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HIGHER ORDER CONSERVATION LAWS. II

ALEXANDER P. STONE

1. Introduction

Suppose that θ is an exact differential form of degree 1 and h is a vector 1-
form. Then θ is a conservation law for h if hθ is also exact. The Nijenhuis
tensor [h, h] of a vector 1-form h with distinct eigenvalues plays an important
role in the study of conservation laws and their generalizations on an analytic
manifold. For example, the vanishing of this tensor guarantees the existence
of a basis of exact 1-forms (dv\ , dvn) which are also eigenforms of h. An
important consequence of this fact is that a differential from θ of degree p is a
higher order conservation law if and only if it has a representation

Σ n A Λ dv*p .
ίl<" <ίP

The preceding result is established in Higher order conservation laws [5], here-
after referred to as HOCL.

In the present paper higher order conservation laws for vector 1-forms h and
k which commute are studied. The results which are obtained include as special
cases certain theorems which appear in [4]. Some of the notation which was
established in HOCL is reviewed briefly in § 2 of this paper.

2. Notation and definitions

The ring of germs of analytic functions at some point of an analytic manifold
is denoted by A, and the localization of the A -module of differential forms on
this manifold is denoted by S. The exterior algebra A*$ generated by $ is a
direct sum

where Λ°S = A and ΛιS = S. An element h e Horn (i9 g) induces homomor-

phisms

0<q<p,
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of Λ*$ which are defined by setting

Lt(q)(Ω Λ Λ ft Λ
IΊ * yOγ /\ ' ' /\ Up)

(2.1) _ 1

(P — <?)!<?!
2 |7r| (A^x(1) Λ Λhθπ{q)) Aθπiq+l)A Λ<

where θι e $, and π runs through all permutations of (1, , p). The signature
of the permutation π is denoted by \π\, and the transformation hm is taken to
be the identity on AVS.

The following result which is utilized in § 3 asserts that h{φ can be expressed
in terms of A(1), A(2), - ,/ι(Q-1).

Lemma 2.1. Let θ e Λq£. Then

[(A«)ci) _ (h«~iyi)h™ + + ( -

(2.2) JO, ^ > p ,

The proof of Lemma 2.1 appears in HOCL. The result may also be estab-
lished in the Case q = n by an application of the Cayley-Hamilton Theorem.
Let h have characteristic equation

where J / ^ is the sum of the diagonal minors of order / of (/?), the matrix which
represents h in some given basis of $. Since the trace function is linear, one
then obtains from the characteristic equation the result that

tr hn = n^Q + stλ tr h + s/2 tr h2 + + Jύn-i tr hn~ι ,

where tr h denotes the trace of h. If p = n in equation (2.1), then

, Λ Λ 0n) = (tr h^Xθ, Λ Λ W

- ( - l ^ - W ^ , ^ Λ Λ 0»), 1 < r̂ < /i ,

and hence

trAn - (trΛKtrΛ11-1) + (tr/z(2))(tr/z^2)

_ . . . _ ! _ (__i)n-i(tr Λ^-^ίtr A) = ( - l ^ w d e t A .

The last equation can then be interpreted as an operator on n-forms, and we
obtain

(-i)»-i(tr A(w-1})(tr A) = ( - l ^ n



CONSERVATION LAWS. II 471

as a result.
A mapping D: A*$ —» Λ*$ is said to be a derivation of degree r if D{ΛP$)

CZΛp+r£,D(θp A θq) = Dθp AΘQ + (-l)Prθp A Dθq, and D(fl + φ) = Dθ + Dφ.
The subscripts denote the degrees of the forms. It is clear that A(1) as denned
by (2.1) is a derivation of degree 0. Further examples are obtained by taking
special cases of formula (5.9) in [1]. The following definition will be of im-
portance in this paper.

Let θ e Λp$ and A and k be any elements of Horn (if, £). A mapping [A, k]:

Λp£ —> Av+ι$ may be defined by setting

[h,k]β = £{-[A(1)Jfc(1) - (hkYl)]dθ

(2.3) + Wl)dka)θ

+ [d{(hkYl)

If one observes that

hω(θp A θq) - hwθp A θq + θp A q

and

h{1\θp A θq) = h™θp Λ ^ + ^ Λ h™θq + h^θp A

then it is easily verified that

(2.4a) [ή,k](θp A θq) = [A,k]θp Aθq + {-IYΘP A [A,Λ]^ ,

(2.4b) [A, kWθp = s/[h, k]θp , jtfeA ,

and consequently [A, ^] is a derivation of ylp(f of degree 1, and

It should be observed that if p > 1 and h — k, the formula

(2.5) [A,Λ]0 =

is the special case of formula (5.9) of [1] obtained by setting L — M — h. That

is, [A, £]# = J/ [Λ>Λ]ί with θ 6 ^p(f and p > 2. The cases p = 1 and A = Λ yield

the usual formulas

{ - (hkYl)]dθ

(2.6a) + [A(1)έ/Λ0 + Λ(1)dAί]

- [d{AΛ + kh}θ]} ,

and
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(2.6b) [h,h]θ = - h(2)dθ + ha)dhθ-dh2θ .

Note that [A, k] as defined by (2.3) acts trivially on A°δ = A, and its action
on AXS = δ determines it completely. Thus if [A, k] = 0 on 1-forms, it also
vanishes on p-forms when p>2. However if [A, k] vanishes on p-forms when
p>2, it does not follows that [A, k] vanishes on 1-forms. For example let
p = 2 and suppose {d/du19 d/du2, d/du3} forms a basis for E = Horn (^, A).

If A is described by setting

9 h-u d

- — n — M 3 — — ,

then

a
dUo

Llr? LrJ ?

+ ( 3 Λ -±- )[h,hlΛ -1- = 0 ,
a d I d

a«2

while

(_?_ Λ - U f c , H = - 1 - * 0 .
\ duλ du2 I du2

§ 2 is concluded with a definition of the notion of a higher order conservation
law.

An element θ e Av$ is called a conservation law of order p for h(q\ 0 < q
< p < n, if and only if # and h(q)θ are all (locally) exact forms.

3. The endomorphisms A and k

Let A ζ. Hom(^, ^) have distinct eigenvalues Λ1? ̂ 2, , λn. lί ke Hom((f, δ)

and hk — kh, then /: is of the form

(3.1) k = /(A) = Λ/0/ + J/JA + + stfn_λh
n-1 ,

where J ^ € ̂ 4. Any eigenvectors of A are also eigenvectors of k, while
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(3.2) β< = fiλd = Λ?0 + jtfA + + ^n.JΓ1

are the eigenvalues of k. The following lemma appears in [4].
Lemma 3.1. Let h e Horn (if, S) have distinct eigenvalues λ19 — , λn. If

hk = kh and [h, h] = [h, k] = 0, then there exist coordinates vι, v2, , vn

such that {dv1, dv2, , dvn} are eigenforms of h and k, and the correspond-
ing eigenvalues λt and βt of h and k respectively are functions of vι alone.

Lemma 3.2. Let h e Horn (<f, S) have distinct eigenvalues and satisfy

[h, h] = 0. An element θ e AVS is a conservation law for hω, , h(p) if and
only if

θ = Σ ^ΐx. .ί (^S » ^ip)dvh Λ Λ dv1* ,
ii<—<ip

where {dv1} are the eigenforms of Lemma 3.1.
The proof of Lemma 3.2 appears in HOCL.
Theorem 3.3. Let h z Horn (< ,̂ S) have distinct eigenvalues. If hk — kh,

\h, h\ = [h, k] = 0, and θ € ΛVS is a conservation law for h{q) with 0 < q
< p < n, then θ is also a conservation law for (kj)a) where 0 < j < p and
0<l<p.

Proof. Let θ have the form

= Σ Jtiv.-iAdv*1 Λ Λ dv*p} .Σ

It is a consequence of Lemma 3.2 that the functions stf'iχ...iv depend only on
(vh, , v*p) and therefore θ is exact. Hence

k™θ = Σ ^u^Φu + '" βtjdv* Λ Λ dv*p ,

where the βt are the eigenvalues of k. As a consequence of Lemma 3.1, the
form kmθ is also exact. Similarly the forms (kj)ωθ and hence (kj)(l)θ are exact
when / and / are nonnegative integers in the set (0,1, 2, •/?).

It should be noted that whenever [k, k] = 0 it is automatically true that
[k\kj] = 0 for any pair of nonnegative integers (/,/) and any vector 1-form
k. The converse of this statement is not true. Moreover, the vanishing of [h, h]
and [k, k] does not in general guarantee the vanishing of [k,k]. However if
certain conditions are imposed on h and k as in Theorem 3.3, then the follow-
ing result is obtained.

Theorem 3.4. Let h e Horn (^, $) have distinct eigenvalues. If hk — kh

and [h, h] = [h, k] = 0, then [k\ kj] = [h\ kj] = 0 for any pair of nonnega-
tive integers i and j .

Proof. The vanishing of [h, h] assures the existence of a basis {dv1, , dv71}
of eigenforms for S. If θ — dv1 + + dvn, then the set of forms {θ, hθ,
• -,hn~ιθ} is also a basis of S, and this basis consists of conservation laws
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for A, A2, , hn~2. Since θ is then a conservation law for &\ it is easily dem-
onstrated that [k\ kq(hιθ) = [A*, W](hl0) = θ, for I = 0, 1, 2, , (n - 1)
and any nonnegative integers / and /.

The fact that [AS kj] vanishes is a consequence primarily of the algebraic
conditions imposed on A and k. That is, it is possible that [A, A] = [k, k] =
[A, it] = 0 and [AS έ 7] Φ 0 for some choice of A and & and nonnegative integers
/ and /'. For example if A and k are noncommuting vector 1-forms defined in
the two dimensional case by

d h = 4 + (y- χ)JL , l f t = 4
dx dx dy dy dy

and

dx~ dx dy dy

then it is easily established by routine calculations that [A, A] = [k, k] = [A, k]
= 0, while [A, k2] φ 0.

The following corollary yields many additional conservation laws once it is
known that θ e ΛVS is a conservation law for A(<z).

Corollary 3.5. // Θ^AVS is a conservation law for h{q\ then θ is also a
conservation law for (hk)(j) where j is any nonnegative integer.

Proof. Since θ is a conservation law for k(j), formula (2.3) implies
d[(hk)ω + kωhω]θ = 0, and hence θ is a conservation law for (hk)ω. Since
W,kη = 0, it follows from (2.3) again that d[(A^) ( 1 ) + (A*)(1W)(1)]0 = 0
and by repeated use of (2.2) and (2.3) one obtains the result that θ is also a
conservation law for (hkYj) when / is any nonnegative integer.

It should be noted that if Z e Horn (<?, δ), and a p-form θ is a conservation

law Z(1), then θ need not be a conservation law for liJ) or (P) ( 1 ) when / > 2,
and consequently the conclusion of Theorem 3.3 and Corollary 3.5 are non-
trivial. An example illustrating this last comment is given in HOCL.

If the hypothesis that the eigenvalues βt of k are also distinct is added, then
the following converse of Theorem 3.3 is obtained.

Theorem 3.6. Let A and k be elements of Horn (δ, S) and hk = kh. If A

and k have distinct eigenvalues lt and βt respectively, and [A, A] = [A, k] = 0,

then any conservation law for k(j) is also a conservation law for h(j), where

0 <]<P< n.

Proof. Let θ e Λvi be a conservation law for ku\ 0 < / < p < n. Since

{dv\ , dvn] is an eigenform basis for δ9 the ln\ elements (dvuΛ Advιp)

with J\ < < ip form a basis for Λv$. Hence θ has the form

θ= Σ C^.dv^ Λ Λ dv*p ,
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where the functions Ch...ip will depend in general on v1, , vn. In order to
show that θ is a conservation law for h{j) it is sufficient to prove that these
functions depend only on the variables vll

9 , v1?. Consequently, one is led
to a study of the equations d(kj)ωθ = 0, 0 < / < p. These equations in turn

lead to ί ^ -t) systems of homogeneous partial differential equations, and

each system contains (p + 1) equations in (p -f 1) unknowns. The analysis is
identical to that contained in Theorem 3.4 of HOCL, and since the eigenvalues

is then obtained.
are distinct by our hypothesis, the result that Ciiu..ip = Cίl...ίp(yί\ , v*p)
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