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QUASIGEODESIC ANOSOV FLOWS AND
HOMOTOPIC PROPERTIES OF FLOW LINES

SERGIO R. FENLEY

Abstract

A nonsingular flow is quasigeodesic when all flow lines are efficient in
measuring distances in relative homotopy classes. We analyze quasi-
geodesic Anosov flows in 3-manifolds which have negatively curved fun-
damental group. We prove that the lifts of the stable and unstable foli-
ations to the universal cover are foliations with branching, that is, they
have non-Hausdorff leaf space. Furthermore any branching is associated
to freely homotopic closed orbits of the flow in the manifold and there
are finitely many such branching leaves up to covering translations. Using
this we prove that the limit sets of the stable and unstable leaves in the
universal cover cannot be Jordan curves nor the whole sphere. Identifica-
tions of ideal points of leaves are also described using freely homotopic
orbits. Finally, for any Anosov flow in such manifolds, we prove the
existence of uncountably many (infinitely many of which are closed) K-
quasigeodesic orbits for K big enough. The key tool is the analysis of
freely homotopic closed orbits, which are completely characterized for
general Anosov flows.

1. Introduction

The primary goal of this article is to study metric properties of flow
lines of Anosov flows in closed 3-manifolds. The two classical fami-
lies in dimension 3, namely suspensions of Anosov diffecomorphisms of
the two-dimensional torus (briefly suspensions) and geodesic flows on the
unit tangent bundle of surfaces of negative curvature (geodesic flows),
have the following property: in the appropriate metrics, the flow lines
are geodesic. Since the manifolds are compact, the flow lines cannot be
minimal geodesics in the usual sense. But they are minimal in relative ho-
motopy classes, which is the same as being minimal geodesics when lifted
to the universal cover.

A natural question is to decide which Anosov flows have this metric
property. The requirement that flow lines be minimal geodesics is too
strong and depends on the metric. Therefore relax this to the quasi-
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geodesic property: a quasigeodesic curve is one that is efficient, up to
a bounded multiplicative distortion, in measuring distances in relative ho-
motopy classes. This is independent of the metric in the manifold. A flow
is quasigeodesic if all flow lines are quasigeodesics.

In hyperbolic manifolds quasigeodesics are a bounded distance from
true geodesics (in the universal cover) and so are strongly related to the
geometry in the large of the manifold. This makes them extremely impor-
tant as was demonstrated by Thurston [35], [25] in the proof of the hyper-
bolization theorem. The classical families of Anosov flows are in toroidal
3-manifolds, which are not hyperbolic, but a large class of Anosov flows has
been constructed in hyperbolic 3-manifolds by Goodman [20] and Christy
[9], using Dehn surgery on closed orbits of suspensions [16]. As opposed
to the classical families, very little is known about these Anosov flows.

On the other hand, many quasigeodesic flows in hyperbolic 3-manifolds
have been constructed, but these are pseudo-Anosov flows. They are gen-
eralizations of Anosov flows, where p-prong singularities along finitely
many closed orbits are allowed. The combination of pseudo-Anosov dy-
namics and quasigeodesic behavior has powerful implications: Cannon
and Thurston [8] proved that suspensions of pseudo-Anosov homeomor-
phisms of surfaces are quasigeodesic pseudo-Anosov flows. This metric
property was used in an essential way to understand the limit sets of fibers
and yields as one byproduct examples of sphere filling curves [8]. Mosher
[28] proved the quasigeodesic behavior for a class of pseudo-Anosov flows
transverse to depth one foliations. This in turn was used to compute
Thurston norms via dynamics [26], [27].

Our goal is to study the quasigeodesic property for Anosov flows in hy-
perbolic manifolds and more generally in 3-manifolds M with negatively
curved fundamental group. The universal cover M of M is homeomor-
phic to R® and is compactified with a sphere at infinity (S:o = oM ).
Associated to the Anosov flow there are two-dimensional foliations, stable
() and unstable (), which lift to foliations by topological planes
S and F* in M. Consider the following properties: (1) F°, F* are
quasi-isometric foliations. Th1s _means that up to a bounded multlphca-
tive distortion, leaves of f " are efficient in measunng distance in
M; (2) leaves of F°, F" extend continuously to Soo , giving continu-
ous parametrizations of their limit sets. Property (1) can actually be de-
fined for any foliation in any manifold, while (2) can be defined whenever
the fundamental group n,(M) is negatively curved and the leaves of the
lifted foliation have well defined intrinsic ideal boundaries. Both of these
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properties are fundamental for understanding the interaction between the
foliation structure and the geometry in the large of the manifold. For
an Anosov flow ® in M> with n,(M) negatively curved, (1) is stronger
than @ being quasigeodesic, which in turn is stronger than (2). In [11]
we proved that (1) is never true for a codimension-one foliation in M>
with 7, (M) negatively curved. On the other hand, the continuous exten-
sion property holds for fibrations [8] and many depth one foliations [12].
Hence another reason to analyse the quasigeodesic behavior of such flows.

We now describe our results, which show that if ® is an Anosov flow
in M* with m,(M) negatively curved, then the quasigeodesic property
is very strong, in the sense that it has several nontrivial consequences for
the dynamics of the flow and the limit sets of the leaves. We say that a
foliation in M is R-covered if the lift to M is a foliation whose leaf space
is homeomorphic to the set of real numbers R. An Anosov flow in M 3
is R-covered if both #° and " are R-covered.

Theorem A. If ® is a quasigeodesic Anosov flow in M 3 with n, (M)
negatively curved, then both F° and " are not R-covered.

This is in stark contrast with suspensions and geodesic flows, both of
which are R-covered. . .

We say that a leaf F of &° (or &) is periodic if it is left invariant
by a nontrivial covering translation g of M that is, g(F )=

Let #° and #* denote the leaf spaces of Z° and F* respectlvely
If .Zi is not R-covered, then #° is not Hausdorff. The branching leaves
of #° correspond to the non-Hausdorff points in # . Two leaves F #
F' € &° form a branching pair if the corresponding points in #° are
not separated from each other. This is equivalent to saying that F, F'
do not have disjoint saturated nelghborhoods in M, where a saturated
neighborhood of ,97 is an open set of M , which is a union of leaves of
F*° . Similarly for 7.

In general very little is known about branching leaves [23], but in the
case of quasigeodesic Anosov flows we prove

Theorem B. Let ® be a quasigeodesic Anosov flow in M 3 with m, (M)
negatively curved. Let (F, F') be a pair of branching leaves of # . Then
F and F' are periodic and invariant under a common nontrivial covering
translation of M . This produces a nontrivial free homotopy between closed
orbits of ® in M . Furthermore, up to covering translations, there are only
finitely many pairs of branching leaves.

This is the main tool in deriving the following properties of the limit
sets of leaves.
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Theorem C. Let ® be a quasigeodesic Anosov flow in M 3 with n, (M)

negatively curved. Let F € F° . Then the limit set of F is neither a Jordan
curve in Sio , nor the whole sphere.

Quasigeodesic behavior implies the continuous extension property (2).
The intrinsic ideal boundary of F € F* is a circle at infinity Scl,o , where
the ideal points correspond to limit points of flow lines. The continuous
extension of F C M to the ideal boundary OM then yields a map S;o —

Sgo . As the limit set of F is not a Jordan curve, there are identifications
in the image, which are characterized by
Theorem D. Let ® be a quasigeodesic Anosov flow in M 3 with n, (M)

negatively curved. Let F € F° and D, q € F, not in the same flow line, so
that their flow lines converge in the negative direction to the same ideal point
in SZO . Then the two distinct unstable leaves through p , q are periodic and
left invariant by a common nontrivial covering translation.

Again this produces freely homotopic closed orbits of @ and proves that
only finitely many intrinsic ideal points of F can have the same image
in S:o. In fact we find an upper bound for the number of such points.
Theorems B, C, and D have analogous statements for #*. Theorem D is
also needed for the proof that limit sets are not Jordan curves in Theorem
C.

There are many examples of R-covered Anosov flows in hyperbolic M 3
[13], which are therefore not quasigeodesic. Still, one can prove that in
general there are many uniformly quasigeodesic orbits.

Theorem E. Let ® be an Anosov flow in M > with n, (M) nega-
tively curved. Then, for big enough K, there are uncountably many K-
quasigeodesic orbits of ®, infinitely many of which are closed.

It is clear from the above theorems that the study of freely homotopic
closed orbits is fundamental for understanding quasigeodesic behavior.
A detailed analysis of freely homotopic orbits was then necessary. As it
turns out, lifts of free homotopies to the universal cover can only be of
a particular type, which is in fact quite simple. We stress that neither
transitivity of the flow nor n (M) negatively curved is assumed in the
next theorem.

Theorem F. Let ® be an Anosov flow in M*. Assume that F°, F*
are transversely orientable. Let o, B be indivisible closed orbits of ® so
that for some powers n,m € Z, o" is freely homotopic to B™ . Then a
is freely homotopic to either B or ﬂ_l .

A more precise statement, involving the extremely useful concept of
lozenges is given in §3. The other important technical tool needed for



ANOSOV FLOWS AND PROPERTIES OF FLOW LINES 483

the proof of theorems A, B, C and D is the following: orbits of the flow
(in the universals over) which stay a bounded distance from each other
(say in forward direction) and are not in the same stable leaf, produce
freely homotopic closed orbits of the flow in the manifold. When ® is
a quasigeodesic Anosov flow in M ? with m, (M) negatively curved, it is
easy to construct such bounded distance pairs of orbits.

The organization of the paper is as follows. Preliminaries are covered
in §2. Section 3 contains the analysis of free homotopies between closed
orbits. The nonorientable case is also discussed. Section 4 is the core of
the paper, where Theorems A, B, and D are proved. Limit sets of leaves are
studied in the following section, and finally in the last section we construct
the K-quasigeodesic orbits.

2. Preliminaries

Let ®,: M — M be a nonsingular C’(r>1) flow in a closed Rieman-
nian manifold M . The flow ® is Anosov if there is a continuous decom-
position of the tangent bundle TM as a Whitney sum 7TM = E oE‘QE"
of D®, invariant subbundles and there are constants x; > 1, u, >0 so
that:

(i) E° is one dimensional and tangent to the flow,
(if) 1D®,()]] < oe™'Jv]| for any v € E*, t>0,
(ili) [|ID®_,(v)|| < poe “'||v|| forany v € E*, t>0.

We restrict to M of dimension 3. The bundles E°, E* are one di-
mensional and integrate to one-dimensional foliations #*°, F** called
the strong stable and strong unstable foliations of the flow. Furthermore,
the bundles E° @ E° and E® @ E are also integrable [1] producing two-
dimensional foliations .#°, “ which are the stable and unstable folia-
tions of the flow.

The leaves of F°, ¥ are either topological planes, annuli or Mdbius
bands. The last two correspond exactly to leaves containing closed orbits
of ®. There is at most one closed orbit of ® in a leaf F of &°, in
which case all other orbits in F are forward asymptotic to it. Similarly
for .

The flow is transitive if the nonwandering set is the whole manifold.
Equivalent definitions are: (1) the union of the periodic orbits of ® forms
a dense subset of M [1], or (2) every leaf of #° or " is dense [1], [31].

The foliations .F°, F* are Reebless, so Novikov’s theorem [29] im-
plies that no closed transversal to either of them is null homotopic. Also,
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given any closed orbit y of ®, »" is not null homotopic for any n # 0
[1]. Let = : M — M be the universal covering space of M . This notation
will be fixed throughout the article. The Anosov foliations &, F* lift to
foliations F°, F* in M. The leaves of &, F" are topological planes
[29], so M is homeomorphic to R’ [30]. Therefore M is irreducible,
that is, every embedded two-dimensional sphere bounds a 3-ball in M .

The induced flow in M is denoted by ®. Let & be the orbit space
of @ obtained by collapsing flow lines to points. A fundamental prop-
erty which will be repeatedly used isﬂjhatf\/@ is Hausdorff and therefore
homeomorphic to R® [13]. Then &°, 7" induce two transverse one-
dimensional foliations in & . This is a simplification of the structure in
M and helps in visualizing many arguments. We will occasionally identify
sets in M or orbits of ® with their respective images in & .

Let W*(x) be theleaf of ° containing x and similarly define W*(x),
W(x), Wx), W'(x), W*(x), W*(x) and W"“(x). General refer-
ences for Anosov flows are [1], [2], [5]-[7], [32], [33]-

A recurring technical problem will be the question of transverse ori-
entability of #° and F"“. It turns out that for most results transverse
orientability is inessential, but makes the proofs much simpler. We will
lift to a transversely orientable cover whenever possible. Unfortunately
some results about freely homotopic orbits are false without transverse
orientability.

An incompressible surface in M 3 js an embedded surface which in-
jects in the fundamental group level. A closed 3-manifold is toroidal if it
contains an incompressible torus and atoroidal otherwise.

Franks and Williams [15] and Christy [9] produced many examples of
intransitive Anosov flows in dimension 3. It is a known fact that intran-
sitivity implies that the manifold is toroidal. However the only written
proof of this was given by Mosher [26], who actually proves this result for
the more general case of pseudo-Anosov flows. In this generality, tech-
niques of essential laminations [18] are needed, which is not the case for
Anosov flows. Here we give a simpler proof for the Anosov flow case.

Proposition 2.1. Let ® be an intransitive Anosov flow in M ori-
entable. Then M is toroidal.

Proofof2.1. As ® is intransitive, the nonwandering set Q is a proper
compact subset of M . By Smale’s spectral decomposition theorem [33],
Q decomposes into finitely many basic sets, each of which is a compact
subset of M on which @ is transitive. Since ® is intransitive in M ,
there are at least two basic sets, and at least one of them, call it & , is
attracting.
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Using Lyapounov functions [10] one finds an isolating neighborhood N
of & with ® transverse to dN. Hence #°, " induce foliations in
ON and each component of N has zero Euler characteristic. Since 8 N
is transverse to ®, AN is two sided in M . But the orientability of M
then implies that O N has to be orientable; hence O N is a union of tori.
We show that each torus is incompressible, therefore M is toroidal.

Choose a component T of N . If T is not incompressible, there is an
immersed disk in M with boundary contained in 7', not null homotopic
in T . Using classical techniques of cut and paste [22], [24], this produces
an embedded disk D with DNT = 9D and 9D not null homotopic in
T. As M is irreducible it follows that either: (1) 7 bounds a solid torus
E or (2) one component E of M — T is contained in a closed ball.

In case (1) assume first that &/ C E. After a small perturbation of D
we can assume D is transverse to % except for isolated saddle, center,
and boundary singularities. Let 9}“ be the induced singular foliation in
D. If some leaf of 9;," is not compact, then by the Poincaré-Bendixson
theorem, it limits on a closed curve in D. The limit curve has nontriv-
ial holonomy, hence cannot be null homotopic in its leaf. Since F“ is
Reebless, this curve is also not null homotopic in M , a contradiction to
D being a disk.

Let B be a closed orbit of ® in &/ . As & is an attractor, W"(f) C
& , hence the closure of W"(p) is contained in the interior of E. By the
above all components of W*(8)ND are compact, but since W"(f) is not
compact there may be infinitely many components. In fact this happens
because W*(B) is dense in & , so W"(B) limits on itself.

Let « C D be a simple closed curve which is either contained in a
component of W*(B) N D or is the limit of a sequence of nested curves
(with respect to D) in W*(B)nD. Let D, be the disk which a bounds
in D. We say that a is maximal if D is not contained in any other disk
with the same properties. Since the interior of any D_ contains at least
one singularity of Z)“ and all maximal disks are disjoint, it follows that
there are only finitely many such maximal disks.

By the Reebless property o bounds a disk F, in its unstable leaf. Then
F, is compact and W*(B) does not limit on the outside (with respect to
D) of F,. So we may assume D is transverse to F , and F, N D
has finitely many components. Again, using cut and paste arguments, D
may be isotoped inside E to as to eliminate all intersections with W*(B)
inside D (this uses the fact that W*(B) does not limit on one side of
F). By induction on the number of maximal curves we may assume that
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DNW"“(B)=@. But then W*(B) is contained in a 3-ball and S is null
homotopic, contradiction.

If &/ NE = O, choose a repeller & C E and apply the argument above
to & . This finishes the proof of case (1).

In case (2) we find either a repeller or an attractor in a closed ball. A
periodic orbit would be null homotopic, contradiction. q.e.d.

The following is a simple consequence of the proof.

Corollary 2.2. Let ® be an Anosov flow in M 3. If T is an embedded
torus transverse to @, then T is incompressible.

Proof of 2.2. The proof of the previous proposition shows that if T is
compressible, then either T bounds a solid torus or T is contained in a
3-ball. In particular T is separating and ® is intransitive. One can then
apply the rest of the proof of the proposition.

In the next result we assume that 7, (M) is negatively curved, as defined
by Gromov [21], who used the term hyperbolic. Examples are fundamen-
tal groups of closed manifolds of negative curvature. Recall that =, (M)
being negatively curved implies that Z®Z does not inject in 7, (M) [21],
therefore M is atoroidal. Notice that if M is not orientable, then the
liftt of @ to an orientable double cover is transitive if and only if @ is.
Therefore the next result follows.

Corollary 2.3. If ® is an Anosov flow in a 3-manifold with negatively
curved fundamental group, then ® is transitive.

3. Freely homotopic orbits

It will be useful to establish some notation. Given points x, y € M,
define x ~ y if x and y are in the same leaf of ¥ . Similarly define

uGlVé;l cloged loops a, f# in M ,let a ~ B if they are freely homotopic.
If a, B closed orbits of @, satisfy a ~ ~ f by a nontrivial free homotopy,
then coherent lifts of o and B to M show that there is a nontrivial
covering translation of M leaving invariant at least 2 leaves of %" . F° . Our
goal is to get a converse to this fact. A priori we only have the following:
if g is a nontrivial covering translation with g(F,)=F,, i=0,1, where

F,#F e, Fs then F;, F, are periodic and there are (indivisible) closed
orblts a, f of ® in n(Fy), n(F,). Since m,(n(F,)) is generated by a
and similarly for n,(n(F))), then g(F,) = F,, i =0, 1, imply that for
some n,meZ, a" ~pg".
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W¥(p)

(@) ()
FIGURE 1. (a) A lozenge; (b) adjacent or double lozenges

Definition 3.1. Two closed orbits a, # of ® are almost freely homo-
topic if there are n, m € Z so that o" ~ g™ ~
__Suppose L is a simply connected leaf of &°, ™ or any leaf of &~
F" . Then a half leaf of L is a connected component of L —y, where y
is any full orbit in L. If L is an annulus, a half leaf of L is a connected
component of L —y where y is the closed orbitin L.

Since M is simply connected, #° and " are always transversely
orientable. Choose one such orientation, assumed to agree with the lifts
of the transversal orientations to #°, F " if any of these is transversely
oriented. Notice however that, in general, covering translations will not
preserve the transversal orientations. .

For p € M, let W/(p) be the half leaf of W’(p) defined by D (p)
and the posmve transversal orientation to F " at D. Similarly deﬁne
W (p), W (p) and W*(p). Leaves of F° and F" separate M. If
LeFuF G , then the front (back) side of L is the component of M — L
defined by the positive (negative) transversal orientation to L.

Definition 3.2. Lozenges: Let p,q € ﬁ, p*,4q,p*,q. Let Hp

(L,) be the half leaf of W"(p) (W’(p)) defined by Py (p) and contained

in the same side of Ws(p) (W“(p)) as ¢ . Similarly define H , L, . Then
L Hp , Lq ,and H f form the boundary sides of a lozenge (Figure 1(a))
1f

VFe¥ , FNH,#0&FNH #0Q
and

VGeF", GNL,#0«GNL,#0.
Notice that W*(p) N W*(q) = @ and W*(g)n W"(p) = @. The points
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D, q or the orbits <I>R(p) l,\(q) are called corners of the lozenge. If
the lozenge with corner p is contained in the back of w* (p), then p is
a corner of type (+, *), otherwise it is of type (—, ). Similarly, using
W*(p), define types (x, +), (*, —).

Lozenges will be the key tool in the study of freely homotopic orbits
and quasigeodesic Anosov flows. By an abuse of n%ation we will also say
that the full leaves W*(p), W"(p), W*(q), and W"(q) are the sides of
the lozenge. Since given any four leaves there is at most one lozenge with
sides in them, this is well defined. Two lozenges are adjacent if they share
a corner and there is a stable (or unstable) leaf intersecting both interiors
(see Figure 1(b)). A sequence of lozenges {Z;} forms a chain if Z; and
Z,, share a corner. Consecutive lozenges may be adjacent or not.

Theorem 3.3. Let ® be an Anosov flow in M 3 so that &° and F*
are transversely orientable. Let o, a, be indivisible closed orbits of ®
which are almost freely homotopic. Then either

(1) ay=a, or
(ii) oy ~ ()

Furthermore, coherent lifts of oy, a, to M are connected by a finite
chain of lozenges.

Proof of 3.3. Lift o to an orbit y, C M and lift the free homotopy
between powers of «, and «, so that o, is lifted to y. The free homo-
topy means that there is a nontrivial covering translation g of M (which
may not be indivisible) leaving y, and y invariant. We first prove that
7o 1 connected to y by a finite chain of lozenges with corners on lifts of
periodic orbits, which are all invariant under g.

Let Fy = w? (¥y), F= we(y), &, be the side of F;, containing F and
let

U (p}, where & ={LeF’|LOW () #D, LC&).
PELEZ

Notice %, is a subset of M , whereas %, is a subset of Z T,

Since g preserves the transversal orientation to F° , 8(%By) = %, .
The set of orbits in W“( o) 1s homeomorphic to R, and g induces a
contraction or r expansion in thls set. Asaresult g does not leave invariant
any leaf of F* contained in %,. Therefore F ¢ . The set %,
is an open, connected, F saturated, proper st subset of M. Hence 1ts

boundary is a nonempty union of leaves of F*. Since Fn B,
either F C 0%, or there is unique leaf F, C 0%, which separates F



ANOSOV FLOWS AND PROPERTIES OF FLOW LINES 489

from %,. In the second case notice that since g(%,;) = %, we have
g(F)) Cc 0%,. If g(F,) # F,, it follows that g(F,) does not separate
F, from F, a contradiction to g leaving both F and F; invariant. In
either case one finds F, C 0%, with g(F,) = F, . Then there is an orbit
7, C F, with g(»,) = 7,, and y, projects to a closed orbit of ® which
is almost freely homotopic to o . If F, # F, induction produces F; and
Vi i=1,2,---.

Claim. For some i, F; = F ; hence y,=7y.

Suppose not. Let &, be the side of F; containing F,_,. Then 8%, = F,

and %, C %, . Notice that for all i, F ¢ %. So
Fe#=J¢%.
ieN

The set & is an open, F° saturated, proper subset of M. Furthermore,
g(%) = €. Using the argument above, there is a unique leaf L € &°,
L c 0% which is either F or the unique leaf which separates all %,
from F. Therefore g(L) = L. Let " be the unique orbit in L with
g(y")=7". Since L C 0%, the F, = W’(yi) are limiting on L, so for i
big enough, . .
@£ W )W (y) =B,

Since g leaves invariant both of these leaves, g(B;) = B;, a contradiction
to g(y") =y" (else there would be two closed orbits in W*(x(y*))). This
proves the claim.

Notice that as Ws(yl) C 0%, it follows that there is a stable leaf P
with

PAW"(y,)#2 and PNW'(y,) # 2.

Given this we will now show that y, and y, are connected by a chain of
adjacent lozenges, all of which intersect a common stable leaf.

By changing the transversal orientations to %, ¥ if necessary as-
sume y, is in the front of Ws(yo) and in the back of W”(yo) . Let

Z,= |J (p}, where Zy={SeF"|SnW (3,)#2}
PESER,

Then g(Z,) = ¥, and W“(yl) N, = J. As before there is a unique
leaf H, C 8%, separating W*(y,) from W(y,) (or H, = W*()).
Furthermore g(H,) = H, . Let J, be the unique orbitin H; with g(J,) =
d, . Notice W“(Jl) N Ws(yo) = @, which implies that J, is in the front
of W' (y,)-
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Lemma 3.4. W"(4,), W'(3,), W'(»,), and W*(y,) form a lozenge.
Proof of 3.4. Notice that as W“(Jl) C0Z,,thereisa S€F “, with

(%) aeSNW(y)#2 and beSNW'(,) # 2.

We first claim that y, is in the back of Ws(él). The transverse ori-
entation to .Z° induces an orientation to S (as a subset of @). If y,
were in the front of ’Vlv/x(él) , then orientations of S in a, b would be
contradictory (see Figure 2(a)).

Suppose now that S intersects Wj(&l) (see Figure 2(b)). By taking
inverse if necessary, assume that g induces a contraction on the set of
orbits of & in Ws(yo). Since S separates M , it follows that g induces
a contraction on the set of orbits in W* (6,) also. Then g induces expan-
sions on the sets of orbits in W"(y,) and W*(d,). As a result there is
LeZ°, LNS # @ which is invariant under g and with L C 0%, . But
then L separates W“(&l) from y,, hence also separates W"(yl) from y,,
and therefore L separates W°(y,) from 7, - But since Ws(yl) C 0.%,,
the only stable leaves which possibly separate W’(yl) from p, are con-
tained in %,. Therefore L C %,. As seen before there is no stable leaf
contained in %, which is invariant under g. This is a contradiction to
g(L) = L. We conclude that S intersects W:(&l) .

Using () above, the g invariance of the sets Wj(él), Wf(yo), and
Z,; and the fact that &, is connected it now follows that

(x) {(HeF“|HNW (y,) #@}={HeF"|HNW.(,) + 2}

Since y, C 0%, there is Fle& 1ntersect1ng w . (7,) and w (r)-
If p, #9,, recall that w (6,) then separates w (y,) from w (7). In
any case it thus follows that F' N w (6,) # @. But y, in the back of
W‘((Sl) implies F' N W_”(dl) # @ . Then as above

(Ee T |EnW () #2} = (E € F° | EnW"(5,) # 2}.

This together with (++) shows that y, and J, are the corners of a lozenge,
and finishes the proof of the lemma.

If HNF # @, then H NF, =4, is the periodic orbit in F,, so
0, = 7, and we are done. Otherwise start with J,, y, and proceed as
above. As before this procedure can only be repeated finitely many times.
Therefore y, is connected to y, by a finite chain of lozenges. In addition
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W“(Sl) Wu(al)

(@) (b)

FIGURE 2. (a) Eliminating 7, in the front of W*(d,);
(b) eliminating y, in the back of W*(d,). The arrows

indicate positive orientations in leaves of &° (or &)
as subsets of @ . These orientations are induced by the
transversal orientations to the dual foliation.

all lozenges in this chain are adjacent and intersect a common stable leaf,
as desired.

In the same way y;, and y,, are connected by a chain of lozenges.
By induction it follows that y, and y are connected by a finite chain of
lozenges. All lozenges and their corners are left invariant by g.

Finally, let &, ¢, be corners of a lozenge in M. Let B, = n(g,)
and assume that B, is a closed orbit of ®. Let now f be the covering
translation associated to the indivisible orbit B, so that f(g,) = ¢,. Since
f preserves transversal orientations, it follows that f preserves the sets
corresponding to &, and %, in the above construction, so it preserves
their intersection which is exactly the lozenge. Therefore f(¢,) = ¢, . This
implies that B, ~ B/ for some n € Z. Similarly g, ~ ;" , which implies
nm=1,soeither n=m=1 or n=m=—1. In fact the action of f on
W“(si) shows that f is an expansion in one of them and a contraction in
the other, therefore B, ~ ( /}l)_1 . Induction then finishes the proof of the
theorem.

We in fact also proved the following result which is an extremely useful
technical tool. Transitivity of the flow is not assumed.
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Theorem 3.5. Let ® be an Anosov flow in M?. Let F, # F, be

leaves of F* Jfor which there is a nontrivial covering translation g with
g(F)=F, i=0,1. Let y; C F; be the orbits of(D with g(y,) = 7;.
Then y, and y, are connected by a finite chain of lozenges. All lozenges
in the chain are left invariant by g and so are the respective corners.

Notice that it follows from the hypothesis of the theorem that g pre-
serves transversal orientations to #° and %" .

Remarks. (1) When considering almost freely homotopic orbits, the
case a~ f8 ~! is quite common. It occurs for instance in geodesic flows.
If a represents an oriented closed geodesic in an orientable surface of neg-
ative curvature and B is the same geodesic with the reversed orientation,
then in the unit tangent bundle o ~ /3"

(2) When #°, " are not transversely orientable, Theorem 3.3 may
be false. Consider the geodesic flow in T\ N 2 N of negative curvature,
nonorientable. Let a be an orientation reversing closed geodesic in N
and fix an orientation in «. Let B be the same geodesic being traversed
in the opposite orientation. Then a? ~ B -2 by just turning the angle along
o? by m. But a is not freely homotopic to #. One cannot consistently
turn the angle along o because o is not “transversely” orientable.

Corollary 3.6. Let ® be an Anosov flow in M, and o, o, indivisible,
almost freely homotopic closed orbits of ®. Then there are integers i, j €
{1,-1,2, -2} sothat ay~a].

Proof of 3.6. Consider the transversal orientations to & °, F * in M.
A covering translation g either fixes the transversal orientation to & 7 ev-
erywhere or reverses it everywhere. The same happens to % “. Therefore
g2 preserves both transversal orientations.

Lift o to y, in M and lift a, to y, corresponding to the free homo-
topy. Let g be the covering translation associated to «, and & be the
corresponding covering translation associated to o, . Then g" =h" for
some 7, m € Z. This implies that g"(y,) =7, and g"(y,) =h"(y,) =7, .
By Theorem 3.5, y, and y, are connected by a finite chain of connect-
ing lozenges in M . Since g2 preserves transversal orientations, the last
paragraph of the proof of Theorem 3.3 shows that g leaves invariant
all corners of the lozenges in the chain and therefore g (71 = y,. This
1mp11es that ag ~ ozl , for some i € Z. Similarly al ~ ao ; therefore

ag ~ a0 , giving the posmb1ht1es in the result. q.e.d.

We conjecture that oy ~ o/1 cannot happen for |ij| = 2. For example

ag ~ a, should be impossible for indivisible closed orbits.
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4. Quasigeodesic Anosov flows

First we analyse a condition which implies the existence of freely ho-
motopic orbits of an Anosov flow. We use the following classical result:

Theorem 4.1 (Closing lemma for Anosov flows) [1], [S]. Let ® be an
Anosov flow in M closed. Then for any 6 >0 thereare { >0 and v >0
Jor which the following is true: if d(®,(x), x) <{ and t > v, then there
are ye M and t' € R so that

i) @)=y,
(i) |t—1| <@ and

(iii) d(®,(x), ®,(¥)) <6 for 0<r<t.

This means that the almost closed flow segment @ (x), 0 < s <, is
shadowed very near by an actual closed orbit.

Recall that the injectivity radius of M , denoted by inj(M), is defined
to be half of the infimum of the lengths of homotopically nontrivial closed
loopsin M. If M is closed, then inj(M) > 0. Let B, (x) be those y € M
(or M) at most a distant from x. The next result is the starting point
of the study of quasigeodesic Anosov flows. It will be used to prove most
of the results in this section.

We say that two sets in a metric space are a bounded distance apart if
there is R > 0 so that each set is contained in the R distance neighbor-
hood of the other one.

Proposition 4.2. Let ® be a transitive Anosov flow in M 3. and Zy, 2,
points in M so that

(1) &)[0, +ooy(Zo) and 5[0, +ooy(2y) area bozzt/ded distance apart and
(ii) z, and z, are not in the same leaf of .
Then there are freely homotopic closed orbits of ® in M . Analogous result

holds in the negative direction.
Proof of 4.2. By hypothesis there is R > 0 so that

Vi 0, () 20, d®,(z,), D,,(z,) < R.

Let 7, be a geodesic segment in M of length < R connecting the two
points above. Let w,, = n(z,), m=0, 1.

Flow lines in M are properly embedded. Otherwise using the closing
lemma one produces a closed orbit of ® which is null homotopic, contra-
diction. Therefore as

tl}+moo q)t(ZO) =o00, then t1}+m°° w(t) = +oo.
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FIGURE 3. Producing freely homotopic orbits.

Now fix 0 < 0 < %inj(M) and let { < %inj(M) and v as given by
the closing lemma. Since M is compact and y, is a geodesic arc of
bounded length, we can choose a subsequence ¢, — +oo so that @, (wo)
converges in M and n(yt) also converges. Let i, j with t—t> v and
d(®, (wo) D, (wo)) < ¢, so that n(yt) and n(y,) are at most { apart
(see Flgure 3) Let

a =Py, ,tjl(wo)’ = q’[w(z,o,w(z,)l(wl)'

Since n(y,i) and n(y, ) are at most { apart, it follows that the endpoints
of o, are also { a[;art, so a, is also an almost closed segment in a
flow line. The closing lemma produces closed orbits d,,, m =0, 1, of
® which are 6 near o, . Notice §, may not be an indivisible closed
orbit. Let B, be a geodesic path in BC(CD (w,)) , connecting @ (wo) and
o, (wo) The condition on the injectivity radius implies this is well defined
in the relative homotopy class. Similarly define f,. By construction it
follows that J,, is freely homotopic to «,, * B, , where o, x B, denotes
the path o, followcd by the path 8,

Lemma 4.3. a,* g, is frfely homotopic to o x B, .

Proof of 4.3. The path Qlti’tj](zo) * 7, % (q)['//(t,»),w(t,-)(z1))_l * y;l is
closed in M , therefore null homotopic. It projects in M to the path
ao*n(ytj)*al'l >a<7:(yti)_l . Since 7‘(7z,.) and n(ytj) are 0 close and 0 <

% inj(M), the closed path g *n(y,)* B, Ty n(yt‘)_l is also null homotopic
! J
in M . These facts imply the results.
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Continuation of the proof of Proposition 4.2. As a consequence it fol-
lows that the closed orbits J, and J, are freely homotopic. It may happen
a priori that they are the same orbit and the free homotopy is trivial, for
instance if the orbits through z, and z, get very close to each other. We
show however that if this is always the case, then z, and z, are in the
same leaf of F° .

Choose 6, = 1/k. Let {, < 1/k and v, be given by the closing
lemma. Let now s, — +oo, so that d(CDSk(wo), (Dsk+,(wo)) < {, and
n(ysk) , n(ysm) are at most {, apart. If the corresponding closed orbits
Jok and 6lk of @ are always the same and trivially freely homotopic,

this implies that &  (z,), ® ,) are at most 20, = 2/k
apart. Since

[w(se), w(sk,,.)l(z

Jlim y(t)=+o0, then By (7)), By ,or)(2))

are asymptotic in the forward direction. By expansiveness [32], [5] this can
only happen if they are in the same leaf of %, contrary to assumption.
This yields two closed orbits which are nontrivially freely homotopic,
and finishes the proof of the proposition.
Definition 4.4. A quasi-isometry is a map p: (Q,d) — (Q', d’) be-
tween metric spaces for which there is k > 1 so that, forany x,y € Q,

max(d(p(x), ), d(x, ) > k
= 2d(x, ) < d(p(x), p(¥)) < kd(x, ).

Then we say that p is a k-quasi-isometry.

Definition 4.5. A quasigeodesic curve in Q is the projection to Q of
the image of a quasi-isometric embedding p: 4 — Q, where 4 is an
interval in R, finite or not and Q is the universal cover of Q. The
metric in A is induced from arc length in Q. If Q is compact, being
quasigeodesic is independent of the choice of smooth metricin Q. A flow
for which all flow lines are quasigeodesics is a quasigeodesic flow. Once
a metric is fixed, we say that y is a k-quasigeodesic if it is the image (in
Q) of a k-quasi-isometry.

Notice that finite length curves are always k-quasigeodesics for some k
as opposed to what may happen for infinite length curves.

Definition 4.6. A curve y in Q is a (k, u) quasigeodesic if any seg-
ment in y of length < u is a k-quasigeodesic. It is also called a local
quasigeodesic.
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We assume from now on that =, (M ? ) is negatively curved. This was
originally defined by Gromov [21], who used the term hyperbolic. Gromov
showed that there is a canonical compactification of M with an ideal
boundary M . When M is irreducible (which is always the case here),
Bestvina and Mess [3] proved that M is homeomorphic to a sphere,
which will be denoted by Szo . Furthermore M U SZO is homeomorphic
to the closed 3-ball [3]. Basic references for negatively curved groups are
[21]; [19]. s

Sulgyan [34] proved that the intrinsic geometry of the leaves of &
and F" is negatively curved in the large. This property was also stud-
ied by Gromov [21], who again used the term hyperbolic. Then any leaf
LeF°UF" has a canonical compactification with an intrinsic ideal
boundary 9L [21]. We proved in [11] that L is always homeomorphic
to a circle, which will be denoted by S;o , usually without reference to
the particular leaf we are considering. We stress that Sio will always be
the intrinsic ideal boundary of L and not its image M when the leaf
extends continuously to &M . Furthermore S;o is defined independently
of whether @ is quasigeodesic or not.

If L € %, then the intrinsic ideal points correspond to the (distinct)
negative limit points of flow lines in L and to the common positive point
of all flow lines [13]. The intrinsic geometry of L € & resembles that of
the hyperbolic plane H’? where the flow lines correspond to the geodesics
in H? which have a common limit point in the ideal boundary of H-.
Analogous results hold for .

Given a bi-infinite K-quasigeodesic in M , any lift to M is a bounded
distance from a minimal geodesic of M [21]. The bound depends only
on K and how much z,(M) is negatively curved. As a result the quasi-
geodesic has two distinct limit points in Szo [21, §7.2]. Infinite quasi-
geodesic rays also have a well-defined limit point.

Recall that the limit set of a subset B of M is Ag = =Bn S , Where
the closure is taken in M U S . Usually B will be a leaf of F 75 or .

In [13] we proved that @ being quasigeodesic in M? with 7 (M) neg-
atively curved implies the following: if L is a leaf of 7 7 ugF”, u then the
embedding ¢ : L — M extends continuously to ¢ : LUS M US . In
particular A, = ¢(Soo) , giving continuous parametrization of the limit set

of each leaf. We then say that F* and F" have the continuous extension
property.
This yields that when ® is quasigeodesic, there is a continuous function
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~ 2 . ~
N, M-S, o (x)= lim ®(x).

The same notation will be used for the corresponding fugction G — Sg‘o
Similarly define n_. Then n_(x) # n_(x) forany x € M.

If p~,q,let y, (p q) be the path from p to ¢ cons15t1ng of a segment
in W”(p) from p to <I)R(q) followed by a segment in s r(q) . Similarly
define y,(p, q) if p ~, q. We remark that given ¢ >0, there is a uniform
6 > 0 such that the lengths of y (p, g¢) and y,(p, q) are less than ¢ if
d(p,q)<d [1]

Transitivity (Corollary 2.3) implies that for a quasigeodesic Anosov
flow in M, there is K > 0 so that all flow lines are uniformly K-
quasigeodesics. Then all flow lines (in M ) are a globally bounded distance
from corresponding minimal geodesics.

Given any curve « in M or M let [(a) be its length.

Theorem 4.7. Let ® be an Anosov flow ir M 3 5o that n,(M) is nega-
tively curved. If ® is quasigeodesic, th». .#" and F " are not R-covered.

Proof of 4.7. Suppose @ is quasigeodesic and let F be a legvf in #°.
There is a continuous extension of the inclusion ¢ : F - M to ¢ :
FUuS'. - MuS%

If ¥° is R-covered, then we showed in [11] that Ap = Si for any
F € F°. This implies that ¢(SL) = A, = S, hence ¢| s is not

injective. Let ¢ #d € S with ¢(c) = ¢(d).

If ¢ or d is the intrinsic positive ideal point of F , then the flow line in
F with ideal points ¢, d is mapped to a quasigeodesic in M with same
limit in both directions. This is impossible.

Let p, g € F having ¢ and d as ideal points in S;o and assume that
p ~ 4. By hypothesis, n_(p) =71_(q). Let 4 be the segment in W*(p)
between p and q. Let p, = n(p), q, =7(q).

Both i)R(p) and &>R(q) are a bounded distance from minimal geodesics
connecting the ideal points and they have a common ideal point ¢(c) =
¢(d) . But any two geodesics sharing an ideal point are a bounded distance
from each other in that direction [21]. Hence there is R > 0 so that
<I>(_oo 0](p) and <I>( -~ 0](q) are at most R distant from each other.

As in Proposition 4. 2 choose t; = —oo, with |t,—t, || = oo and so that

(p ) converges to p’' in M . Then choose s; w1th d(<I> ( ), @ (q))
R and y; geodesic arc and connecting them. By passmg to a subsequence
assume 7(y;) converges, sO (Ds,.( g,) converges to g’ . Assume all D, (p,)
are very close. ‘
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Then there are covering translations g, of M so that

u=g(@ @) —~u, v;=g(@ @) —v asi—oo,

where n(u)=p’, n(v)=4q".

If u~; v, consider y (u,v). Since u;, — u, v, = v,and u; ~ v;,
then using the local product structure of %" it follows that 75(u;5 ;)
converges to y (#,v). Hence y(u;,v;) has bounded length. Isometry

under g; ! implies that ys(at_(p), &>s'(q)) also has bounded length. But
the strong stable part of these paths is ®, (4) , whose length is

(D, (4)) > ™" 1(4) /-

This is unbounded since ¢, —» —oo.

Therefore u £ v, hence F * is not R-covered, contrary to assumption.
So in any case this proves that .#° is not R-covered. Similarly for .

Remarks. (1) Bonatti and Langevin [4] recently constructed an ex-
ample of a transitive, non- R-covered Anosov flow in dimension 3. We
should stress that in their example the underlying manifold is toroidal; in
fact there is a torus transverse to the flow.

(2) There are many examples of R-covered Anosov flows in M 3 hyper-
bolic [13]. By the previous result these cannot be quasigeodesic. In [14]
the continuous extension property is studied for these flows.

We now bound the number of orbits of @ which can have the same
ideal points in Sf,o.

Proposition 4.8. Suppose ® is a K-quasigeodesic Anosov flow in M 3
with n (M) negatively curved. Then there is n, depending on K and M
so that if & = {y,, 1 < i < n} is any set of orbits of ) sharing positive
and negative ideal points, then n < n,.

Proof of 4.8. Choose b > 0 so that for any x € M , the ball By (x) is

contained in foliated product boxes of F* and §*. Thereis a > 0 so
that any K-quasigeodesic is at most a/2 distant from a minimal geodesic
of M. Since M is closed, we can choose n, > 0 so that if n > n,, then
for any n given points in a ball of radius (a+ 1) in M , there are at least
2 which are less than b/2 apart. Choose now 7, so that if n > ng, then
for any n points in a ball of radius (a + 1), there are at least nf of them
which are mutually at most b/2 apart.

Let ¥ = {y;,,1 < i < n} be a set of distinct orbits of @, all sharing
endpoints and suppose n > n, . Let y be a minimal geodesic of M having
these two common endpoints as ideal points.
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Let p € y and find p, € y;, with d(p, p;) < a. Then there are at least
nf of them which are in a ball of radius b/2. There are at least n, of
them, which are all in distinct stable or unstable leaves. Assume they are
p;» 1 < i < n; and are in distinct stable leaves. Choose now r, = p,
and r; ~; p; so that r; ~, r for all i, j. Using a'(pi,pj) < b/2 and
product neighborhoods, if b is small enough, then d(r,, rj) < b, for any
i, j. Notice n, (r;) =n.(r;), Vi, j. Let a’ > 0 be the minimum of the
unstable distances between the r;. Choose #, > 0 so that Akl y P> 1.
Choose g € y far enough from p so that if &)t(ri) € B,(q) then ¢ >¢,.
By hypothesis, there are i, j with 1<i, j <n, so that

g, = &)ti(ri)’ g;= (T)tj(rj), d(¢;,q)<a, and d(q;,q;)<b/2.

By assumption ¢; and g; are in a foliated product box U of g,
Suppose that ¢; and g; are not in the same local sheet of & in U.
Consider a path from ¢, to ¢ ; in W"(q j) , followed by a short transversal
to £ in U from g; to g;. This path can be perturbed to a closed

transversal path to F *, contradiction to F* being Reebless [29].

Therefore ¢; and g; are in the same local sheet of & in U. As
a result d,(q;, qj) is very small, so I(y,(q;, qj)) is also small. But its
unstable length is > ¢*1°q’/ Uy > 1, contradiction. q.e.d.

Notice there was no concern in getting the best n,, which in general
will be much smaller than the one predicted here.

We now analyze the identification of ideal points in the forward direc-
tion. First notice that flow lines in the same leaf L of #° will (forward)
converge to the same ideal point of M , because they are asymptotic.

Proposition 4.9. Let ® be a non- R-cgyered Anosov flow in M 3 with
n, (M) negatively curved. If the leaves of &~ and " extend continuously
to MU Sfo, then there are nontrivial identifications of limits of flow lines,
that is, there are x,y € M, not in the same leaf of F* so that n.(x)=
n,(v). Furthermore this happens whenever W*(x) and W*(y) form a

branching pair. Analogously for F* . .

Proof of 4.9. By Theorem 3.4 of [13], both F° and F* are not R-
covered. Since F° is not R-covered, there is branching in Z*, so there
are x, ~ y,,with x, - x, y, —y as v — 0 but x £ y. After a small
perturbation, we may assume X, € W“(x) and y, € W“(y). As x, ~y,,

it follows that 5 (x,) = n_ (»,). Since the map ¢ : W“(x) — M hasa
+\ +\Vy



500 SERGIO R. FENLEY
continuous extension to W"(x)U S;o — MU S:o and x, — x, we have
limn, (x,) = n, (x).

Similar reasoning applied to W“(y) and y, — y implies the same for y.
As aresult, 7, (x) =1n,_(y) and x % y. This finishes the proof.

This result is also true (except for the last assertion) in the case of an
R-covered Anosov flow which has the continuous extension property [14].

Corollary 4.10. If ® is quasigeodesic in M? with n,(M) negatively
curved, then there are nontrivially, freely homotopic closed orbits of ®.

Proof of 4.10. By Theorem 4.7, ® is not R-covered. Since @ is
quasigeodesic, the leaves of F# 7° and F* have the continuous exten-
sion property [13]. Using the previous proposition, choose x %,y with
n.(x) =n,(y). Then dNJR(x) R &)R(y) are quasigeodesics sharing the pos-
itive ideal point, so they are a bounded distance apart in the forward
direction. The result now follows from Proposition 4.2.

Actually, much more is known. The next theorerr’lv gives detailed in-
formation about the branching leaves. Let F;,, F € & . Then F, - F
when any unstable segment transversal to F intersects F; for all i large
enough.

Theorem 4.11. Let ® be a quasigeodesic Anosov flow in M with
n, (M) negatively curved. Let F,, F # F' € ° so that F, - F UF',
that is (F, F') is a branching pair. Then there is a nontrivial covering
translation of M leaving both F and F' invariant, and with invariant
orbits y C F and y' c F'. As a result n(y), n(y') are almost freely ho-
motopic closed orbits of ®. Furthermore y and y' are connected by an
even number of adjacent lozenges.

Proof of 4.11. Assume that F°, " are transversely orientable. Sup-
pose F, F' are in the front of F,. By Proposmon 4.9, for any x € F,
yeF,n L (x) =n,(y). Since s r(x) and CDR(y) are quasigeodesics in

M , it follows, as in Theorem 4.7, that there is R > 0 so that
d(q)[oy.'.oo)(x) > &)[0’+w)(y)) < R

By Proposition 4.2 there are p, g € M so that y = &)R(p) , Y = &>R(q)
project to almost freely homotopic orbits of ®. Therefore there is a non-
trivial covering translation g with g(W*(p)) = W*(p) and g(Ws(q)) =
Ws(q) Furthermore the proof of Proposition 4.2 implies that w (r)n
F#3, W“(q)nF #J.

By Theorem 3.5 there is a finite chain of lozenges {Z,}, ., in M
connecting p and g. By Theorem 3.3, the indivisible closed orbits B, =
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(b

FiGURE 4. (a) Rigidity of branching; (b) even chain of
lozenges.

n(®g(p)) and B, = n(Py(q)) satisfy B, ~ B,. This uses the fact that
F* and & are transversely orientable. In general, one can only prove
that 87 ~ B2 which will imply that (z(y))® = (n(3"))*. This is the reason
for almost freely homotopic in the statement of the theorem.

By changing the transversal orientation to F*if necessary, assume
W*(p) is in the back of W*(q).

We first show that p € F, g € F' . Assume this is not true, say p & F .

Step 1. Suppose p is in the front of F (Figure 4(a)).

l.a. As ¢ is in the front of W“(p) and in the back of W‘(p) , the proof
of Theorem 3.3 shows that &>R(p) is the (+, —) cornerof Z, . Let p, be
a (—, +) corner of Z, . Since W*(p)nF # @, Wf(pl) NF # &, hence
p, isin the back of F and in the back of W“(q) . So clearly g ¢ W“(pl) .
Furthermore since F and F' are not separated on their negative sides
and F is in the front of W*(p,), F' is also in front of W*(p,).

1.b. Suppose ¢ is in the back of Ws(pl). Since W*(q)NF' # @ and
F' is in front of Ws(pl) W*(q)n Ws(pl) # @ . This is a contradiction,
because W" (¢) and w* (p,) are both invariant under g. Hence ¢ is in
the front of W*(p,).

As g is also in the front of W"(pl) , it follows that p, is at the (-, —)
corner of Z, . Choose p, a (+, +) corner of Z, . Since W:(pl)nF #J,
Wf(pz)nF # . Hence p, isin front of F and in particular g ¢ 6R(p2) .

l.c. Induction using 1.a and 1.b shows that corners p; of the lozenges
Z, always satisfy W“(pi) NF # <. Hence &Z‘R(pi) # <T>R(q) for any i,
contradicting the fact that {Z }, ., , is a chain from p to gq. Therefore
p cannot be in front of F .

Step 2. Suppose p is in the back of F .
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Asin step 1.b one shows that Z, has (—, —) corner &)R(p) . Let p, bea
(+, +) corner of Z, . Again asin L.b, p, is in the front of F . Therefore
by a similar argument as in step 1, one arrives at a contradiction.

One concludes that p € F and by symmetry that ¢ € F’. Consequently
both F and F' are invariant under g and hence y C F, y' C F'.

Step 3. Now redefine p, = p, p, = q and inductively define p,,
0 < i < n, to be at the other corner of Z;. Let F, near F with F, N
W p)#@, F,nW"(q) # @. If we apply step 1 with F replaced by F,
we see that as p is in front of F,, (step 1.a) p, is in the back of F, and
Wf(pl) NF, # @. By induction W*(p,)NF, # @ forall i and p, is in
the front of F, if i is even and in the back of F, otherwise. Since g is
in front of F it follows that n is even, and F and F ' are connected
by an even chain of lozenges. Furthermore all lozenges Z; intersect F;.
This finishes the proof.

If (F, F') is a pair of branching leaves which are in the boundary of
two adjacent lozenges, then the pivot associated to F, F' is the common
corner of the lozenges. The pivot always projects to a periodic orbit of @
in M.

We say that (F, F') is associated to branching in the positive direction
if F and F' are not separated on their negative sides.

__Theorem 4.7 shows that quasigeodesic behavior forces branching in
F°, F*. On the other hand, the next result implies these foliations
cannot have too much branching.

Proposition 4.12. Let ® be a quasigeodesic Anosov flow in M 3 with
n,(M) negatively curved. Then, up to covering translations, there are only
finitely many branching leaves.

Proofof4.12. Suppose there are infinitely many inequivalent branching
leaves. By changing the flow direction if necessary (this exchanggi F°
with ") and maybe also changing the transversal orientation to ¥~ we
may assume there are infinitely many stable branching leaves where the
branching occurs in the positive direction. Since p’ € M can be the pivot
of at most one pair of adjacent lozenges associated to branching, it follows
that there are infinitely many 1nequ1valent pivots. Their i images accumulate
in M , therefore there are pivots p; € M,ic N, <I>R(p ) # <I>R(pk) if i #
k and so that p, — p as i — co. By changing the transversal orientation

to F* if necessary assume there are i, k so that ’W: (pe) N Wf@i) #
and W' (p, )N W:(p,) # 2.

For any n let ©, be the double lozenge associated to the pivot p, . Let
G,, S, be the unstable sides of ©, , so that G, in the back of S, , and
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FIGURE 5. Too much branching is unallowed.

let E,, L,, F, be the stable boundaries, with F, in the boundary of the
two lozenges in ©, and E, in the back of W“(pn) (see Figure 5). Then

W )N W' (p)#2 =W (D)NE, 2.

Therefore L, is in the front of E; and as a result is contained in the
back of W“(pi) (so L, does not intersect W*(p,)). Similarly Wj(pk)n
W (p,) # @ implies that S, is in the front of W"(pi) . But this shows
that L, NS, = &, contradicting the fact that L, , S, W’(p,), W"(p,)
are the boundary sides of a lozenge with a corner in p, . This finishes the
proof.

We now analyze the identification of ideal points of stable leaves. Sim-
ilar results hold for & .

Theorem 4.13. Let ® be a quasigeodesic Anosov flow in M 3 closed,
with n (M) negatively curved. Let F € & * and y, a be different orbits
in F, which limit in the same point of Sfo in the negative direction, that
is n_(y) =n_(a). Then W*(y), W"(a) are periodic leaves, and there is a
nontrivial covering translation leaving both of them invariant. Furthermore
W“(y) , W“(a) are connected by an even number of adjacent lozenges.

Proof of 4.13. We may assume that F°, S are transitively ori-
entable. Choose p € y, ¢ € a, p ~,, q. First notice that y (or «a)
cannot be periodic. This is an important property which is true under
the much weaker assumption that Ws(p) extends continuously to Sfo .
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Otherwise assume y is periodic. Let g be a nontrivial covering transla-
tion with g(y) =y. Then

n_()=n_(c)=>n_(g" (@) =¢g"(n_(a) = g"(n_(»)) = n_().

By replacing g by g_1 if necessary, suppose the positive limit point of
y is the attracting fixed point of g. Then

Jim n_(8"(@) =n,(»),

because the intrinsic negative limit points of g"(a) in FUS, :,o converge
to the intrinsic positive limit point associated to y, and w* (p) extends
continuously to Sfo . Thus n_(p) = n,(p), contradiction to p being in a
periodic orbit (which is always a quasigeodesic anyway). Thus y and a
are not periodic.

By moving p, q along their unstable leaves to nearby p' ~ q', we
further assume Ws(p) is not periodic, because n_(p') =n_(p) =n_(q) =
n_(4).

As before choose f; — —oo so that @, (n( )) — w,, and choose s,
with d(d> (p) (I> (q)) < R, for some global R. Let Yy be the geodesic
arcs connectmg these points, and assume up to subsequence that n(y,)
converges, so @ (n(g)) also converges, and let w, be its limit. Suppose
that ¢, > ¢; forall i<j.

Let g; be covering translations so that p, = g, (<I) (p)) converges to
z, (with =(z;) = w;), and from the above conditions it follows that
q; = gi(ési(q)) converges to z, (with n(z,) = w,) (see Figure 6). Then
as in Theorem 4.7 z, #  z, and F, = Ws(zn) , n=0,1, form a pair of
branching leaves. Furthermore Theorem 4.11 implies that F; and F, are
connected by an even chain of lozenges. Assume F, F, are not separated
on their negative sides.

Assume that all p; are very close and that all y, are also near each

other. If p, ~ p B then they are in the same local sheet of 5% near z,,
so n(p;) and n(pj) are in the same local sheet of #° near w,. This
implies that W* (z(p;)) contains a periodic orbit of @, hence Ws(p) is
periodic, contradiction. So p; #, p;, and we may assume w* (p) is in
the front of W* (p;) forall j>i.

The flow segment from n(pj) to z(p;) (i < Jj) is almost closed, so
by the closing lemma, it is shadowed by a closed orbit a, of ® (maybe
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Wi(z,) Wi(z,)

W“(ZO) W"(zl)

FIGURE 6. Forcing of periodicity in unstable leaves.

a, not indivisible). The same happens to n(q;), m(q;) producing (as
in Proposition 4.2) a freely homotopic closed orbit «,. Lift a; and a,

coherently to y, C M n=0, 1, so that y, has a point very near z,
The proof of Theorem 4.11 shows that y, C wS (z,), n=1,2. Slnce

there is only one periodic orbit in Ws( z,), it follows that the orbits y,,
7, do not depend on the choice of the pair i, j. Furthermore

lim d(p;, p;)=0= limd(p,;, y)) =0
11— 00

i,j—oo

It follows that y, = ~R(Zo) and similarly "= D, (z r(Z l)
Let & be the covering translation with h(Ws(yo)) = (yo) associated
to the indivisible closed orbit n(y,). By taking inverse if necessary assume

that & acts as an expansion on the set of orbits in Ws(yo) . As the covering
translations taking ®.(p;) to <I>R(pj) leave W* (yp) invariant, they are
h™i for some m;; € Z . Notice that for i fixed:

lim K™ (B (p) = Ba(2,)-

Since p, & Ws(zo) for any n, the above equation implies that m, ;00
as j — oo (for i fixed). The only possible way for h”"f( D (p; )) not to
escape in the stable direction is to have p ;€ W“(yo) forall j and similarly
q; € Ws(yl) Therefore W“(p ), W“(q ) are periodic and left invariant
by k. In addition y, and y, are connected by an even chain of adjacent

lozenges all intersecting a common stable leaf. Translation by g] ylelds
the result.
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5. Limit sets of leaves

Let F be a codimension-one foliation in M> with n,(M) negatively
curved. In general there may be many quasi-isometric leaves. For instance,
if & is a finite depth foliation in M 3 hyperbolic so that no compact leaf
is a fiber of a fibration of M over the circle, then all compact leaves
are quasi-isometric [35]. Gabai [17] showed that there are many such
foliations. But if there is a dense quasi-isometric leaf, then all leaves are
uniformly quasi-isometric and & is quasi-isometric, contradiction [11].
By Corollary 2.3 all stable and unstable leaves of Anosov flows in such
manifolds are dense. Hence:

Corollary 5.1. Let ® be an Anosov flow in M 3 5o that n, (M) is neg-
atively curved. Then no leaf of &° or & is quasi-isometric.

If there were a quasi-isometric leaf, then its limit set would be a Jordan
curve [21, §7.2]. We prove that not even this weaker property is possible
for stable and unstable leaves of quasigeodesic Anosov flows. First we
have a preliminary result about limit sets of Reebless fohatlons

Proposition 5.2. Let F be a Reebless folzatzon in M® with n (M)

negattvely curved. Let F be the liftof & to M and F € &. Then
S = Soo — A is a union (which may be empty) of open disks.

Proof of 5.2. Since F is Reebless, each leaf F of F isa topological
plane. As F is properly embedded (no closed transversals to & [29])
Ap #O. Let A be a component of S. Then A is a planar surface, and
it suffices to prove it is simply connected.

Let y be a simple closed curve in A. Since Fny =@, there is a
neighborhood V' of y in Mu S disjoint from F. As Mu S2
homeomorphic to a closed 3-ball, we may choose V' to be homeomoLphlc
to a (closed) solid torus. Cap the solid torus with a closed disk D C M so
that V' UD is simply connected (actually contractible). As F is properly
embedded in M , then F N D is a compact subset of F. Notice that
FnoD = &. Therefore after a small perturbation of D we may assume
that D is transverse to F. As M is irreducible and & is Reebless,
classical techniques of cut and paste [22], [24] show F can be isotoped in
M to be disjoint from DUV . Since FND is compact in F, the isotopy
can be chosen to be compactly supported, so the limit set of F does not
change. This means that F does not limit in one of the components of
Sgo — V', therefore y bounds a disk in 4.

Theorem 5.3. Let ® be a quasigeodesic Anosov flow in M 3 with n, (M)
negatively curved. Let F € F°. Then A is not a Jordan curve.
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Proof of 5.3. By lifting to a finite cover if necessary, assume that .#°,
F" are transversely orientable. The hypothesis implies that #° is not
R-covered. Therefore the proof of Theorem 4.11 shows that there are two
adjacent lozenges both intersecting a common stable leaf. Let © be the
union of these two lozenges, and let 7, u, and s be corners of the lozenges,
where u is the pivot. Then 7(®g(r)) = (n(Pg(u)))™" = (n(Dg(s)) as
oriented, indivisible closed orbits of ® in M . This implies that n_(r) =
n_(s). Since F is dense in M, there is a translate g(F) intersecting

the unstable boundaries of © in &)R(p) , (T>R(q), where p € W“(r) and
g = W"(s)n W*(p). Thus

n_(p)=n_(r) =n_(s) =n_(q).
This yields that the continuous map ¢ : S;o — Sjo associated to g(F) is
not an embedding. However it is harder to show that its image ¢(S:o) =
A 2(F) is not a Jordan curve in Sfo . In order to do that we will need to
use Theorems 4.13 and 4.11.

Suppose then that J = d)(Solo) is a Jordan curve in Sfo . Assume with-
out loss of generality that W"(s) is in the front of W"(r) and also that
W*(r), W'(s) are not separated on their negative sides, that is, they are
associated to positive branching. Let ©, and ©, be the lozenges whose
union is ©, where 7 isa (+, —) corner of ©, . Let x = W*(u)nW*(p).
Let a = n_(p) and b = n_(x). Clearly a # b. Notice that as p €
W*(g), then ,(p, q) is the segment in W*(p) from p to ¢.

Claim 1. If v € y(p, q) and n_(v) = n_(p), then v is either p or
q.

If n_ (v) = n_(p) then by Theorem 4.13, W*(v) is periodic and in
addition W* ('v) and W* (p) are connected by an even cham of lozenges
all intersecting w* (p). Smce v is between W (p) and w (g) and the
lozenge has to intersect w* (p), the first lozenge has to be ©,. As v ¢
(T)R(u) , this implies that v is in front of W“(u) . Then the second lozenge
of the chain has to be ©, with other corner s so v cannot be achieved,
contradiction.

A similar argument shows that if v € ,(p, ¢) and n_(v) = n_(x), then
v = x. Since J is a Jordan curve, this implies that J, = n_(7,(p, x)) is
the closure of a component of J—{a, b}. Similarly for J, = n_(y,(x, q)) .

Claim2. J, = J,.

Else J = J,UJ,. Butthen 7 (p) = n_(z) for some z € y(p, q) . Then
n.(z) =n,.(p) = n_(z) contradiction to ® being quasigeodesic. Thus the
claim is proved.



508 SERGIO R. FENLEY

Choose now ¢ € J;, ¢ # a, b. Then there are p, € 7,(p, x) and
g, € v,(x, @) with n_(p,) = n_(q,) = c. Furthermore neither p, nor g,
is equal to any of p, g or x. s

Again by Theorem 4.13, W“(pl) and W*(q,) are periodic and con-
nected by an even chain of lozenges all intersecting Ws(p) . Let o be
the periodic orbit in W“(pl). If any corner o* of the chain is con-
tained in O, then since © is a union of adjacent lozenges, it follows
that W*(a*) N W*(q,) # @. This is a contradiction to both being left
invariant by a common covering translation.

Since W* (0g) NO® # &, a is either in the front of w* (r) or in the
back of W* (u). If o is in front of w* (r), then the argument in step
1 of Theorem 4.11 shows that the even corners in the chain of lozenges
are in front of W*(r), while the odd corners are in the back of W*(u).
If o is in the back of w* (u) , then the same happens with odd and even
exchanged. This yields that all lozenges in the chain intersect Ws(r);
hence, g, cannot be achieved, contradiction.

We conclude that the limit set of g(F) is not a Jordan curve. As a
result the same happens for F and the result follows.

Lemma 5.4. Let ® be an Anosov flow in M with n,(M) negatively
curved. If thereis F € F° with Ap = S2 then A, = S2 forall L € .

Proof of 5.4. We e may assume that F 24 is transvcrsely orientable. Sup-
pose there is L € F° with A, ;éS2 LetceS —A;,and V bea
neighborhood of ¢ in M U S d1s_|omt from L. By changing the orien-
tation if necessary we may assume V' N M is in front of L.

Let now L' be any leaf of F . Since n(L') is dense in M, it limits
on the negative side of local sheets of m(L). Therefore there is a covering
translate g(L') of L' which is on the negative side of L. Thus g(L')n
V=g and c ¢ Ag(LI). As a result Ag(L,) # S:o, So A, # Sfo, as we
wanted to prove.

Theorem 5.5. Let ® be an Anosov flow in M> so that n (M) is neg-
atively curved Assume that ® is quasigeodesic. Then for any F € &, 7
Ap # S

Proof of 5.5. We may assume that #°, & are transversely orientable.
Then thcfc is a double lozenge © in M (or @) with unstable sides in
G,SeF", stablesidesin E, F, L € F° and pivot p so that: (1) the
two half leaves of F are in the boundary of the lozenges of O, (2) G is
in the back of S and (3) E 1s in the back of W* (p) (see Fig. 7) (change
transversal orientation to Z° if necessary to produce branching of % 7
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FIGURE 7. Sequence of lozenges.

in the positive direction). By G we mean the half leaf in the boundary of
©. Thus n(G) is dense in M [13].

Choose a covering translation g, sothat g, (G)NF #J, g (G)NL #J.
Since g,(©) is a union of two adjacent lozenges, g,(F) is in the back of
F and g,(E) is in the front of L. Hence g,(L) is in the front of L.
Finally g,(S) is in the front of g (G), in the back of S and intersects
both L and F . Inductively choose covering translations g; so that g,(G)
is in the back of S,

&(GNF#0, g(GNL##J, g(G)—S asi— oo,

and g;(G) is in the front of g, ,(S) (see Figure 7). Notice there may
be other leaves in the limit of the g,(G). Let G, = g,(G) and similarly
define F;, L;, S;, and E,.

Choose C € F° with CN® # @. Then CNS#QP, CNG# D and
let C; = Cng(8). For any flow line y € g,(F), W*(y) intersects C,
and vice versa. Hence 7_(C;) = n,(g,(F)). Let ¢ € CNS. By continuity
of n_ there is a neighborhood V of g in M so that n_(V) is contained
in a small neighborhood U of 7_(gq) in Szo. As C.n WS(q) - q,
n_(C;) c U for i large enough. Therefore n_(g,(F)) C U and as a result
Ag,.(F) is contained in the closure of U and is not SZ'O. The previous
lemma implies the result.
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6. Quasigeodesic orbits

In [13] we produced many examples of R-covered Anosov flows in hy-
perbolic 3-manifolds. By Theorem 4.7 these cannot be quasigeodesic. One
natural question is: are there only finitely many uniformly quasigeodesic
orbits? We first notice that every closed orbit is freely homotopic to a
closed geodesic and is therefore a quasigeodesic. This produces a count-
able number [1] of quasigeodesic orbits. Unfortunately it is hard to show
they are uniformly quasigeodesic. In fact, since the union of closed orbits
is dense, this would be equivalent to showing ¢ is quasigeodesic.

Our goal is to prove that, in general, for K big enough, there are un-
countably many K-quasigeodesic and infinitely many closed, K-quasigeo-
desic orbits of the flow. The key fact is the following localization property
of quasigeodesics. Clearly any connected subset of a K-quasigeodesic is
a local K-quasigeodesic. The surprising fact is that there is a converse to
this.

Theorem 6.1 [21]. Fix a closed manifold M with = (M) negatively
curved. Then for any K > 0 thereis L > 0 (usually L > K) satisfying:
if y is an embedded curve so that any subarc of y of length < L is a
K /2-quasigeodesic, then y is K-quasigeodesic.

We may assume that M is orientable since both properties which we
want to prove are preserved under finite covers.

We now fix a an indivisible closed orbit of ®, and let 7, be a flow
segment of @ starting and ending very near the same point p of a. We
assume that 7, is not contained in a small neighborhood of «. Let 7, be
a fixed small segment from p to 7,(0) and 7, another from 7,(1) to p.
Then 7 = 7,7,7, is a closed loop based at p. For simplicity of notation
we will omit the #’s in 7, * 7, * 7,, etc.

Let & be the set of all sequences ¢ = (m,),., such that the following
hold:

(1) A is an interval in the integers that contains {0, 1},ie., A= {j €
Z|ny<j<n}, where —0<n,<0and 1<n <oco.

(2) Each term m; isin N* U {0} (N*=N-{0}).

(3) Only the first and the last terms of the sequence may be oo. Hence
m; = oo does not occur in bi-infinite sequences.

For re N, let

&, ={,ed|m;>r, Viec A}
Finally, given & € &7 | let 7¢ be the (possibly infinite) path defined by

— m_, . My, m
yc_unua ra Ta PRy ’
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where o™ in ta®™ is just the infinite path starting at the endpoint of 7
and going along o infinitely many times in the forward direction, while
in a®7 it is the infinite path ending in the initial point of v and going
backwards along o infinitely many times. The path Ve is constructed
starting with the initial point of 7 (between o™ and o™) and inductively
constructing both directions. Let pa™ be the path starting at p and going
forward along o infinitely many times and similarly define o”p.

If the endpoints of 7 are sufficiently near o then, by the shadowing
lemma [1], [6], [7], any 7, is shadowed by a true orbit B, , which may
be finite or not. Expansiveness [6], [32] implies that if Ve is infinite in
both directions, then ﬂé is unique. Furthermore /35 # a for any & be-
cause 7, is not very near a. Our goal is to show that the orbits ﬂf are
quasigeodesics. Notice that Ve and Bé are always uniformly very close
to each other throughout their lengths, so in order to prove the uniform
quasigeodesic behavior of ﬂé it suffices to do this for Ve -

Lemma 6.2. If &, = (m,, m,) = (00, 0), then Ye, is a K-quasigeo-
desic for some K . -

Proof of 6.2. Fix a base point p € M with n(p) = p. Let &, be the
lift of o®p ending at p. Let T be the lift of t starting in j, ending in
g and let &, be the lift of pa™ starting in §. Then 7 = G,%a, is a lift
of Ve, - Since a is a quasigeodesic in M, ¥ has well-defined limit points.

We first show that the positive and negative limig points of $ are dis-
tinct. Let g, 2 be the covering translations of M (with basepoint p)
associated to « and 7. Let a # b be the fixed points of g in Sio , where
a is the attracting fixed point. The positive limit point of  is 4(a), and
its negative limit point is b. If h(a) = b, then h™'gh(a) = a = g(a).
But as the stabilizer of a point in Szo is cyclic [21], there is an indi-
visible covering translation f with A~ 'gh = f% and g = f'. Since
M is orientable, it follows that f fixes both 4 and b. Furthermore
f71(h(b)) = h(b), hence either h(b) =a or h(b) =b. But h(a) = b so
we must have A(b) = a. Then hz(a) = a, so as above this implies that A
fixes a, contradiction. Therefore the endpoints of $ are distinct.

Let ¥ C M be a minimal geodesic connecting the endpoints of 7.
Project 7 to 7 as follows: &, is kj-quasigeodesic for some K, therefore
project j to the nearest point in 7 and define 6: &y — 7 continuous so
that d(6(u), u) < R (for some R) and

dy(u, v) <by+bd6u), 6(v)),

where d, is measured along 7. This can be done in two steps: first, using
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FIGURE 8. A basic quasi geodesic.

quasigeodesic behavior of &, , project &, to a geodesic ray 7" endingin p
and with same limit point as &, in a way satisfying the above inequality.
Then project ° to 7 so as to multiply all lengths by a constant. Do the
same for &, , projecting § to 6(p). Then project 7 to 6(p). See Figure
8.

Let b, be the length of 7. Let u,v € y, with u € &, and v € &, .

Then
do(ua v) = do(u’ p)+ do(ﬁ> g)+ do(q , V)

< by+b,d(0(u), 0(p)) + b, + by + b,d(6(G), 6(v))

= (2by+ b,) + b,d(0(u), 6(v))

< (2by+b,+2b,R) + b,d(u, v).
Since d(u, v) is clearly < d(u, v), there is a uniform quasi-isometric
relation between d(u, v) and dy(u, v). The other cases, for instance
if both u, v are in &, are simpler. Therefore there is a global quasi-
isometric relation, and Ve, is quasigeodesic.

Proposition 6.3. For K big enough, there is r, so that all orbits ﬂé
with & in M,O are K-quasigeodesics.

Proof of 6.3. By the previous lemma, Ye, is a K/2-quasigeodesic for
some K. Using Theorem 6.1 we find L so that any (K/2, L) local
quasigeodesic is a global K-quasigeodesic. Choose r, so that / (@) > L.
Let { € &/ and o' asegment in y, of length < L. Since /(o) > L, it
follows that for some i € A, one of the following must happen: o' C o™,
o ca™t, o c1a™,or o ca™1a™* . In any case, for some i € 4,

o camta™ c a®1a™ = Ve, >
which is a K/2-quasigeodesic. Hence y, isa (K/2,L) local quasigeodesic.
This implies that Yes hence ﬂg, , is a K-quasigeodesic.

Theorem 6.4. Let ® be an Anosov flow in M so that n,(M) is neg-

atively curved. Then for big enough K, there are uncountably many orbits
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of ®, which are K-quasigeodesics and infinitely many closed orbits in this
set.

Proof of 6.4. Let K, r, given by the previous proposition. Let .Sz/ro be
those & in Mro so that { = (m;),, satisfies

Zmi =00 and Zmi = o0.

i<0 i>1
For such &, there is a unique B which will be a full orbit. By the proposi-
tion, ﬂf is a K-quasigeodesic. The proof now follows from symbolic dy-

namics. For any periodic sequence & € .97 /3.f is a periodic orbit. If two

sequences in M are not shift equlvalent the closed orbits are different.
This shows there are infinitely many K-quasigeodesic closed orbits. Fur-
thermore since there are uncountably many shift inequivalent sequences in
Mr it follows that there are uncountably many distinct K-quasigeodesic
orblts

Remark. Notice that in this construction, all orbits are in a small neigh-
borhood of TUa!
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