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QUASIGEODESIC ANOSOV FLOWS AND
HOMOTOPIC PROPERTIES OF FLOW LINES

SERGIO R. FENLEY

Abstract

A nonsingular flow is quasigeodesic when all flow lines are efficient in
measuring distances in relative homotopy classes. We analyze quasi-
geodesic Anosov flows in 3-manifolds which have negatively curved fun-
damental group. We prove that the lifts of the stable and unstable foli-
ations to the universal cover are foliations with branching, that is, they
have non-Hausdorff leaf space. Furthermore any branching is associated
to freely homotopic closed orbits of the flow in the manifold and there
are finitely many such branching leaves up to covering translations. Using
this we prove that the limit sets of the stable and unstable leaves in the
universal cover cannot be Jordan curves nor the whole sphere. Identifica-
tions of ideal points of leaves are also described using freely homotopic
orbits. Finally, for any Anosov flow in such manifolds, we prove the
existence of uncountably many (infinitely many of which are closed) K-
quasigeodesic orbits for K big enough. The key tool is the analysis of
freely homotopic closed orbits, which are completely characterized for
general Anosov flows.

1. Introduction

The primary goal of this article is to study metric properties of flow
lines of Anosov flows in closed 3-manifolds. The two classical fami-
lies in dimension 3, namely suspensions of Anosov diffeomorphisms of
the two-dimensional torus (briefly suspensions) and geodesic flows on the
unit tangent bundle of surfaces of negative curvature (geodesic flows),
have the following property: in the appropriate metrics, the flow lines
are geodesic. Since the manifolds are compact, the flow lines cannot be
minimal geodesies in the usual sense. But they are minimal in relative ho-
motopy classes, which is the same as being minimal geodesies when lifted
to the universal cover.

A natural question is to decide which Anosov flows have this metric
property. The requirement that flow lines be minimal geodesies is too
strong and depends on the metric. Therefore relax this to the quasi-
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geodesic property: a quasigeodesic curve is one that is efficient, up to
a bounded multiplicative distortion, in measuring distances in relative ho-
motopy classes. This is independent of the metric in the manifold. A flow
is quasigeodesic if all flow lines are quasigeodesics.

In hyperbolic manifolds quasigeodesics are a bounded distance from
true geodesies (in the universal cover) and so are strongly related to the
geometry in the large of the manifold. This makes them extremely impor-
tant as was demonstrated by Thurston [35], [25] in the proof of the hyper-
bolization theorem. The classical families of Anosov flows are in toroidal
3-manifolds, which are not hyperbolic, but a large class of Anosov flows has
been constructed in hyperbolic 3-manifolds by Goodman [20] and Christy
[9], using Dehn surgery on closed orbits of suspensions [16]. As opposed
to the classical families, very little is known about these Anosov flows.

On the other hand, many quasigeodesic flows in hyperbolic 3-manifolds
have been constructed, but these are pseudo-Anosov flows. They are gen-
eralizations of Anosov flows, where /?-prong singularities along finitely
many closed orbits are allowed. The combination of pseudo-Anosov dy-
namics and quasigeodesic behavior has powerful implications: Cannon
and Thurston [8] proved that suspensions of pseudo-Anosov homeomor-
phisms of surfaces are quasigeodesic pseudo-Anosov flows. This metric
property was used in an essential way to understand the limit sets of fibers
and yields as one byproduct examples of sphere filling curves [8]. Mosher
[28] proved the quasigeodesic behavior for a class of pseudo-Anosov flows
transverse to depth one foliations. This in turn was used to compute
Thurston norms via dynamics [26], [27].

Our goal is to study the quasigeodesic property for Anosov flows in hy-
perbolic manifolds and more generally in 3-manifolds M with negatively
curved fundamental group. The universal cover M of M is homeomor-
phic to R3 and is compactified with a sphere at infinity (S2^ = dM).
Associated to the Anosov flow there are two-dimensional foliations, stable
(^s) and unstable (^u), which lift to foliations by topological planes
&s and F M in M . Consider the following properties: (1) 3Γ\ &u are
quasi-isometric foliations. ̂ This^neans that up to a bounded multiplica-
tive distortion, leaves ofj^s, £FU are efficient in measuring distance in
M (2) leaves of ^ s , &u extend continuously to 5 ^ , giving continu-
ous parametrizations of their limit sets. Property (1) can actually be de-
fined for any foliation in any manifold, while (2) can be defined whenever
the fundamental group π{(M) is negatively curved and the leaves of the
lifted foliation have well defined intrinsic ideal boundaries. Both of these
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properties are fundamental for understanding the interaction between the
foliation structure and the geometry in the large of the manifold. For
an Anosov flow Φ in M 3 with πx(M) negatively curved, (1) is stronger
than Φ being quasigeodesic, which in turn is stronger than (2). In [11]
we proved that (1) is never true for a codimension-one foliation in M3

with πχ(M) negatively curved. On the other hand, the continuous exten-
sion property holds for fibrations [8] and many depth one foliations [12].
Hence another reason to analyse the quasigeodesic behavior of such flows.

We now describe our results, which show that if Φ is an Anosov flow
in M3 with nχ{M) negatively curved, then the quasigeodesic property
is very strong, in the sense that it has several nontrivial consequences for
the dynamics of the flow and the limit sets of the leaves. We say that a
foliation in M is R-covered if the lift to M is a foliation whose leaf space
is homeomorphic to the set of real numbers R. An Anosov flow in M
is R-covered if both ^ s and !FU are R-covered.

Theorem A. If Φ is a quasigeodesic Anosov flow in M3 with πχ(M)
negatively curved, then both ^ s and ^ u are not R-covered.

This is in stark contrast with suspensions and geodesic flows, both of
which are R-covered. ^

We say that a leaf F of ^ s (or &u) is periodic if it is left invariant
by a nontrivial covering translation g of M, that is, g(F) = F .

Let ^ s and %TU denote the leaf spaces of &* and &" respectively.
If ^ s is not R-covered, then %?s is not Hausdorff. The branching leaves
of ^^correspond to the non-Hausdorff points in %?s. Two leaves F Φ
F' e ^ s form a branching pair if the corresponding points in %fs are
not separated from each other. This is equivalent^) saying that F, F1

do not have disjoint saturated neighborhoods in M, where a saturated
neighborhood of ^ s is an open set of M, which is a union of leaves of
&s. Similarly for <?» .

In general very little is known about branching leaves [23], but in the
case of quasigeodesic Anosov flows we prove

TheoremB. Let Φ be a quasigeodesic Anosov flow in M3 with nχ{M)
negatively curved. Let (F, F1) be a pair of branching leaves of SFS. Then
F and F1 are periodic and invariant under a common nontrivial covering
translation of M. This produces a nontrivial free homotopy between closed
orbits of Φ in M. Furthermore, up to covering translations, there are only
finitely many pairs of branching leaves.

This is the main tool in deriving the following properties of the limit
sets of leaves.



482 SERGIO R. FENLEY

Theorem C. Let Φ be a quasigeodesic Anosov flow in M3 with π{(M)

negatively curved. Let F e ^ s . Then the limit set of F is neither a Jordan

curve in S1^, nor the whole sphere.
Quasigeodesic behavior implies the continuous extension property (2).

The intrinsic ideal boundary of F e ^ s is a circle at infinity S1^ , where
the ideal points correspond to limit points of flow lines. The continuous
extension of F c M to the ideal boundary dM then yields a map S^ ->
S^ . As the limit set of F is not a Jordan curve, there are identifications
in the image, which are characterized by

Theorem D. Let Φ be a quasigeodesic Anosov flow in M3 with πχ(M)
negatively curved. Let F e &s and p, q e F, not in the same flow line, so
that their flow lines converge in the negative direction to the same ideal point
in S^ . Then the two distinct unstable leaves through p, q are periodic and
left invariant by a common nontrivial covering translation.

Again this produces freely homotopic closed orbits of Φ and proves that
only finitely many intrinsic ideal points of F can have the same image
in S2^ . In fact we find an upper bound for the number of such points.
Theorems B, C, and D have analogous statements for ^ u . Theorem D is
also needed for the proof that limit sets are not Jordan curves in Theorem
C.

There are many examples of R-covered Anosov flows in hyperbolic M3

[13], which are therefore not quasigeodesic. Still, one can prove that in
general there are many uniformly quasigeodesic orbits.

Theorem E. Let Φ be an Anosov flow in M3 with nχ{M) nega-
tively curved. Then, for big enough K, there are uncountably many K-
quasigeodesic orbits of Φ, infinitely many of which are closed.

It is clear from the above theorems that the study of freely homotopic
closed orbits is fundamental for understanding quasigeodesic behavior.
A detailed analysis of freely homotopic orbits was then necessary. As it
turns out, lifts of free homotopies to the universal cover can only be of
a particular type, which is in fact quite simple. We stress that neither
transitivity of the flow nor πχ(M) negatively curved is assumed in the
next theorem.

Theorem F. Let Φ be an Anosov flow in M3. Assume that ^ s , ^ u

are transversely orientable. Let α, β be indivisible closed orbits of Φ so
that for some powers n, m e Z, a1 is freely homotopic to βm . Then a
is freely homotopic to either β or β~ι.

A more precise statement, involving the extremely useful concept of
lozenges is given in §3. The other important technical tool needed for
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the proof of theorems A, B, C and D is the following: orbits of the flow
(in the universals over) which stay a bounded distance from each other
(say in forward direction) and are not in the same stable leaf, produce
freely homotopic closed orbits of the flow in the manifold. When Φ is
a quasigeodesic Anosov flow in M3 with π{(M) negatively curved, it is
easy to construct such bounded distance pairs of orbits.

The organization of the paper is as follows. Preliminaries are covered
in §2. Section 3 contains the analysis of free homotopies between closed
orbits. The nonorientable case is also discussed. Section 4 is the core of
the paper, where Theorems A, B, and D are proved. Limit sets of leaves are
studied in the following section, and finally in the last section we construct
the ΛΓ-quasigeodesic orbits.

2. Preliminaries

Let Φt: M —• M be a nonsingular Cr(r > 1) flow in a closed Rieman-
nian manifold M. The flow Φ is Anosov if there is a continuous decom-
position of the tangent bundle TM as a Whitney sum TM = E°φEsφEu

of DΦt invariant subbundles and there are constants μ0 > 1, μχ > 0 so
that:

(i) E° is one dimensional and tangent to the flow,
(ii) ||£>Φ,(υ)|| < μoe~μιt\\υ\\ for any v e Es, t > 0,

(iii) ||£>Φ_,(v)|| < μoe~μιt\\v\\ for any v e Eu , t > 0.

We restrict to M of dimension 3. The bundles Es, Eu are one di-
mensional and integrate to one-dimensional foliations 5FSS, ^ u u called
the strong stable and strong unstable foliations of the flow. Furthermore,
the bundles E° θ Es and E° θ Eu are also integrable [1] producing two-
dimensional foliations ^ s , ^ u which are the stable and unstable folia-
tions of the flow.

The leaves of ^ s , SFU are either topological planes, annuli or Mobius
bands. The last two correspond exactly to leaves containing closed orbits
of Φ. There is at most one closed orbit of Φ in a leaf F of ^ s , in
which case all other orbits in F are forward asymptotic to it. Similarly
for Fu.

The flow is transitive if the nonwandering set is the whole manifold.
Equivalent definitions are: (1) the union of the periodic orbits of Φ forms
a dense subset of M [1], or (2) every leaf of ^ s or &u is dense [1], [31].

The foliations ^ s , ^ u are Reebless, so Novikov's theorem [29] im-
plies that no closed transversal to either of them is null homotopic. Also,
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given any closed orbit γ of Φ, yn is not null homotopic for any n Φ 0
[1]. Let π :M -> M be the universal covering space of M. This notation
will be fixecUhroughout the article. The Anosov foliations ^ s , ^ u lift to
foliations^"5, F M in ¥ . The leaves of SFS, SFU are topological planes
[29], so M is homeomorphic to R3 [30]. Therefore M is irreducible,
that is, every embedded two-dimensional sphere bounds a 3-ball in M.

The induced flow in M is denoted by Φ. Let 0 be the orbit space
of Φ obtained by collapsing flow lines to points. A fundamental prop-
erty which will be repeatedly used i s jhat j f is Hausdorff and therefore
homeomorphic to R2 [13]. Then SFS\^u induce two transverse one-
dimensional foliations in 0 . This is a simplification of the structure in
M and helps in visualizing many arguments. We will occasionally identify
sets in M or orbits of Φ with their respective images in 0.

Let W\x) be the leaf of ^ s containing x and similarly define Wu(x),
Ws\x), Wuu(x), W\x), Wu(x), Wss(x) and Wuu(x). General refer-
ences for Anosov flows are [1], [2], [5]-[7], [32], [33].

A recurring technical problem will be the question of transverse ori-
entability of ^ s and &u . It turns out that for most results transverse
orientability is inessential, but makes the proofs much simpler. We will
lift to a transversely orientable cover whenever possible. Unfortunately
some results about freely homotopic orbits are false without transverse
orientability.

An incompressible surface in M 3 is an embedded surface which in-
jects in the fundamental group level. A closed 3-manifold is toroidal if it
contains an incompressible torus and atoroidal otherwise.

Franks and Williams [15] and Christy [9] produced many examples of
intransitive Anosov flows in dimension 3. It is a known fact that intran-
sitivity implies that the manifold is toroidal. However the only written
proof of this was given by Mosher [26], who actually proves this result for
the more general case of pseudo-Anosov flows. In this generality, tech-
niques of essential laminations [18] are needed, which is not the case for
Anosov flows. Here we give a simpler proof for the Anosov flow case.

Proposition 2.1. Let Φ be an intransitive Anosov flow in M3 ori-
entable. Then M is toroidal

Proof of 2 A. As Φ is intransitive, the nonwandering set Ω is a proper
compact subset of M . By Smale's spectral decomposition theorem [33],
Ω decomposes into finitely many basic sets, each of which is a compact
subset of M on which Φ is transitive. Since Φ is intransitive in M,
there are at least two basic sets, and at least one of them, call it s/, is
attracting.
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Using Lyapounov functions [10] one finds an isolating neighborhood N
of si with Φ transverse to dN. Hence £FS, ^ u induce foliations in
dN and each component of dN has zero Euler characteristic. Since dN
is transverse to Φ, dN is two sided in M. But the orientability of M
then implies that dN has to be orientable; hence dN is a union of tori.
We show that each torus is incompressible, therefore M is toroidal.

Choose a component T of dN. If T is not incompressible, there is an
immersed disk in M with boundary contained in T, not null homotopic
in T. Using classical techniques of cut and paste [22], [24], this produces
an embedded disk D with DnT = dD and dD not null homotopic in
T. As M is irreducible it follows that either: (1) T bounds a solid torus
E or (2) one component E of M - T is contained in a closed ball.

In case (1) assume first that si c E. After a small perturbation of D
we can assume D is transverse to ^ u except for isolated saddle, center,
and boundary singularities. Let &£ be the induced singular foliation in
D. If some leaf of ^ is not compact, then by the Poincare-Bendixson
theorem, it limits on a closed curve in D. The limit curve has nontriv-
ial holonomy, hence cannot be null homotopic in its leaf. Since ^ u is
Reebless, this curve is also not null homotopic in M, a contradiction to
D being a disk.

Let β be a closed orbit of Φ in si . As sf is an attractor, Wu{β) c
si , hence the closure of Wu(β) is contained in the interior of E. By the
above all components of Wu(β)Γ\D are compact, but since Wu(β) is not
compact there may be infinitely many components. In fact this happens
because Wu(β) is dense in si , so Wu(β) limits on itself.

Let a c D be a simple closed curve which is either contained in a
component of Wu(β) ΠD or is the limit of a sequence of nested curves
(with respect to D) in Wu(β)ΠD. Let Da be the disk which a bounds
in D. We say that a is maximal if Da is not contained in any other disk
with the same properties. Since the interior of any Da contains at least
one singularity of Sf£ and all maximal disks are disjoint, it follows that
there are only finitely many such maximal disks.

By the Reebless property a bounds a disk Fa in its unstable leaf. Then
Fa is compact and Wu{β) does not limit on the outside (with respect to
Da) of Fa. So we may assume D is transverse to Fa, and Fa n D
has finitely many components. Again, using cut and paste arguments, D
may be isotoped inside E to as to eliminate all intersections with Wu(β)
inside Da (this uses the fact that Wu(β) does not limit on one side of
F ) . By induction on the number of maximal curves we may assume that
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D n Wu(β) = 0 . But then W"0?) is contained in a 3-ball and /? is null
homotopic, contradiction.

If si ΠE = 0 , choose a repeller 3S <zE and apply the argument above
to 38 . This finishes the proof of case (1).

In case (2) we find either a repeller or an attractor in a closed ball. A
periodic orbit would be null homotopic, contradiction, q.e.d.

The following is a simple consequence of the proof.

Corollary 2.2. Let Φ be an Anosovflow in M3. If T is an embedded
torus transverse to Φ, then T is incompressible.

Proof of 2.2. The proof of the previous proposition shows that if T is
compressible, then either T bounds a solid torus or T is contained in a
3-ball. In particular T is separating and Φ is intransitive. One can then
apply the rest of the proof of the proposition.

In the next result we assume that πχ (M) is negatively curved, as defined
by Gromov [21], who used the term hyperbolic. Examples are fundamen-
tal groups of closed manifolds of negative curvature. Recall that πχ(M)
being negatively curved implies that Z θ Z does not inject in nχ{M) [21],
therefore M is atoroidal. Notice that if M is not orientable, then the
lift of Φ to an orientable double cover is transitive if and only if Φ is.
Therefore the next result follows.

Corollary 2.3. If Φ is an Anosovflow in a 3-manifold with negatively
curved fundamental group, then Φ is transitive.

3. Freely homotopic orbits

It will be useful to establish some notation. Givenj)oints x, y e M,

define x ~ 5 y if x and y are in the same leaf of 9~s. Similarly define
rsj r*j rsj

u ' ss ' uu

Given closed loops a, β in M, let a ~ β if they are freely homotopic.

If a, β closed orbits of Φ, satisfy a ~ β by a nontrivial free homotopy,

then coherent lifts of a and β to M show that there is a nontrivial

covering translation of M leaving invariant at least 2 leaves of ^ s . Our

goal is to get a converse to this fact. A priori we only have the following:

if g is a nontrivial covering translation with g(Fi) = F 9 i = 0, 1, where
F0Φ Fχ£ ^ s , then FQ, F{ are periodic and there are (indivisible) closed
orbits a,β of Φ in π(FQ), π(Fχ). Since πχ{π(FQ)) is generated by a
and similarly for πχ{π(Fχ)), then g(F.) = F., / = 0, 1, imply that for
some n,meZ, oΓ ~ βm .
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W«(p)
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FIGURE 1. (a) A lozenge; (b) adjacent or double lozenges

Definition 3.1. Two closed orbits a, β of Φ are almost freely homo-
topic if there are n, m e Z so that an ~ βm . _

Suppose L is a simply connected leaf of &*, ^ u or any leaf of £FS,

&u. Then a half leaf of L is a connected component of L-γ, where y
is any full orbit in L. If L is an annulus, a half leaf of L is a connected
component of L - γ where γ is the^losed orbit in L.

Since M is simply connected, ^ 5 and &u are always transversely
orientable. Choose one such orientation, assumed to agree with the lifts
of the transversal orientations to &~s, &'u if any of these is transversely
oriented. Notice however that, in general, covering translations will not
preserve the transversal orientations.

F o r p e M , let W^p) be the half leaf of W\p) defined by ΦR(p)

and the positive transversal orientation to^J?"" at p^. Similarly define

Wί{p)> Wlip) and W*{p). Leaves of ^ and ^ separate M. If

L e &s U ^ M , then the front (back) side of L is the component of M - L

defined by the positive (negative) transversal orientation to L.

Definition 3.2. Lozenges: Let p, q € M, p ΦS q, p ΦU q. Let Hp

(Lp) be the half leaf of Wu(p) (Ws(p)) defined by ΦR(p) and contained

in the same side of Ws(p) (Wu(p)) as q . Similarly define Hq, Lq. Then
L_, H , L , and /Γ form the boundary sides of a lozenge (Figure l(a))
if

VF G

and

Notice that n = 0 a n d n = 0 T h e P° ί n t s
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p, q or the orbits Φ R (p), Φ R ( ί) are called corners of the lozenge. If
the lozenge with corner p is contained in the back of Ws(p), then p is
a corner of type ( + , * ) , otherwise it is of type ( - , * ) . Similarly, using
Wu(p), define types ( * , + ) , ( * , - ) .

Lozenges will be the key tool in the study of freely homotopic orbits
and quasigeodesic Anosov flows. By an^ abuse of notation we will also say
that the full leaves Ws{p), Wu{p), W 5(#),and Wu{q) are the sides of
the lozenge. Since given any four leaves there is at most one lozenge with
sides in them, this is well defined. Two lozenges are adjacent if they share
a corner and there is a stable (or unstable) leaf intersecting both interiors
(see Figure l(b)). A sequence of lozenges {ZJ forms a chain if Zz and
Z / + 1 share a corner. Consecutive lozenges may be adjacent or not.

Theorem 3.3. Let Φ be an Anosov flow in M3 so that ^ s and ^ u

are transversely orientable. Let α 0 , aχ be indivisible closed orbits of Φ
which are almost freely homotopic. Then either

(i) aQ~aχ or

(ii) aQ~{aχy
l.

Furthermore, coherent lifts of a0, aχ to M are connected by a finite
chain of lozenges.

Proof of 3.3. Lift α 0 to an orbit γ0 c M and lift the free homotopy
between powers of aQ and aχ so that aχ is lifted to γ . The free homo-
topy means that there is a nontrivial covering translation g of M (which
may not be indivisible) leaving γ0 and γ invariant. We first prove that
γ0 is connected to γ by a finite chain of lozenges with corners on lifts of
periodic orbits, which are all invariant under g.

Let FQ = Ws(γQ), F = Ws{y), ^ be the side of Fo containing F and
let

^o= U

Notice 38^ is a subset of M, whereas ^ is a subset of %?s.

Since g preserves the transversal orientation to ^ s , g(&Q) = &0.

The set of orbits in Wu(γ0) is homeomorphic to R, and g induces a

contraction oi^expansion in this set. As a result g does not leave invariant

any leaf of £FS contained in 38^. Therefore F £ £?Q. The set 38^

is an open, connected, £FS saturated, proper^subset of M. Hence its

boundary is a nonempty union of leaves of &s. Since F ί l ^ = 0 ,

either F c d&Q or there is unique leaf Fχ c d&0 which separates F
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from 38^. In the second case notice that since g{β^) = 38^ we have
g(Fχ) c d&0. If g(Fχ) φ Fχ, it follows that g(Fχ) does not separate
Fo from F, a contradiction to g leaving both F and FQ invariant. In
either case one finds Fχ c d38^, with g{Fχ) = Fχ. Then there is an orbit
γχ c F{ with g(γx) = γx, and γχ projects to a closed orbit of Φ which
is almost freely homotopic to a0 . If Fχ Φ F , induction produces F. and
7i, i = l , 2 , . . .

Claim. For some /, Ft = F hence yt-y.

Suppose not. Let ^ be the side of Fi containing Ft_χ. Then d^ = F.

and ^ c ^ + 1 . Notice that for all i, F t % . So

The set ^ is an open, ^ s saturated, proper subset of M. Furthermore,
g(%?) = &. Using the argument above, there is a unique leaf L e &s,
L c 9 ? which is either F or the unique leaf which separates all 8J
from JF . Therefore g(L) = L. Let γ* be the unique orbit in L with

g(γ*) = / . Since L c 9 ? , the F̂  = ^(y,.) are limiting on L, so for i
big enough,

Since g leaves invariant both of these leaves, g(fit) = /?,, a contradiction
t 0 ί(7*) = 7* ( e l s e there would be two closed orbits in Wu(π(γ*))). This
proves the claim.

Notice that as ^ ( y j c d&0, it follows that there is a stable leaf P
with

PniP(y o )^0 and ΐ^w

Given this we will now show that y0 and γχ are connected by a chain of
adjacent lozenges, all of which intersect a common stable leaf.

By changing the transversal orientations to &s, &" if necessary as-
sume yx is in the front of Ws(γ0) and in the back of Wu(γ0). Let

^ 0 = U

Then g{3f0) = &0 and ^ " ( y ^ n ^ 0 = 0 . As before there is a unique

leaf //j c dSf0 separating Wu(γ0) from ί F 1 1 ^ ) (or H{ = Wu{yλ)).

Furthermore g{Hχ) = Hχ. Let δχ be the unique orbit in Hχ with g(δχ) =

δχ. Notice Wu(δχ) Π Ws(γ0) = 0 , which implies that δχ is in the front

of Ws(γQ).
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Lemma 3.4. W"{δχ), W^), W"(γ0), and Ws_(y0) form a lozenge.

Proof of 3 A. Notice that as Wu{δχ) c d&0, there i s a S e ^ " , with

(*) aeSπίv!_(γo)φ0 and b e Sn Ws{δx) φ 0.

We first claim that γ0 is in the back of Ws(δι). The transverse ori-

entation to &s induces an orientation to S (as a subset of #). If γ0

were in the front of W\δχ), then orientations of S in a, b would be

contradictory (see Figure 2(a)).

Suppose now that *S intersects W ^ ^ ) (see Figure 2(b)). By taking

inverse if necessary, assume that g inducesji contraction on the set of

orbits of Φ in Ws(γ0). Since S separates M, it follows that g induces

a contraction on the set of orbits in Ws(δχ) also. Then g induces expan-

sions on the sets of orbits in ίvu(γ0) and Wu(δι). As a result there is

Le^s, LnS Φ0 which is invariant under g and with L c d&0 . But

then L separates Wu(δχ) from γ0, hence also separates Wu(yχ) from γQ9

and therefore L separates Ws{yχ) from γQ. But since W\γχ) cd&0,

the only stable leaves which possibly separate Ws(γι) from γ0 are con-

tained in 38^. Therefore L c 5 0 . As seen before there is no stable leaf

contained in ^ 0 which is invariant under g. This is a contradiction to

g{L) = L. We conclude that S intersects W^{6X).

Using (*) above, the g invariance of the sets W^(δχ), W^(yo)
£&0 and the fact that 3rQ is connected it now follows that

(**) {H e ^u\HnW^(γ0) φ0} = {He^u \Hn Ws

+(δx) ψ 0}.

Since γχ c d&0, there is Ff e &s intersecting W"(γ0) and Wu{γχ).

If γχ φ δχ, recall that Wu(δx) thenjeparates Wu(γχ) from Wu(γ0). In

any case it thus follows that Ff n Wu(δι) φ 0 . But y0 in the back of

Ws{δχ) implies F ; Π ί ^ ί ^ ) φ 0 . Then as above

{E e^s \En ί?^(y0) ^ 0} = {E e&s \En w"{δx) φ 0}.

This together with (**) shows that γ0 and ίj are the corners of a lozenge,
and finishes the proof of the lemma.

If Hχ Π Fχ Φ 0 , then Hχ Π Fχ = δχ is the periodic orbit in Fχ, so
δχ = 7j and we are done. Otherwise start with δχ, γχ and proceed as
above. As before this procedure can only be repeated finitely many times.
Therefore γ0 is connected to γχ by a finite chain of lozenges. In addition
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Wu(δJ

Ws(δ{)

W»(y0)

Ws(y0)

(a) (b)

FIGURE 2. (a) Eliminating γ0 in the front of Ws{δχ)

(b) eliminating γQ in the back of Wu(δχ). The arrows
indicate positive orientations in leaves of &s (or &~u)

as subsets of (9. These orientations are induced by the
transversal orientations to the dual foliation.

all lozenges in this chain are adjacent and intersect a common stable leaf,
as desired.

In the same way γ. and γi+ι are connected by a chain of lozenges.
By induction it follows that γ0 and γ are connected by a finite chain of
lozenges. All lozenges and their corners are left invariant by g.

Finally, let ε 0, ex be corners of a lozenge in M. Let β. = π(ε.)
and assume that β0 is a closed orbit of Φ. Let now / be the covering
translation associated to the indivisible orbit β0, so that /(β0) =

 εo Since
/ preserves transversal orientations, it follows that / preserves the sets
corresponding to &Q and ^ 0 in the above construction, so it preserves
their intersection which is exactly the lozenge. Therefore f{εχ) = ε{. This
implies that β0 ~ βn

χ for some n eZ. Similarly βχ ~ β™ , which implies
nm = 1, so either n = m = 1 or« = m = - l . I n fact the action of / on
Wu{εi) shows that / is an expansion in one of them and a contraction in

the other, therefore β0 ~ (/Jj)"1. Induction then finishes the proof of the
theorem.

We in fact also proved the following result which is an extremely useful
technical tool. Transitivity of the flow is not assumed.
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Theorem 3.5. Let Φ be an Anosov flow in M3. Let Fo φ Fχ be
leaves of &* for which there is a nontrivial covering translation g with
g(F.) = Fr / = 0, 1. Let y. c F. be the orbits of Φ with g(γ.) = γ..
Then γQ and γ{ are connected by a finite chain of lozenges. All lozenges
in the chain are left invariant by g and so are the respective corners.

Notice that it follows from the hypothesis^of the theorem that g pre-
serves transversal orientations to ^ s and ^ u .

Remarks. (1) When considering almost freely homotopic orbits, the
case α ~ β~x is quite common. It occurs for instance in geodesic flows.
If a represents an oriented closed geodesic in an orientable surface of neg-
ative curvature and β is the same geodesic with the reversed orientation,
then in the unit tangent bundle a ~ β~ι.

(2) When £FS, &" are not transversely orientable, Theorem 3.3 may
be false. Consider the geodesic flow in T{N

2 , N of negative curvature,
nonorientable. Let a be an orientation reversing closed geodesic in TV
and fix an orientation in a. Let β be the same geodesic being traversed
in the opposite orientation. Then a2 ~ β~2 by just turning the angle along
a2 by π. But a is not freely homotopic to β. One cannot consistently
turn the angle along a because a is not "transversely" orientable.

Corollary 3.6. Let Φ be an Anosov flow in M, and α 0 , a{ indivisible,
almost freely homotopic closed orbits of Φ. Then there are integers i, j e
{ 1 , - 1 , 2 , -2} so that aι

Q^aJ

χ.

Proof of 3.6. Consider the transversal orientations to &s, &u in M.

A covering translation g either fixes the transversal orientation to &s ev-

erywhere or reverses it everywhere. The same happens to yu . Therefore

g2 preserves both transversal orientations.

Lift aQ to γ0 in M and lift a{ to γ{ corresponding to the free homo-

topy. Let g be the covering translation associated to α 0 , and h be the

corresponding covering translation associated to α r Then gn = hm for

some n, m e Z . This implies that gn(γQ) = y0 and gn(yι) = hm(γ{) = γ{.

By Theorem 3.5, γ0 and yχ are connected by a finite chain of connect-

ing lozenges in M. Since g2 preserves transversal orientations, the last

paragraph of the proof of Theorem 3.3 shows that g2 leaves invariant

all corners of the lozenges in the chain and therefore g2{γ{) = yx. This

implies that a2

Q ~ a\, for some i £ Z . Similarly a] ~ aJ

0 therefore
4 ϊ i

a0 ~ α 0 , giving the possibilities in the result, q.e.d.

We conjecture that aι

0 ~ a\ cannot happen for \ij\ = 2. For example

a0 ĉ  a{ should be impossible for indivisible closed orbits.
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4. Quasigeodesic Anosov flows

First we analyse a condition which implies the existence of freely ho-
motopic orbits of an Anosov flow. We use the following classical result:

Theorem 4.1 (Closing lemma for Anosov flows) [1], [5]. Let Φ be an
Anosov flow in M closed. Then for any θ > 0 there are ζ > 0 and v > 0
for which the following is true: if d(Φt(x), x) < ζ and t>v, then there
are y e M and t' e R so that

(i) Φt,{y)=y,

(ii) \t -t'\<θ and

(iii) d(Φr(x), Φr(y)) <θ for 0<r<t.

This means that the almost closed flow segment Φs(x), 0 < s < t, is
shadowed very near by an actual closed orbit.

Recall that the injectivity radius of M, denoted by inj(M), is defined
to be half of the infimum of the lengths of homotopically nontrivial closed
loops in M. If M is closed, then inj(M) > 0. Let Ba{x) be those y e M
(or M) at most a distant from x. The next result is the starting point
of the study of quasigeodesic Anosov flows. It will be used to prove most
of the results in this section.

We say that two sets in a metric space are a bounded distance apart if
there is R > 0 so that each set is contained in the R distance neighbor-
hood of the other one.

Proposition 4.2. Let Φ be a transitive Anosov flow in M3, and z0, zχ

points in M so that

(i) Φ [ 0 + o o ) (^ 0 ) and Φ [ 0 + o o ) (^ 1 ) are a bounded distance apart and

(ii) z 0 and zχ are not in the same leaf of ^ s .

Then there are freely homotopic closed orbits of Φ in M. Analogous result
holds in the negative direction.

Proof of 4.2. By hypothesis there is R > 0 so that

W > 0 , 3ψ(t)>0, d(Φt(z0),Φψ{t)(z{))<R.

Let γt be a geodesic segment in M of length < R connecting the two
points above. Let wm = n(zm), m = 0, 1.

Flow lines in M are properly embedded. Otherwise using the closing
lemma one produces a closed orbit of Φ which is null homotopic, contra-
diction. Therefore as

lim Φ,(zn) = oo, then lim ψ(t) = +oo.
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-α0

.α,

FIGURE 3. Producing freely homotopic orbits.

Now fix 0 < θ < ^inj(M) and let ζ < ^inj(M) and v as given by

the closing lemma. Since M is compact and γt is a geodesic arc of

bounded length, we can choose a subsequence t. —• +oo so that Φ, (w0)

converges in M and π(γt) also converges. Let /, j with t. - tχ > v and

d(Φt(w0), Φt {w0)) < ζ, so that π(γt) and π{yt) are at most ζ apart

(see Figure 3). Let

a\ -

Since π{yt) and π(γt) are at most ζ apart, it follows that the endpoints

of aχ are also ζ apart, so αj is also an almost closed segment in a

flow line. The closing lemma produces closed orbits δm , m = 0, 1, of

Φ which are θ near am. Notice δm may not be an indivisible closed

orbit. Let βQ be a geodesic path in Bζ(Φt(w0)), connecting Φ, (w0) and

Φt (w0). The condition on the injectivity radius implies this is well defined

in the relative homotopy class. Similarly define β{. By construction it

follows that δm is freely homotopic to am * βm , where am * βm denotes

the path am followed by the path βm .

Lemma 4.3. a0 * β0 is freely homotopic to aχ * βχ.

Proof of 4.3. The path %iitj](z0) * γtj * ( Φ ^ ^ . ^ ί ^ i ) ) " 1 * 7^ i s

closed in M, therefore null homotopic. It projects in M to the path
a0 * π(γt) * αj"1 * π(γt ) ~ ι . Since π(γt) and π(γt) are θ close and θ <

^ inj(Λf), the closed path βQ * π{γt) * 1 ι

in M. These facts imply the results.

) ~ ι* π{yt ) ~ ι is also null homotopic
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Continuation of the proof of Proposition 4.2. As a consequence it fol-
lows that the closed orbits δ0 and δ{ are freely homotopic. It may happen
a priori that they are the same orbit and the free homotopy is trivial, for
instance if the orbits through zQ and zχ get very close to each other. We
show however that if this is always the case, then z 0 and zχ are in the

same leaf of &s.

Choose θk = \/k. Let ζk < 1/k and vk be given by the closing

lemma. Let now sk -+ +00, so that d(Φs (wQ), Φs (w0)) < ζk and
71 (ys ) 5 π(ys ) are at most ζk apart. If the corresponding closed orbits

δ0 and δx of Φ are always the same and trivially freely homotopic,

this implies that \ , V i ] ( * 0 ) > %(*k)MsM)](zJ a r e a t m o s t 2Θ* = 2>k

apart. Since

^ m ^ H + o o , t h e n Φ [ 0 + o o ) ( z 0 ) , Φ [ 0 f + o o ) (z 1 )

are asymptotic in the forward direction. By expansiveness [32], [5] this can

only happen if they are in the same leaf of ^ s , contrary to assumption.
This yields two closed orbits which are nontrivially freely homotopic,

and finishes the proof of the proposition.
Definition 4.4. A quasi-isometry μ a map p: (Q, d) -> (Qf, d') be-

tween metric spaces for which there is k > 1 so that, for any x, y e Q,

mdix{d(p{x), p{y)), d(x, y)) > k

=> \d{x, y) < d(p(x), p[y)) < kd(x, y).

Then we say that p is a k-quasi-isometry.
Definition 4.5. A quasigeodesic curve in Q is the projection to Q of

the image of a quasi-isometric embedding p: A —> Q, where A is an
interval in R, finite or not and Q is the universal cover of Q. The
metric in A is induced from arc length in Q. If Q is compact, being
quasigeodesic is independent of the choice of smooth metric in Q. A flow
for which all flow lines are quasigeodesics is a quasigeodesic flow. Once
a metric is fixed, we say that γ is a Λ -quasigeodesic if it is the image (in
Q) of a fc-quasi-isometry.

Notice that finite length curves are always fc-quasigeodesics for some k
as opposed to what may happen for infinite length curves.

Definition 4.6. A curve y in Q is a (k, u) quasigeodesic if any seg-
ment in γ of length < u is a /c-quasigeodesic. It is also called a local
quasigeodesic.
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We assume from now on that πχ(M3) is negatively curved. This was
originally defined by Gromov [21], who used the term hyperbolic. Gromov
showed that Jhere is a canonical compactification of M with an ideal
boundary dM. When M is irreducible (which is always the case here),
Bestvina and Mess [3] proved that dM is homeomorphic to a sphere,
which will be denoted by S2^ . Furthermore M U S2^ is homeomorphic
to the closed 3-ball [3], Basic references for negatively curved groups are
[21]; [19].

Sullivan [34] proved that the intrinsic geometry of the leaves of &s

and &u is negatively curved in the large. This property was also stud-
ied by Gromov [21], who again used the term hyperbolic. Then any leaf
L e &s U &u has a canonical compactification with an intrinsic ideal
boundary dL [21]. We proved in [11] that dL is always homeomorphic
to a circle, which will be denoted by S^, usually without reference to
the particular leaf we are considering. We stress that S1^ will always be
the intrinsic ideal boundary of L and not its image dM when the leaf
extends continuously to dM. Furthermore S^ is defined independently
of whether^Φ is quasigeodesic or not.

If L e &s, then the intrinsic ideal points correspond to the (distinct)
negative limit points of flow lines in L and to the common positive point
of all flow lines [13]. The intrinsic geometry of L e &s resembles that of
the hyperbolic plane H 2 where the flow lines correspond to the geodesies
in H which have a common limit point in the ideal boundary of H .
Analogous results hold for ^ u .

Given a bi-infinite A^-quasigeodesic in M, any lift to ¥ is a bounded
distance from a minimal geodesic of M [21]. The bound depends only
on K and how much nχ{M) is negatively curved. As a result the quasi-
geodesic has two distinct limit points in S2^ [21, §7.2]. Infinite quasi-
geodesic rays also have a well-defined limit point.

Recall that the limit set of a subset B of M is AB = B Π S^ , where

the closure is taken in MuS^. Usually B will be a leaf of &s or ^ u .

In [13] we proved that Φ being quasigeodesic in M 3 with π{(M) neg-

atively curved implies the following: if L is a leaf of ^ U £FU , then the

embedding φ: L -> M extends continuously to φ : LuS1^ —> M US^ . In

particular AL = 0(5^) , giving continuous parametrization of the limit set

of each leaf. We then say that ^ s and !?u have the continuous extension
property.

This yields that when Φ is quasigeodesic, there is a continuous function
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The same notation will be used for the corresponding function 0 -> S^ .

Similarly define η_ . Then η+(x) φ η_(x) f o r anY x e M •

If P ~s Q> let y5(p, q) be the path from p \o q consisting of a segment
in Wss(p) from p to Φ R ( ί ) , followed by a segment in Φ R (?) . Similarly
define yM(/?, ?) if p ~ t t tf. We remark that given e > 0, there is a uniform
δ > 0 such that the lengths of γs{p, q) and yM(p, #) are less than e if
d(p,q)<δ [1].

Transitivity (Corollary 2.3) implies that for a quasigeodesic Anosov
flow in M, there is K > 0 so thatjdl flow lines are uniformly K-
quasigeodesics. Then all flow lines (in M) are a globally bounded distance
from corresponding minimal geodesies.

Given any curve a in M or M let I (a) be its length.
Theorem 4.7. Let Φ be an Anosov flow ir M3 so that πx(M) is nega-

tively curved. If Φ is quasigeodesic, th°.n ^ s and ίfu are not R-covered.
Proof of '4.7. Suppose Φ is quasigeodesic and let F be a leaf in ^ 5 .

There is a continuous extension of the inclusion φ : F -+ M to φ :

If ^ s is R-covered, then we showed in [11] that AF — S^ for any

F e ^ s . This implies that φ{Sι ) = AF = S^, hence 0Li is not
oo

injective. Let c Φ d e S1^ with φ(c) = 0(rf).
If c or d is the intrinsic positive ideal point of F, then the flow line in

F with ideal points c, d is mapped to a quasigeodesic in M with same
limit in both directions. This is impossible.

Let p, q e F having c and d as ideal points in S^ and assume that

p ~ssq. By hypothesis, η_(p) = η_(q). Let A be the segment in Wss(p)

between p and q . Let p^ = π(/?), q^ = π(q).

Both ΦR(p) and Φ R ( ί) are a bounded distance from minimal geodesies
connecting the ideal points and they have a common ideal point φ(c) =
φ(d). But any two geodesies sharing an ideal point are a bounded distance
from each other in that direction [21]. Hence there is R > 0 so that
*(-oo,o](P) a n d Φ(-oo,o](tf) are at most R distant from each other.

As in Proposition 4.2 choose tχf -• -oo , with l^ - f ^ J -> oo and so that

Φf.UO converges to // in Af. Then choose j . with d(Φt(p), Φs(q)) <

R, and γ. geodesic arc and connecting them. By passing to'a subsequence

assume π(y.) converges, so Φ5 (tf J converges to q'. Assume all Φ/ {pJ

are very close.
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Then there are covering translations g. of M so that

as i -> oo,

where τr(κ) = p , π(v) = # ' .

If M ~ 5 i;, consider y5(w, v) . Since ut -> u, v. -* υ 9 and ut ~s υt,

then using the local product structure of &s it follows that ys(un vt)

converges to γs(u,υ). Hence γs(ui9υ ) has bounded length. Isometry

under g7ι implies that ys{Φt (p), Φ5 (q)) also has bounded length. But

the strong stable part of these paths is Φt(A), whose length is

This is unbounded since tχ. -» -oo.
Therefore u <fis υ , hence ^ s is not R-covered, contrary to assumption.

So in any case this proves that ^ s is not R-covered. Similarly for &u .
Remarks. (1) Bonatti and Langevin [4] recently constructed an ex-

ample of a transitive, non-R-covered Anosov flow in dimension 3. We
should stress that in their example the underlying manifold is toroidal; in
fact there is a torus transverse to the flow.

(2) There are many examples of R-covered Anosov flows in M hyper-
bolic [13]. By the previous result these cannot be quasigeodesic. In [14]
the continuous extension property is studied for these flows.

We now bound the number of orbits of Φ which can have the same
ideal points in S1^ .

Proposition 4.8. Suppose Φ is a K-quasigeodesic Anosov flow in M3

with πχ(M) negatively curved. Then there is n0 depending on K and M

so that if & = {γ.9 1 < / < n} is any set of orbits of Φ sharing positive

and negative ideal points, then n < nQ.

Proof of4.8. Choose b > 0 so that for any x e M, the ball Bb(x) is

contained in foliated product boxes of ^ s and &u . There is a > 0 so

that any A'-quasigeodesic is at most a/2 distant from a minimal geodesic

of M. Since M is closed, we can choose nχ > 0 so that if n> n{, then

for any n given points in a ball of radius (a + 1) in M, there are at least

2 which are less than b/2 apart. Choose now n0 so that if n > n0, then

for any n points in a ball of radius (a + 1), there are at least n\ of them

which are mutually at most b/2 apart.

Let 9 = {yt, 1 < i < n} be a set of distinct orbits of Φ , all sharing

endpoints and suppose n > n0. Let γ be a minimal geodesic of M having

these two common endpoints as ideal points.
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Let p e γ and find p. e γ., with d(p, pt) < a. Then there are at least

n2

χ of them which are in a ball of radius b/2. There are at least nχ of

them, which are all in distinct stable or unstable leaves. Assume they are

Pi, 1 < i < nχ and are in distinct stable leaves. Choose now rχ = pχ

and r. ~ p. so that r. ~ „ r. for all i, j . Using d(p., p.) < b/2 and

product neighborhoods, if b is small enough, then d(ri, r ) < b, for any

i, j . Notice ^(r,.) = */+(fy), Vz, 7 . Let a > 0 be the minimum of the

unstable distances between the r.. Choose t0 > 0 so that eμιt°d'/μ0 > 1.

Choose tf £ 7 far enough from p so that if Φt(r.) e Ba(q) then t > tQ.

By hypothesis, there are 1, 7 with 1 < i, j < nχ so that

| j g)<a9 and d(qi9qj) <b/2.

By assumption #z and ήr. are in a foliated product box U of ^ " .

Suppose that q.. and ^ are not in the same local sheet of ^ u in U.

Consider a path from q{ to # ; in Wu{qj), followed by a short transversal

to &u in U from # to ^ . This path can be perturbed to a closed

transversal path to ^ u , contradiction to ^ u being Reebless [29].

Therefore qt and q are in the same local sheet of &u in U. As
a result du(qi9 qλ is very small, so ΠyJq;, #,)) is also small. But its

U I J U I J

unstable length is > eμχt°a /μ0 > 1, contradiction, q.e.d.
Notice there was no concern in getting the best n0, which in general

will be much smaller than the one predicted here.

We now analyze the identification of ideal points in the forward direc-

tion. First notice that flow lines in the same leaf L of ^ s will (forward)

converge to the same ideal point of M, because they are asymptotic.

Proposition 4.9. Let Φ be a non- R-covered Anosov flow in M3 with

πχ(M) negatively curved. If the leaves of &s and &u extend continuously

to MuS^, then there are nontrivial identifications of limits of flow lines,

that is, there are x,y eM, not in the same leaf of ^ s so that η+(x) =

V+iy)- Furthermore this happens whenever IVs(x) and Ws(y) form a

branching pair. Analogously for ^ u .

Proof of AS. By Theorem 3.4 of [13], both &* and ^ " _ a r e not R-

covered. Since ^ s is not R-covered, there is branching in &s, so there

are xυ ~s yυ , with xv -> x, yυ -• y as v -+0 but x ^sy. After a small

perturbation, we may assume xυ e Wu(x) and yυ e Wu(y). As xv ~ yv ,

it follows that η+{xv) = η+(yv). Since the map φ : Wu(x) -> M has a
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continuous extension to Wu(x) U S1^ -• M U S^ and xv -> x, we have

Similar reasoning applied to WM(y) and yv -» y implies the same for y.
As a result, η+(x) = η+(y) and c ηCs y. This finishes the proof.

This result is also true (except for the last assertion) in the case of an
R-covered Anosov flow which has the continuous extension property [14].

Corollary 4.10. If Φ is quasigeodesic in M3 with π{(M) negatively
curved, then there are nontrivially, freely homotopic closed orbits of Φ.

Proof of 4.10. By Theorem 4.7, Φ is not R-covered. Since Φ is
quasigeodesic, the leaves of ^ s and «5?"M have the continuous exten-
sion property [13]. Using the previous proposition, choose x φsy with
η+{x) — η+(y) Then ΦR(x), ΦR(y) are quasigeodesics sharing the pos-
itive ideal point, so they are a bounded distance apart in the forward
direction. The result now follows from Proposition 4.2.

Actually, much more is known. The next theorem gives detailed in-
formation about the branching leaves. Let Fi9 F e ^ s . Then Fi -> F
when any unstable segment transversal to F intersects Fi for all / large
enough.

Theorem 4.11. Let Φ be a quasigeodesic Anosov flow in M with
πχ(M) negatively curved. Let FS,F φ Fr £ <FS so that Fs -• F U Ff,
that is (F, F1) is a branching pair. Then there is a nontrivial covering
translation of M leaving both F and Ff invariant, and with invariant
orbits γ c F and y c Ff. As a result π(γ), π{y) are almost freely ho-
motopic closed orbits of Φ. Furthermore γ and γ are connected by an
even number of adjacent lozenges.

Proof of 4.11. Assume that ^ s , SFU are transversely orientable. Sup-

pose F, F' are in the front of Fs. By Proposition 4.9, for any x e F,

y £ Ff, η+(x) = η+(y). Since ΦR(x) and ΦR(y) are quasigeodesics in

M, it follows, as in Theorem 4.7, that there is R > 0 so that

By Proposition 4.2 there are p, q e M so that γ = ΦR(p), γ = ΦR(ί)
project to almost freely homotopic orbits of Φ. Therefore there is a non-
trivial covering translation g with g{Ws(p)) = W\p) and g{W\q)) —
W\q). Furthermore the proof of Proppsition 4.2 implies that Wu(p) n
F φ<2, Wu(q)ΠFf φ0. _

By Theorem 3.5 there is a finite chain of lozenges {Zi}ι<i<n in M
connecting p and q. By Theorem 3.3, the indivisible closed orbits βx =
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FIGURE 4. (a) Rigidity of branching; (b) even chain of
lozenges.

π(ΦR(p)) and β2 = π{ΦR(q)) satisfy βx ~ β2. This uses the fact that
&s and ^ u are transversely orientable. In general, one can only prove
that β\ ~ β\ which will imply that (π(γ))2 ~ (π(/)) 2 . This is the reason
for almost freely homotopic in the statement of the theorem.

By changing the transversal orientation to ^ u if necessary, assume
Wu(p) is in the back of Wu(q).

We first show that p eF, q e Ff. Assume this is not true, say p & F .

Step 1. Suppose p is in the front of F (Figure 4(a)).

l.a. As q is in the front of Wu(p) and in the back of W\p), the proof

of Theorem 3.3 shows that ΦR(p) is the (+, - ) corner of Zχ. Let px be

a (-, +) corner of Zχ. Since W*{p) OF / 0 , W^(pχ) ΠF ^ 0 , hence

pχ is in the back of F and in the back of Wu(q). So clearly q £ Wu{pι).

Furthermore since F and^F' are not separated on their negative sides

and F is in the front of Ws{px), Ff is also in front of W\pχ).

l.b. Suppose q is in the back of Ws(pχ). Since Wu(q) nFf / 0 and

F' is in front of W\pχ), ί^"(#) Π W\pχ) φ 0 . This is a contradiction,

because Wu(q) and W * ^ ) are both invariant under ^ . Hence q is in

the front of W\pχ). _

As ^ is also in the front of Wu{pχ), it follows that pχ is at the (-, - )

corner of Zχ. Choose p2 a (+, +) corner of Z 2 . Since W"{px)Γ\F Φ 0 ,

W"(p2)Γ\F Φ 0 . Hence p2 is in front of F and in particular q & ΦR(p2)

I.e. Induction using l.a and l.b shows that corners pt of the lozenges

Z. always satisfy ^ " ( ^ Π F φ 0 . Hence ΦR(P;) ^ ΦR(tf) for any /,

contradicting the fact that {Zi}x<i<n is a chain from p to q. Therefore

/? cannot be in front of F .
Step 2. Suppose /? is in the back of F .
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As in step l.b one shows that Zχ has (-, - ) corner ΦR(p). Let pχ be a
(+, +) corner of Z{. Again as in l.b, px is in the front of F . Therefore
by a similar argument as in step 1, one arrives at a contradiction.

One concludes that p e F and by symmetry that q € F'. Consequently
both F and Ff are invariant under g and hence γ c F, / c F1.

Step 3. Now redefine p0 = p, pn = q and inductively define p f.,
0 < i < n, to be at the other corner of Zi. Let F5 near F with F5 n
PF"(p) φ 0 , F5 Π ίrw(tf) ^ 0 . If we apply step 1 with F replaced by Fs

we see that as p is in front of Fs, (step 1 .a) p{ is in the back of Fs and
Wl(px) ΠFsφ0. By induction Wu{pt) ΠFsφ0 for all / and p. is in
the front of Fs if i is even and in the back of Fs otherwise. Since q is
in front of Fs it follows that n is even, and F and Ff are connected
by an even chain of lozenges. Furthermore all lozenges Zz intersect Fs.
This finishes the proof.

If (F, F1) is a pair of branching leaves which are in the boundary of
two adjacent lozenges, then the pivot associated to F, F' is the common
corner of the lozenges. The pivot always projects to a periodic orbit of Φ
in M.

We say that (F, F1) is associated to branching in the positive direction
if F and F1 are not separated on their negative sides.
^Theorem 4.7 shows that quasigeodesic behavior forces branching in

&s, i ^ " . On the other hand, the next result implies these foliations
cannot have too much branching.

Proposition 4.12. Let Φ be a quasigeodesic Anosov flow in M3 with
nχ(M) negatively curved. Then, up to covering translations, there are only
finitely many branching leaves.

Proof of 4.12. Suppose there are infinitely many inequivalent branching
leaves. By changing the flow direction if necessary (this exchanges &~s

with ^u) and maybe also changing the transversal orientation to ̂ s we
may assume there are infinitely many stable branching leaves where the
branching occurs in the positive direction. Since p € M can be the pivot
of at most one pair of adjacent lozenges associated to branching, it follows
that there are infinitely many inequivalent pivots. Their images accumulate
in M, therefore there are pivots pt e M, / e N , ΦR(pz) φ Φ R O ^ ) if i Φ
k and so that p. -> p as / —• oo. By changing the transversal orientation

to OF" if necessary assume there are i, k so that W+{pk) Π W"(p() Φ 0

and WΪ(pk)nWi(p.)φ0.
For any n let θn be the double lozenge associated to the pivot pn . Let

Gn, Sn be the unstable sides of θn , so that Gn in the back of Sn , and
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FIGURE 5. Too much branching is unallowed.

let En, Ln, Fn be the stable boundaries, with Fn in the boundary of the

two lozenges in θn and En in the back of Wu(pn) (see Figure 5). Then

wlipk) n wL n Et Φ 0.

Therefore Lk is in the front of E. and as a result is contained in the

back of Wu{pt) (so Lk does not intersect Wu{p.)). Similarly Wl(pk) Π

W"{pt) Φ 0 implies that Sk is in the front of Wu(p.). But this shows

that LknSk = 0, contradicting the fact that Lk,Sk, W\pk), Wu(pk)

are the boundary sides of a lozenge with a corner in pk . This finishes the

proof.

We now analyze the identification of ideal points of stable leaves. Sim-

ilar results hold for &u .

Theorem 4.13. Let Φ be a quasigeodesic Anosov flow in M3 closed,

with πλ(M) negatively curved. Let F e &s and γ, a be different orbits

in F, which limit in the same point of S^ in the negative direction, that

is η_(y) = *!-(<*)' τhen Wu(y), Wu(a) are periodic leaves, and there is a

nontrivialoovering translation leaving both of them invariant. Furthermore

Wu(γ), Wu(a) are connected by an even number of adjacent lozenges.
Proof of 4.13. We may assume that ^ s , &u are transitively ori-

entable. Choose p e γ, q e a, p ~ss q. First notice that γ (or α)
cannot be periodic. This is an important property which is true under
the much weaker assumption that W\p) extends continuously to S1^ .
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Otherwise assume γ is periodic. Let g be a nontrivial covering transla-
tion with g(γ) = γ. Then

nAv) = nΛ<*) =* nSgn{<*)) = gn{nA<*)) = gn(nAy)) = nAy)-

By replacing g by g~{ if necessary, suppose the positive limit point of
γ is the attracting fixed point of g. Then

lim ηAgn(oϊ)) = η+(γ),

because the intrinsic negative limit points of gn(a) in FU S^ converge
to the intrinsic positive limit point associated to y, and Ws(p) extends
continuously to S2^ . Thus η_(p) = η+(p), contradiction to p being in a
periodic orbit (which is always a quasigeodesic anyway). Thus γ and a
are not periodic.

By moving p, q along their unstable leaves to nearby p ~s q , we

further assume W\p) is not periodic, because η_(p') = η_(β) = ηAo) =

As before choose tχ. -+ -oo so that Φ, (π(/?)) —• w0, and choose 5Z

with rf(Φ, (p), Φv (q)) < R, for some global i?. Let γt be the geodesic

arcs connecting these points, and assume up to subsequence that n(yt)

converges, so Φs(π(q)) also converges, and let wχ be its limit. Suppose

that t. > tj for all i<j.

Let gt be covering translations so that p. = gj(Φt (p)) converges to

z0 (with π(z0) = wQ), and from the above conditions it follows that

#z = g.(Φ5 (#)) converges to zχ (with π(zχ) = wχ) (see Figure 6). Then

as in Theorem 4.7 z0 / 5 Zj and Fn = W^5(zn), n = 0, 1, form a pair of
branching leaves. Furthermore Theorem 4.11 implies that FQ and Fχ are
connected by an even chain of lozenges. Assume Fo, Fχ are not separated
on their negative sides.

Assume that all p{ are very close and that all yt are also near each

other. If p{ ~s p., then they are in the same local sheet of ίFs near z 0 ,

so π(pi) and π(pj) are in the same local sheet of ^ s near w0. This

implies that ^(π(p f.)) contains a periodic orbit of Φ, hence Ws(p) is

periodic, contradiction. So p{ Φs p., and we may assume Ws(pj) is in

the front of Ws{p.) for all j > i.
The flow segment from π{p.) to π{p() (i < j) is almost closed, so

by the closing lemma, it is shadowed by a closed orbit a0 of Φ (maybe
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W«(z0)

FIGURE 6. Forcing of periodicity in unstable leaves.

α 0 not indivisible). The same happens to π(qj), π(β, ) producing (as

in Proposition 4.2) a freely homotopic closed orbit aχ. Lift aQ and aχ

coherently to γn c M, « = 0, 1, so that γn has a point very near zn .

The proof of Theorem 4.11 shows that γn cWs{zn), « = 1, 2. Since

there is only one periodic orbit in Ws{zn), it follows that the orbits γ0,

yχ do not depend on the choice of the pair i, j . Furthermore

lim d{pχ, p ) = 0=ϊ lim </(/?., γQ) = 0.
i,y—>-oo ' -̂  i—•oo

It follows that y0 = ΦR(^ 0) and similarly γχ = ΦR(Zj).

Let h be the covering translation with h(Ws(γQ)) = Ws(γ0) associated

to the indivisible closed orbit π(γ0). By taking inverse if necessary assume

that h acts as an expansion on the set of orbits in Ws(γ0). As the covering

translations taking ΦR(p, ) to ΦR(Pj) leave Ws(γ0) invariant, they are

hm'j for some m.. e Z . Notice that for i fixed:

Since pn £ Ws{zQ) for any n , the above equation implies that m^ -> +oo

as j' ^ oo (for i fixed). The only possible way for Λm'7(ΦR(p/)) not to

escape in the stable direction is to have p. e Wu(γ0) for all j and similarly

q e Ws(γx). Therefore Wu(p ) , Wu(q.) are periodic and left invariant

by h . In addition γ0 and yχ are connected by an even chain of adjacent

lozenges all intersecting a common stable leaf. Translation by g~ι yields

the result.
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5. Limit sets of leaves

Let & be a codimension-one foliation in M3 with πγ(M) negatively
curved. In general there may be many quasi-isometric leaves. For instance,
if & is a finite depth foliation in M3 hyperbolic so that no compact leaf
is a fiber of a fibration of M over the circle, then all compact leaves
are quasi-isometric [35]. Gabai [17] showed that there are many such
foliations. But if there is a dense quasi-isometric leaf, then all leaves are
uniformly quasi-isometric and & is quasi-isometric, contradiction [11].
By Corollary 2.3 all stable and unstable leaves of Anosov flows in such
manifolds are dense. Hence:

Corollary 5.1. Let Φ be an Anosov flow in M3 so that nλ(M) is neg-
atively curved. Then no leaf of ^ s or ^ u is quasi-isometric.

If there were a quasi-isometric leaf, then its limit set would be a Jordan
curve [21, §7.2]. We prove that not even this weaker property is possible
for stable and unstable leaves of quasigeodesic Anosov flows. First we
have a preliminary result about limit sets of Reebless foliations.

Proposition 5.2. Let 9" be a Reebless foliation in M3 with nx(M)

negatively curved. Let & be the lift of 9~ to M and F e &. Then

S = S^- AF is a union (which may be empty) of open disks.

Proof of 5.2. Since & is Reebless, each leaf F of & is a topological
plane. As F is properly embedded (no closed transversals to & [29])
KF ψ0. Let A be a component of S. Then A is a planar surface, and
it suffices to prove it is simply connected.

Let γ be a simple closed curve in A. Since F Π γ = 0 ^there is a
neighborhood V of γ in M U S^ disjoint from F. As MUiS^ is
homeomorphic to a closed 3-ball, we may choose V to be homeomorphic
to a (closed) solid torus. Cap the solid torus with a closed disk D c M s o
that F U D is simply connected (actually contractible). As F is properly
embedded in M, then F n D is a compact subset of F. Notice that
F Π dD = 0. Therefore after a small perturbation of D we may assume
that D is transverse to F . As M is irreducible and & is Reebless,
classical techniques of cut and paste [22], [24] show F can be isotoped in
M to be disjoint from DuV. Since FΠD is compact in F, the isotopy
can be chosen to be compactly supported, so the limit set of F does not
change. This means that F does not limit in one of the components of
S^ — V, therefore γ bounds a disk in A .

Theorem 5.3. Let Φ be a quasigeodesic Anosov flow in M3 with nχ(M)

negatively curved. Let F e ^ s . Then AF is not a Jordan curve.
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Proof of'5.3. By lifting to a finite cover if necessary, assume that ^ s ,
&u are transversely orientable. The hypothesis implies that &~s is not
R-covered. Therefore the proof of Theorem 4.11 shows that there are two
adjacent lozenges both intersecting a common stable leaf. Let θ be the
union of these two lozenges, and let r, u, and s be corners of the lozenges,
where u is the pivot. Then π(ΦR(r)) = (π(ΦR(u)))~ι £ (π(ΦR(s)) as
oriented, indivisible closed orbits of Φ in M. This implies that η_(r) =
η_{s). Since F is dense in M , there is a translate g(F) intersecting
the unstable boundaries of θ in Φ R (p), ΦR(tf), where p e Wu(r) and
q = Wu{s) n Wss{p). Thus

This yields that the continuous map φ : S1^ —• S^ associated to g(F) is

not an embedding. However it is harder to show that its image ΦiS1^) =

Λ ( F ) is not a Jordan curve in S^ . In order to do that we will need to

use Theorems 4.13 and 4.11.

Suppose then that / = ΦiS^) is a Jordan curve in S^ . Assume with-

out loss of generality that Wu(s) is in the front of Wu{r) and also that

Ws(r), W\s) are not separated on their negative sides, that is, they are

associated to positive branching. Let θ j and θ 2 be the lozenges whose

union is θ , where r is a (+, -) corner of θ j . Let x = Wu(u)Γ\Wss(p).

Let a = η_(p) and b = η_{x). Clearly a Φ b. Notice that as p e

Wss(q), then γs(p, q) is the segment in Wss(p) from p to q .

Claim 1. If υ £ Vs(p9 Q) and η_(v) = η_(P)> then v is either p or

If η_(v) = η_{p) then by Theorem 4.13, Wu(υ) is periodic and in

addition Wu(υ) and Wu(p) are connected by an even chain of lozenges

all intersecting Ws(p). Since v is between Wu(p) and Wu(q) and the

lozenge has to intersect Ws{p), the first lozenge has to be θ{. As t; 0

ΦR(w), this implies that v is in front of Wu(u). Then the second lozenge

of the chain has to be θ 2 with other corner s so v cannot be achieved,

contradiction.
A similar argument shows that if υ e γs(p, q) and η_{v) = η_{x), then

v = x. Since / is a Jordan curve, this implies that J{ = η_(γs(p, x)) is
the closure of a component of J-{a, b} . Similarly for J2 = η_{γs(x, q)).

Claim 2. Jχ = J2.

Else / = /j U/2 . But then ι/+(p) = ί_(^) for some z e γs(p, q). Then
jf+(z) = η+{p) = >/_(̂ ) contradiction to Φ being quasigeodesic. Thus the
claim is proved.
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Choose now c e Jχ, c Φ a,b. Then there are px e γs{p,x) and

qχ eγs(x, q) with η_{px) = *lΛQ\) = c Furthermore neither pχ nor qχ

is equal to any of p, q or x ^
Again by Theorem 4.13, Wu{pχ) and Wu(qχ) are^periodic and con-

nected by an even chain of lozenges all intersecting W\p). Let a0 be
the periodic orbit in Wu(pχ). If any corner α* of the chain is con-
tainedjn θ , then since θ is a union of adjacent lozenges, it follows
that Ws(a*) ΠWu(qχ)φ0. This is a contradiction to both being left
invariant by a common covering translation.

Since Wu(a0) n θ Φ 0 , a0 is either in the front of Ws(r) or in the
back of W\ύ). If a0 is in front of W\r), then the argument in step
1 of Theorem 4.11 shows that the even corners in the chain of lozenges
are in front of Ws(r), while the odd corners are in the back of Ws(u).
If α 0 is in the back of Ws(u), then the same happens with odd and even
exchanged. This yields that all lozenges in the chain intersect Ws(r)
hence, qx cannot be achieved, contradiction.

We conclude that the limit set of g{F) is not a Jordan curve. As a
result the same happens for F and the result follows.

Lemma 5.4. Let Φ be an Anosov flow in M3 with nχ(M) negatively

curved. If there is F e<Fs with AF = S^, then AL = S^ for all L e &s.

Proof of 5 A. Wejnay assume that ^ s is transversely orientable. Sup-

pose there is L e &s with ΛL Φ S^. Let c e S^ - AL, and V be a

neighborhood of c in M u S ^ disjoint from L. By changing the orien-

tation if necessary we may assume V Π M is in front of L.
Let now Lf be any leaf of j?". Since n(Lf) is dense in M, it limits

on the negative side of local sheets of π(L). Therefore there is a covering
translate g(Lf) of Lf which is on the negative side of L. Thus g(Lf) Π
V = 0 and c <£ Ag{L>). As a result Λ^(L/} Φ S^, So AL* Φ S^, as we
wanted to prove.

Theorem 5.5. Let Φ be anAnosovflow in M3 so that πχ(M) is neg-

atively curved. Assume that Φ is quasigeodesic. Then for any F e ^ s ,

Proof of 5.5. We may assume that ^ \ SFU are transversely orientable.

Then there is a double lozenge θ in A M or (9) with unstable sides in

G,S e^u, stable sides in E, F, L e &s and pivot p so that: (1) the

two half leaves of F are in the boundary of the lozenges of θ , (2) G is

in the back of S and (3) £ j s in the back of Wu{p) (see Fig. 7) (change

transversal orientation to &s if necessary to produce branching of ^ s
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FIGURE 7. Sequence of lozenges.

in the positive direction). By G we mean the half leaf in the boundary of
θ . Thus π{G) is dense in M [13].

Choose a covering translation gχ so that g{ (G)nF ψ 0 , gχ (G)ΠL Φ 0 .
Since ^ ( θ ) is a union of two adjacent lozenges, g{(F) is in the back of
F and g{ (E) is in the front of L. Hence g{ (L) is in the front of L.
Finally gχ(S) is in the front of gx(G), in the back of 5 and intersects
both L and i 7 . Inductively choose covering translations g. so that gt(G)
is in the back of S,

and gj(G) is in the front of gi_{(S) (see Figure 7). Notice there may
be other leaves in the limit of the g.(G). Let Gt = g.{G) and similarly
define F., Li, 5Z, and Et.

Choose C e^s with Cnθφ0. Then C n S ^ , C π G / 0 and

let ς = CΠ g.(θ). For any flow line γ e g.(F), ^"(7) intersects Ci

and vice versa. Hence τ/_(Cz) = ηi{gi(F)). Let ^ e C Π 5 . By continuity

of η_ there is a neighborhood V of q in M so that η_(V) is contained

in a small neighborhood U of η_{q) in 5 ^ . As Cf Π ί r ω ( ί ) -> ^,

'/-(C,.) C U for 1 large enough. Therefore η_(Si(F)) c C/ and as a result

Λ^ (/Γ) is contained in the closure of U and is not S^. The previous

lemma implies the result.
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6. Quasigeodesic orbits

In [13] we produced many examples of R-covered Anosov flows in hy-
perbolic 3-manifolds. By Theorem 4.7 these cannot be quasigeodesic. One
natural question is: are there only finitely many uniformly quasigeodesic
orbits? We first notice that every closed orbit is freely homotopic to a
closed geodesic and is therefore a quasigeodesic. This produces a count-
able number [1] of quasigeodesic orbits. Unfortunately it is hard to show
they are uniformly quasigeodesic. In fact, since the union of closed orbits
is dense, this would be equivalent to showing φ is quasigeodesic.

Our goal is to prove that, in general, for K big enough, there are un-
countably many AΓ-quasigeodesic and infinitely many closed, AΓ-quasigeo-
desic orbits of the flow. The key fact is the following localization property
of quasigeodesics. Clearly any connected subset of a AΓ-quasigeodesic is
a local Λ'-quasigeodesic. The surprising fact is that there is a converse to
this.

Theorem 6.1 [21]. Fix a closed manifold M with nχ(M) negatively
curved. Then for any K > 0 there is L > 0 (usually L > K) satisfying:
if γ is an embedded curve so that any subarc of γ of length < L is a
K/2-quasigeodesicf then γ is K-quasigeodesic.

We may assume that M is orientable since both properties which we
want to prove are preserved under finite covers.

We now fix a an indivisible closed orbit of Φ, and let η b e a flow
segment of Φ starting and ending very near the same point p of α . We
assume that τ{ is not contained in a small neighborhood of a. Let τ 0 be
a fixed small segment from p to τ^O) and τ 2 another from Tj(l) to p.
Then ^ = τ 0

τ i τ 2 *s a cl° s e <i 1°°P based at p . For simplicity of notation
we will omit the *'s in τ 0 * τχ * τ 2 , etc.

Let s/ be the set of all sequences ξ = (m?)ieΛ such that the following
hold:

(1) A is an interval in the integers that contains {0, 1} , i.e., A = {j e
ZI n0 < j < nχ} , where -oo < n0 < 0 and 1 < nγ < oo.

(2) Each term mi is in N* U {oo} (N* = N - {0}).
(3) Only the first and the last terms of the sequence may be oo. Hence

m{ = oo does not occur in bi-infinite sequences.
For r e N, let

j/r=:{ξesf\mi >r, Vie A}.

Finally, given ξ e s/ , let γξ be the (possibly infinite) path defined by

ιτa °τa~ιτa °τa 1
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where a°° in τa°° is just the infinite path starting at the endpoint of τ
and going along a infinitely many times in the forward direction, while
in a°°τ it is the infinite path ending in the initial point of τ and going
backwards along a infinitely many times. The path γξ is constructed
starting with the initial point of τ (between am° and a™1) and inductively
constructing both directions. Let pa°° be the path starting at p and going
forward along a infinitely many times and similarly define a°°p .

If the endpoints of τ are sufficiently near a then, by the shadowing
lemma [1], [6], [7], any γξ is shadowed by a true orbit βξ, which may
be finite or not. Expansiveness [6], [32] implies that if γξ is infinite in
both directions, then βξ is unique. Furthermore βξ Φ a for any ξ be-
cause Tj is not very near a. Our goal is to show that the orbits β- are
quasigeodesics. Notice that γξ and βξ are always uniformly very close
to each other throughout their lengths, so in order to prove the uniform
quasigeodesic behavior of βξ it suffices to do this for γξ .

Lemma 6.2. If ξ0 = (ra0, mχ) = (oo, oo), then γξ is a K-quasigeo-

desic for some K.
Proof of 62. Fix a base point p e M with π(p) = p . Let ά 0 be the

lift of a°°p ending at p . Let τ be the lift of τ starting in p , ending in
q and let άχ be the lift of pa°° starting in q . Then γ = άoτά{ is a lift
of γ* . Since α is a quasigeodesic in M, γ has well-defined limit points.

We first show that the positive and negative limit points of γ are dis-
tinct. Let ^,Λ be the covering translations of M (with basepoint p)
associated to α and τ . Let a Φ b be the fixed points of g in S^ , where
a is the attracting fixed point. The positive limit point of γ is h(a), and
its negative limit point is b. If h(a) = b, then h~ιgh{a) = a = g(a).
But as the stabilizer of a point in S^ is cyclic [21], there is an indi-
visible covering translation / with h~ι gh = fj° and g = fjι . Since
M is orientable, it follows that / fixes both a and b. Furthermore
fJι(h(b)) = h{b), hence either h(b) = a or h{b) = b. But h{ά) = b so
we must have h(b) = a. Then h2(a) = a, so as above this implies that h
fixes a, contradiction. Therefore the endpoints of γ are distinct.

Let τ c M be a minimal geodesic connecting the endpoints of γ.
Project γ to τ as follows: ά 0 is fc0-quasigeodesic for some k0, therefore
project p to the nearest point in τ and define θ: ά0 —> τ continuous so
that d(θ(u) ,u)<R (for some R) and

where d0 is measured along γ . This can be done in two steps: first, using
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α

α.

FIGURE 8. A basic quasi geodesic.

quasigeodesic behavior of ά0, project ά 0 to a geodesic ray τ* ending in p
and with same limit point as ά0, in a way satisfying the above inequality.
Then project τ* to τ so as to multiply all lengths by a constant. Do the
same for άχ, projecting q to θ(p). Then project τ to θ(p). See Figure
8.

Let b2 be the length of τ . Let u, v e γ, with u e ά 0 and υ e ά{.
Then

do(u, v) = do(u,p) + do(p, q) + do(q,υ)

<bo + bχd{θ(u), θ(p)) + b2 + b0 + bχd(θ{q), β(v))

< (2b0 + Z?2 + 2 6 ^ ) + 6jrf(M, v).

Since d(u, v) is clearly < dQ(u, υ), there is a uniform quasi-isometric
relation between φ , υ) and dQ(u, v). The other cases, for instance
if both u, v are in ά0, are simpler. Therefore there is a global quasi-
isometric relation, and γξ is quasigeodesic.

Proposition 6.3. For K big enough, there is r0 so that all orbits βξ

with ξ in sfr are K-quasigeodesics.

Proof of 63. By the previous lemma, y* is a A^/2-quasigeodesic for
some K. Using Theorem 6.1 we find L so that any (K/2,L) local
quasigeodesic is a global ίΓ-quasigeodesic. Choose r0 so that l(ar°) > L.
Let ζ es/ and a a segment in yμ of length < L. Since l(ar°) > L, it

follows that for some / € ^ , one of the following must happen: a c am ' ,
a C α m ' τ , a c τ α m ' , or a c αm /ταm / + 1 . In any case, for some / € -4 ,

a C a ιτa /+1 C α τa = γ* ,

which is a A^/2-quasigeodesic. Hence yε is a (K/2<L) local quasigeodesic.
This implies that y*, hence β*, is a A^-quasigeodesic.

Theorem 6.4. L^ί Φ be an Anosovflow in M3 so that πx(M) is neg-
atively curved. Then for big enough K, there are uncountably many orbits
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of Φ, which are K-quasigeodesics and infinitely many closed orbits in this
set.

Proof of d A. Let K, rQ given by the previous proposition. Let sfr be

those ξ in s/r so that ξ = (m,.),.^ satisfies

m. = oc and ^ m^ = oo.
KO i>\

For such ζ, there is a unique βξ which will be a full orbit. By the proposi-

tion, βς is a AΓ-quasigeodesic. The proof now follows from symbolic dy-

namics. For any periodic sequence ξ e $fr , βς is a periodic orbit. If two

sequences in J / are not shift equivalent, the closed orbits are different.

This shows there are infinitely many ΛΓ-quasigeodesic closed orbits. Fur-

thermore since there are uncountably many shift inequivalent sequences in

j / , it follows that there are uncountably many distinct AΓ-quasigeodesic

orbits.

Remark. Notice that in this construction, all orbits are in a small neigh-

borhood of r U α !
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