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NON-ZERO DEGREE MAPS TO HYPERBOLIC
3-MANIFOLDS

TERUHIKO SOMA

Let us consider two closed, connected, orientable manifolds M, N
with the same dimension n. Then, N is said to be dominated by M if
there exists a non-zero degree map f : M — N. In this paper, we study
the case where the dominated manifold N is hyperbolic. By an argu-
ment invoking the Gromov invariant, it is shown that the volume of N is
bounded by a constant depending only on M; see Thurston [9, Chapter
6]. According to H.C. Wang [11], there are only finitely many hyperbolic
n-manifolds with bounded volume if n > 3. This shows that the number
of mutually non-homeomorphic, hyperbolic n-manifolds dominated by a
fixed M is finite if n # 3. In the case of n = 3, a similar argument does
not work. In fact, by Thurston’s Hyperbolic Dehn Surgery Theorem
[9], one can have infinitely many hyperbolic 3-manifolds with bounded
volume, and hence Wang’s theorem of dimension three does not hold.
However, even in this case, we have the following theorem.

Theorem. For any closed, connected, orientable 3-manifold M,
the number of mutually non-homeomorphic, orientable, hyperbolic 3-
manifolds dominated by M is finite.

In [6], Reid and Wang proved the same assertion when M is hyper-
bolic and non-Haken by a method different from ours. We note that, by
using some arguments in Boileau-Wang [2, §3], one can prove that this
theorem does not hold when M is non-orientable. However, it would be
impossible to apply their arguments to the orientable case; for exam-
ple see Remark in §4. Moreover, our theorem is closely connected with
Problem 3.100 by Y. Rong in [5], where he asked whether there are only
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finitely many irreducible 3-manifolds N admitting a degree one map
M — N, that is, N is 1-dominated by M, for any closed orientable
3-manifold M. In [7, Corollary 4.1], Rong proved that, if this M is
Seifert-fibered of infinite m, then M 1-dominates only finitely many
Seifert fibered spaces of infinite 7. Recently, Hayat-Legrand, Wang
and Zieschang proved that any closed orientable 3-manifold 1-dominates
only finitely many Seifert fibered spaces of finite m; by generalizing their
results in [3], [4].

Our proof of Theorem is based on the argument in Thurston [10],
where a certain 3-manifold M is hyperbolized with ideal 3-simplices
by using a faithful, discrete representation p : m (M) — Isom™ (H?).
Here, we “hyperbolize” our M similarly by using a non-zero degree map
f: M — N to construct a simplicial complex G which consists of two
parts, an inner part and an outer part. In [10], Thurston only needs
the fact that the volume of the outer part O is small. However, in our
argument, the “area” of O is needed to be small as well as the volume.
To show the smallness, we consider a microchip decomposition for O.
Though a similar decomposition has been already used in Soma [8], we
are here required to treat the decomposition more carefully. Once the
smallness of the area is shown, one can deform the map f so that it takes
the outer part into the “black box” of N, which restricts the variety of
dominated hyperbolic 3-manifolds.

The proof of Theorem will be given in §4. In §§2-3, we will define
two kinds of decompositions, inner-outer decompositions and microchip
decompositions on the outer parts, for hyperbolic ideal 3-simplices and
simplicial complexes. When the reader wishes to know how such de-
compositions are used in the proof, she/he may glance in advance at
the introductory parts of §4 where outlines of the proof are presented.
It seems that any arguments analogous to ours have not appeared before
in the study of non-zero degree maps between 3-manifolds. The author
feels that our techniques in this paper may be useful in other situations
to investigate such maps.

1. Preliminaries

In this section, we will review briefly the fundamental notation and
definitions needed in later sections, and refer to Thurston [9] for de-
tails on 3-dimensional hyperbolic geometry and to Beardon [1] for 2-
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dimensional hyperbolic trigonometry.
For a subset A of a metric space (X, d), the d-neighborhood of A in
X is denoted by Ns(A4; X), that is,

Ns(4; X) ={z € X; igfld(a,x) < d}.

Let {(X,,dn)}>2, be a set of metric spaces admitting (marking)
homeomorphisms 7, : X — X,, for a fixed topological space X, and
let = ny o 77;01 : X — X,,. Choose a point z € X, and set z,, =
1 (x). We say that the sequence {(X,,, z,)} converges geometrically to a
metric space (Y, dy) with base point yg € Y in the right marking if there
exist sequences {e,, }, { Ry} with &, \, 0, R, /* 0o, and continuous (but
not necessarily homeomorphic) maps f,, : Ng, (zn, Xn) — Ng, (v0,Y)
satisfying the following (i)-(iii):

(i) For any z,2’ € Ng, (2n, Xn), |dn(z,3") — dy (fu(2), fn(2'))] < en.

(ii) For any y € Ng,(Y,yp), there exists z € Ng, (7, X,) with
dy (fu(2),y) < én.

(iii) If m < n, then nynNg, (@Tm, Xm)) C Ng,(zn, X,) and
dY(fm(fIf)afn o nm,n(x)) < & for any z € NRm (xmaXm)

Then, (Y, o) is called a geometric limit of {(X,,, z,)}, and a contin-
uous map satisfying the (i) and (ii) is an &,-pseudo-isometric map.

For a constant K > 1, a homeomorphism f : (X,dx) — (Y,dy) is
K-quasi-isometric if the map satisfies

Ly (z,2") < dx (f(2), [(2")) < Kdy (z,2")

K
for any points z,z’ contained in the same component of X. If both
diam(X), diam(Y) are not greater than R > 0, then the K-quasi-
isometry is a (K — 1) R-pseudo-isometric homeomorphism.

Throughout this paper, we fix an orientation of the hyperbolic 3-
space H3. A non-degenerate, oriented 3-simplex A in H3 is positive if
the orientation is compatible with that of H3, and otherwise negative.
If A is an ideal 3-simplex in H? all whose vertices are contained in the
sphere S2 at infinity, then A admits an isometric Zo x Zo-action gener-
ated by elliptic elements. Let {v1,ve,vs,v4} be the set of vertices of the
A, e;j the edge of A connecting v; with v;, and D; the face of A oppo-
site to v;. We suppose that the vertices are numbered so that the triad
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(v1 — v4,v9 — V4, v3 —v4) of vectors forms the frame compatible with the
orientation of A. We direct each e;; from v; to v; temporarily. For any
even permutation (i,7,k,1) of (1,2,3,4), there exists a unique element
v € Isom™ (H?) taking Dy, onto D; and fixing v, vj. Then, the edge in-
variant z(e;;) is the complex number whose modulus is the translation
distance of v with respect to the direction of e;;, and whose argument is
the angle of rotation of . Clearly, the invariant is independent of the di-
rection of the edge, that is, z(e;;) = z(ej;). By the Zy x Zy-symmetry of
A, mutually opposite edges of A have the same edge invariant. More-
over, z(ea3) = z(eq1) = (z — 1)/z and z(e13) = z(ew) = 1/(1 — 2) if
z = z(e12) = z(ess); see [9, Chapter 4] for details. Even in the case of A
degenerated, the edge invariant is defined similarly. Then, for any edge
e of the A, the invariant z(e) takes the value in R — {0, 1}.

A Kleinian group T is a discrete subgroup of PSLy(C) = Isom™ (H?),
the group of orientation-preserving isometries on H?. Assume that T is
torsion free or equivalently it has no elliptic elements. Then, the quo-
tient space N = H?/T is a hyperbolic 3-manifold, and the quotient map
p: H3 — N is the locally isometric, universal covering. For an £ > 0,
the e-thin part Nypin(.y of IV is the set consisting of all points z € N such
that there exists a non-contractible loop I in N with [ 3 z and of length
< e. The complement Nipjae) = N — inbNypiy(e) is called the e-thick
part of N. According to Margulis Lemma [9, Corollary 5.10.2], there
exists an gy > 0 independent of T" such that, for any £ > 0 less than
g0, each component of Nipick(e) is either an embedded, tubular neigh-
borhood of a closed geodesic (called a Margulis tube), or a Z-cusp or a
Z x Z-cusp C, that is, each component of p~1(C) is a horoball the sta-
bilizer of which in T' is isomorphic to either Z or Z x Z. If Vol(N) < oo,
then N has at most finitely many Margulis tubes. If necessary replacing
£ by a sufficiently smaller positive number, we may assume that Ny (e)
has no Margulis tube components. Then, each component of Nypi, () is
a Z x Z-cusp.

2. Inner and outer parts of ideal simplices

In this section, we will present two kinds of d-inner-outer decompo-
sitions for any non-degenerate, ideal 3-simplices A in H? and any small
é > 0. It is an important fact that the diameter of each component of
the §-inner part of A is bounded by a constant independent of A. We
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will define a d-microchip decomposition C for the d-outer part of A. It
is crucial in the proof of the main theorem that one can choose the § so
that the total sum of the areas of the boundaries of d-microchips in C
is arbitrarily small.

Roughly speaking, the §-outer part of an ideal 3-simplex is a union of
small neighborhoods of its edges. It has the property that it is the union
of bounded diameter 3-cells (microchips) whose total area is bounded
by a linear function of §. Furthermore, its complement, the §-inner part,
is compact. We require two kinds of decompositions to deal with cases
when the §-inner part is either connected or disconnected.

Let D be an ideal (straight) 2-simplex in H? such that all vertices
of D are in the circle SL at infinity. If 0 < 6 < arcsinh(1/+/3), then the
closure T in D of the complement D — N3(9D, D) is a triangle. The
convex hull Dy, ) in D spanned by the three vertices of T is called the
o-inner part of D. Note that Di,,s) is a triangle with geodesic edges
and containing 7". The closure D5y of the complement D — Dy (5) 18
called the d-outer part.

Let A be a non-degenerate, ideal 3-simplex in H? such that all ver-
tices v1,v9,v3,v4 of A is in S%, and D; (i = 1,2,3,4) the face of A
opposite to v;. The edge of A connecting v; with v; is denoted by
e;j = ej;. Take 0 > 0 such that each D;n, ) is a triangle. For each
vg, let wy, (k # i) be the vertex of Dy s adjacent to v;, and let
T; = T;(0) be the totally geodesic triangle in A spanned by wg’s with
k€ {1,2,3,4} — {i}. Note that all T; (¢ = 1,2,3,4) are isometric to
each other.

Let u;z; be the foot of the perpendicular from w;; to e;; in Dy.
The convex hull A;; = Aj; of wik, wip, Wik, Wi, Wikjs Wi, Wikis Wy in A is
called a d-arm of A for {k,l} = {1,2,3,4} — {i,7}, see Figure 2.1.

FicGure 2.1
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The boundary JA;; consists of ten totally geodesic triangles such that
eight of them meeting e;; non-trivially have edges of length § and hence
their areas are less than d. Since either T” of the other two has a geodesic
segment « of length < 26 connecting some vertex of 7' with the opposite
edge, Area(T) is less than 46. This implies that Area(0A;;) < 164.

For any 4,5 € {1,2,3,4} with ¢ # j, let J;; (resp. J;;) be the convex
hull in A spanned by v; and w’s for k € {1,2,3,4} — {i} (resp. by v;
and w;g, wi;’s for k € {1,2,3,4}— {7, j}). We call the union J; = U}_, Jy
is a 0-joint of A and each Jj; is a §-subjoint of J;; see Figure 2.2.

FIiGURE 2.2

The intersection A;;N.J; is the (possibly degenerated) tetrahedron spanned
by Wik, Wil Uikg, Ugly with {k,l} = {1, 2, 3,4} - {Z,j} When j 7'é ’i, 8Jij
consists of five totally geodesic triangles four of which have edges of
length ¢, and the other 7" has a geodesic segment of length < 26 con-
necting some vertex of T” with the opposite edge. Thus, the area of
0J;; is less than 84.
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Here, we will see the behavior of T;(d) as § — 0.

Lemma 1. With the notation as above, the following (i)-(iii) hold:

(i) sups{diam(T:(5))} < oo.
(ii) Area(T;(9)) < 84.

(iii) There ewists a geodesic line L in H3 with T;(§) C Nos(L, H?)
which passes through a vertex of T;(0) and tends toward v;.

Proof. We may assume that 1 = 1. Cut Dy U D3 U Dy along e5 and
develop it isometrically to the upper half space model {z € C;Im(z) >
0} of H2, as illustrated in Figure 2.3, so that the images @12, W13, W14
of w19, W13, W14 in H2 are

v—1 N _2—|—u v—1 N _2—|—2u—|—v v—1

1
§+25inh(5’ Wiz = +2$inh5u’ W 2 QSinh(Sv7

w12 =

where u,v > 0 are the constants given in Figure 2.3 which depend only
on A.

FI1GURE 2.3
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Note that
diam(T1(d)) = 223);4{dlstA(w1i,w1j)}
< diStA(wlg, w13) + diStA(wlg, w14)
< distyge (W12, W13) + distyge (W13, W14).
Since
distgye ! —lu ) [log u
H® \ 26inh §’ 2sinh ¢ &
and
dist vV—lu +/—1v ‘1 u
isty: = —
StH? 2sinhd’ 2sinh § © ’
we have

}irr(l](distHz (W12, W13) + distype (Wi, Wia)) = |logu| + ‘log ﬁ‘ .
5 v

This proves (i).

We set yo = min{l,u,v}. Let wi; be a vertex of T1(d) such that
the imaginary part of @; is v/—1yo/(2sinh ), and let p be the geodesic
ray in A, called a longest ray, emanating from w; and tending toward
v1. Then, dista(p,wig) < 2§ for k € {2,3,4} — {j}, note that the p in
Figure 2.3 is the image of p. Thus, for the geodesic line L with L D p,
Nos(L, H?) contains T1(6). This shows (iii).

By (iii), 71(0) contains a geodesic segment of length < 44 connecting
some vertex of T1 () with the opposite edge, and hence Area(T;(d)) <
89, which is the consequence of (ii). q.e.d.

By Lemma 1 together with the argument in the paragraph preceding
the lemma, we have

4

}1_{% 2 Area(0J;;(6)) = 0.
The union A5 = (Ur<icj<adyi) U (Ut Ji) is called the d-outer part
of A, and the closure Ay;,5) of the complement A — A5 is the d-
wnner part. We say that the union 7 =17 U 15 UT5 U Ty is the turning
section of Apps).-
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By Lemma 1 (i), diam(7;(d)) is bounded by a constant independent
of §. However, diam(7;(6)) diverges to the infinity if z(e) — 1 in C for
some edge e of A. This is inconvenient for us to analyze a geometric limit
of the d-inner parts of ideal 3-simplices. If z(e;;) = z(eg;) is sufficiently
close to 1 for some {3, j, k,1} = {1,2,3,4}, then

dist A (wijk, wjin) =dista (wiji, wjs) = dista (g, ki)

(21) |
ZdIStA(uklj, ulkj) <.

We say that A is d-stretched if it satisfies (2.1), and otherwise A is
d-normal.

Here, we will consider the case where A is ¢-stretched, and de-
fine another J-inner-outer decomposition for A. If necessary renum-
bering the vertices of the A, it may be assumed that dista (w193, u213) =
diStA (U124,U214) = diStA(U,341,U,431) = diStA (U342,U432) S (5; see Figure
2.4.

FI1GURE 2.4

Since the loxodromic element v € Isom™ (H?) with y(vy) = v1, y(ve) =
vy and y(u431) = us41 Maps wiz to wia, waz to w34, and uizs O U143,
we have

dista (wij, wik) < 6, dista(wjg, wy;) < 0 and

(2.2) i
dista (Uz’jka Uz’kj) <4

for (i;4,k) = (153,4),(2;3,4),(3;1,2) and (4;1,2). The é-arms A}, and
A%, here are equal to A and Aszg respectively. The d-arm A} is the
convex hull of W13, W14, W34, W43, U134, U143, U341, U431. The boundary

525
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0 A] consists of 12 totally geodesic triangles each of which has the area
< 0. Thus, the area of 9A] is less than 124; see Figure 2.5.

FiGURE 2.5

The d-arms A}, A%, A} are defined similarly. By the Zy x Zy-symmetry
of A, all these A} are isometric to each other. We set Jj, = Jia, J5; =
J21, J§4 = J34, J4,13 = J43. The convex hull of V1, W13, W14, U134, U143 18
denoted by Ji5,. The convex hulls Ji,,, J4,,, Ji;5 are defined similarly.
Then, the unions Jj = Jijo U Jis4, J) = Joy U Jhay, Jg = J5 U J419, J) =
Ji5 U Ji1o are called d-joints of A. Tt is easily seen that Area(d.Jj;) < 64
and Area(dJ];,) < 56 for all these Jj; and J;;;. We need to consider the
other d-joint Jj which is the convex hull of wyo, wo1, w34, was, w123, U124,
U913, U214, U341, U342, U431, U4a32; See Figure 2.6.

FiGURE 2.6.
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Since 9J)) can be divided into 20 totally geodesic triangles each of which
has an edge of length < g, the area of 3Jy is less than 206. The union

Agu(sy = (U= Af) U Ay U Ay U (U?:OJJI‘)

is called the d-outer part of A, and the closure Ay, 5y of the complement
A — Agyisy is the d-inner part in the d-stretched case. The intersection
7 = Ajpp(sy N (U?':()JJI') is called the turning section of Ajpsy - By (2.1)
and (2.2), 7 consists of six geodesic segments of length < §. Note that
Ainn(sy consists of two components.

A d-microchips C is a compact Riemannian 3-manifold isometric to
a convex polyhedron in H? of diameter < 105. For a set C = {C)\; A €
A} of d-microchips, OC is the set {0Cy;A € A} with the total area
Area(dC) = 3, Area(dC)). When the rule of the intersection CyNC),
of any two elements Cy,C,, € C is determined, the union UycpC) with
the arcwise metric induced from those of C)’s is denoted by LIC.

Now, we define a -microchip decomposition for A,y ) in the case
where A is d-normal. Let {P,;n € Z} be the set of totally geodesic
planes in H? perpendicular to e;; with distgs(P,, Pyr1) = 26 for any
n € Z. These planes decompose the §-arm A;; into d-microchips; see
Figure 2.7.

FI1GURE 2.7

Similarly, J;;’s are decomposed into d-microchips. For example, 24-
equidistant, totally geodesic planes in H? perpendicular to a longest
ray connecting a vertex of 1} with vy separate Ji; into §-microchips.
The union Ca of all these microchips defines a d-microchip decomposi-
tion for Agyys), that is, LICA = Agyz)- We note that there may exist
C1 € Cain A;j and Oy € Ca in J; such that intCy NintCy # (. However,
it does not cause any problem in our argument. Also in the §-stretched
case, a d-microchip decomposition Ca for Agyq sy is defined similarly.

Lemma 2. In either case, there exists a constant K > 1 inde-
pendent of 0 and A such that, if C' € Ca is contained in a §-arm
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A (resp. a d-subjoint J), then Area(dC) < KArea(dC N JA) (resp.
Area(9C) < KArea(0C NAJ)). q.e.d.

The proof is elementary, so it will be left to the reader (cf. the proof
of [8, Lemma 2]). Since lims_,q Area(0A) = 0 and limy_,g Area(dJ) =0
for any d-arms A and é-subjoints J, Lemma 2 implies the following.

Corollary 3. Suppose that any ¢ > 0 and any non-degenerate, ideal
3-simplez A in H? are given. Then, there exists 69 > 0 such that, for
any 0 < 0 < o, there is a d-microchip decomposition Ca for Agyys) (or
Aqui(sy) with the total area Area(dCa) < e.

3. Ideal simplicial complexes

In this section, we will investigate ideal simplicial complexes and
extend the notation for a single 3-simplex given in the previous section
to those for such complexes.

Let Aq,...,A, be non-degenerate, oriented, ideal 3-simplices in H?
such that all vertices of A; are contained in S%. Remove all edges
from A; and denote the resulting simplex by A7. We suppose that each
face Dy, of A? has the orientation induced from that of A?, that is, the
combination of a positive frame of D7; and a normal vector on DJ; to A7
directing outward defines the orientation compatible with that of A?.
Identifying faces of Af’s suitably by orientation-reversing isometries,
one can construct a connected 3-manifold G°. The fundamental group
m1(G°) of G° is a free group. Since the attaching maps are orientation-
reversing, G° has a unique orientation compatible with that of each A7.
The boundary 0G° is the disjoint union of all faces not identified with
any other faces. We say that G° is an ideal simplicial complex obtained
from AY,...,Ap.

Let p: G° —> G° be the universal covering, and let inc; : A — H?
be the inclusion. We will define a developing map d :Néo — H?in a
usual manner. Let {AZ} be the set of all lifts to G° of AY’s. Fix
a base simplex A,‘i in éo, and define that d\ﬁi = ing; op\ﬁi, where
AY = p(A%). When A° N AS # §, the restriction d|A2 is defined by
fri o incg op]ﬁg : AZ — H?, where AS = p(ﬁg) and fy; € Isom™ (H?)
is the map extending the attaching map from a face of A} to that of A7.
The developing map d is obtained by repeating the same process and
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by extending the map one by one. Note that, if adjacent simplices A;
and Aj have distinct signs, then d(intAg) N d(intAj) # 0 in H3 even
though intﬁgé N intﬁ% =0 in G°. The developing map is illustrated in
Figure 3.1 schematically.

FiGURE 3.1. The shaded triangles represent negative 3-simplices

The map d introduces a holonomy p : w1 (G°) — Isom™ (H3) with p(v)o
d = dor, for all v € 71(G°), where 7, is the covering transformation
on G° associated to ~. The complex G° can be extended to the union
G = A1 U---UA, as a metric space if p(y) is either trivial or elliptic
for v € m(G°) corresponding to the meridians of any edges in the
1-skeleton of G. We say that the G is the complete ideal simplicial
complex (obtained by completing G°) if G is complete as a metric space.
Some arguments in [9, Chapter 4] imply that, if p(71(G°)) is discrete in
Isom™ (H?) but G is not complete, then the metric completion of G is
a union of G and finitely many geodesic loops.

For any small § > 0, the union Giuy(s) = U1 A inn(s) 18 called the
o-inner part of G°, where each A i, (5) denotes the d-inner part of A; in
either the d-normal or é-stretched case. The closure Ggut( 5) in G° of the
complement G° — Giny(s) is the d-outer part of G°. The turning section T
of Ginn(s) is the union of turning sections of all A; 1,5y By Lemma 1 (i),
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(2.1) and (2.2), the diameter of each component of 7 remains bounded
as 0 — 0. We suppose that 0G° is empty, that is, each face of A}’s is
necessarily attached to another face of some AJ. Then, each component
R of 0Ginn(5)—7 is an open annulus, and hence 71 (R) is an infinite cyclic
group generated by a single element v € w1 (R).

Here, we consider the case where p(vy) is trivial, and present a set
of d-microchips Cp, such that LCg, is a solid cylinder with the side
Ry = (UCg,) N R, where a 3-manifold A with dA D B is called a solid
cylinder with the side B if there exists a homeomorphism h : (4, B) —
(D? x[0,1],0D? x[0,1]). Then, JA —intB is called the union of top and
bottom of the solid cylinder. Renumbering 3-simplices of G° if necessary,

one can assume that the first m Aj,... A} are the 3-simplices meeting
R non-trivially so that Af is adjacent to A7, for 4 = 1,... ,m and
A L = AL

First, let us rearrange the position of each A; in H?. Cut open the
union AJ U ---U A7, along all common faces disjoint from R so that
the resulting union contains R as a deformation retract. Since then
p(m (AJU---UA? ) = p(mi(R)) = {1}, the developing map d induces
the continuous map d : AJU--- UA2, — H? with d(A?) = d(ﬁ;(i))
for some lift AZ(i) of A?. We regard d(AS) as AS in a new position,
and hence aA;’ is the identity. Let A; be the d-arm of A; meeting R
non-trivially, and set A7 = A; N A7. If A; is d-normal, then A; meets
non-trivially only one edge e; of A;, otherwise A; does two edges €., e/
of A;. By the triviality of the holonomy, the restriction E‘Ag’u---uAgn can
be extended to a continuous map d: A U---UA, — H.

If all A; (4 = 1,...,m) are d-normal, then there exists a geodesic
line I in H? with d(e; N A;) C L for alli € {1,... ,m}. Let {P;;j € Z}
be the set of totally geodesic planes in H? perpendicular to L with
distygs (P}, Pj41) = 26 for all j € Z. For k,l € Z (k <), let Qg be the
closure of a component of H? — P, U P, with 0Qy, = P, U Fy. Consider
the maximum @ ; such that Ry = c/l\_l(Qk,l) NR is a (compact) annulus.
Then, c/i\_l(Ué:kPj) defines the J-microchip decomposition for the solid
cylinder d™1(Qgy) C A1 U--- U 4, with the side Ry.

Now, let us consider the case where some of A;’s are not d-normal.
We set

_ diStD(Dinn((F)a 8D)

(3.1) v(0) 1000

for a straight ideal 2-simplex D in H? each vertex of which is contained
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in SL, where “1000” is added so as to make v(§) sufficiently smaller
than ¢ and has no other special meanings. Suppose that some of A;
are v(0)/m-stretched and all the others are d§;-normal for some fixed
01 > 0, that is, all the 3-simplices belong to one of the two extreme
groups. Then, there exists a geodesic line L such that Ny(g)(L,H3)
contains all A; Ne; (or A;Nel, A;Nel) for i =1,...,m. We take a
set {Pj;j € Z} of totally geodesu: planes and the Set Qk, as above.
Note that, for the closure R of R in OGinn(s)s R; = A; N R consists of
two totally geodesic triangles 7;j1,7T;2. For any 57 € Z with k < j <[,
P; N (0T;1 U 0T;2) consists of three points :Eg %, x%, :Eg 3)) as illustrated in
Flgure 3.2.

FI1GURE 3.2

For k < 3 <1 —1, the convex hull C; of wgi, %,w%,xﬁl 1> 5212,

x§1173,yj,yj+1 is a d-microchip, where y; is the intersection point of
L with P;. We orient each Cj; so that the induced orientation on
R; N C;; is compatible with that of R; C R. Let us start with mutu-
ally disjoint copies of Cj ;, still denoted by C;;, and consider the set

Cr, of them. We identify C;; with C} ;41 along the totally geodesic

rectangle spanned by mgll l,xgi_i)_l 99 54)-1 3 Yjr1 for 5 = k... 01— L

Let T;; be the (possibly degenerated) tetrahedron in H3 spanned by
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@ _ G+ @  _  (+1) i
Tig =Tiy HTilys =T Y5 Y+1. When Gy and Ciqyy have dis-

tinct signs, we attach C; ; to Cjy1 ; along the two faces FZ-%-), Fz(j) of T; ;

contained in both 9C; ; and 0C;11 ; so that C; ; N Cip1; = Fz(j) U Fzg),
see Figure 3.3 (a). Otherwise, we attach C; ; to Cj1; ; along T; ; so that

C;,; N Ciy1,; = T j; see Figure 3.3(b).

Ficure 3.3.

Then, the union LICg, is the solid cylinder with the side Ry = da-! (Qr)N
R.

In the J-normal case, the solid cylinder LICg, is “ready-made”, but
in the latter case, it is “made-to-order”. By our construction, we have
the following lemma.

Lemma 4. For any e > 0 and §; > 0, there exists 6g = do(e, m, d1)
with 0 < &g < 01 such that, for any 0 < § < &g, the set Cr, of 0-
microchips defined as above satisfies the following (i)-(iv):

(i) The union UCg, is a solid cylinder with the side Ry.
(ii) Area(dCp,) < e.

(i#i) The restriction d|Ry : Ry — H? can be extended to a continuous
map dg, : UCr, — H3 such that, for each Ci; of Cry, dr,|Ci
s an isometric embedding.

(iv) Any component W of (R—intRy)UQ, called a capping disk for T,
is contained in the (6m + 5)d-neighborhood of TNW in W, where
Q s the union of top and bottom of UCR,.
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Proof. The assertions (i) and (iii) are immediate from our con-
struction. One can choose d; > 0 so that the assertion (ii) holds by
the argument analogous to that for the proof of Corollary 3. So, it
remains to show (iv). Let S be a component of R — intRj. Since
disteps (Pe—1, Pr) = distys (P, Pi+1) = 26 and since each edge of the
triangles Ty, Ty in R; connecting the two components of the annulus
R meets P;’s almost orthogonally, there exists a geodesic arc a in S of
length < 36 connecting the component 9,5 = RN S of S with the
other component d_S = 3Ry N S. For any z € S, let P, be the totally
geodesic plane in H? perpendicular to I and containing dg,(x). There
exists an arc § in SN c/l\_l(Pm) connecting x with a point in 9y RU «
and such that 5 consists of at most 2m geodesic segments each of which
is of length < 2§ 4+ 2v(d) < 36, and hence of length(8) < 6md. Thus,
S is contained in the (6m + 3)d-neighborhood of 9.5 in S. Let Qy be
the component of () with Qg = 0_5; so W = 5 U () is a component
of (R — intRy) U Q. Since each point of @y and some point of 9_S
are connected by a geodesic segment of length < d + v(6) < 24, S is
contained in the (6m + 5)d-neighborhood of 9.5 = 7N W in W. This
completes the proof. q.e.d.

4. Proof of Theorem

Our main theorem is proved by reduction to absurdity. So, we may
assume that there exists a closed, connected, oriented 3-manifold A
dominating closed, connected, oriented hyperbolic 3-manifolds N,, (n €
N) which are not homeomorphic to each other. Let f,, : M — N, be
a non-zero degree map. According to Thurston [9, Chapter 6], for any
n € N,

where ||M|| is the Gromov invariant of M, and v3 is the volume of a
regular, ideal simplex in H3. Thus, the volumes Vol(N,) are bounded.
By J¢rgensen’s Theorem [9, Chapter 6], if necessary taking a subse-
quence of {N,} instead, we may assume that there exists a complete,
connected, oriented, hyperbolic 3-manifold N with Vol(N) < oo such
that each N, is obtained by hyperbolic Dehn surgery on N. In partic-
ular, we have sequences {e,}, {K,} with &, \ 0, K, \, 1 so that there
exist Kp-quasi-isometric diffeomorphisms gy, : Ny, thick(e,) — Nihick(e,)-



534 TERUHIKO SOMA

Here, we will give an outline of the proof of Theorem. It may be
helpful for the reader to understand our overall strategy.

Step 1. By modifying M and f,, we will first construct ideal sim-
plicial complexes Gy, and continuous maps f,, : G, — N,, which are
locally isometric on each simplex. In fact, the complex G,, is the union
of ideal straight 3-simplices A; , obtained by straightening singular 3-
simplices fnlﬁz : KZ — N, for any topological 3-simplices KZ in a fixed
simplicial decomposition on M. Note that the diameter of each com-
ponent of the é-inner part of G, is bounded, and each ideal 3-simplex
in GG, is parametrized by an element of the compact set C. Then,
Ascoli-Arzeld’s Theorem implies that there exists the “essential §-inner
part” Z,, in Gy, jnn(s) which has the property that, by passing to a subse-
quence if necessary, {f}|Z,, : Z, — N, } converges to a continuous map
'+ T — N which is locally isometric on the inner part of each ideal
simplex in Z. We decompose G, into the 7,, and other two submanifolds
Oy, Z, which have pairwise disjoint interiors and Z,, N Z,, = @), and such
that the topological type of (G;Zy, O, Z,) is independent of n € N.
The submanifold Z,, is the “inessential d-inner part” which has the prop-
erty that, for any £ > 0 and all sufficiently large n, f},(25) C Ny thin(e)-
The other submanifold @,, is the “d-outer part” of G,, and is controlled
in the following sense:

(i) lims_, g sup,{Vol(O,)} =0, and

(ii)) There exists a d-microchip decomposition C, on O, with
limg_,o sup,,{Area(dCy,)} = 0.

Step 2. Again by passing to a subsequence if necessary, one can
modlfy Gn, [, Tn, Op and construct a new manifold Gn, a map fn :
Gn, — N, and a decomposition In, (’)n, z, (= Z,) on G, which satisfy
the same conclusions as (i), (ii) in Step 1 and moreover

(iii) pxu(71(X)) is a non-trivial parabolic group for each component %
of 0Z, where px : 71 (X) — Isom™ (H?) is the restriction of the
“holonomy” of Z.

Here, let us first fix a constant \g > 0 so that ﬁl( L) N0 Ny, thin(r) = 0,

where L is some part added to O,, under our modification. By using the
parabohclty, one can next choose § > 0 so that fn(al ) CintNy, thin(ro)
for all n € N.
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Step 3. We finally choose ¢ > 0 with £ < Ay so that

o~

Jo(Za) 0 Ny shici(e) = 0-

By using (ii), ]/”;1 can be modified again so that the resulting map
Pn : G —> Ny, _satisfies that 1/)n]8fn is a non-zero degree map onto
ONy, thin(e)> and ¥ (I, U Z,) is contained in the union of Ny, ihin(.) and a
l-complex Ty, in Ny, shick(s). We note that the (ii) is crucial in our argu-
ment. In fact, without the (ii), one would only show that 12)\” (fn UZ,)
would lie in the union of Ny, thin(.) and a 2-complex in Ny, thici(e), and
hence one can not invoke Lemma 5 below. However, in our case, one can
show that V,, have the same topological type for all sufficiently large
n € N by using Lemma 5. This contradiction completes our reduction
to absurdity.

We say that a contractible 1-complex T' is a star of degree n if T’
consists of n edges which have a common vertex. The following lemma
suggested by David Gabai is a cleaned-up version of a certain proposi-
tion in the original manuscript.

Lemma 5. Let W be a compact, oriented 3-manifold, T = 11 U
-« UT, a disjoint union of tori, and I' a star of degree n such that
I'NT; is a single end point of T' for each i € {1,... ,n}. Suppose that
w: OW — T is a continuous map such that, for each Ty, the degree
d; of ol (T;) : o~ YT;) —> T; is non-zero. Then, there is at most
one way to extend T to a disjoint union V = Vi U--- UV, of solid tori
with OV; = T; such that ¢ extends to a continuous map ® : W — VUI.

Proof. Suppose that there exists a continuous map & : W — VUT
extending . Consider a meridian disk D; for V; with 9D; N T = 0.
If necessary after modifying ® by a proper homotopy, we may assume
that @ is transverse to Dy U ---U D,,. Then, each F; = ® (D;) is
a compact, orientable surface in W with 9F;, € 0W. Orient F; so
that ¢.([0F;]) = d;[0D;] in Hi(T;;Z). Consider another continuous
map & : W — V' UT extending ¢, where ¥V = V/ U---UV] is a
disjoint union of solid tori with 0V = T;. Since ®'(F;) is contained in
V'UT, p.([0F;]) = d;[0D;] = 0 in Hi (V' UT;Z). Since d; # 0 and the
homomorphism Hy(V/;Z) — H; (V' UT'; Z) induced from the inclusion
is injective, we have [0D;] = 0 in H,(V/;Z). Hence, dD; bounds a
meridian disk in V. This completes the proof.  q.e.d.

535
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Remark. In [2, Theorem 3.4], Boileau and Wang asserted that there
exists a closed, orientable, hyperbolic 3-manifold M dominating in-
finitely many, mutually non-homeomorphic, hyperbolic 3-manifolds N,,.
This contradicts our main theorem. However, the maps f, : M — N,
used in their proof seem to be of degree zero, so N, may not be domi-
nated by M. In fact, in their situation, each N,, is obtained by attaching
a solid torus V,, to a fixed, compact 3-manifold X along the torus bound-
ary X. Moreover, there exist homeomorphisms h,, : T?2xT — f1(V,,)
with f,, 0 hyy|0(T2% X I) = fp, 0 hp|O(T? x I) : 9(T? x I) — 90X for all
n,m € N. If deg(f,) = deg(fn o hy : T2 x I — V,,) were non-zero,
then by Lemma 5, there would exist a homeomorphism from N,, to N,
extending the identity of X, a contradiction.

First of all, let us suppose that M admits a simplicial decomposition
D. Let V(D) be the set of vertices of D, and let 31,... ,ﬁm be the
3-simplices of D. Consider a Kleinian group II,, with N,, = H3 /I, and
the universal covering py, : H3 — N,. Choose an oriented, geodesic
line ! in H? which is in general position with respect to II,, that is,
for any mutually distinct 'y,'y € Il,, there exist no totally geodesic
planes P containing 'yl U 4'l, in particular 'yl N 'yl = (). The image
= pn(l) is a simple, oriented geodesic in N,,. Deform f, by homotopy,
one can assume that (i) f,(V(D)) C I and (ii) for each edge e of D,
fnle : € — N, is not homotopic rel. de to an arc in [. For any i €
{1,...,m}, straighten the singular 3-simplex fnlﬁz : A; — N, along
l and denote the resulting simplex by A;,. Precisely, consider a lift
fn\giN: KZ — H? of fn\gl and the components lNl,lNQ,lNg,L of p;1(I)
with fy,(v;) € lj for j = 1,2, 3,4, where v;’s are the vertices of A;. Each
le has the orientation induced from [ via p,. Then, A;, is isometric to
the ideal simplex in H? spanned by the terminal points of lNl,lNg,lNg,,L in
S2 . By the assumption (ii) above, I; N1 = 0 if j # k. Thus, each A, ,,
is non-degenerate.

By identifying faces of A, (¢ =1,... ,m) suitably, we have a com-
plete ideal simplicial complex G,, admitting a continuous map f;
Gn — N, and a (marking) homeomorphism 7, : M — V(D) — G,
such that (i) nn(A; — A; N V(D)) = A p, (ii) f} o1y is homotopic to
n|(M —V (D)), and (iii) for each Ay, fi1Ain @ Ajy — Ny is a lo-
cally isometric immersion. In particular, f] is locally arcwise isometric,
that is, for any rectifiable arc « in Gy, length (a) = lengthy (f)(a)).
Thus, we have the following (4.1).
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(4.1)  For any z,y € Gy, distg, (z,y) > distn, (f,,(x), f} ().

For the edge e;, of A;, corresponding to a fixed edge e; of Ki, we
set 25 = 2(e4,n). If necessary passing to a subsequence, we may assume
that, for alli € {1,... ,m}, {2, }n2, converges to a point z; € CU{oo}.

If z € R —{0,1}, then {A;,}52, converges geometrically to a to-
tally geodesic, ideal rectangle R in H? in the right marking. Thus, the
four faces D; 1., (kK = 1,2,3,4) of A;, converge geometrically to non-
degenerate, ideal 2-simplices D; y in R with D;1UD; 9 = D; 3UD; 4 = R
under a suitable numbering of D; ;’s. Let fi”n Ay — H? be a lift of
the restriction f1|A;, : Ajy — Ny to p, : H* — N,,. By rearranging
the position of fN‘il,n(Ai:n) in F3, we may assume that fN‘il,n(Ai:n) is con-
tained in a sufficiently small neighborhood of R in H?. Choose z € 52,
so that the suspensions A"k of D;;’s from xy are non-degenerate, ideal
3-simplices. For all sufﬁc1ently large n € N, the suspensions A?,  of

Z’ n(Di k) from zo are non-degenerate. Let us start with mutually
disjoint copies of A7, (k =1,2,3,4), still denoted by A7, and glue
them along their faces which are equal to each other in H3. The resulting
complete, simplicial complex B; ;, is homeomorphic to a 3-ball B minus
five points four of which are contained in 8B, and the boundary 0B, ,
is 0A;,. Tt is easily seen that the restriction f}|0D;y, : 0D, — N,
can be extended to a continuous map fi’m : B;, — Ny such that each

il A g+ A7y, — Ny is a locally isometric immersion. Let us re-
move intA; from Gy, and glue B; ,, to G, —intA; ,, by the identity map
of 8Bz7n = aAz,n

Next, we consider the case of z; € {0,1,00}. If necessary renum-
bering the vertices of A;,, we may assume that z(ei2,,) = z(e34y)
converges to 1. Let C be the double of two copies of a regular ideal
simplex Ay in H? along three faces of Ag. Then, C is homeomorphic
to a 3-ball B minus four points three of which are contained in 9B.
Cut G, open along the two faces Dj 1., and Dj 3., of Aj,, (but do not
remove Aj,) and glue two copies 01 and C3 of C' to the cut complex
G by an isometry 9Cy, — DJ kn U ] ik for k = 1,3, where D+k ., and

Dj,k;n are the 2-simplices in aGV corresponding to D x.,. There exists
a continuous map fi, . : Cx — N, extending f \Dﬂm JLDj kn
and such that, for each ideal simplex Ag in Cy, f! .. |A¢: Ay — Ny

is a locally isometric immersion.

i,k;n

jkn

We perform the same process for all A;, with z; € R U {0}, and
denote again the resulting complex by G, and the corresponding de-
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composition for M by D = {31, - ,gm} The continuous map from
Gn to N, constructed from the original f] together with Z-’m’s and
] k'S 18 again denoted by /1. By these modifications, it suffices to
consider the case where any z; is contained in (C —R)U {0,1,00}, and
if z; € {0,1, 00}, then there exist two 3-simplices Ay, adjacent to A,
each of which converges geometrically to a non-degenerate 3-simplex.
Let us choose ¢; > 0 as follows.

(4.2) For any z; contained in C — R, an ideal 3-simplex with the edge
invariant z; is d1-normal.

If z; € C — R, then it is easily seen that {A;,} converges geo-
metrically in the right marking to an ideal simplex A; with the edge
invariant z(e;) = z;. Thus, for any 0 < § < ¢1, one can construct the
vp-pseudo-isometric homeomorphisms ¢; , with v, \, 0 realizing the ge-
ometric convergence 5o that ©; »(A;inn(s)yn) = Ai,inn((;) and @; p|0A; ;N
A inn(d)n 2 OBin NA inn@g)m — OAiN A jun(s) is isometric. In the case
of z; € {0,1, 00}, we may assume that z(ei2 j;,) = 2(e34,5n) converges to
1. For any 0 < ¢ < 41, there exists an ng € N such that A;,, is v(6)/m-
stretched if n > ng, where v(d) is the number given (H; (3.1). Take two
3

)

EIT)L and mg’) of Aj, so that (II( ) ,, (resp. T,

the component Al

base points z is contained in

resp. AP

3,inn(8)’; n) of Ajinn(s)y;m meeting Al

jinn(d) ;n (
(resp. A},) non-trivially. Then, {(A;,, g )} converges geometrically
in the right marking to an ideal 2-simplex (DJ( ),y]( )) in H? C H? for
(k)

k = 1,3, where one can construct the v,-pseudo-isometric maps i -

Ng, (z gkg,A n) — Ngr, (y] ),D](-k)) so that @gkg(Agkl)rln(é),m) = Dj(,ﬁzm(é)
and <P] n’aA] HDAE 121n(6) 1 0Aj DAE 121n(6) . DJ( 12111(5) is isometric

on either of the two components of 0A; , N A] fn(aY n-

One can construct an ideal simplicial complex G° from Aj’s and
D§k)o’s so that, for any sufficiently small § > 0 and some n; € N,
there exists the vy-pseudo-isometric map @y, : Gpinns) — Gian(s)
extending ©in|A; inn(s)m ‘pg‘iNAj,inn@)’m if n > ny. Though ®, is in
general not a homeomorphism, since each v(8)/m-stretched edge A;,
has ¢1-normal neighbors, ®,, can be deformed to a homeomorphism by a
small homotopy. Thus, there exist K,,-quasi-isometric homeomorphisms
by @ Ginny — Gpinn(s) for all n > ng with K, N, 1 and such that
hyo hgl : Gn,inn(é) — Gl,inn(é) maps each Az',inn(&);n (resp. Aj,inn(é)’;n)
onto A inn(s); (resp. Aj7inn(5)/;l) and is extended to a marking-preserving
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homeomorphism 7, ; : G, — G;. By (4.2), each 3-simplex in G° is ;-
normal, s0 Giyy(s) is a deformation retract of G°.

Let Hi,...,H, be the components of Giny(s), and Hop = hy(Ha)
for & € {1,...,v}. These H,’s are renumbered so that f; (Hq.p) re-
mains in a certain thick part of N, for each « € {1,...,u}, and the
others leave from any thick parts. Precisely, if necessary passing to a
subsequence, one can assume that the following (4.3) and (4.4) hold.

(4.3) There exists an ¢ > 0 such that f},(Han) N Ny ghine) = 0 for all
sufficiently large n € N and « € {1,... ,u}.

(4.4) There exists a sequence {e,} with &, N\, 0 such that f](Hg,) N
Nythine,y 7 0 for all sufficiently large n € N and
ge{p+1,...,v}

Then, we have the following commutative diagram:

m gnoflohy
Ua:lHOé - ? Nthick(e)

| Tor

fa
Ha,n E— Nn,thick(s)

Un=1
For simplicity, we set Z(,) = nglHa7(n), Z, = Ug:m—lHa,n and O,, =
Gpout(s)- Note that the images g, o f), o h,(Z) are contained in the
compact set Nipjo(o)- Since both hy, and g, are Kj-quasi-isometric
and f] satisfies (4.1), by Ascoli-Arzeld’s Theorem we may assume that
the sequence {g, o f;, 0 hy|Z : T — Nyjk(e)} converges uniformly
to a continuous map f' : T — Nypjexey) C N. Since K, , 1 and
[} is a locally isometric immersion in each ideal 3-simplex of G, for
each simplex Ay in Z, fl‘Ai,inn(d) is a locally isometric immer-
sion. This implies that a holonomy p, : 7 (Hy) — Isom™ (H?) for
a € {1,...,u} is the composition py o (f'|Hg)s+ of a holonomy py :
71 (N) — Tsom™ (H?) of N and the induced homomorphism (f'|Hg )« :
m1(Hy) — 71 (N). In particular, the image of p, is a discrete subgroup
of Isom™ (H?) which does not contain any elliptic elements. Further-
more, the sequence {pq, © (hy|Hy)s} converges algebraically to p, in
Hom(m; (H,), Isom™ (H?)) /conj, where pg p, is a holonomy of H, . Let
7 be the turning section of Z, and set 7, = TN H,. Any component R of
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OH, — 7, is an open annulus. For a generator v of w1 (R), pa(7y) fixes a
geodesic line L in H3. Since Im(p,) contains no elliptic elements, pq is
either trivial or loxodromic, where a hyperbolic element of Tsom™ (H?) is
regarded as a loxodromic element of special type. Let 7, be the turning
section of Z,,, and let R, be the component of 0Z, — 7, corresponding
to R.

Let us suppose that po(7y) is trivial. Take a simple, oriented loop I in
R representing «y. The triviality of p,(7y) and the injectivity of pn imply
that f'|l is contractible in Nipick(z)- Thus, f;, o hy|l is also contractible
in Ny ihick(e) C Np for any sufficiently large n € N. This shows that
Pan © (hyp)(7y) is trivial. Let Ry and Cg, be respectively a (compact)
annulus in R, and a set of d-microchips given as in Lemma 4. Cut G,
open along Ry, and denote the cut complex by G)/. Consider the annuli
R(')" and Ry in G, corresponding to Ry with RJ C 01, and R, C 00,
Glue two copies ET and E~ of UCg, to Z,, and O,, respectively by the
identity map of Ry. Next, we identify the top and the bottom of ET
with those of E~. Topologically, this operation is the “0-surgery” done
by attaching the solid torus ET U E~ to G, along the boundary torus
Rf URy.

We perform the same process for all components R, of 07, — 7,
with trivial holonomy, and denote the resulting manifold by G7},. The
continuous map f; : G, — N,, can be extended to a continuous map
fr Gy — N, by using p, odg, : UCr, —> Ny, where dg, is the
map given in Lemma 4. We denote the parts in G obtained from 7,
(resp. Op) by adding the solid cylinders as above by Z? (resp. Op).
The §-microchip decomposition on @), is the union of the d-microchip
decompositions on all £7’s and that on ©,,. The manifold Z°® and the
continuous map f* : I* — Nyjci(.) are defined from Z, f "and dp, sim-
ilarly so that the sequence {gy o f3 o hy|Z® : T® — Nipick(e)} converges
uniformly to f¢, where hy : 7*U Z — 7y U Z,, is a homeomorphism
extending hy,. Clearly, a holonomy p3 . Wl(H;’(n)) — Tsom™ (H?) is
well defined for each component H;,(n) of I(’n .

We note that, if the §-inner parts of all Am’s are connected, then
each LICg, can be regarded as a submanifold of O,,, which corresponds
to the ready-made case in Lemma 4. Thus, we do not need the 0-surgery
trick, and only change the post of LUCg, from O,, to Z,. However, our
argument can not skip the case where some of A;,;,’s have disconnected
inner parts. In this case, LICg, is not necessarily contained in O,, and
hence the 0-surgery trick is crucial.

For any component ¥ of dZ* with ¥ C 0H

o, We set 75 = 7N 2.
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Then, ¥ is obtained by capping off the boundary of /s U Ry U--- U Ry,
by capping disks W1,... , W}, where each R; is a component of 07 — 7
contained in 3 under the inclusion 37 — 7 C Z*. We need to consider
the following two cases.

Case 1. p%(m1(X)) contains a loxodromic element.

First, we will show that, for any component 7; of 7s;, p® (71 (7;)) has
a fixed point in S2.. Let p: G° —» G° be the universal covering and
d : G° — H3 the developing map. For any A} in G° with Ay N7 # 0,
consider the subjoint Jy.; in A} with 8J;.; D A7 N 7; just like Ji1 in
Figure 2.2. Since 7; is connected, there exists an ideal vertex v of G°
such that all J;.; meet a “small neighborhood” of v in G°. We set
Jj = UpJi;; and let f] be a component of p‘l(Jj). We can rearrange
the position of the image d(jj) in H? by an isometry on H? so that, for
all components jl’k;j of p~1 (Jx.;) ﬂjj, the images d(jl,;w-) have oo € 52,
as a common ideal vertex. Then, p?,(71(7;)) fixes oo.

For each Rj, p%(mi(R;)) is non-trivial and fixes a geodesic line in

H3. These facts together with the discreteness of p2, (71 (X)) imply that
po(m1 (X)) is a cyclic subgroup of Isom™ (H?) generated by a loxodromic
element . Let ¢ : N — N be the cyclic covering associated to
f2(m (X)) C m(N), and let f9: 3 — N be a lift of f*|X.
_ By Lemmas 1 (iii) and 4 (iv), we may choose 0 < § < 41 so that
J2(X) € Ni(e, N), where ¢ is the geodesic core of the open solid torus
N. There exists a compact, connected, orientable 3-manifold L with
OL = ¥ and a continuous map f; : L — Ni(c,N) extending fs.
We set f] = go fz : L — N. Cut G? open along X, = h? (%)
and attach two copies L;,L; of L to the cut manifold G?’ by the
homeomorphisms h, |2 : ¥ — BF, where 5F € 9Z2 and & C 9O8 are
the boundary components of 9G$" corresponding to ,,. The restriction
fASE = f2%, : f — N, can be extended to a continuous map
fr.: LY UL, — N, so that the sequence {g, o f ,|LEf} converges
un}formly to f}. We have not defined any microchip decomposition on
L, , and so fr, may not be locally isometric on L, .

Case 2. pb(m1(X)) is either trivial or contains a parabolic element.

Then, ¥ is the union of 75, and W;,... ,W;, and contains no open
annulus components R;. By Lemmas 1 (i) and 4 (iv), the diameter of ¥ is
bounded, that is, diam(X) depends only on d; and m and is independent,
of . If p,(m1(X)) and hence pp, ,,(m1(2y)) are trivial, then there exist
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handlebodies A, A, bounded by 3, X, respectively, and continuous
maps fi:A— N, f3,: A, — Ny extending f(’n)\E(n) such that

(4.5) f31,(An) is contained in the c(d)-neighborhood of a geodesic
segment in N, of bounded length with limgs_,g ¢(d) = 0.

Cut open G?, along %, and attach two copies A}, A of A, to the cut
manifold G$" as in Case 1 so that AT = 9XF C OI% and 9A, =
0%, C 00;.

We perform the same process for any component ¥, of Z} with either
loxodromic or trivial holonomy, and denote the resulting manifold by
G?*. Let f(n) be the complex obtained by attaching La)’s and Aa)’s

to I(‘n). The union of such LE’s (resp. AZ’s) in G%* are denoted by L

(resp. AF). The complement G3* — 7, U Z, contains the ideal points
corresponding to the vertices of D. Excise a small end of each ideal point
and attach a 3-ball B;', and denote the resulting manifold by (’5 The
union Gn = I U C’) U. Z is a closed, orlentable 3-manifold. Extended
continuous maps fn G — N, and f 7 —» N are defined naturally
by using f(’n), fz,(n va, (n) SO that it satisfies

(4.6) limg_,q sup, {diam(f,(B;))} = 0.

The union of such 3-balls B, ’s in é'\ is denoted by B, . In our _construc-
tion, it is easily seen that there exists a homeomorphism h 7 Uz —
I U2z, extendlng hy,, and a homeomorphism 7, , : G — Gn/ ex-
tending T o hn1 for all sufficiently large n,n’ € N.

Now, we are ready to prove our main theorem.

Proof of Theorem. Since our modifications as above have been done
in small volume parts in Gy, we have deg(f,) = deg(f,) # 0. The clo-
sure Py, of the complement C’) — L, UA; UB; is a union of -microchips
C such that fn]C C — N, is a locally isometric immersion. We de-
note the set of such d-microchips by C,,.

First, we choose Ag > 0 such that Nyy,(y,) consists of parabolic

cusps disjoint from ]/”\(C“'). Consider the rectangle
A
R= {z € C;0 < Re(z) < 2tanh (;O) ,1 <TIm(z) < e}
in the upper plane model for H?. The distance in H? between the

two horizontal sides of R are 1, and the distance between the two ver-
tices of imaginary height 1 is Ag. We choose A1, 0 < Ay < Ag so that
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dist x (ONihin(rg) —9Nihin(r,)) = 1. By an elementary argument of hyper-
bolic geometry, A; is the number satisfying e tanh(A;/2) = tanh(Ao/2).
Note that limy, e distw,, (0N, thin(rg) — 9Nn,thin(r,)) = 1. For any & >
g > 0, we set Np, thin(ese) = N thin(e) — i8N, thin(ery- We know that
essential annuli (Qy,, 9Qy,) of least area in (N, thin(rg;r1)> ONn thin(rosh1))
satisfy lim, o Area(Q,) = Area(R), and hence Area(Q,) > Area(R)/2
for all sufficiently large n € N.

For each component ¥ of §H, C 9H o, pa(m (X)) is a subgroup of
Isom™ (HS) generated by parabolic elements Since diam(X) is bounded
and f( ) converges as § \, 0 to the parabolic cusp of N corresponding
to the fixed point of p?(71(2)), one can choose & > 0 so that f(@I)
is contained in intNyin(y,)- Thus, for all sufficiently large n € N,
we have fn(aI ) C intN, ,thin(A1) and fn(ﬁr_L) n Nn,thin()\o) = fn(ﬁ;l;) N
Ny thin(rg) = 95 see Figure 4.1.

FIGURE 4.1. The shaded region represents f,(O,) U Z,,)

Moreover, the ¢ can be chosen so that

Area(R)

Area(dCy) < 5

By (4.3) and (4.4), for the fixed ¢ > 0 as above, there exist 0 <& < A
and ny € N such that fn( ) 0 Ny thine) = 0 and fn( ) C ANt N, thin(e)
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for all n € N with n > no. For a fixed point z,, € Ny tnick()o), let 'y be
a star in Ny, ipick(e) connecting z,, with the components of N, ipick() =
a]\/vn,thin(f;) :

Let F be the foliation on Ny, thin(r;n,) cOnsisting of equidistant sur-
faces from ON,, nin(ne)- HFach leal F' of F, consists of r tori. Ex-

cept finitely many leaves of F, for any C € C,, fn\ac meets trans-
versely all other leaves F', called generic leaves. In particular, I'r =
]/”;_1(F)ﬂl_|(8Cn) is a (possibly disconnected) 1-dimensional CW-complex
such that, for a sufficiently small, saturated neighborhood Ng of F,
J/”;_I(NF) N U(ACy) is homeomorphic to T'p x [0, 1], where L(IC,) de-
notes the “foam” Ucee, 0C. For all generic leaves F' of F,,, if I'r had a
simple loop ! such that ﬁz\l is non-contractible in F', then

Area(dC,) >Area(L(9C,)) > Area(L(9C:) N Fr (N shin(aon)))
Area(R)
>—2 R

This contradiction implies that there exists a generic leal F' such that
the restrictions of f, to any components of I'r are contractible. Since
fn YF) NP, is a union of disks bounded by simple loops in I'p, the
restrictions of fn to any components of fn (F') NPy, are contractible in
F By (4.5), we have limg_,q dlam(fn( ~)NF) =0 for each component

Ay of AL By this fact together with (4. 6) one can choose § > 0 so that
the restrictions of fn to any components of f YF )ﬂ@n are contractible
in F. Then, we will construct a continuous map ., : Cin — N, as
follows. The map 1, takes all components O of On — [ Y (Np) with
Jn(O) C Ny thick(rg) U K to 2y, where K, is the union of components
of Ny thinrg) — F disjoint from Ny, tnin(n,)- Moreover, 1), squeezes each

component of [ H(Np)NO, in N and then stretches it so as to connect
the remaining components of O, fn YNF) with z,, in K, UT,,; see
Figure 4.2 (a).

FIiGURE 4.2
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Note that, for the component U of G, — ]/”;_1(./\/ F) N O, meeting either
7, or Z, non-trivially, ¥n|U is equal to ﬁz\U Though in general v, is
not homotopic to ]/”;1, the equality deg(v),) = deg(ﬁ) still holds.

Consider a small regular neighborhood N of afn in @n, which is
homeomorphic to dZ, x [0,1]. We deform ¢, | in N, tyin(x,) by a homo-
topy rel. 9N so that the resultlng map Pl meets aNn sthin(e) transversely
and 1/)N(I NN)N Ny thin(e wN(ﬁl ). Let ], : G, — N, be the con-
tinuous map defined by 1/)n]/(Gn —intN) = | (G — intA) and o/, |V =
1/)N, see Flgure 4.2 (b). Let ¢, : G, — N, be the continuous map push-
ing (’) Nl ™ ( 1, thin(Ao; 8)) into Ny, thin(e) Ul'n by a deformation retract
from N, thin(ro) 0 Ny thin(e); see Figure 4.2 (c). Thus, 12)\” takes (fn, afn)
to (Nn,thick(s) ON, ,2bhick(e )) and (O Uz 8(0 U Z)) (Nn ,2thin(e) U
Ly ON, thin(e))- Since the sequence {gy, Oanh \I 7 — Nihick(e) } con-
verges uniformly to f 7 —s Ninick(e)» for all sufficiently large n, n' €N
with n # n, gn © fn o hy, ‘(I aI) (I aI) (Nthick(s)aNthin()\l;s)) is
homotopic to g © fn/ o hn/\(I GI) in (Nthlck( ) Nthln()\l e))- Therefore,
one can modify 9, Py shghtly 50 that gn oty 0k \81 Gy Oy © Ty ]8I
Then, by Lemma 5, gn © gn * Nyghicke) — N/ shick(e) would be
extended to a homeomorphism N,, — N/, a contradiction. This
completes our reduction to absurdity and hence the proof of Theorem.
g.e.d.

Acknowledgements. [ would like to thank David Gabai for his
valuable comments and suggestions which are helpful to improve many
parts of the original paper. 1 would also like to thank Shicheng Wang
and the referee for their useful comments and information.

References
A. Beardon, The geometry of discrete groups, Graduate Texts in Math. Vol. 91,
Springer, New York, 1983.

M. Boileau & S. Wang, Non-zero degree maps and surface bundles over S, J
Differential Geom. 43 (1996) 789-806.

C. Hayat-Legrand, S. Wang & H. Zieschang, Degree-one maps onto lens spaces,
Pacific J. Math. 176 (1996) 19-32.

, Minimal Seifert manifolds, Math. Ann. 308 (1997) 673-700.

545



546 TERUHIKO SOMA

[5] R.Kirby, Problems in low-dimensional topology, Geom. Topology (W.H. Kazez ed.),
AMS/IP Stud. Adv. Math. Vol. 2, Part 2, Amer. Math. Soc. & Internat. Press,
1997, 35-473.

[6] A.Reid & S. Wang, Non-Haken $-manifolds are not large with respect to mappings
of non-zero degree, to appear in Comm. Anal. Geom.

[7] Y.Rong, Degree one maps of Seifert manifolds and a note on Seifert volume, Topol-
ogy Appl. 64 (1995) 191-200.

[8] T. Soma, Ewzistence of non-Banach bounded cohomology, Topology 37 (1998) 179-
193.

[9] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton
Univ., Princeton, 1978.

[10] , Hyperbolic structures on 3-manifolds I: Deformation of acylindrical man-

ifolds, Ann. of Math. 124 (1986) 203-246.

[11] H.C. Wang, Topics on totally discontinuous groups, Symmetric Spaces (W. Boothby
and G. Weiss eds.) Pure Appl. Math. Marcel Dekker, New York, 8 (1972), 459-
487.

ToKYO DENKI UNIVERSITY



