral flow of the operator K(A, h) 
from Subsection 2.2. Completing O 0 + 1 ( X ; su(3)) in the L2 norm, we re­
gard K(A,h) as a family of self-adjoint Fredholm operators on 
Q0+l(X; su(3)) with dense domain the space of L\ forms, 

K : A x F(e0) —> SAFred (Q0+1(X; su(3))) . 

Define deg : G —> Z by setting degg = degg', where g' : X —> 
SU(2) is a map homotopic to g. That degg is well-defined follows from 
the next proposition, which can be proved by noting that SU(n) is 
homotopy equivalent to a CW-complex with 3-skeleton S 3 and the next 
lowest cell in dimension 5. 

Propos i t i on 4 .2 . Fix n > 2 and consider the standard inclusion 
i : SU(2) C SU(n). 

(i) If g G C°°(X,SU(n)), then there exists g' : X —> SU{2) with 
i o g' ~ g. 

(ii) Ifg0,gi G C°°{X, SU(2)) with i o g0 ~ i o gu then g0 ~ g\. 

Proposition 4.2 gives the following formula for the spectral flow be­
tween two gauge equivalent connections. 
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Proposition 4.3. 

(i) The spectral flow of K(A,h) along a path (A t, h t) is independent 
of the path connecting (Ao,ho) to (Ai,hi). 

(ii) The spectral flow of K from (A,h) to (gA,h) equals 12degg — 
dimker K(A, h). 

Proof. Part (i) follows since A x F(eo) is contractable. Part (ii) 
follows by an index computation, the point being that spectral flow 
around a closed path in A equals the index of the self-duality operator 
on SU(3) connections over X x S1. Details can be found in [13]. q.e.d. 

Remark. Suppose A G A r • By applying a gauge transformation, 
we can assume that A G A S(U(2)xU(i))- Consider now the standard de­
composition of the Lie algebra su(3) = h © h1- given by the action of 
Stab A = U(l), and split the operator K(A,h) accordingly. Because 6 
and A can be connected by a path in A S(U(2)xU(i))i the spectral flow of 
K from (6,0) to (A, h) splits as 

Sf(0,A) = Sf h(0iA) + Sf^(0,A). 

Notice that U(l) equivariance of K(A,h) implies that Sf h±(0,A) is di­
visible by two. Using part (ii) of the previous proposition and the well-
known, analogous result (for su(2)) that 

Sf h(A,gA) = 8 d e g g - d i m k e r K A jno+i(X;h), 

we see that 

Sf h±(A,gA) = 4 d e g g - d i m k e r K A jno+i(X;hx). 

4.3. The relationship between orientations and spectral 
flow. There is a fundamental relationship between the orientation 
of the one-dimensional virtual bundle indL and the spectral flow of 
K(A,h). We describe it next, in some generality. 

Suppose that U is an infinite dimensional, separable Hilbert space 
and that Z is a connected, simply connected parameter space. Let 

K : Z —• SAFred(U) 

be a parameterized family of self-adjoint Fredholm operators on U, and 
v : Z —> U be a continuous map. 
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Define L z :U®R —> U by L z(u,T) = K z(u)+Tz for (u,T) É U © R 

Clearly L z G Fred1U © R,U). For any z É Z , let Uz : ker L z —> R be 
the projection onto R, and HkerL z '• U © R —)• ker L z be the projection 
onto the kerL z. 

Suppose that zo G Z is a fixed base point and izo = 0. Choose 
an orientation O for indL by the convention in equation (11), and let 
O z denote the induced orientation on indL z. If L z is surjective, then 
O z gives an orientation of kerL z. Notice that whenever K z is an iso­
morphism, ker L z is spanned by (—K~1(v z), 1). In this case, and more 
generally when v z _L ker K z, the spectral flow of K z allows us to compare 
O z with another natural orientation on kerL z. 

Proposition 4.4. Suppose v zl _l_ kerK z l. If fu,... , u k g is a ba­
sis for ker K z l, thenfui,... ,u k, (—K~^{v z l), l)g is a basis for ker L z l. 
Furthermore, the orientation on indL zl agrees with 

(_l)Sf(K*o.K*i) ( u l A . . . A u k A ( - K - 1 v ) , 1)) ® u A . . . A u k)* . 

Remark. i z l is an isomorphism if and only if Hz is an isomor­
phism, and then the proposition states that the orientation on ker L zl 

is ( - l S f K o K n z O R. 

Proof. The first claim is obvious. The proof of the second goes 
as follows. Connect zo to z\ by a path z t- By [12], K z t is homotopic 
relative its endpoints to a path K t in SAFred(U) so that there is a finite 
set f t i , . . . , tfeg C (0,1) such that 

dimkerK = { i if t e f t i , - ,t*g 
U otherwise. 

We can further assume that any eigenvalue of K t which crosses zero 
does so transversely. 

Similarly, v z t can be homotoped relative to its endpoints to a path 
v t in U such that the path L t in Fred (U © R,U) defined by L t(u, r) = 
K t(u) + Tv t is surjective for all t G (0,1]. Let O t be the orientation on 
ker L t coming from OQ = O zo. 

Fix a t j with ker Üt. nontrivial. For t G (t j — 6, t j + ^), let At be the 
eigenvalue of K t which crosses zero when t = t j . Choose u t to be a unit 
eigenvector with eigenvalue At so that K t(u t) = At • u -

For t G (t j — ,̂ t j + 6), we have an orthogonal decomposition of U 
intoU t®U" whereU" = spanfu t g, andU t is its orthogonal complement. 
Set a t = hu t,v t i, v't = v t — a t u t and K t{w) = K{w) — \t hu t,wiu t for 
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w Ë U . Note that K t is invertible on U t , and set w t = a t u t + \t{K t)~ lv't. 
The vector (w t,—\t) spans kerL t for t G (t j — e,t j + e). Since the 
inner product {(w t, — At), (0,1)) changes sign at t j , it follows that the 
orientation of II* O R changes relative to O t at t j . Such a change occurs 
for each t j , which is where Sf(Ko,K t) changes by ± 1 . 

This proves the second claim in case kerK zl is trivial. For the 
general case, we may assume that all the eigenvalues of K t which ap­
proach zero as t —> l~ are negative for t near 1. This implies that 
Sf(K0,Kt) = Sf(K0,K t) for t G (1 - 6,1). We then claim that the 
orientation given by TlkerL t {~K z tl{v z t), l ) propagates to 

(ui A . . . A u k A {-K-^-{v z l ) , 1)) <g> (ui A . . . A u k)*. 

Recall our convention for propagating the orientation of ind L across 

a point where the dim ker L jumps. The orientation given by 

ITkerL t (-K~^(v z l) , l ) propagates to 

{{-K~?-(v z l) , l ) A u i A . . . A u k) <g> ( L t(ui) A . . . A L t ( k ) ) * , 

where L t = ncokerL loL t. Since L t is negative definite on s p a n { u i , . . . ,u k}, 
it follows that L t(u\) A . . . AL t(u k) is proportional to ( — \)k u\ A . . . Au k. 
Permuting the (—K~^-{v z l) , l ) factor past all the u^s introduces another 
( — \)k which cancels with the first. q.e.d. 

Applying Proposition 4.4 to the oriented strata in a regular moduli 

space gives the following corollary. 

Corollary 4 .5 . Assume that p : [—1,1] —> F(eo) is a path of per­

turbations such that Mp(_|_i), M ( - \ ) , and Wp are all regular. Then 

— 1 and + 1 are regular values of the projections from W* and W rp 

to [—1,1]. Suppose e = ± 1 and {[A],e) G M*,es U J K r u , and set 

s = Sf(Kßp,K Ap<£\). Then the boundary orientation of W* or Wp 

at i\\A\e) equals (—l)s if e = 1, and it equals —(—l)s if e = —1. 

Proof. Note that the boundary orientation at ([A],e) is positive 
if and only if the orientation on the 1-dimensional s t ra tum of Wp at 
([A],e) agrees with e l l * O R. In the irreducible case, K(A,/9(e)) is an 
isomorphism, so the remark following Proposition 4.4 proves the claim. 

The reducible case also follows by a direct application of Proposition 
4.4, letting — Air2 J tVpt (A) | play the role of the v zl for the operator 
L(A, p, t) and observing that this vector is orthogonal to ker K(A, p(e)) = 
H°A(X;su(3)). q.e.d. 
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4.4. Orientat ions near a bifurcation point . In this subsec­
tion, we identify the boundary orientation of a bifurcation point with 
the oriented h1- spectral flow of K(A,h) along Wp across this point. 
The precise relationship is given in Lemma 4.6. This is the crucial ob­
servation needed for Theorem 4.7, which is used in Section 5 to show 
that our invariant is well-defined. 

Consider the operator 

L(A, p, t) : tt0+1 {X- su(3)) © R —>• O 0 + 1 ( X ; su(3)) 

for a fixed p G C1([—1,1], JF(eo)) such that Wp, A^p(_i), and .Mp(_|_i) are 
regular. Suppose that Wp has a bifurcation point, which we take to be 
([A],0) for simplicity of notation. Assume that A G A S(U(2)xU(i)) is a 
representative of the orbit [A]. Choose a covariantly constant, diagonal 
su(3)-valued 0-form 

u= | iß I £HuA(X-,su(3)). 
- 2 i / 3 

Then the complex structure J on Çl0+1(X; h-1-) is given by exp(-7ru/2) G 

S tabA acting by conjugation, i.e., Jx = [u,x] for x G O 0 + 1 ( X ; h ± ) . 

Choose a nonzero x G H A p Xi h_L) and set y = J x 
Let v G fi1 (X; h) © R, be an element of ker L(A, p, 0) such that 

(12) (uAx Ay Av) ® (uAx Ay)* 

is the orientation for i ndL at (A,p,0). In other words, v is an oriented 
tangent vector for W rp. 

Solutions to the equation Cp(t)(A') = 0 near (A,0) in X A X [—1,1] 
take the form (A',t) = (A + sx + o(s2), o(s2)), s > 0, up to the action 
of Stab A. For such a nearby solution, x projects nontrivially into the 
1-dimensional kernel of L(A',p,t) (this follows from Lemma 3.11) and 
its image, thought of as a tangent vector to W*, points away from the 
endpoint. 

We shall now compare the orientation of i ndL at (A', p, t) with that 
given by x. To do so, we consider 

L'{Ç,a,T) = &L{A + sx,p,0)(Ç,a,T)\s=Q, 

where the map on the right is restricted to ker L(A, p, 0) and then pro­
jected onto coker L(A, p, 0). 
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One can check that d i m k e r L = 1, and so the orientation on 
ker L(A',p,t) points in the direction of ex, where e = ± 1 is such that 

(13) (ex Au A v Ay)® (L'(u) A L'(v) A L'(y))* 

is the orientation for i ndL at (A, p, 0). The following lemma is the key 
step in proving Theorem 4.7 because it identifies this e in terms of the 
h-1 spectral flow of K(A, h). 

L e m m a 4.6. Suppose that x,y,u are chosen as above. Denote by 
L\ the composition of L' with the projection onto Q1 (X; su(3)). Then 

(i) L'(u) = —y and L'(y) = —u, and 

(ii) L[(v) = D v(*d A>,pt(x))\(A>,t)=(A,0)-

Remark . Recall from Section 2 that * d , h = *d — 4-7T2 Hess h(A). 
The notation D v means the derivative as (A, t) is varied with tangent 
vector v. 

Proof. First we compute that 

L'(u) = j-s L(A + sxMu,W)\s=Q 

= Js d A+sx{u)\s=0 

= [x,u] = —[u,x] = —Jx = —y. 

A similar computation yields L'(y) = —u, and these together prove (i). 
Claim (ii) follows by commuting mixed partials as follows. Let (a, r ) 

denote the components of v in Ql(X; h) © R. Then 

L[(a,T) = -§- (*d A+sx(a) - 4:-K2 Hessp0(A +sx)(a) ds 

-^2T-§-tVpt(A + sx)\t=0) 
s=0 

g 
§-— (*F(A + sx + ra) - 4n2VprT(A + sx + ra)) 

(r,s)=(0,0) 

= D(a,r) È *F(A' + sx)-^Vpt(A' + sx)\s=Q\iAltt)={At0) 

= D(a,T)(*d A',pt(x))\{AlitMAfiy 

This completes the proof of (ii). q.e.d. 

Using part (i) of Lemma 4.6 and comparing the two orientations 
for i n d L at ([A],0) given in equations (12) and (13), we see that e 
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has the opposite sign of the inner product hL'(v),x), where v is the 
oriented vector tangent to Wp at ([A],0). From part (ii) of the lemma, 
it follows that hL'(v),x) has the same sign as the derivative of the path 
of (multiplicity two) eigenvalues of K(A + ra, prT) which crosses zero at 
r = 0. Figure 2 illustrates what this means in terms of spectral flow. 
Here Wp is the dotted line and W* the solid one. In the diagram on the 
left, Sf h ± ( A - , A + ) = —2 and in the one on the right, Sf h ± ( A - , A + ) = 2. 

a i ^ o o — < > £ - • 
A- A+ A- A+ 

F i g u r e 2. A neighborhood of a bifurcation point in Wp. 

Caution. The operator K(A,h) on Q0+1(X; h-1) is equivariant with 
respect to the action of Stab A = U(l), thus it is Hermitian with respect 
to J . Viewed this way, the eigenvalue here would have (complex) multi­
plicity one, but in order to avoid confusion, we regard K(A, h) on (0+1)-
forms with values in either component of the splitting su(3) = h © h1-
as a real operator. 

Summing over all the bifurcation points results in the following the­
orem. 

T h e o r e m 4.7 . Let p G C1([—1,1], T{eo)) be a curve with Wp,Mp(±i) 
regular and suppose C is a connected component ofW rp. Define b(C) to 
be the number of bifurcation points on C counted with orientation as 
boundary points of W*. 

(i) If dC = 0, then b(C) = 0. 

(ii) If dC = ([A+],e+) U - ( [ A _ ] , e _ ) , where e± G { - 1 , + 1 } are not 
necessarily distinct, then b(C) = ^ Sf h ± ( A - , A+), provided the 
representatives A± for [A±] are chosen to lie on the same compo­
nent of a lift of C to A r • 

Proof. To prove (i), suppose C is a component of W rp with dC = 0. 
Choose a path of connections A s and perturbations h s for s G [0,1] 
such that ([A s ] , h ) parameterizes C. Then A\ = gAo for some g G 
Q. Proposition 3.7 implies that the entire path A s of perturbed flat 
connections lies within eo of some component K of the space of flat 
connections upstairs in A- By our choice of eo, that proposition also 
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shows that A s does not come within eo of any other component of the 
fiat connections. But if AQ is within eo of K, then gAQ = A\ is within eo 
of gK since we are using the standard gauge invariant L\ metric. Thus 
gK = K. 

Now CS : A —> R is constant on connected components of the 
space of flat connections, and this implies that g G GQ, the connected 
component of the identity in G, since otherwise degg ^ 0. Therefore, 
using the relationship between spectral flow and degree described in the 
remark following Proposition 4.3, we get 

b(C) = \ Sf^(K Aoh,K Alh) = 2(CS(A1) - CS(A0)) = 0. 

This proves (i), and part (ii) of the theorem is clear. q.e.d. 

Example. We indicate briefly the consequence of the above theorem 
for the situation illustrated in Figure 1. First of all, part (i) of Theorem 
4.7 implies that the h ̂  spectral flow around the one closed component 
equals 0. 

Along the other components, which are the two other dotted curves, 
the h1- spectral flow in the oriented direction equals 2 for the component 
on top, and it equals 4 for the one on bottom. In other words, the h1-
spectral flow along the bot tom component from left to right equals —4. 

5. T h e invariant 

In this section, we define the invariant XSU^ (X) for X an orientable, 
integral homology 3-sphere. Choose an orientation and Riemannian 
metric on X, as well as a collection V = f 7 1 , . . . , n of embedded solid 
tori in X satisfying the conlusion of Proposition 3.g. Let F(eo) be the 
eo neighborhood of 0 in F r , where eo is given by Proposition 3.7. Then 
choose a perturbation h F F(eo) so that M h is regular. By Proposition 
3.9, M*h is a compact 0-manifold. We would like to define an invariant 
of X by counting the points [A] G M*h with sign according to the parity 
of the spectral flow of K. This integer, however, depends on the choice of 
perturbation h G F(eo), and in order to obtain a well-defined invariant, 
we must include a correction term determined from M h-

When the perturbation h is clear from the context, we let Sf(Ao,Ai) 
be an abbreviation for Sf(K A0,h,K Alth)- For AQ,A\ G A r, the spectral 
flow splits as 

Sf(A0iA1) = Sf h (A 0 i A 1 ) + Sf^(A0iA1) 
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according to the decomposition su(3) = h © h . 

T h e o r e m 5 .1 . Suppose that h G ^(eo) with M h is regular. Pick 

gauge representatives A for each orbit [A] G M h-, and for each repre­

sentative of a reducible orbit [A] G M r h, choose also a flat connection A 

with kA — Ak L2 < eo- The quantity 

E (-l)SmA)-\ E (-l)SmA)(Sf^(0,A) -ACS(A)) 
[A]eM h [A]eM r 

is independent of choice of representatives A for [A] in both sums and 
independent of the choice of h. 

Proof. Note that the existence of A is guaranteed by Proposition 3.7. 
We first argue that the quantity is independent of the representatives A 

chosen for the orbits [A] G M r h. Write \'{h) = P[A]e./vh ( - 1 ) S f ( A ) for 

the first sum and X"(h) = \ P[A]eM r ( - l ) S f ( A ) ( S f t ? (0, A) - 4 CS (A)) 
for the second. Part (ii) of Proposition 4.3 shows that X'(h) is inde­
pendent of choice of the representatives A for [A] G M*h. Also, for 
a fixed representative A for [A] G M r h, if A and A' are both flat 
connections in an eo neighborhood of A, then part (iv) of Proposi­
tion 3.7 implies that A and A' lie on the same component of the flat 
connections, hence CS (A) = CS (A1). Now suppose g G Q. Then, by 
the remark following Proposition 4.3, Sf h±(A,gA) = Adegg. Since 
CS(gA) = CS (A) + degg, \"{h) is also independent of the choice of 
representatives A for [A] G M r h. 

We now argue that the above quantity is independent of choice of 
h. Suppose that h- and h+ are admissible functions in .F(eo) and that 
M h± are both regular. Set M± = M h± and connect h- and h+ by a 
path p : [—1,1] —> ^"(eo) with p ( ± l ) = h± so that the parameterized 
moduli space Wp is regular. 

Compactify the irreducible s t ra tum W* by adding bifurcation points 
and denote the compact, oriented 1-manifold with boundary so obtained 
by W*. Of course, the total number of boundary points, counted with 
boundary orientation, equals zero. Every boundary point which is not 
a bifurcation point can be identified with a point in the disjoint union 
M*_ [JM*+. The orientations of these points are described by Corollary 
4.5, as follows. For [A] G M*+ì the boundary orientation of W* at 
( [A],+l) is (-1)Sf(Ö'A), while for [A] G M*_, the boundary orientation 
of ( [ A | , - l ) at W; is - ( - 1 ) S f ( A ) . Therefore \'{h+) - A'(h_) equals 
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minus the number of bifurcation points counted with orientation as 
boundary points of W*. 

It remains to show that this algebraic sum of bifurcation points 
equals X"(h+) — A"(h_). To prove this, we invoke Theorem 4.7. By 
part (i), the closed components of W rp do not contribute to this sum, so 
suppose that C is a component ofW r and dC = ([A+], e+)U—([A-], e_), 
where e± G {—1,1}- Let b(C) be the algebraic sum of bifurcation points 
on C. Since X"(h+) and A"(h_) are both independent of the choice of 
representatives A for [A], we can choose A+ and A_ to lie on the same 
component of the lift of C to A r. Thus CS{A+) = CS {Ai). By part 
(ii) of Theorem 4.7, 

b(C) = i Sf^(A.,A+) = \ {Sf^(e,A+) - Sf^(6,A.)) . 

On the other hand, the contribution to A"(h+) — A"(h_) from the end-
points of C is 

1}SW,A+) Sf h ( 0 , A ) + e_(- i )Sf (A- ) Sf^(e,A. 

It is important to keep in mind that e± need not be distinct; several 
possibilities are pictured in Figure 1. Now the reducible case of Corollary 
4.5 implies that e+ = (-1)Sf(A+) and e_ = (_1)Sf(A-) ) and this 

completes the proof. q.e.d. 

The quantity in Proposition 5.1 is seen to be independent of the 
choice of metric on X by the same argument as was used for Proposition 
2.3 of [24]. That it is also independent of the choice of T is an exercise 
which we leave for the reader. 

Definition 5.2. Suppose that h G ^(eo) and that M h is regular. 
Define the SU(3) Casson invariant by 

ASU(3)X= E (-!)Sf (A ) 

[A]eM*h 

- \ E (-i)Sfie'AKSf^(e,A)-ACS(A) + 2). 
[A]eM r 

By Theorem 5.1, this gives a well-defined invariant of integral homology 
3-spheres. 

Notice that the last term in the second sum above simply adds a 
multiple of the SU(2) Casson invariant. This part of \SU(3)(X) is in­
dependent of h by the argument given in [24]. Therefore, the previous 
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theorem implies that \SU(3)(X) is independent of h G F(eo)- The fol­
lowing proposition explains why we have chosen to normalize XSUt3\(X) 
this way. 

Proposition 5.3. 

(i) Ifir1X = 0, then XSU{3)(X) = 0. 

(ii) SU(3)(~X) = SU(3)(X)-

Proof. Part (i) is obvious. To prove (ii), observe that 

Sf_X(A0,Ai) = -Sf X(A0,A1) - (dimker K Ao + dimker K Al), 

where the subscript indicates a choice of orientation on X. This is 
equally valid for h-1- coefficients in case AQ and A\ are reducible. Ap­
plying this to all three spectral flows appearing in the definition of 
^ SU(3)(~X) and noting further that CS-X(A) = — CS X(A) complete 
the proof of part (ii). q.e.d. 

6. Existence of perturbation curves 

This section is devoted to finding loops in X with certain properties 
required for our transversality arguments in Section 3. The basic ques­
tion is whether the trace of holonomy can detect a tangent vector to the 
flat moduli space. In terms of a one-parameter family A t of irreducible 
flat SU(3) connections, we ask: does there exist an element 7 G vri(X) 
such that 

d trhol^A t)\t=Q^0? 

The answer is no if A t = g t AQ, so we must also assume that A t is not 
tangent to the gauge orbit QAQ. In fact, we need this for any path A t 
of connections such that AQ is flat and A t is flat to first order (i.e., 
d F A t t_0 = 0). An affirmative answer to this question for SU(2) and 

SU(3) is given in the first two subsections. The last subsection treats 
the reducible case, where second order arguments are required. 

6.1. First order arguments. To start, we introduce some 
notation. Given a flat connection A and a based loop £ : [0,1] —> X, 
let He(A) G SU (3) be the holonomy of A around L For a G ̂ (X, su(3)), 
let Ie(a,A) G su(3) be the integral 

Ii(a,A)= Z Ptlp^ait PiiOrfdt, 
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where Pj?(0, t) is the parallel translation from 0 to t along £ using the 
connection A. When A and a are clear from context, we write simply 
Hi and Ig. 

IfA t = A+ta+O(t2), by Corollary 2.7, we see that d t trHe(A t)\t=0 = 
tr(He(A)Ie(a,A)). 

Proposition 6.1. Suppose A is a flat SU(3) connection. If a G 
H A(X; su(3)) is non-zero, then there is a loop £ so that It projects non-
trivially onto z{Hì)ì the Lie algebra of the centralizer Z{H(). 

Proof. Consider the differential equation d AÌ = a. We can solve this 
equation locally on any 3-ball B C X since H A(B; su(3)) = 0. Because 
a is not exact, there is no global solution. Thus there exists some loop 
£ : [0,1] —> X (which can be taken to be embedded) for which the local 
solutions do not match up at the ends. Hence a\i is not exact, meaning 
that its decomposition a\i = a h + d A b into harmonic and exact parts 
has a h 7̂  0. From this point on, we restrict our attention to the pullback 
connection I*(A) on the SU(3) bundle over the circle S1 = [0, l]/0 ~ 1 
pulled back via the loop £. 

Note that a h is Hodge dual with respect to the metric on the loop to 
a covariantly constant 0-form, and so integrates to something nonzero in 
H®,,AJSl; su(3)), the Lie algebra of Stab(£*(A)). By the fundamental 

theorem of calculus, the exact part integrates to H^~ boH£ — bo, where bo 
denotes the value of b at the basepoint. This latter su(3) element is or­
thogonal to H®,,AJSl; su(3)) (note that its left translation to T H(SU(3) 

is tangent to the adjoint orbit of H ̂ ). q.e.d. 

The following 'warm-up' proposition treats the case SU(2). 

Proposition 6.2. If A is an irreducible flat SU(2) connection and 
a G H A(X; su(2)) is nonzero, then there exists a curve 7 with t r ( H I 7 ) 7̂  
0. 

Proof. Since a is nonzero and harmonic, by Proposition 6.1 we can 
choose a curve £ so that HziH[\(I() 7̂  0. Gauge transform A so that 

is diagonal and write 
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Then tr(HiIi) = a(X — A) 7̂  0 unless Hi = ± I . Taking 7 = £ proves the 
claim if Hi 7̂  ± I . Otherwise, we can always find 7 so that tr(HyI) 7̂  0. 
Using the fact that Hi is central, we have 

tr(HriITi) = tr{H7HiIi) + tr(HIHt) 

= ±(tr{H7Ii) + tr(H I ) ) . 

Since tr(HjIi) is nonzero, it follows that either tr(H ^.iIy.g) or tr(HyI) 
is also nonzero, and this proves the proposition. q.e.d. 

The same is true for SU(3), but it takes more work to prove. 

T h e o r e m 6 .3 . If A is an irreducible flat SU(3) connection and a G 
H A{X\ s u ( 3 ) ) is nonzero, then there exists a curve 7 with t r ( H I ) 7̂  0. 

Proof. Choose £ so that Iiz^Hl^{Ii) 7̂  0. Gauge transform so that 

Ai 0 
H = \ A2 

0 A3 

is diagonal and write 

iOL\ 

iCi'i 

ia3 

where ai are real numbers, not all zero. Of course, A3 = (AiA2)_1 and 
CÜ3 = — Ö l — «2-

If Hi has only one eigenvalue, namely if Ai = A2 = A3, then Hi is 
central and the theorem follows from the same argument as was used 
to prove Proposition 6.2. Otherwise, either Hi has three distinct eigen­
values or it may be further conjugated so that Ai = A2 7̂  A3. The 
following argument treats only the first of these two cases. The second 
case requires a more elaborate argument, given in the next subsection. 

Assume Ai, A2 and A3 are all distinct. Suppose first of all that GLi = 0 
for some i, which can be taken (wlog) to be i = 3. Since tr(Ii) = 0, 

tr(HiIi) = Ai( ia i ) + A2(ia2) = ia>i(\i - A2), 

which is nonzero since a\ 7̂  0 and Ai 7̂  A2. 
Now suppose i 7̂  0 for all i. By replacing a with —a, if necessary, 

we can assume that two of the i's are positive, which we take (wlog) 
to be « i and «2- Then 

tr(HiIi) = iXiai + iA2Q!2 - i(AiA2)_1(o;i + a 2 ) -
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Thus triH Ii) = 0 implies \\a\ + A2CH2 = (AiA2)_ 1(ai + «2)- If this 
were the case, then jAi«i + A2CÜ2j = j«i + «2j, which is only possible if 
Ai = A2, a contradiction. 

The following example illustrates the difficulties when Hi has only 
two distinct eigenvalues. Suppose 

H 

Then one see that tr(HI) = 0 if 

ia 

—ia 
* 0 

The next subsection is devoted to treating this problematic case. 
Observe that we can assume that Hi has infinite order for the following 
reason. If Hi has finite order k, and 7 is chosen so that t r ( H I ^ ) 7̂  0, 
then just as in the proof of Proposition 6.2, we compute that 

tr(H ^.ikITik) = triH ^ I k ) + triH ^ I ^). 

But tr(HyIk) 7̂  0, hence it follows that one of the other two terms is 
also non-zero. 

6.2. Linear algebra. In this subsection, we complete the proof of 
Theorem 6.3 demonstrating the existence of perturbation curves with 
certain properties. The remaining case is when Hi has only two distinct 
eigenvalues. As indicated in the previous subsection, we can further 
assume that Hi has infinite order. Although Hi may not have three 
distinct eigenvalues, the following proposition assures us that H7 has 
three distinct eigenvalues for some loop 7. 

Propos i t i on 6.4. If g : 717(X) —> SUÌ3) is an irreducible repre­
sentation, then there exists some element 7 G vri(X) such that 0(7) has 
three distinct eigenvalues. 

Remark . Besides the existence of the irreducible, rank three 
representation, the proof makes no assumptions on the group 717(X). 

Proof. By irreducibility, we can find £ with Q{€) noncentral. Set L = 
Q{€). Obviously, we are done unless L has only two distinct eigenvalues. 
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Since the conclusion of the proposition is invariant under conjugation, 
we can assume 

f X 0 
L= X 

V 0 A"2 

is diagonal. By irreducibility of g, there exists m G vri(X) so that g(m) 
does not commute with L. Set M = g(m). Thus neither M nor LM is 
diagonal. Of course, we can also assume that M has only two distinct 
eigenvalues; otherwise we are done! Let ß be the eigenvalue of M of 
multiplicity two. Now both L and M have 2-dimensional eigenspaces, 
so for dimensional reasons, L and M have a common eigenvector. After 
conjugating by a matrix commuting with L, it follows that M can be 
written in block diagonal form: 

M 
H 0 
0 A 

where 

A 

2 2 

a b /i 0 a —b 
b a 0 / i " 2 b a 

and \a\ + \b\ = 1. The matrix product L M also comes in block form: 

A / i 0 A 0 

o B where B=o x-
LM = where B = _2 A. 

We claim that L M has three distinct eigenvalues. First of all, notice that 
the two eigenvalues of B are distinct; otherwise LM would be diagonal, 
in which case L and M would commute. So it suffices to prove that X/J, 
is not an eigenvalue of B. 

Suppose to the contrary that Xß is an eigenvalue of B, i.e., suppose 
(A//)2 - tr{B){Xn) + d e t ( B ) = 0. Computing tr(B) directly, one finds 

tr(B) = \a\2(Xn + A"2 / /"2) + (1 - |a |2)(A//"2 + A"2/i). 

Plugging this into the characteristic equation and using det B = A _ 1 / i _ 1 

together give 

(1 - | a | 2 ) ( A V + A"V_1 - A2/i_1 - A - V ) = 0. 

So either \a\ = 1, implying A = ± I and contradicting our choice of M, 
or, after multiplying by A//, 

0 = A V + l - A 3 - / u 3 = ( A 3 - l ) ( / i 3 - l ) . 
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However, A3 = 1 implies L is central, and //3 = 1 implies M is central, 
each giving contradictions. Hence X/J, is not an eigenvalue of B, which 
proves our claim. q.e.d. 

With regard to Theorem 6.3, we have already proved the existence 
of 7 unless H ̂ {A) has two distinct eigenvalues, so assume 

Hi(A) 

Set L t = He(A t) where A t = A + ta. Observe moreover that we are done 
unless 

I ia 0 
dL t 
dt 

= LQ —ia 
t=o o 0 

where a / 0 . 
Before stating the next lemma, we make a definition. 

Definition 6.5. For a fixed angle r] G [0, 2n), let Gv be the subset 
of SU(3) consisting of matrices of the form 

a be~iTÌ c 
M= I be i71 a ce iri 

:' ce-i" d 

for a,b,c,c',d£ C. Note that M G SU(3) =ï \c\ = \c'\. 

Clearly Gn is a subgroup; in fact, matrices of this form in SL(3,C) 
form a subgroup of complex codimension 4, so one would expect that 
Gn has real codimension 4 in SU(3). This is indeed the case; if M is 
chosen as above and 

1 
e 
0 
e i11 

then P G U(3), 

P-XMP 

and so Gn is conjugate to the subgroup S(U(2) x U(l)). 
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Lemma 6.6. Suppose that L t,M t : (—e, e) —> SU(3) are smooth 
paths. Write L'0 = LQ dLfL-n ? and assume both LQ and L'0 are diago­
nal, with 

f X 0 \ f ia 0 A 
Lo = A , L'0 = -ia 

V 0 A"2 A V 0 0 

for A a complex unit of infinite order and for a / 0 . If 

d tr(W t)\t=0 = 0 

for every word W t in L t and M t, then MQ G Gn for some rj. 

Proof. For general L,M G SU(3) with 

(Xl °A 
L=\ A2 

V 0 A3 

diagonal and M = (//ij) arbitrary, it is not difficult to verify that 

3 

tr(LM) = J^Xißii, 
i=l 

3 

tr\LML-xM-x) = J2 AiÄj|ij|2. 

Now suppose L t, M t are as in the hypotheses. We write M t = (/ij(t)) 
and let //ij = /zij(0) for convenience. Applying the above formula to 
L k M t and L k M t L~t M t and taking derivatives, we see from the hy­
potheses that 

0 = d tr(L t M t)\t=o 

= Akd (/ill (t) + M22 (t) ) 1t=0 + Ä2kd /Z33 (t) 1t=0 

+ika\k (/in - M22), 
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and that 

0 = dt t r L M L M t - 1 ) ^ 

= d (jA»II(t)j2 + jA*I2(t)j2 + jA»21 (t)j2 + j^22(t)j2 + j^33(t)j2) |t=0 

+ ^kd(jßl3(t)j2 + jß23(t)j t=0 

+Ä3 fcn(jM3l(t)j2 + jM32(t)j2)|t=0 

+ ka 2(j//12j2 - j/i2ij2) + A3k(|/ii3j2 - j/J23j
2) 

- Ä 3 k ( j m j 2 - j / i 3 2 j 2 ) o . 

Since both equations hold for all k > 0 and A has infinite order, we 
deduce that : 

(i) / in = M22, (ii) j/il2j = jA«2Ij, 

(iii) j/413j = jA*23 U (iv) jA*31 j = jA*32 j-

Here, (i) is a consequence of the first equation, and (ii)-(iv) come from 
the second. The last three conditions are equivalent to the existence of 
angles 171,172, and 773 with /t2i = e i2r}1 /zi2, M23 = e imm3, and / J 3 2 = 

enfisi-
To conclude that MQ G G,,, we just need to show that 771 = 772 = 

773 mod (27r). Applying (i) to (M 0 ) 2 implies /ii3/J3i = /J23M32, thus 
772 P 3 mod (27r). Now apply the unitary condition to MQ to see 

=ißijlJ'3j for i — 1,2. Comparing these, we conclude 771 — 772 
mod (2-7T). This completes the proof of the lemma. q.e.d. 

To establish Theorem 6.3, we seek a curve 7 such that tr(H ^ I ̂ ) 7̂  0. 
Setting A t = A + ta, this is equivalent to the condition that 
d tr Hry(A t)\ j£ 0. According to the previous lemma, letting 7 range 

over all words in LQ and MQ, the only way this can fail is if MQ G Gn for 
some 77. We shall show in the following argument that the irreducibility 
of A guarantees the existence of an M = H m(A) such that M 0 Gv for 
any 77. 

Proof of Theorem 6.3. We provide the proof in the remaining case 
when LQ = Hi(A) has two distinct eigenvalues and is of infinite order. 
Set A t = A + ta and L t = Hi(A t). By Proposition 6.4, we have a loop 
mi such that H mi (A) has three distinct eigenvalues. Set Mi = H mi (A) 
and Mi ; t = H mi(A t). Assume first that Mi 0 Gn for any 77 G [0, 2n]. By 
Lemma 6.6, there is a word W t in L t and M i t such that d tr W t | „ 7̂  0. 
Taking 7 as the loop obtained from the corresponding word in £ and m i , 
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then W t = H1{A t) and hence •d.trH1{A t)\ ^ 0, which proves the 
theorem in this case. 

So now suppose M\ G GVl and write 

a\ b\e~im c\ 
Mx = | bie i"1 ax cie iri1 

ci cie"^1 di 

Although A t has been gauge transformed so that the path Hi(A t) is 
diagonal, we can further conjugate by a diagonal matrix since it acts 
trivially on Hi(A t). Applying such a conjugation to M i , we can arrange 
that b1 and c\ are both real and non-negative. 

Since A is irreducible, we can choose m<2 G vri(X) such that M ^ = 
H m.2(A) 0 GVl. Repeating the argument above with Mi replaced by 
M2, we can assume that M2 G GV2 for some r/2, and write 

a2 b2e~im c2 

M 2 = I b 2 e^ 2 a2 c2e i'» 
:'2 c^e"^2 d2 

We now claim that one of M1M2 and M f M2 is not contained in 
Gv for any 77. This completes the proof of Theorem 6.3 by repeating 
once again the above argument with Mi replaced by either M1M2 or 
M , - M2 and invoking Lemma 6.6 to produce the curve 7 with the de­
sired properties. 

So, it only remains to establish the claim, which is proved by contra­
diction. Suppose that M1M2 is contained in Gv for some 77. Equating 
the (1,1) and (2, 2) entries of M i M 2 , we find 

(14) bib2u
2 + cic'2u - (b1b2 + cica) = 0, 

where u = e i(ri2~VlK 
Suppose first of all that b1 = 0. Because c\ = 0 =>• Mi is diagonal, 

and u = 1 =>• M2 G Gm, neither of which is the case, so the only 
possibility is that c2 = 0. But writing out M1M2 and demanding that 
the off-diagonal terms have the required form, this would imply that 
b2 = 0 or u = 1, both of which lead to contradictions. 

So assume bi 7̂  0. By similar considerations, we can also assume 
b2 7̂  0. Solving equation (14) for u gives 

cic2 

b\b2 
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since we have already seen that the other possibility, namely u = 1, 
leads to a contradiction. 

The same reasoning applied to M j - M2 shows that 

b1b2 

Equating these two formulas for u gives 

cibi = c[bi. 

Since b1 and ci are real, this shows that c[ = ci = c[, which forces both 
ai and di also to be real. It immediately follows that M j - = Mj* = Mi , 
hence the eigenvalues of Mi equal ± 1 . In particular, Mi has at most two 
distinct eigenvalues, which contradicts our choice of M i . This proves the 
claim and concludes the proof of Theorem 6.3. q.e.d. 

Given loops £i,...,£n in X, define gauge invariant functions 
f jjg j : A —> R for j = 1 , . . . , n to be the real and imaginary parts 
of tr hol j(A) , so that 

tr(hol j ( A ) ) = f j(A)+ig j(A). 

Note that if A is a SU(2) connection, then g j(A) = 0. 

Corollary 6.7. 

(i) If A is an irreducible, flat SU(2) connection, then there exist loops 
£1,... ,£n so that the map from H1A{X\ su(2)) to n given by 
a i-)- (Dfi(A)(a),... ,Df n(A)(a)) is injective. 

(ii) If A is an irreducible, flat SU(3) connection, then there exist loops 
£1,... ,£n so that the map from H A{X\ su(3)) to R2n given by 
a^ {Dfi(A)(a)ìDgi(A)(a)ì... ,Df n(A)(a),Dg n(A)(a)) is injec­
tive. 

6.3. Second order arguments . Suppose now that A is a 
reducible flat SU(3) connection on X. Then part (i) of Corollary 
6.7 allows us to find loops about which the real part of the deriva­
tive of trace of holonomy detects any first order deformations of A in 
directions tangent to the reducible s tratum, i.e., in the directions of 
H A(X;\)). But invariance under the gauge group, in particular under 
Stab(A) = U(l), prevents the derivative from detecting first order de­
formations in directions normal to the reducible s tratum, i.e., in the 
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directions of H A(X-1h-L). Instead, we consider the second derivatives 
of the gauge invariant functions in these directions. This portion of 
the argument closely parallels the argument used to handle abelian flat 
connections in the SU(2) moduli space [9]. 

Notice first that H A{X; h-1) is a module over the quaternions HL To 
see this, let SP(1) be the unit quaternions, and define 4> '• SU(2) —> 
SP(l) by 

a —b 
_ H- a + Jb, 

b a 

and F : C2 ->• H by F{vl,v2) = vx + Jv2. Then for A G SU(2) and 
v e C 2 , 

F(Av) =4>{A)F{v). 

This turns the action of SU(2) on C2 into left multiplication by elements 
of SP {I) on HL 

Now suppose g : iri(X e —> SU(2) is an irreducible representation. 
Let EQ be the flat bundle X xwl(X) C2 , where X is the universal cover of 
X and 7Ti(X) acts by deck transformations on X and via the canonical 
representation of g on C 2 . We identify Eg as a flat bundle with the 
subbundle of a d P = X x su(3) corresponding to h1- C su(3). The 
de Rham theorem provides an isomorphism H A{X\ h ̂ ) = H1(X;Eg). 
Here, Hl(X;Ee) = Zl{X;Ee)/B

l{X;Ee) is by definition the space of 
1-cocycles modulo the 1-coboundaries. Using a presentation ni(X) = 
{xi,... ,x n j r i , . . . , r m), we can identify the 1-cochains as elements 
(vu... ,v n) E C 2 x • • • x C2 = H n , and the subspaces Z1(X; Eg) of 1-
cocycles and B1(X; Eg) of 1-coboundaries as submodules. For example, 
( v i , . . . , v n) is a coboundary if and only if there is some v G C2 such that 
v i = v — Q{Xi v for i = 1 , . . . , n. Observe that B1(X; Eg) is closed under 
right multiplication by elements in HL Similarly, (vi,... , v n) is a cocycle 
if and only if the following linear equations, which are derived from the 
relations r\,... ,r m using the Fox differential calculus, are satisfied: 

(15) 

M n v i + • • • + Mln v n = 0, 

M mivi -\ h M mn v n = 0. 

Here each M ij is a sum of SU(2) matrices and thus is a 2 x 2 matrix of 
the form 

M i j = ( a ~i 
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for some a ij,b,j G C. For v = (vi,v2) G C2 and h = z\ + Jz2 G H, 
where zi,z2 G C, set v • h = (zivi — z ̂  vi-,z2v\ + z\v ^) G C 2 . (This is 
just multiplication in H under the isomorphism F : C2 = HL) Now if 
(vi,... ,v n) satisfies (15) above, then so does (v\ • h,... ,v n • h). This 
shows that Z1(X;Eg) is closed under right multiplication by elements 
of HL Since both B1(X;Eg) and Z1(X;Eg) are right H-modules, so is 
H1(X;Ee) = Z1(X;Ee)/B

1(X;Ee). 
Recalling the notation of Definition 3.2, we use Herm H A{X; h-1) to 

denote the set of all symmetric Stab(A) = U(l) invariant bilinear forms 
on H A(X; h ̂ ), regarded as a real vector space with a U(l) action. 

Propos i t i on 6.8. If A is a reducible flat connection, then there ex­
ist loops £i,... ,£ni in X and a set F = ff\,... , n g of gauge invariant 
functions such that: 

(i) Each f i G F is the real or imaginary part of trhol j for some 
j = l , . . . , n . 

(ii) The map 
R n — • Herm H ̂  Xih-1-) 

given by 

n 

\xli••• i x n) ' ' 

X x i Hessf i{A) 
i=l 

is surjective. 

(iii) Df i(A) = 0fori = l,...,n. 

Proof. Assume A has been gauge transformed to take values in 
su(2) C su(3), and denote by A the associated irreducible SU(2) con­
nection. In order to construct the loops £i,... , n , , we will need to 
introduce curves in X that are in a certain sense dual to a basis for 
H A { X - ^ ) over HL 

Let g : 7b(X) —> SU(2) be the irreducible SU(2) representation as­
sociated to A, and let Eg = X xWl(X) C2 as before. Consider H i(X; Eg), 
homology with local coefficients in Eg, which is by definition the homol­
ogy of the complex 

>C i(X) ® Z [ 7 r i X ] C2 i 1 C ( X ) ® Z M X ) ] C 2 — • • • • . 

From our previous discussion, it is not hard to see that Hi(X;Eg) is a 
right H-module. Thus, we have a basis for H\(X; Eg) over H consisting 
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of classes each of which can be represented by a C2-labelled curve e 
in the universal cover X of X. Each e is a lift of a loop i in X with 
holy^A) = 1, because the labelled lift of i lies in ker<9i <g) 1 if and 
only if the holonomy of A around i is trivial. Let LÜ\, ... ,um be the 
Hom dual basis for Hl(X;EQ) over HL Of course, each i determines 
a real, 4-dimensional subspace V i = (/»(span Hoi) C H ^ ( X ; h-1-) where 
</) : H 1 (X;E É , ) —>• H ^(Xjh -1-) is the isomorphism provided by the de 
Rham theorem. Each V i is preserved by the subgroup Stab(A) C G, 
thus 

(16) H A{X;h V1®---@V m 

is a decomposition of H A(X ;h-*-) into 2-dimensional complex vector 
spaces. We denote by a i the image of a G H ^ X ; h-1) under the projec-

Let U H H e r m H A(X; h-1) be the space of symmetric Stab(A) = U{\) 
invariant bilinear forms on H A(X; h ̂ ) . Our goal is to find a collection 
of loops such that the Hessians of the real and imaginary parts of the 
trace of holonomy functions around these loops span U. 

There is a decomposition of U corresponding to (16) given by 
U = ® i < j U ij, where B G U ij in case 

B(a,b) 
B(a i,b i) 
B(a i,b j) + B(a j,b j , 

if i = j , 
if i ^ j . 

V j -Thus every B G U ij is entirely determined by its restriction to V i 
Let fa, bg be a basis for V i, and fc, dg a basis for V j . In terms of the 
real bases fa,ia, b, ibg for V i, and fc,ic,d,idg for V j , the restriction of 
B to V i x V j is a real 4 x 4 matrix of the forms: 

x 
0 

y 
z 

0 
x 

—z 
y 

y 
—z 
w 
0 

z 
y 
0 

w 

117) 

From this, it follows that 

if i = j , 

dimU i j 
4 
8 

p 
-q 

t 
u 

if i = 
if i ^ 

q 
p 

—u 
t 

j , 
j -

r 
—s 

v 
—w 

s 
r 

w 
v 

if i^j. 

We prove the proposition by constructing, for each i < j , gauge invariant 
functions satisfying conditions (i) and (iii) such that their Hessians at 
A span U ij. We begin with the case i = j . 
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Given ß : [0,1] —> X with ß(0) = ß(l), parallel translation can be 
used to associate a function a : [0,1] —> h ̂  to any su(3)-valued 1-form 
a by setting 

(18) a(t)dt = P ̂ (0,t)-1a /3(t )P /3(0,t), 

where Pß(0, t) is the parallel translation by A along ß from ß(0) to ß(t). 

If a G H1A{X\ h ̂ ) , then RQ a(t)dt = R a G h ̂ . The linear transforma­

tion H A{X\hA-) —> h1- defined by a H- R a has kernel 

V\ © •••V i--- © V m (because the basis LO\,... ,u>m is Hom dual to 
7 i , . . . , 7m) and determines an isomorphism V i —> h-1. 

Note how the correspondence (18) behaves for products of loops. If 
ß = £i • • • £k '• [0, k] —> X, where each li : [i — 1, i] —> X is a loop, define 
oti-.[i- l,i] ->• h1- by a>i(t)dt = P£i{i - 1, t ) _ 1 a ̂ (t)P i(i - l , t ) . Defining 
a : [0, k] ->• h-1 by (18), we have 

(19) a(t) = hol£l {A)-1 • • • hol i_x {A)-li{t) hol i_x {A) • • • holh (A) 

for t G [i — l,i]. 

Lemma 6.9. Suppose £ is a loop with L := holg(A) G SU(3) non­
trivial. Let a,b G H A{X\ h-1) and set i = R a G h-1 and i = R b G h ̂ . 

(i) Hess tr hol7i(A)(a, b) = 2 tr(^ii), 

(ii) Hess tr hol^.7i (A) (a, b) = tr{L(ii + i i ) ) -

Proof. Let B, B ̂  : H A{X; h-1) x H A(X; h±) ^ C be the symmetric, 
bilinear pairings coming from the Hessians at A of tr holli and tr holn.i, 
respectively. Notice that B(a,b) G R because hol7i(A) is trivial. This 
follows from 2.7 (ii) and the elementary fact that tr(ÇÇ) G R for £, Ç G 

Since B and B? are both symmetric, and since R (a + b) = i + Ci) it 
suffices to show (i) and (ii) in the case a = b. To prove (i), parameterize 
i by the interval [0,1] and define a : [0,1] —> h1- associated to the 1-form 

a G H A{X\ h-1) using (18). By means of the formula from Corollary 2.7 
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(ii) and noting that holli (A) is trivial, we obtain that 

Hess tr holri(A)(a, a) = tr(a(s)a(t) + a(t)a(s))dtds 
o o o Zo 

i i 
tr(a(s)a(t))dtds 

o o 
l i 

2 = tr a(s)ds a(t)dt = tr(i). 

This proves (i). 
To prove (ii), set ß = l-^ i and parameterize it by the interval [0, 2] so 

that the subintervals [0,1] and [1, 2] parameterize £ and i, respectively. 
Define a : [0,2] —>• C2 associated to the 1-form a using (18). Notice 
that R0 a(t)dt = 0 because the restriction of any element ofH A(X; h-1) 
to a loop £ : S1 —> X is exact whenever holg(A) is nontrivial since 
H t ,AJS 1; h-1) = 0, which implies that H t /AJS1; h ̂ ) = 0 by Poincare 
duality. Hence by (19) we see that 

Z a(t)dt = Z a(t)dt = L^^L. 

Appealing once again to Corollary 2.7 (ii) yields: 

Hess tr holi.li {A)(a, a) = Z Z tr[L(a(s)a(t) + a(s)a(t))]dtds 
o o 

2 2 
tr [La(s)a(t)] dsdt 

0 o 
2 2 

tr La(s)ds a(t)dt = tr(i L). 

q.e.d. 

Since a i = 0 => R a = i = 0, it follows from (i) and (ii) above that 
the Hessians at A of the real and imaginary parts of tr holli and tr holi.li 
lie in U ii. Consider the gauge invariant functions f = Re tr holli and 
gi = Im tr holn.li, where Re and Im denote the real and imaginary 
parts. Note that f and g$ obviously satisfy condition (i) of Proposition 
6.8. Moreover, since hol^A) is trivial, Df(A) = 0. This follows from 
formula (i) of Corollary 2.7. The same formula also implies that the 
imaginary part of D tr holi.li {A) vanishes since tr(L£) is real for £ G h ̂  
whenever the SU(3) matrix L is in the image of the standard inclusion 
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SU(2) —> SU(3). This shows that Dgn(A) = 0, hence f and gi satisfy 
condition (iii) of Proposition 6.8. So, we only need to prove that we can 
span U ii with the Hessians of such functions. 

For this, we shall use the isomorphism V —> h1- given by a >->• R a, 
along with the standard identification ip : h1- —> C2 , to translate it into 
a question about symmetric, bilinear pairings C2 x C 2 —> R.. Denote 
by h•,•i the standard complex inner product on C 2 . If £, Ç G h1- and 
v, w G C2 are given by v = ip(£) and w = ip(Ç), then 

tr(ÇÇ) = -2Rehv,wi. 

Moreover, if L = ("ß
 ßA G SU(2) and L = L © 1 G SU(3) , then 

tr(L(Ç<Z + (C)) = -hL(v),wi - hL(w),vi - 2Rehv, wi. 

In terms of the real basis n {Q) -, (Q) -, d) -, i ) o for C?, the symmetric 

bilinear form C2 x C2 —> C given by 

(v,w) ^ hL(v),wi + hL(w),vi + 2Rehv,wi 

has imaginary part represented by the matrix 

(20) *(L) 

s 
0 
u 
t 

0 
s 

-t 
—u 

—u 
-t 
—s 

0 

t 
—u 

0 
—s 

where a = r + is and ß = t + iu. 
Now A is reducible (but not abelian) and thus we have x,y G ni(X) 

such that ^(x) and g(y) do not commute. We claim that the Hessians 
at A of the four functions 

f ÌgXI g yi g xy 

derived from i are linearly independent and form a basis for the 4-
dimensional subspace U ii C U. 

To see this, restrict each Hessian to V i x V i and consider the associ­
ated symmetric 4 x 4 matrix of the form (17). For example, the matrix 
associated to Hessf(A) equals —2 times the identity matrix. Clearly 
the image of SU(2) under ^ in (20) is a complementary subspace of 
dimension 3. Thus, it suffices to prove that the Hessians at A of g x,g y 
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and g xy, are linearly independent. One can see this by direct computa­
tion; arranging that g(x) is diagonal (by conjugation) and g(y) is not 
(by hypothesis), it becomes a routine exercise in linear algebra. 

This proves that the Hessians at A of f,g x,g y and g xy form a basis 
for U ii. To conclude the proof of Proposition 6.8, we need to find, for 
each i < j , functions satisfying (i) and (iii) whose Hessians span U ij. 

L e m m a 6.10. Suppose i < j and £ is a loop with holi(A) nontrivial. 
Set L = holi(A) G SU(3). Suppose further that a, b G H A{X\ h ̂ ) ; and 
set ik = R a É h-1 and Çk = R k b G h-1 for k = 1 , . . . , m. Then 

(i) Hess tr hol i j (A)(a, b) = t r ( ( i + j ) ( i + (j)), 

(ii) Hesstrhol i . i- i . j . e(A)(a,b) = t r ( ( i +LÇj L-1)(Çi +LÇj L-1)), 

(iii) Hess tr hol.ilj {A)(a, b) = tr(L(i + < j ) ( i + j))• 

Proof. By symmetry, it is enough to prove (i)-(iii) in the case a = b. 
For (i), this is just the statement that 

Hess tr holli.lj (A)(a, a) = tr((Çi + Çj)2) 

for all a G H A{X\ h ̂ ) , which follows directly from Corollary 2.7 (ii) as in 
the proof of Lemma 6.9, using the additional fact that R a = i + j . 

To prove (ii), set ß = yi • £~l • 7j • £ and parameterize ß by the 
interval [0,4] so that the subintervals [0,1], [1, 2], [2, 3] and [3,4] param­
eterize i, £~1,j, and £, respectively. Define the function a : [0,4] —> h ̂  
associated to the 1-form a using (18). 

Now aj[1;2] is exact since hol^i{A) is nontrivial. Similarly, aj[3)4] is 
exact. Thus 

M l 3 

Z a(t)dt = Z a{t)dt + Z a{t)dt = i + L^L~l 

o o 2 

by (19). Using Corollary 2.7 again and noting that holß(A) is trivial, it 
follows that 

Z i Z s 
Hesstr holß(A)(a,a) = tr(a(s)a(t) + a(t)a(s))dtds 

o Zo 
4 M 

/ tr a(s)a(t)dtds = tr((^ + L^L~lf). 
0 o 

To prove part (iii), set ß = £ • i • j and parameterize ß by the 
interval [0, 3] so that the subintervals [0,1], [1, 2] and [2, 3] parameterize 
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£,ji and j , respectively. Define the function a : [0,3] —> h ̂  associated 
to a using (18). Use (19) and the fact that a|[o,i] is exact to conclude 
that 

Z 3 Z 3 

a(t)dt = a(t)dt = L ' 1 i + £j)L. 

Now Corollary 2.7 implies that 

3 3 

Hess tr holß(A)(a, a) = tr(La(s)a{t))dtds 

o Z 

La(s)ds a(t)dt) = tr((Çi + Çj)2L), 
3 

tr 

which completes the proof of (iii). q.e.d. 

If a i = 0 = a j , then ^ = 0 = £j and it follows from (i)-(iii) above 
that the Hessians at A of the real and imaginary parts of trhol i . j , 
tr hol£-i.i.£.j, and trhol£.~fi.j lie in U ij. Consider the gauge invariant 
functions A —> R defined by f = Re tr hol i lj , fu = Re tr holi-i.ii.j 
and gi = Im tr holi.ij . Then conditions (i) and (iii) of Proposition 6.8 
are satisfied for f, fg and gg. Condition (i) obviously holds, and condition 
(iii) follows from Corollary 2.7 just as in the case i = j since the loops 
for f and fg (coming from parts (i) and (ii) of Lemma 6.10) have trivial 
holonomy, and gg is the imaginary part of trace of holonomy. 

So, to complete the proof of 6.8, we just need to show that we can 
span U ij with the Hessians of such functions. Restricting elements in 
U ij to V i x V j we obtain 4 x 4 matrices as in (17). In contrast to the 
previous case when i = j , these matrices are not generally symmetric. 

Suppose a G V i and b G V j . Then j = 0 and i = 0. Let v = <p(Çi) G 
C2 and w = </>(j) G C2. If L = holg{A) G SU(2), (so L = L © 1), then 
Lemma 6.10 implies that 

Hessf(A){a, b) = tr{ÇiÇj) =-2Re(v,w), 

Hessfe{A)(a,b) = t r f i LCj L"1) = -2Re(v,L(w)), 

Hess gg(A) (a, b) = Imtr(L^ iÇj) = —Im({L(v),w) + (w,v)). 

Writing L n ( % J where a o r+is and ß = t+iu, then in terms of the 

real basis ( J) , ( i V (°) , ( i ) for C2, the bilinear pairing C2 xC2 ->• C 
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given by (v,w) t-> {v,L(w)) has real part represented by the matrix 

r —s t —u 
s r u t 

—t —u r s 
u —t—s r 

Likewise, the bilinear pairing C2 x C2 —> C given by (v, w) *-> {L(v),w) + 
(w, v) has imaginary part represented by the matrix 

s X — r u t 
r — 1 s —t u 

u —t —s 1 — r ' 
t u r — 1 — s 

Notice that the images of SU(2) under $ and \I/ span complementary 
4-dimensional subspaces of the 8-dimensional space of matrices of the 
form (17). 

Choose x,y G vri(X) as before so that g(x) and g(y) do not commute. 
We first claim that the Hessians at A of f,f x,f y and f xy are linearly 
independent. In fact, after restricting to V i x V j , they span the 4-
dimensional subspace of matrices (21). To show this, one only needs to 
show that the image of the set {I, g(x), g(y), g(xy)} under $ is linearly 
independent. Again, this follows from the hypotheses on g(x) and g(y) 
easily after assuming (by conjugation) that g(x) is diagonal. 

The complementary 4-dimensional subspace of U ij given by (22) can 
be spanned using functions gi. The image of the set {I, g(x), g(y), g(xy)} 
under ^ is linearly dependent because ^(I) = 0. However, a straightfor­
ward check shows that the image of {g(x), g(x2), g(y), g{xy)} under \I/ 
is linearly independent. Hence, it follows that the Hessians of g x,g x2,g y 
and g xy are linearly independent. Since their span is complementary to 
that of the Hessians at A of f,f x,f y and f xy, together they span U ij 
and this completes the proof of Proposition 6.8. q.e.d. 

References 

[1] S. Akbulut & J. McCarthy, Casson's invariant for oriented homology 3-spheres, an 
exposition, Math. Notes, No. 36, Princeton Univ. Press, Princeton, 1990. 

[2] H. U. Boden, Unitary representations of Brieskorn spheres, Duke J. Math. 75 
(1994) 193-220. 

(21) <&(L) = 

(22) * ( L ) = 



t h e s u ( 3 ) c a s s o n i n v a r i a n t 205 

[3] A. Casson, Lecture notes, MSRI Lectures, Berkeley, 1985. 

[4] S. Cappell, R. Lee & E. Miller, A symplectic geometry approach to generalized 
Casson's invariant, Bull. Amer. Math. Soc, New Ser. 22 (1990) 269-275. 

[5] S. K. Donaldson & P. B. Kronheimer, The geometry of four-manifolds, Oxford Math. 
Monographs, Oxford Univ. Press, Oxford, 1990. 

[6] A. Floer, An instanton invariant for 3-manifolds, Comm. Math. Phys. 118 (1989) 
215-240. 

[7] D. Freed & K. Uhlenbeck, Instantons and ^-manifolds, MSRI Ser., Vol. 1, 2nd Ed., 
Springer, New York, 1991. 

[8] S. Garoufalidis, On finite type S-manifold invariants I, J. Knot Theory Ramifications 
5 (1996) 441-461. 

[9] C. Herald, Legendrian cobordism and Chern-Simons theory on 3-manifolds with 
boundary, Comm. Anal, and Geom. 2 (1994) 337-413. 

[10] , Flat connections, the Alexander matrix, and Casson's invariant, Comm. 
Anal, and Geom. 5 (1997) 93-120. 

[11] , Existence of irreducible representations for knot complements with non-
constant equivariant signature, Math. Ann. 309 (1997) 21-35. 

[12] U. Koschorke, Infinite dimensional K-theory and characteristic classes of Fredholm 
bundle maps, Proc. Sympos. Pure Math., Vol. 15, Amer. Math. Soc, Providence, 
RI, 1986. 

[13] P. Kirk, E. Klassen & D. Ruberman, Splitting the spectral flow and the Alexander 
matrix, Comm. Math. Helv. 69 (1994) 375-416. 

[14] C. Lescop, Global surgery formula for the Casson- Walker invariant, Ann. of Math. 
Stud. Vol. 140, Princeton Univ. Press, Princeton, 1996. 

[15] R. Lee & W.-P. Li, Floer homology of rational homology 3-spheres, Preprint, 1995. 

[16] X.-S. Lin, Finite type invariants of integral homology 3-spheres: a survey, Preprint, 
1995, q-alg 9510003. 

[17] J. Morgan, T. Mrowka & D. Ruberman, The L2-moduli space and a vanishing theo­
rem for Donaldson polynomial invariants, Monographs in Geometry and Topology, 
Vol. II, Internat. Press, Cambridge, MA, 1994. 

[18] T. Mrowka & K. Walker, private communication of unpublished research, 1993. 

[19] H. Murakami, Quantum SO(3)-invariants dominate the Casson and Walker SU(2)-
invariant, Math. Proc. Cambridge Philos. Soc. 117 (1995) 237-249. 

[20] T. Ohtsuki, Finite type invariants of integral homology 3-spheres, J. Knot Theory 
Ramifications 5 (1996) 101-115. 



206 hans u . boden & christopher m. herald 

[21] , A polynomial invariant of rational homology S-spheres, Invent. Math. 
123 (1996) 241-257. 

[22] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, 
Functional Anal. Appl. 14 (1985) 31-34. 

[23] G. Schwartz, Smooth functions invariant under the action of a compact Lie group, 
Topology 14 (1975) 63-68. 

[24] C. Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 
547-599. 

[25] K. Walker, An extension of Casson's invariant, Ann. of Math Stud. 126, Princeton 
Univ. Press, 1992. 

[26] H. Weyl, The classical groups: Their invariants and representations, Princeton 

Math. Ser., Princeton Univ. Press, 1946. 

Ohio Sta te Univers i ty , Mansf ie ld 
S w a r t h m o r e C o l l e g e , S w a r t h m o r e 


