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A CHARACTERIZATION OF A STANDARD
TORUS IN E3

KATSUHIRO SHIOHAMA & RYOICHI TAKAGI

0. Introduction

Let M be a two dimensional, connected, complete and orientable Rieman-
nian manifold of class C°°, and t: M—> E3 be an isometric immersion of M into
a Euclidean three space. The purpose of the present paper is to find some con-
ditions for M to be congruent to a standard torus in E3 by a standard torus in
E3 we mean a surface of revolution defined by

x = (a -f b cos ύ) cos v , y — (a + b cos u) sin v , z = fc sin w ,

β > fe > 0, 0 < u••< 2π, 0 < v < 2π ,

which we shall denote by T(a, b). One of the properties of a standard torus is
that one of its principal curvatures is constant everywhere. There are a lot of
classes of surfaces with such property, for example, sphere, right circular
cylinder, standard torus, etc.. A characterization of a standard torus seems to
be more complicated than those of a sphere or right circular cylinder under
the condition that one of the principal curvatures is constant everywhere, since
a standard torus has non-constant mean curvature and its Gaussian curvature
changes sign. The authors were inspired on this subject by one of the problems
stated by Willmore in [4], and were informed of this problem by Professor M.
Obata.

Problem (Willmore [4]). Let ι: M-+E2 be an imbedding of a compact and
orientable manifold M of genus 1 into E\ and H be the mean curvature of
t(M) with respect to the induced metric from E3. Then, does the following
equality hold?

i n f J WdA = 2ττ2 ,

where dA denotes the area element of M and ι ranges over all imbeddings of
M into E3.

The main theorem of the present paper gives a partial solution to the above
problem, and can be stated as follows:
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Main theorem. Let M be a two-dimensional, connected, compact and
orientable Riemannian manifold of class C°° and nonzero genus, and t: M—>E3

be an isometric immersion. Suppose that one of the principal curvatures of
ι(M) is a constant R everywhere. Then we have

2oCdA > 2π2 ,

where the equality holds if and only if t is an imbedding, and c(M) is congruent

to the standard torus Γ(V2/|JR|, 1/|Λ|).
In §2 we shall classify the surfaces satisfying that one of the principal

curvatures is a constant everywhere, and a proof of the main theorem will be
given in § 3.

The authors wish to express their gratitude to Professor H. Nakagawa for
his valuable advice about the treatment of differential equations (2.5) in §2,
and to Professor M. Obata for his constant encouragement.

1. Definitions and notation

Throughout this paper let M be a two dimensional, connected, complete and
orientable Riemannian manifold of class C°°, and r. M -> E3 be an isometric
immersion of M into a Euclidean 3-space. When the argument is local in nature,
a point p e M may be identified with c{p). Let 8F{M) and 1F(EZ) be the ortho-
normal frame bundles on M and E2 respectively, and B the subset of
defined by B = {b = (p,e1,e2,e3) \ (p,e19ej € ̂ {M),{c{p),c^,c^e2),e3) e
Then, ϊ: B->SF(E?) is naturally defined by c(b) = (c(p), eiί(e1)9 e*(e2), e3) where
b = (p, e19 e2, e2). We may identify e^e^ and c*(e2) with eλ and e2 respectively.
The structure equations of £ 3 are given by

3 3

dp = Σ ώ

aea , dea = Σ ώaβ

e

β >

«•»
dώa = Σ ώ«/s Λ ώβ , dώaβ = Σ ώ « r Λ ώΐβ , ώaβ + ώβa = 0 ,

where ώa and ώα^ are differential 1-forms on ^(E3). Putting 2*(ώa) = ωa and
2*(ώaβ) = ωaβ where f* is the dual map of ?*, we get

ω3 = 0 ,

(1.2) 2
ωί3 = Σ htjωj9 hυ = A^ (i,/ = 1,2) .

The quadratic form Σ Kj^i^j is called the second fundamental form of M. A
point x € M is called a umbilical point if the matrix (hί3) takes the form
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Ir 0\
(1.3)

at the point, where r is a real number. If a point is not umbilical, there exists
a neighborhood all of whose points are not umbilical. In such a neighbour-
hood, we can take an orthonormal frame field with respect to which (hi3) takes
the form

Ir, 0
(1.4) (htj) = L

In a neighborhood containing no umbilical point we always use only such frame
field, which can be considered as a local cross section, to be denoted by σ, of
M to the bundle space B. For simplicity we identify a*<ύis and σ*a>i with ωiά

and o)i respectively, /, / = 1, 2, 3. Then, we have

(1.5) J

dωiό — Σ ωik Λ ω fci (i, /, Λ = 1, 2, 3) .

Denoting by K and H the Gaussian curvature and the mean curvature of M
respectively, we have the following well known formulas

(1.6) K= rrr29 2H = rx + r2 .

Since M is orientable, a unit normal vector field e3 can be globally defined on
M. Then we can consider r19 r2 as continuous functions on M satisfying rλ > r2,
and can reduce the assumption that one of the principal curvatures is every-
where a constant R to one of the following:

(1.7) (i) rx ΞΞ R > r2 , (ii) rx > r2 = R .

Furthermore we may assume that R > 0 (by replacing the unit normal vector
field ez by — e3, if necessary). It follows from a theorem of Massey [2] that
c(M) is a cylinder if R = 0. We shall classify the surfaces with the properties
(1.7) and JR > 0 in the next section.

2. Surfaces one of whose principal curvatures is a positive constant

First, let M possess the property (i) of (1.7). Later, it will be seen that the
discussion on rλ = R essentially covers the one on r2 = R. Suppose that there
is a non-umbilical point p on M. Then, there exists a neighborhood V of p in
which every point is nonumbilical. From (1.2) and (1.4) we observe
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(2.1) ω13 = Rωλ ,

(2.2) ω 2 3 = r2ω2 , R > r2 ,

where r2 is difϊerentiable on F.

Lemma 1. T/zere are diβerentiable junctions u and f defined on V satisfying

(2.3) ω12 = /ω2 ,

(2.4) ωι = du.

Proof. Taking exterior differentiation of (2.1) and making use of the
structure equations (1.5), we have

Rdωι = Rωί2 Λ ω2 = r2ωl2 Λ ω2 .

Since R — r2 Φ 0, we have ω12 Λ ω2 — 0 and dα^ = 0, from which the Lemma
follows.

Taking exterior differentiation of (2.2) and (2.3) and making use of the
structure equations (1.5) again, along every integral curve of eλ we get

dr2/du = f(R - r2) ,

df/du= -(Rr2 + f ) ,

which imply

(R - r 2 ) i ^ + li^X + Rr2(R - r2f = 0 ,
du2 \ du I

or

(2.6) ξήr + Rφ
du2

where we have put

(2.7) φ= l/(R-r2) .

By solving (2.6) and making use of (2.7), (2.5) we thus have

_ R(a cos Ru + b sin Ru)

a cos Ru + b sin Ru + IIR
(2.8)

, _ R( — a sin 7?w + & cos

α cos Ru + b sin Ru +

Lemma 2. iEv^ry integral curve γ of eλ in V is a geodesic of M, and more-
over is a part of a cfccle of radius I JR.
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Proof. From (2.3) we have (dejiej = ω12(e1)>e1 = 0, which shows that
γ is a geodesic of M. Moreover we have along γ,

dp = eγdu ,

dex — Re3du ,

de3 = —Rexdu ,

de2 = 0 .

Therefore γ is a part of a circle of radius 1/R. q.e.d.
Suppose again that there is a non-umbilical point p on M. From now on VQ

denotes the set of all non-umbilical points on M, and V is the connected com-
ponent of VQ containing p.

Lemma 3. The integral curve γp of ex through p is a closed geodesic, and
is a circle of radius 1/R. Furthermore there does not exist any umbilical point
onγp.

Proof. By Lemma 2 it is sufficient to show that there is not a sequence
{un} (n = 1, 2, •) of parameters of γp converging to u0 such that lim γp(un)

is a umbilical point. Assume that there is such a sequence. From (2.8), we
have

R ~ φv(μ)) = 1 /(α0 cos Ru + b0 sin Ru + 1/R) ,

where a0, b0 are constants along γp. Noting that R — r2 is a continuous func-
tion on M we see

l ϊ m Q [ R - r2(γp(u))] φ θ .

This fact implies lim γp(un) e V, which contradicts the assumption.

Proposition 4. Let M be a surface with rλ = R> r2. Then M is either
totally umbilical or else umbilic free.

Proof. Suppose that there is a non-umbilical point p on M. For any point

q e V let γq denote the integral curve of ex which is a closed geodesic. γq is a

circle of radius 1/R and contained entirely in V by Lemma 3. Since V is open

in M, it suffices to show that V is closed in M. Let {pn} (n — 1, 2, •) be a

sequence of points belonging to V such that lim pn = poe M, and set γn = γPn.

By completeness of M we can choose a subsequence {γn} of {γn} converging to

some closed geodesic γ0 through p0. It follows from (2.8) that for each n there

exists a point qn on γn for which r2(qn) = 0 holds. Then we can choose a sub-

sequence {qn} of {qn} converging to a point q0 on γ0. Thus we have r2(q0) —

lim r2(qn) = 0 by continuity of r2, and hence q0 e V. This fact together with

lim γn = γQ implies that the tangent vector of γ0 at qQ coincides with e^q^.

Thus we have γQ = γqo, in particular p0 € V.
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Corollary to Proposition 4. Let M be a surface with rλ = R > r2. If there
is a umbilical point on M, then M is totally umbilical and hence M is isometric
to the sphere S2(R) of radius I JR.

Proposition 5. Let M be a surface with rλ = R> r2. If r2 does not change
sign, then c(M) is congruent to either S2(R) or the right circular cylinder
S\R) X E\ where S\R) is a circle of radius 1/R.

Proof. By virtue of Proposition 4 it suffices that / = 0 and rλ = 0 hold if
M is umbilic free. Then we may assume that the orthonormal frame field
(/?, e19 e29 e3) under consideration is globally defined on M. For any point p € M,
the integral curve γp of eι through p is a circle of radius 1/R. From (2.8) we
have, along γp,

α2 + b2 sin (Ru + Φ)
Yl VaΓfV sin (Ru + Φ)

where cosφ = aj^/a2 + ft2, sin Φ = bj*Ja2 + b2. Since u can take all real
numbers, r2 changes sign if a2 + b2 ψ 0, from which we must have a = 0, b = 0.
Therefore a and b must vanish identically on M and then we have / = 0 and
r2 = 0. The remainder of proof follows immediately from the structure equa-
tions, q.e.d.

Now let M possess the property (ii) of (1.7), i.e., rx > r2 = R > 0. Also
in this case the previous discussions are valid by exchanging the role of rλ and
the one of r2 mutually. Assume that there is a non-umbilical point p on such
M. Then there is a point p0 on the integral curve of e2 such that rλ(p^ = 0,
which contradicts rγ > 0. Thus we have proved

Proposition 6. // M is a surface with rx> r2 = R, then M is isometric to

S2(R).

As a contrapositive of Proposition 4, we state that r2 changes sign if M is
neither isometric to a sphere nor to a right circular cylinder. Thus if M is
compact, which is not isometric to a sphere, and possesses the property rλ =
R > r2(R > 0), then r2 changes sign. This case will be dealt with in the next
section.

3. A characterization of a standard torus

Throughout this section let c: M —> E3 be an isometric immersion of a con-
nected, compact and orientable riemannian manifold M of nonzero genus, and
let M possess the property rλ = R>r2(R>ϋ). First we shall prove the following

Theorem 7. // c is an imbedding, then M is diffeomorphic to a standard torus.
Proof. We may assume that the orthonormal frame field (p9e19e29 e3) is

globally defined on M. Fix an arbitrary point p of M, and let λp be the integral
curve of e2 with λp(0) — p. Then there is a positive number L such that the
restriction λp \ [0, L) traverses every circle γq(q € M) just once and λp(L) € γp.
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Making use of λv we can easily construct a simple and closed curve λp: [0, L]
—> M which traverses every circle γq(q e M) just once. λp can be considered as
a cross section of the base space λp([0, L]) to the circle bundle space M. Hence
M is difϊeomorphic to a standard torus, q.e.d.

Define an orthonormal frame field (p, e19 e2) on M by c^ie^ = ei9 ί = 1, 2.
Furthermore, define a mapping φ: M-+E3 by q = φ(p) = *(p) + (1/R)e3(c(p)).
Then we have dq — dp + (l/R)e3 = (1 — r2/R)e2ω2, which shows that the
curve C(£) = φ(p(ΰ, v)) is regular because r2 ψ R, where ΰ (resp. v) denotes
the parameter of some integral curve of eλ (resp. e2). We shall call the curve C
the central curve of M. Since M is compact, C is closed (not necessarily simple).
It can be seen by a straightforward calculation that C(v) is a circle, i.e., ι(M)
is congruent to a standard torus if and only if both functions a and b in § 2 are

nonzero constants. Here we shall estimate I H2ocdA. It is evident that the
M

following inequality holds:

(3.1) CsPoedA > f H2dA ,
M c(M)

where the equality holds if and only if there does not exist any open subset W
of e(M) whose inverse image r\W) has at least two components.

In order to compute I H2dA, we will use the formulas of Frenet-Serret

(C, ξl9 ξ29 ξ3) for the central curve C. Retake the parameter of C so that it
represents arc length from a fixed point on C. Then we obtain an immersion
cp of S\\) X Sι(2πlΐ) onto c(M) defined by

(cp)(u, v) = C(v) + — (f 2 cos w + f 3 sin w) .
R

Denoting curvature and torsion of C by tc and τ, the formulas of Frenet-Serret

for C are

dC = ξλdv ,

dξλ = rfA ,

d ? 2 = - A : ? ^ + τξzdv ,

df3 = -τf A .

Then the orthonormal frame field and the basic forms on M can be expressed as

eγ — — ξ2 sin u + ξ3 cos u ,

(3.3) e2 = ξ19

e3 — — ξ2 cos u — ξ3 s in u
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ωι = —(du + τdv) ,
R

(3.4)

0), = 1 — — cos u )dv .
\ R I

Making use of (3.1) and (3.2), the connection form ω12 and other forms of ι(M)
can be expressed as

R/c sin u
ωu = — (o2 ,

R — K cos u
(3.5) ω13 = Rωι ,

/?A: COS U
o)23 = ω 2 .

R — K cos u

Form (2.2), (3.4) and (3.5) we have r2 = _ jz^^??JfL. Thus,
R — K cos w

(R — K cos u)2

From (3.4) the area element dA of c(M) is given by

(3.6) ft). Λ to, = (R — K cos u)du Λ dv .
R2

On the other hand, the Gauss-Bonnet theorem implies

(3.7) f KdA = 4*(1 - g) = 0 .
ί(Λf)

Taking account of these facts, we have

(3.8) 4 f H2dA = f A{H2 - X)J^ = f ί Γ — du
J J J [J R — K cos ue(M) c(M)

dv ,

where / denotes the length of the central curve C.
Since (3.4) implies necessarily \/c\ < R and K depends only on v, we find

(3.9) / WdA = Jff dv
2 J Jπ

By virtue of the Schwarz's inequality, we have

(3.10) Γ dv > I21 ΓVR2-κ2dv .
J V/^ 2 -Λ: 2 /J
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Recalling the inequality, we have

(3.11) (fVR2-fc2dvY < RΨ -
0

Here by virtue of the generalized FencheΓs theorem according to Milnor [3],
we have

(3.12) Γκdv> 2π ,
0

where the equality holds if and only if C is a convex curve in a plane.
Combining the inequalities (3.1), (3.10), (3.11) and (3.12), we obtain

2/2 - 4π2

where the equality holds if and only if the equalities in (3.1), (3.10), (3.11) and
(3.12) hold simultaneously. In other words, C is a circle of radius lj{2π) and
c is an imbedding. Summing up the above results, we can state as follows:

Theorem 8. Let Mbea two-dimensional, connected, compact and orientable
Riemannian manifold of nonzero genus, and c: M -> Ez be an isometric im-
mersion. Suppose that one of the principal curvatures of M is a positive con-
stant R everywhere, and let I be the length of the central curve of M. Then
we have

> RΨπ

- 4π2

where the equality holds if and only if c is an imbedding, and c(M) is congruent
to a standard torus T(l/(2π), 1/R).

Proof of main theorem. Considering the right hand side of the inequality
in Theorem 8 as a function of Rl, we can easily see that it attains the minimum
2π2 for Rl = 2jΐπ, and hence our main theorem follows from Theorem 8.
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