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THE RIEMANNIAN STRUCTURE
OF ALEXANDROV SPACES

YUKIO OTSU & TAKASHI SHIOYA

Abstract

Let X be an n-dimensional Alexandrov space of curvature bounded
from below. We define the notion of singular point in X , and prove that
the set S, of singular points in X is of Hausdorff dimension <n —1

and that X — Sy has a natural C ®_Riemannian structure.

0. Introduction
Let .#(m, k, D) denote the class of m-dimensional compact Rieman-
nian manifolds with sectional curvature > —k” and diameter < D. Any
sequence {M,},_, , ~of #(m,k,D) contains a subsequence {M j(i)}i
converging to a compact metric space M__ with respect to the Hausdorff
distance d,, (see [12]). Although we could not expect the limit space
M __ to be a manifold, it inherits several properties of the manifolds in

o0
M (m,x,D),ie, M_ isan Alexandrov space of curvature > —x? , di-
ameter < D, and of Hausdorff dimension < m . We say a metric space X
is an Alexandrov space (of curvature bounded from below) if X is a con-
nected, complete, and locally compact length space of curvature bounded
from below and of finite Hausdorff dimension. (In [4] any such space X is
called a FSCBB. The precise definition of Alexandrov space will be given
in §1.) Therefore the study of Alexandrov spaces makes clear the structure
of the d y-closure of .#(m, k, D), and then it is very useful for the study
of manifolds in ./#(m, k, D).

Assume that X is an Alexandrov space of curvature > k. For any
triple of points p,q,r € X we denote by Zpqr the angle at § of a
triangle ApGF in the simply connected space form of constant curvature
k such that |pg| = |pq|, |GF| = |qr|, and |7p| = |rp|, where |xy| denotes
the distance between x and y. A point p € X is called an (n, d)-
strained point if there exist points p; € X, i = 1,---,2n such that
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ZI’,-PP,-+,, >n—06 forany i =1, --- ,n and Zpippj > n/2 -6 for any
i,j=1, ,2n with i # j mod n. We call any such {pl} an (n, d)-
strainerat p . Let X, s bethesetof (n, d)-strained points in X . Burago,
Gromov, and Perelman [4, §6] proved that the Hausdorff dimension of
X is equal to the maximal number of n such that X, ; # @ for all
sufficiently small § > 0, and in particular the Hausdorﬁ’ dlmenswn is an
integer and is called the dimension of X denoted by dim X . They also
proved that X, ; is open dense in X and is an r-dimensional topologlcal

manifold, where »n := dim X and ¢ > 0 is small enough. In [11, §3 <],
Gromov conjectured that X—-X, 5 is of n-dimensional Hausdorff measure
zero. We give an affirmative answer to that conjecture. A point p € X is
called a nonsingular point if it is an (n, d)-strained point for any J > 0,
and a singular point if it is not a nonsingular point. Clearly, X — X, s
is contained in the set S, of singular points in X. One of our main
theorems is

Theorem A. Let X be an n-dimensional Alexandrov space. The set
Sy of singular points in X is of Hausdorff dimension <n —1.

Recall that the Gromov convergence theorem [12], etc., states that for
any sequence {M;} in .#(m, k, D) such that the sectional curvature K M,
of M, satisfies |K M,»' < k* and the volume of M, is greater than a positive

constant, then the limit M_ of some subsequence of {M,} is a c're

Riemannian manifold for any 0 < a < 1 (i.e., the metric tensor is c'
and its differential is C”-continuous in the sense of Holder’s condition),
and M; is diffeomorphic to M for all sufficiently large /. It is, there-
fore, natural to ask whether X —.S, has some differentiable structure and
Riemannian structure or not. In this direction we have the following re-
sult. We refer to §1 the precise definition of differentiable and Riemannian
structures on a space which is not necessarily locally Euclidean.

Theorem B. Let X be an n-dimensional Alexandrov space. Then there
exists a C°-Riemannian structure on X —S v CX satisfying the following :

(1) There existsan X, C X —S, such that X — X, is of n-dimensional

Hausdor(f measure zero and that the Riemannian structure is C'*-continu-
ouson X, C X.

(2) The metric structure on X — S, induced from the Riemannian
Structure coincides with the original metric of X .

Remarks. (1) It was proved in [4] that X — X, k.5 is of topological di-
mension < k—1 forany 0 < k < n and that any nonboundary (n—1, J§)-
strained point is (n, ')-strained, where 6' — 0 as d — 0. By these two
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statements, the set of singular and nonboundary points is of topological
dimension < n—2. Recently, in [5], independently of Theorem A, this has
been proved for Hausdorff dimension instead of topological dimension.
(2) In general, X, ; does not have any C ®_Riemannian structure sat-
isfying (2) of Theorem B because X, s may contain singular points (see
Example (2) below).

(3) The set X — S, of nonsingular points in X is not necessarily a
Riemannian manifold (see Example (2) below). Nevertheless, X is a
C°-Riemannian manifold in the ordinary sense whenever X contains no
singular points (see the definition of Riemannian structure in §1).

(4) The boundary of any convex body in a Euclidean (n + 1)-space
R"™! is an Alexandrov space of curvature > 0, and its structure was
investigated very well for many decades (see for example [7]). A point
on the boundary of a convex body is called a singular point if its support
hyperplane is not unique. Note that the notion of singular point described
here is a little wider than that for Alexandrov space. A point is called
an r-singular point if its support hyperplanes have “n + 1 — r degrees of
freedom”. Then the sets S, of r-singular points for r = 0,--- ,n -1
satisfy S, C S, C--- CS,_, , the Hausdorff dimension of S, <r, and the
complement of S, | has C ! differentiable structure (see [2]). Our result
is a generalization of this.

(5) A. D. Alexandrov also proved that the boundary of a convex body in
R""! has an almost everywhere second differentiable structure in the sense
of Stolz. In [11], Gromov suggested that any Alexandrov space will have
some second differentiable structure. Our result is a partial answer to that.
An affirmative answer to the conjecture will be given in the subsequent
paper [15] by developing the approach of this paper.

(6) Let X be the limit space of a Cauchy sequence in {M €
M(m,x,D) | |K,| < KZ} and let n := dimX. Then, X and S,
have more rigid structures (see [10]), i.e., X has a stratification §, :=
X>S, ==8>28,,2:-D28 DS_, =9 suchthat §,- S, | for

any /[ = 0,--- , n has a structure of C°°-Riemannian manifold whose
induced metric is close to the original metric (in the sense of the Lipschitz
distance).

(7) In [3], Berestovskii proved that any G-space satisfying a certain
axiom is a C°-Riemannian manifold. Later, Plaut [17] extended this to the
case of geodesically complete Alexandrov spaces having positive injectivity
radius. Their proofs are simpler than ours because of the fact that any
geodesic is extendable in their cases.
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FIGURE 1

Examples. (1) Let X be a complete two-dimensional PL-manifold
without boundary. For any vertex p € X denote by Z(X, p) the sum
of all the inner angles at p of faces F’s of X such that p is a vertex of
F . Then, X is of curvature bounded from below (or is an Alexandrov
space) if and only if Z(X, p) < 27 holds for any vertex p of X (see [7,
§17]). In this case, X becomes nonnegatively curved, and a vertex p of
X is a singular point if and only if Z(X, p) < 2n. Note now that the
space Zp of direction at a vertex p of X is a circle (for the definition of
the space of direction see §1.3). It follows that the length of X » is equal
to (X, p).

(2) Let us construct an example of a two-dimensional Alexandrov space
X with the property that the set S, of singular points of X isdensein X .

We first define a sequence {X,} of convex polyhedra in R’ inductively.
(The desired X is realized as the Hausdorff limit of {X,}.) Let X,

be a regular tetrahedron in R’, the barycenter of which is the origin o.
Assume that X, has been defined. Let us define X, , . Take a monotone
decreasing sequence {€;} of numbers tending to zero in such a way that
0<e; <1 foreach i and € := H;‘;’l(l —€;) > 0. We take the barycentric
subdivision of X, and move all the new vertices outward slightly along
rays emanating from o (keeping the original vertices of X, ) to obtain the

convex tetrahedron X, , (see Figure 1). We may assume that

2 - L(X,,,,p) > (1—€)(@2n - L(X,, D))

for any vertex p of X, .

Define X C R’ to be the Hausdorff limit of {X,}. Then, X is non-
negatively curved. For any k and any vertex p of X, , we obtain
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lim (27 — (X, p))>H1—ek+,)(2 —-4(X,, D))

(27t - 4(X,,p))>0.

The length of the space of direction at p of X is lim,_ __ Z(X,, p) <2=m.
Thus any vertex of X, for any k is a singular point of X . Since the
maximal length of all the edges of X, tends to zero as k — oo, the set
Sy of singular points is dense in X .

(3) Let X be the double of the n-dimensional Euclidean unit ball,
i.e., the union of two copies B, and B, of the n-dimensional Euclidean
closed unit balls such that 0B, and 0B, are identified by an isometry, so
that X is homeomorphic to the standard sphere S”" . Since X contains no
singular points, applying Theorem B and recalling Remark (3) we have that
X isa C°-Riemannian manifold (and thena C '_differentiable manifold).

The present paper is organized as follows. In §1, we introduce the
notion and convention used in this paper and summarize the facts known
for Alexandrov space (see [4]). For example we define the angle of two
minimal segments emanating from a point in an Alexandrov space X,
the space of direction X , at p € X, the tangent cone Kp at p, (weak)
C’-differentiable structure and C’~'-Riemannian structure on ¥ C X for
r>0, etc.

In §2, we prove Theorem A. For J > 0 we define

S, s:={x€X|Zpxy <m—dforanyye X —{x}}.

Let B(p,r) denote the metric r-ball centered at p € X. From To-
ponogov’s convexity, the map S’p’ sNB(p,r) — Zp which assigns to
X € S‘p’ s N B(p, r) the element Uy € Zp corresponding to a minimal
segment px is L-expanding, i.e.,

lv. v | > Ll|xy| forany x, yeS (,DB(p r),

px"py
where L is a positive constant depending onlyon #n:=dim X, k, J, and
r . Since the Hausdorff dimension of E is equal to n — 1, the Hausdorff
dimension of S sNB(p,r) is < n—1. Since the Hausdorff measure
is completely addmve the Hausdorff dimension of S‘p = Usso S”p’ s 18
< n — 1. From the splitting theorem for K, (see [13], [18]), there exists
a discrete subset {p;},_; , . C X such that for any x € S, there is an i
with x € S . Hence the Hausdorff dimension of S, is <n-—1.

In the later sections we prove Theorem B. In §3 we define natural
local chart through the distance functions on X. For p € X, let
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v, = {x € X | px is unique }, where px denotes a minimal segment
joining p and x. Let x € XS, . Since K, is linearly isometric to R",
we identify K with R”. We have that X — V. is of n-dimensional Haus-
dorff measure zero because of X —V,_ C S, . Thus, for almost all choices

of pj,---,p,€X, x€ v, forany i=1,---,n and {pr}i=l,-~~,n is
linearly independent in K . Let us define a map ¢ : X — R" by
o(x) = (lp; x|, -, Ip,x|)

for x € X. We formulate the first variation formula for any triple of
points (Theorem 3.5), which enables us to show that ¢ is a bi-Lipschitz
homeomorphism on an open neighborhood U{p at p. Let V= ﬂ;’zl Vp’n
(U¢ —§y), and define a map 8V, Mat(n) by

8,(x) := (cos lpr,.'prj')~

Then, g, is continuous. We introduce the notion of cut locus for Alexan-
drov space. The cut locus Cp of p € X is the complement of the set of

points x € X such that px is unique and extends to a minimal segment
py, Vv # x. We prove that the n-dimensional Hausdorff measure of Cp

. .12 .
is zero and that g, is C'/2-continuous on V¢ - ﬂ;’zl C , - We may assume
1

that g, is positive definite. We call any such ¢ : U b R" a natural local
chart.

In §4, we prove that coordinate transformations of natural local charts
are almost everywhere differentiable, and 8, is the Riemannian metric
compatible with them, which determines a Riemannian structure on X —
Sy C X in a weak sense. In §5 we construct new charts which are c!
everywhere by approximating natural local charts. In §6, we prove that
X —S, islocally path connected, and the induced metric on X —S§, from
the Riemannian structure coincides with the original metric on X . The
proof of Theorem B will be completed there.

Finally, in §7, we give an addendum. Concerning [14], we see that if
a convergent sequence {M;} of Riemannian manifolds in .#(m, k, D)
satisfies that the excess of M, tends to zero, then the limit space is a

C'2_Riemannian manifold.

1. Preliminaries

In this section, following [4] we will review known facts, and intro-
duce the notion of differentiable structure and Riemannian structure on
topological space which is not necessarily locally Euclidean.
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1.1 Lower curvature bound for length space. Let X be a complete lo-
cally compact length space, i.e., a complete locally compact metric space
such that any two points p, g € X is joined by a minimal segment whose
length is equal to the distance |pg| (or |p, g|) between p and ¢, where
the length |c| of a continuous curve c:[a, b] — X is defined to be

m—1
sup D let) et ) |-
=0

a=ty<--<t,=

For p,q € X we denote by pg a minimal segment joining p and gq.
We now fix a number k£ € R. For simplicity, we call a complete simply
connected surface of constant curvature k a k-plane. For any triangle
Apgr in X, i.e., any triple of points p, g, r € X, we denote by Apgr
a triangle Apg7 in a k-plane such that |pg| = |pq|, |47 = |qr|, and
|#p| = |rp|. Denote by Zpqr the angle of the triangle Apgr at the vertex
corresponding to ¢q . Note that Apgr does not necessarily exist in the case
of k > 0. By definition, X is of curvature > k if the following axiom
holds.

The Alexandrov Convexity. For any minimal segments px and py
emanating from a common point p, the angle Zx(s)py(¢) is monotone
nonincreasing in s, ¢ > 0, where x(s) (resp. y(¢)) denotes the point on
px (resp. py) whose distance from p is equal to s (resp. ).

This statement is equivalent to the following. Take any triangle Apgr
and any points x € pq and y € pr, where pq and pr are arbitrarily
fixed. Then, there exists a triangle Apgr =: Apg# such that if we take the
two points X € p§ and p € pi with |px| = |pX| and |py| = |py|, then
we have |xy| > |XJ].

Let X be of curvature > k and fix two minimal segments px and py.
The Alexandrov convexity implies the existence of the limit of Z x(s) p y(¢)
as s,t — 0, which is called the angle Zxpy. We have Zxpy > Zxpy,
which is an analogue of Toponogov’s comparison theorem for Riemannian
manifold and which we call Toponogov’s convexity. It is easily verified
that any minimal segment in X does not branch.

1.2 Hausdorff measure and rough volume. Assume now that X is a
metric space and 4 a subset of X . For 6 > 0, let G; be any family of
Borel subsets of X with diameter < J and covering A. For a > 0, the
a-dimensional Hausdorff measure VH”(A) of A is defined by

. a
V" (4) == sup inf )" a(a) (@E(_S_)) ,
3>0 G& SGG‘s 2
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where a(a) := I'(1/2)?/T(a/2 + 1), and T is the Euler’s function. Note
that a is not necessarily an integer. The Hausdorff dimension dim, 4 of
A is defined to be sup{a > 0| V,*(4) = +o0} = inf{a > 0| V,*(4) =
0}.

Assume 4 C X to be precompact. A subset N of A is called an e-
discrete net, € > 0, if the distance between any two different points in N
is greater than or equal to €. Then, any e-discrete net of A is of finite
number. Denote by 8, (¢) the maximal number of e-discrete net of A
and define the a-dimensional rough volume Vr®(A) of A by

Vr?(A4) := limsup eaﬁA(e).

e—0

The rough dimension dim A of A is defined in the same manner as the
Hausdorff dimension. Obviously we have V,%(4) < a(a) V'r*(4) and
dim, A < dim, A. The Hausdorff measure is a Borel regular measure. On
the other hand, the rough volume is not completely additive and does not
measure X .

Let X and Y be two metric spaces and L > 0 a number. A map
f X — Y is said to be L-expanding if |f(p)f(q)| > L|pq| holds
forany p,gq € X. Amap f: X — Y is said to be L-contracting if
|f(p)f(q)| < L|pgq| holds for any p,q € X (i.e.,, f is Lipschitz contin-
uous with Lipschitz constant L). If f: X — Y is L-expanding, then
Vy (f(X)) > L*V,“(X) and dim,, f(X) > dim, X. If f: X - Y is
L-contracting, then V,°(f(X)) < L*V,“(X) and dim,, f(X) < dim X .
The same inequalities hold for the rough volume and the rough dimension.

1.3 Alexandrov space. Let X be a complete locally compact length
space of curvature > —x? > —oco and of Hausdorff dimension = n < +00.
We call any such space X an Alexandrov space. Recall (see [4, §6]) that n
becomes an integer and that both the Hausdorff dimension and the rough
dimension of any metric ball are equal to », and besides the topological
dimension coincides with n. Thus we call n the dimension dim X of
X . For a point p € X, we denote by Z; the set of equivalence classes of
minimal segments emanating from p, where px is equivalent to py if
Zxpy = 0, i.e., one of px and py is contained in the other. The space
Z; has the distance function naturally induced from the angle between
minimal segments from p. We call the completion of 2; the space of
direction Zp , and each element of Zp a direction at p. It is known
that the space of direction Zp is compact. For any minimal segment px
in X, the symbol Upr denotes the direction at p corresponding to px.
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With this notation we have |vvapyl = Zxpy for any px and py. The
cone K(Y) over a metric space Y is defined to be the topological cone
Y x [0, +00)/Y x 0 equipped with the metric defined by

[(x,s), (¥, t)|:= \/s2 +12— 2stcosmin{|xy|, n}

for any (x,s), (v, t) € K(Y). Denote the vertex of K(Y) by o. The
tangent cone K, at p € X is defined to be the cone K(X)) over the
space of direction 2, . Itis known (see [4, §7]) that the space of direction
(resp. the tangent cone) at any point is an Alexandrov space of dimension
n—1 (resp. n) and of curvature > 1 (resp. > 0), and that for any fixed
D € X, the pointed space (rX, p) converges to (K e 0) as r — +o0 in
the sense of the pointed Hausdorff distance, where rX denotes X with
metric multiplied r times. A point p € X is called a singular point if
Kp is not isometric to R", or equivalently Zp is not isometric to the
standard (n — 1)-sphere. Note that the present definition of a singular
point is equivalent to the definition given in §0 (to prove this we may use
the splitting theorem (see [13], [18])). If a point p € X is nonsingular,
then K, is identified with R" and the scalar multiplication, the inner
product (-, -), etc. in K, are assumed to be defined. '
1.4 Radius. The radius rad(X) of a length space X is defined by

rad(X, p) :=sup|pq|, rad(X) := inf rad(X, p).
geEX PEX

It follows that diam(X)/2 < rad(X) < diam(X).

Assume now that X is an n-dimensional Alexandrov space of curvature
> 1. If apoint p € X satisfies rad(X, p) = 7, there exists a unique point
g such that |pg| = m. The point g is called the antipodal point of p.
We can easily prove that rad(X) = 7 if and only if X is isometric to the
n-dimensional standard sphere. Therefore, a point p in an Alexandrov
space is a nonsingular point if and only if rad(X)) ==.

1.5 Generalized differentiable structure and Riemannian structure. Let
X be a topological space, and let Y ¢ X, n e N, 0<r<2. A
family D = {(U,, V,,, 9)},cq is called a weak C'-atlas on Y c X if the
following hold:

(1) For each ¢ € @, Uq, is an open subset of X, and V¢ C U¢.

(2) Each ¢ € ® is a homeomorphism from U, into an open subset of
R".

(3) {¥,},cq is a covering of Y.
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(4) If two maps ¢, y € O satisfy V¢ nv,#0, then
vop  1o(U,nU,)—w(U,NU,)

is C" on p(V,nV,NnY).

Note here that, for 0 < a < 1, amap f from an open subset U of R"
into R” is said to be C'™ on a (not necessarily open) subset V' of U if
the differential of f exists at every point in ¥ and is C“-continuous in
the sense of Holder’s condition.

Each (U,, V,, ¢) is called a local chart. When Uv,=Y, holds for every
@ € ®, we call the weak C'-atlasa C'-atlas on Y C X, and express that
{(U,, 9)},co- When X =7, the existence of a C'-atlason Y = X
implies that X is a C’-manifold in the ordinary sense. Note that our
aim is to construct a C'-atlason X — S v € X and that the concept of
weak atlas is needed only for the way of our proof. Two weak C’-atlases
on Y C X are said to be equivalent if the union of these is also a weak
C'-atlas on Y C X. We call each equivalence class of weak C’-atlases
a weak C'-differentiable structure. A weak C’-differentiable structure is
called a C’-differentiable structure if it contains at least one C’-atlas. A
continuous function f : X — R is said to be C" on Y with respect to
a fixed weak C’-differentiable structure on ¥ c X if fo (o'l is C" on
¢(V¢ NY) for any local chart (U¢ V,, 0) in the maximal weak C’-atlas.
In the same manner, we can define the concepts of C'-map, C’-curve,
etc. We can also define the tangent space T,X for each p € Y and the
concepts of vector field, form, and any other local objects in the standard
way.

A family g = {g,} e 18 called a C"~'-Riemannian metric associated
with a weak C'-atlas {(U,, V,, )}, On ¥ C X if the following hold:

(1) For each ¢ € @, g, is a map from V, to the set of positive
symmetric matrices.

(2) Foreach p € ®, g, 0 o 'is C"! on p(V,NY).

(3) For any x € anVw, @,y € ®, we have

g,(x)="d(pow ) (w(x) g,(x)d(poy ) (w(x)).

Let © and D be two equivalent C'-atlaseson ¥ C X. Two C -
Riemannian metrics g and g’ respectively associated with ® and D’ are
said to be equivalent if gUg' isa C"~'-Riemannian metric associated with
DUD' . Note that if D hasa C™'-metric g, then a unique C "~!_metric
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g  associated with ©’ is naturally induced from g such that g and g are
equivalent. We call the pair of any equivalent class of C ~!_Riemannian
metric and its associated (resp. weak) C’-differentiable structure on Y C
X a (resp. weak) C "~'_Riemannian structure on Y C X. In the case
where X = Y, the existence of a C ~!_Riemannian structure on ¥ = X
implies that X is a C"~'-Riemannian manifold.

Now, we fix a (weak) C"~'-Riemannian structure on Y C X . Take any
p € Y and a local chart (Uq,, p) = (U¢, x! ,+++,x") around p. (When
the structure is weak, we may take ¢ such that p € qu O Let u,ve TpX
be any vectors, and let

0 0
u= E u.— and v= E v —,
- laxl - laxl

where u,, v, €R, i =1, .-, n. The inner product in the tangent space
is defined by

(u, U)p = Zuingij(p)’
i’j

where (g,;(p)) == g,(p)-

1.6 Landau’s symbols. We sometimes use Landau’s symbols o(:) and
O(-) (i.e., when x tends to O, we have that o(x)/x tends to zero, and
O(x)/x is bounded). Define the symbol 6(x) to be a number which tends
to zero as x — 0, (i.e., 6(x) = o(x)/x ). Note that 0(x)+ 0(x) = 6(x),
c0(x) = 0(x), etc., hold. The symbols oa,b’”_(x), Oa’b’m(x) , Oa’b,m(x)
mean o(x), O(x), 6(x) dependingon a, b, ---.

2. The mass of singular points

The purpose of this section is to prove Theorem A. Let X be an n-
dimensional Alexandrov space of curvature > —xz, k>0.ForpeX
and 6 >0 let

S, s={xeX|Zpxy<m—dforany ye X —{x}}.

It follows that S, ; C S, ; for any J > 6" > 0. Let S, == U505, 5-
Then we have

Lemma 2.1. There exists a constant L = L(x,r,d6) > 0 a’epe:nding
only on x,r,8 > 0 such that Zxpy > L|xy| for any x,y € S, sN

B, r).
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Proof. Take any x,y € S sNB(p, r). It follows that

x|+ xy| = oyl 0 1PX] : |xy| > cosh [px| : |xy| _Coshlgxﬂ

K
= (14 cos Zpxy) sinh Ipx] sinh |_)_CL|
K K
Hence, by |px|+ |xy| < 3r and pry < m—0J, we have
lpx| + byl = Iy smh > (1 —cosd) smh| lsl hlxyl
K K K K
On the other hand,
5 2
(£xpy) sinh lpx] sinh = > (1 — cos Zxpy) sinh —— lpx] sinh —— 2]
2 K K K K
= cosh Pyl _ cosh Ipyl = Ipx|
K K
1
2 —(Ixy[ = |py| + |px]) [xy|.
2K
Therefore

(x(-l 1 —cosd < 7x
Y%\ sinh(3r/x) sinh(r/x) = “¥PY

Lemma 2.2. The set S, for any p € X is of Hausdorff dimension
<n-1.

Proof. Since S =U; S 6, NB(p,r;), where J, — 0 and r;, — +oo0,
it suffices to prove that S sNB(p,r) forany J,r >0 is of Hausdorff
dimension < n—1. In fact Lemma 2.1 and Toponogov’s convexity imply
that the map Sp,a NB(p,r) > x +— U, € Zp is L-expanding, where
L > 0 is the constant in Lemma 2.1. Since X, is (n — 1)-dimensional,
this completes the proof. qg.e.d.

For any given D > 0 we assign a positive number

w(D) := max{ |pF|/£DGF | AP4T is a triangle in the k-plane
such that |pg|, [pF| < D and |p7| > 2[|pg| —|g7||}.
For the proof of the next lemma we need the following fact, which is an
almost immediate consequence of Toponogov’s convexity.

Fact (a) [4, 9.2]. Let C be a compact subset of X and x € X a point.
Set D :=diam(CU{x}), D, := max, .. |ax|—min,.|ax|. Then for any
€ > 0 and any maximal e-discrete net N in C, there exists a subset N' of
N containing at least B.(€)/(2D,/€ + 1) points such that {v,, |y € N'}
is an €/y(D)-discrete net of X .
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A point x € X is called a singular point viewed from a point p € X if
there exists a px such that rad(Z_, v,,) < . Denote by §, the set of
singular points viewed from p.

Lemma 2.3. Let C be a compact subset of X such that Vr"(C) > 0.
Then there exists an € = €(C) > 0 such that if {p;} is a maximal e-
discrete net in C, then any singular point in X is a singular point viewed
from some p; .

Proof. Let € > 0 and let {p,} be a maximal e-discrete net in C.
Suppose now that there exists a singular point x € X which is not a

singular point viewed from any p,. Since rad(X_, ) = n for any i,
there exists the antipodal point — Vs, of Vs, (i.e., [vxp (- Vs, N =m),
so that the bi-ray consisting of the two rays tangent to Vsp and — Vs, is

a straight line in the tangent cone K . By applying the sphttlng theorem
(see [13], [18]), the tangent cone Kx is isometric to the product space

K; x R¥ , where K; is an Alexandrov space containing no straight lines.
Then, £ contains a subspace Sk isometric to the (k — 1)-dimensional
standard sphere, and every Vyp is contained in S*~'. Note that, since x
is a singular point, we have k < n. Fact (a) shows that

Bge-1(e/w(D)) 2 Bc(€)/ (2D, /€ + 1).

When € tends to zero, the left-hand side times ¢*™! tends to (o(D)k"1

vr*=1($¥=1y, and the right-hand side times ¢"~" to Vr"(C)/ 2D, . There-
fore ¢ must be greater than a positive constant depending only on C.

Proof of Theorem A. By Toponogov’s convexity we have Sp C S'p for
any p € X . This and Lemmas 2.2 and 2.3 complete the proof.

3. Natural local chart

In this section we construct local charts by using the distance functions
on X. Let p beapointin X. A point x € X is called a cut point of p
if any minimal segment py emanating from p does not contain x in its
interior. We denote by C the set of cut points of p and call it the cut
locus of p. Let W =X- C We have

Proposition 3.1. The cut locus of any point in X is of n-dimensional
Hausdorff measure zero.

Proof Fixany pe X. For d >0 let

W, s= {x € X | there exists a minimal segment py

containing x such that |px| < (1 -9J)|py|}.
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It follows that W, = ;.o W, 0.6 Note that, since a limit of minimal
segments is also mlnlmal w, o lS a closed set and Wp is a (topological)
Borel set. Define a map f(, r i W, NnB(p,(1-46)r) - B(p,r) for
d,r > 0 by the following: for any x EW, ;N B(p, (1 —9)r), we take
a minimal segment py containing x such ’that lpx] = (1 - d)|py|, so
that j:,,r(x) := y. Obviously this is a surjective map. The Alexandrov
convexity implies that f; . is (1 + 6,(5))-contracting, so that

(1+6,())" V" (W, snB(p, (1-6)r)) > V,"(B(p, ).
Letting 6 — 0 we have
Vi (W, 0B, 1) =V,"(Bp, "),

which shows that CpnB(p , r) forany r > 0 is of n-dimensional measure
zero. This completes the proof.

Remark. Since any singular point viewed from a point p € X is a
cut point of p, Proposition 3.1 and Lemma 2.3 show S, to be of n-
dimensional Hausdorff measure zero.

For p, g, x € X, define the excess function

€,,(x) := [px| +|gx| - |pq|.

The following facts are needed for the proof of the next lemma.

Fact (b) [14,4.7]. Let p,q, x,y € X be such that epq(x) <rd, where
r:=min{|px|, |gx|} and 6 > 0 is a small number. Assume that xp and
xy are fixed and that y(s) denotes the point on xy whose distance from
X is equal to s. Then we have

1/2

Ipy(s)| = |px| — s cos Lpxy + 0(s2/r +d '"s+rd).

Fact (c) [4, 2.8). Let p;,q;,,x; € X tendto p, q,x € X respectively.
Then the following holds :
(c-1) If p;x; and q;x; tend to px and qx respectively, then

l’igjorlfépixiqi > /pxq.
(c-2) Fix a minimal segment px. If x; € px for any i, then

lim Aqxx _mmépxq

i—+00
We now prove
Lemma 3.2.
(1) Let p,q,x,x; € X. If px; and qx; tend to px and qx respec-
tively and rad(Z , v, =T, then Lpx,q tends to Zpxq. In particular,
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if x is a nonsingular point, and px and qx are unique, then the function
y — Zpyq is continuous at x, iLe.,

|Zpxq — Zpyq| <6, , (Ixy]).
(2) Fixany p,qe X and x € w,nw,. Then

1/2
| cosZpxq —cosZpyq| < O, , (|xy| / )

forany ye X.
Proof. (1) The first assertion implies the second. It follows from Fact
(c-1) that
liminfZpx,q > Zpxq.
1—+00

Take any fixed € > 0. By rad(Z_, vxp) = n, there exists a point a € W,
such that Zaxp > n — €. Obviously, ax is unique. By Fact (c-1),

liminf Zax,p > Zaxp > n — €,

I—+00
and hence
Zax;p>m—€

for all sufficiently large i. Therefore by remarking that the curvatures of
Y and X are greater than or equal to 1, we have

|Zaxq + Zpxq—mn| <€ and |Zax,q+4ipxq—m|<e€

for all sufficiently large i. Since liminf, Zax,q > Laxq,

1—+00

limsup Zpx,q < Zpxq + 2¢,

1—+00
which completes the proof of (1).

(2) By x € W;,ﬂ Wq we can extend px and gx to pp’ and qq’ such
that 0 < ¢ := |p'x| = |¢'x| < min{|px|, |gx|} . Assume that ¢ := |xy| is
small enough and let x' € X be the point on px such that |xx'| = "2
Applying Fact (b) yields

|q'x'| =c+1"cos Zpxq + O(t).

Let ' € py be such that |yy’| = t'/* (see Figure 2, next page). Since
e,;(v) < 2t, by Fact (b) we have

gV = c+t"*cos Lpyq + O1).

The above two formulas imply

1/2

(%) cos Lpxq —cos Lpyg =t *(1g'x'| — 14’y ) + O(t'").
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FIGURE 2

Letting 6 := n — Zpyp' and 6’ =7n— Zpy’p' later we shall prove that
8' < (14+6(1))0 . Denoting by y" the pointon p'y’ such that |y'y"| = M

we obtain
(1+ 00 2l

Let Apyp’ = Apyp' and let ¥ and " be the points on pp’ such that

~! 1

| _ 2yy'y" < 2yy'y" =n— 2Lpy'p’ <6 < (1+6(1)).

|p’%| = ¢ and |p'p”| = 2c. Then the Alexandrov convexity shows that
|%9| < t, sothat § <7 — Zp'yp" < O(t) and
A2
Iy’ < o).
Since (1 - 6(1x'y'))Ix'y'| < |xy"| <t +|yy"| < O(t), we have
X'yl <00,

which together with (*) implies the claim.
Let us last prove 6’ < (1 + 6(¢))é . Then

!
Ipp | _ cosh 12! 124 cosh 'yl L2 |py|
K K K

/
= coshl—‘lm—y—| - (1 + 0(62)) sinh — 12 sinh —— 2 yl
K 2 K K

and the same formula holds for ' and ¢’ instead of y and & . Since by
the triangle inequality |py| + |p'y| > |py'| + PV,

'S (l + 0((52)> sinh — lpy| sinh —— P’y
2 K K

cosh — + sin sinh Ip Ky | cos o

/ 1.7
> 4" (l + 0(5’2)) sinh 2] ginp 1PV
2 K K

which completes the proof. q.e.d.
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For p € X let V, = {g € X | pq isunique }. Obviously W;, C V;,
so X -V, is of n-dimensional Hausdorff measure zero in particular. The
following proposition and Lemma 2.2 imply that X — v, is of Hausdorff
dimension <n-1.

Proposition 3.3. For any p € X we have

S,=S5,UX-V).

Proof. Let us first prove S’p - Sp U(X - Vp). We may show that
(X—Sp)ﬂ V,c X—Sp. Take any x € (X —S,)NV,. Then, px is unique.
For any ¢ > 0 there exist y € X — {x} and a minimal segment xy such
that Zpxy > n—J/2. From Fact (c-2) it follows that there exists y' € xy
close enough to x such that Zpxy > n -4, thatis, x € X — S‘p’é. By
the arbitrariness of J, we have x € X — S’p .

Next we shall prove §, 5§, U(X —¥,). Since S, C S, it suffices to
show that X — ¥, C S‘p. Suppose that x € (X — V) — S‘p exists. Then,
at least two different minimal segments ¢ and t connect x to p. Since
x ¢ §,,forany 6 >0 there exists y € X —{x} such that Zpxy >n—4.
By Toponogov’s convexity we have that min{ IUany' vl 2 =6

The existence of the triangle Avavzfuxy in S shows that § > lv,v.1/2,
which contradicts the arbitrariness of . q.e.d.

For p/,---,p, € X let o : X D Uq, — R" be the map defined by
o(x) = '(|p1x|, -+, |p,x|) forany x € U¢ (we consider R" to be the set
of column vectors unless stated otherwise). Assume that U¢ is open. We
call ¢ a natural local chart if for any x € U¢ —Sy such that xp, is unique
forevery i=1, --- , n, the symmetric matrix g(o(x) = (v, » Uy, )y 18

i J
positive definite. The points p,, --- , p, are called the base points of ¢ .
Let o : U o R” be a natural local chart with base points P> 5D,
. n . n
Put V,:=U, NN, VP,- N(X —Sy) and W, :=U, NN, W, It follows
that V¢ D Wq, , so that Lemma 3.2 yields

Lemma 3.4. The map 8V, — Mat(n) is continuous, and is C
continuous on W¢.

To investigate natural local chart, we need

Theorem 3.5 (The first variation formula). Fixany p, x € X and xy
foreach y € X. Then

1/2_

lpyl = Ipx| = ~|xy| cosmin Zpxy + o(|x1)

forany ye X .
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Proof. Take any fixed € > 0. Let xa; be minimal segments such
that {v ,6} is an e-dense net of X , i.e., for any u € X  there exists
an i such that luv,, | < €. The compactness of £  implies that xa,
can be assumed to be'of finite number. By Fact (c-2), prai(t) tends to
minpx Zpxa; as t — 0 for any i, where a,(¢) denotes the point on xa;
such that |xa,(f)| = t. Hence, there exists 7, > 0 such that for any / and
t<t,,

(%) |Zpxa,(t) — n}))icn Zpxa,| <.

Take any y € X with |xy| < ¢, and note that € = 6(|xy|). Then there
exists i(y) such that Zyxy' < Aai(y)xy < €, where y' = ai(y)(lxyj), SO
that |yy’| < 6(¢) |xy|. Hence we have

|Zpxy — Zpxy'| < 6(€)
and also

| min Zpxa, , —min Zpxy| < €.
px px

i(y)
Moreover, from ( x) it follows that
|Zpxy’ — min Zpxay,| <e€.

pXx

The above three inequalities imply

|rr1})icn Lpxy — Zpxy| < 0(¢).

Thus applying Fact (b) to the —Kz-plane yields

- 2
Ipy| = Ipx| = —|xy| cos Zpxy + O(|xy|")
= —|xy|cos min Zpxy + x| 6(€) + O(xy1),

which completes the proof, since € = 0(|xy|).

Remarks. (1) Theorem 3.5 is similar to Fact (b). However, Fact (b)
does not imply Theorem 3.5 in the case where €,,(x)>0.

(2) Theorem 3.5 is closely related to the Rademacher theorem, which
states that any Lipschitz function on the Euclidean space is almost ev-
erywhere differentiable. Compare the above proof with [8, 3.1.2] and [9,
3.1.6].

For x € V;, we define an inner product on R” by

-1
(u, ”>¢(x) ="u 8,(x) v
for any u, v € R", and define the map I

o) - Ky 2 u— ((u, pr,.))' €
R" . We have

1
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Lemma 3.6. (1) I o(x
X € Vw‘
(2) Forany x € V¢ and y € U, letting h := ((v

K — R", (-, Vox)) IS an isometry for any

[ pr,.))i’ we have

() —o(x) =~|xy|h + o (Ixy|).
(3) Forany x,y € U, and z € v,
lp(x) = 0(¥) |4,y = (1 + 0, (max{|xz], |yz]})) [xy|.

(4) Forany x € X — Sy there exists a bi-Lipschitz natural local chart
¢:U, —R" suchthat x€V,.

Proof. (1) Any u € K is writtenas u =), ¢ Uy, s
(u, 'vxpi) = Zj fijp,. , pr,-) , letting & := (£;), we have

¢, € R. Since

and
2 t t -1 2
Iul = fgq,(x)é = I¢(x)(u) g¢(x) Iq,(x)(u) = |I¢(x)(u) |¢(x)'
(2) The first variation formula implies that

lpy| = p;x| = —|xy| h; + o (Ixy]),

where (h;) := h. This proves (2).
(3) Fix any z € V, and let i=1,---,n be any number. Since z €
V, N(X =3S,), it follows from Proposition 3.3 that z ¢ S, . Hence, for

any € > 0 there exists a point p,'. € X such that
(%) Zp,zp, > 1 — €.

We take any x,y € U, such that max{|xz|, |yz|}/|p,'.z| <€ forany i.
Note here that we can assert € = 6,(max{|xz|, |[yz|}). Take a minimal
segment xy and denote the point on xy by y(¢) whose distance to x is
equal to ¢t > 0. Forany i and 0 < < |xy|, let o; := Zpxy, a,t) =
Lpy()y, o = Lp,xy, and a(t) := £p;y(t)y. Note that these angles
are not uniquely determined because p,x, p;y(f), etc., are not necessarily
unique. Toponogov’s convexity shows that «,(¢) < a, + 6(¢) and a;.(t) <
a; + 6(e) for any 0 < ¢ < |xy|. Moreover, it follows from (*) that
|, +a) —m| < 0(c) and |a,(t) + a;(t) — 7| < O(¢) . Therefore

la;(t) —a;| < 0(€)
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for any 0 < ¢ < |xy| and i. By remarking that this holds for any choice
of a; and o,(t) (or p,x and p;y(t)) and by the first variation formula,
we obtain

< 0(€) + 0,(5)

| 0p(e+8) = Ip, ) + cosa,

forany 0 <t <|xy| and any 6 € R— {0} with t+J €[O0, |xy|]. Using

the compactness of the interval [0, |xy|], we can show that there exists

a division 0 =1¢, < --- <, = |xy| such that

Ipiy(tj+1)| - |P,-y(tj)|
L1 7

for any i and j. By adding up over all j,

Ip;y| = |p;x| = —|xy| (cosa; + 6(¢)).

< 6(e)

+ Cos a;

Thus

o(y) — o(x) = —~|xy|(h,, + 6(c)),
where hxy = (cosa,); . Since |hxy|¢(z) = 1 holds in the case where x = z,
Lemma 3.2(1) shows that |hxy|¢(z) =1+6(]xz|), so that

lo(¥) = 0(X) |,y = (1 +6(€) + O(|xz])) |xy.
Since as stated above € = f(max{|xz|, |yz|}), the proof of (3) is com-
pleted.

(4) Let x € X —S be any fixed point. Since (rX, x) tends to (R", 0)
as r — +oo in the sense of the pointed Hausdorff distance, and since
X -V, is of measure zero, there exist points p,, --- , p, € V. such that
((vpix , ”p,x)) ij is positive definite (for example, an (n, J)-strainer at x
satisfies such the condition). Lemma 3.2(1) implies that ( <vP,~y , ”p,y)) i is
also positive definite for all y € Vw close enough to x. Hence, taking a
sufficiently small neighborhood U, at x we obtain the natural local chart
Q: U¢ — R" with the base points Py, P, By (3), replacing U¢ by a
smaller one we conclude (4).

4. Natural atlas
Let ¢ : U¢ — R” be a bi-Lipschitz natural local chart with base points
Py, p,. For g € X, define the function dq :X - R by dq(x) =
lgx| forany x € X. Let D,(d,): ¥, NV, — R" (where we consider R"
to be the set of row vectors) be the map defined by

D,(d,)(x):="¢ g,(x)”"
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forany x € v,nV,, where ¢; := (U, vxp,> and ¢ :=({;). Let y: v, -
R" be another bi-Lipschitz natural local chart with base points dys--- 54,
such that V,nV, #@. Define a map Dw('/’) v,nv, - Mat(n) by

D,(d, )(x)
D,(w)(x):=Ag,(x)" = :
D,(d, )(x)
forany x e V, NV, , where g;; := (vxqi , vxp]_) and A4:=(a;;).
Lemma 4.1. (1) The function qu(p_l cp(U,) >R is differentiable on

o(V,NV,), and its differential is equal to D(p(dq)o(o_l. The map wop™ ' :

o(U,NU,) - y(U,NU,) is differentiable on o(V,NV,), and its differential
is equal to D,(y)o (p_l .

(2) The map Dq,(dq) o ¢! is continuous on oV, N V)
and is C"*-continuous on (/)(WwﬂWq). The map Dw(a//)o(p’l is continuous
on p(V,nV,) and is C'*-continuous on p(W,NnW,).

(3) Forany x € v,nv,, we have

g,(x)='D,(p)(x) g,(x) D, (9)(x),
D,(w)(x)”" =D, (p)(x).

Remark. Since dq o (/)_1 : ¢(U¢) — R and yo ¢—1 : (p(Uw N UW) —
w(U N U,) are Lipschitz continuous, Rademacher’s theorem implies that
these maps are almost everywhere differentiable. However Rademacher’s
theorem does not tell us where these maps are differentiable. Lemma 4.1
gives detailed information for it.

Proof. (1) Take any fixed x € ¢(V, N V,) and set x := ¢*l()‘c). Let
h € R" be any vector such that |4| is small enough, where |-| denotes the
canonical norm on R". We put y := q)—l()‘c +h) and h:= ((vxy , pr.>)i-
Then Lemma 3.6(2) implies '

h=—lxylh+o,(xy)).

By Ilﬂ(x)(vxq) = 6 and I¢(X)(ny) = h , We have

(Vyg Upy) =€ 8,(x)'h=D,(d,)(x) h.
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Hence use of the first variation formula leads to
d,(y) —d,(x) = —|xy|{v,, v,,) + 0, (|xy])
= —|xy| D, (d,)(x) h + 0, (|xy])
=D, (d,)(x) h + o, (xyl).
Since o, (|A]) = ox(|h|¢(x)) , by Lemma 3.6(3) we obtain o (|xy|) = o, (k)
and therefore
dop” ' (x+h)—d,op (%) =D,(d,)(x) h+o.(h]),
which means the first assertion.
Applying the above formula for ¢ = ¢q,, --- , g, yields

wop (x+h)—wop (%) =D,(¥)(x) h+o,hk])
for any fixed x € (/)(V;, N Vw) .
(2) is a direct consequence of Lemma 3.2. (Recall that ¢ is a bi-
Lipschitz homeomorphism.)
(3) follows from an easy calculation. q.e.d.
Denote by @, the set of all bi-Lipschitz natural local charts on X and

let ®,:={(U,,V,, 9)}peo, a0d gy :={8,},cq, - We have

Theorem 4.2. (1) D, is a weak C'-atlas on X - Sy C X with the
C°-metric Oy -

(2) There exist X, C X — S, and ®, C ®, such that X — X is
of n-dimensional Hausdorﬂ measure zero, and that {(U,, 9)} ped,, is a

1+1/2 . 1/2 .
C"""-atlas on X, C X with the C''*-metric {g,} ved,.

Proof. (1) follows from Lemmas 3.6(4) and 4.1.

(2) Since X is finite dimensional, any metric ball of X is precompact
and hence X is separable. We take a countable dense subset {x;} C X
anda(petb w1ther for each i. Let Z := U( W) Since

each v, - ¢_ is of n-dlmensmnal Hausdorff measure zero sois Z . By
letting X =X-8;~-Z and <I> = {9;}, the proof is completed.

5. Construction of a C'-atlas
The purpose of this section is to construct a C'-atlas equivalent to the
weak C'-atlas D X
Let g€ X — Sy and 6 > 0. Define a function d) : X - R by

d's(x) . 1

= — xy
= TTBG) Jaasron ™
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for any x € X, where the integral is relative to the Hausdorff measure.
For ¢ € @, , define a function DZ(dq) 1V, = R" by

D6 :=;
o (d,)(x) VB4, 9)) B(q,a)ayD"’(dy)(x)

for any x € Vq,. Note that since the map y — D¢(dy)(x) is continuous
on V_ and since B(q, )NV, has the full measure in B(q, J), the above

integral has a meaning. For any ¢, v € ®,, let t//‘s = '(d:l TR d;) :
] 5 .
}(lfw ~ R" and Dy(y) := '(D,(d,), - ,Di(dq")) : ¥V, —> Mat(n). We
ave

Lemma 5.1. (1) The function dg op ! o(U,) >R is c' on o(V,)
and its differential is equal to Df,(dq) o (o_l. The map t//‘s o q)_l :
¢(U¢ nu,) - V/J(U¢ nu,) is c' on ¢(V¢ nu,) and its differential
is equal to DZ(V/) o (p_l .

(2) Forany fixed ¢,y € ®y and x €V, NV, , we have

s
|D,(w)(x) —D,(w)(x)| < 6().

(3) For any 9 € ®, and x € v, there exist 6(¢,x) > 0 and a
neighborhood U, C U, at x such that g = 0@, U, -R"isa
bi-Lipschitz into homeomorphzsm

(4) Forany 9o,y € ®,, x € V¢, and y € Vw’ the maps y"/yo(o“l,

~—1 ~ ~—1 1 . ~
goy, and Y09, are C respectively on (p(V¢nU%), v/y(VwﬂU%),
and 9,.(U; nU, NX -S8y)).

x y

Proof. (1) Fix any x € V¢ and let x := ¢(x). For any y € W_, since

X € Vy , Lemma 4.1(1) implies that

()  dyop (x+h) —d, 09 (x)=D,(d,)x)k+o(hl).

forany h € R". Since d, 0™ '(X+h), d, 09~ (), and D,(d,)(x) h
are integrable in y € B(q, d), so is the above o(|h|). Thus

1 - h|
ST | JB(g,5)5y ol = /B(q,5)9y k) lli—ll =0
Integrating ( x ) over all y € B(q, d) yields
& op” (X +h)~dlop™ (%) = Dy(d,)(x) h+o([RI),
which means that d“: o (p_l is differentiable at x. The continuity of the
differential D(‘;(dq)o(p_l is implied by that of D¢(dy) (see Lemma 4.1(2)).
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(2) follows from the continuity of the map y — D ¢(dy)(x) at g, , where
xennn.

(3) Fixany ¢ € ®, and x € V¢ ,and let x := ¢(x). It is easily verified
that q)‘s is Lipschitz continuous with Lipschitz constant /. Since ¢ is
bi-Lipschitz, it suffices to prove that

(*) 1000 (9 —9 0™ (2)| 2 L|y -z

for any y, z € B(x, r), where r, d > 0 are sufficiently small constants,
and L > 0 is a constant. It follows from (2) and Lemma 4.1(1) that
the differential, DZ((p)(x) , of (p‘s o go—l at X is a regular matrix, which
is in fact close to the identity matrix. Thus, the rest of the proof is to
modify a standard proof of the inverse function theorem. Define a map

f:9(U,) - R" by
_ 5§ -1, s _
@) =900 ()~ D\(p)(x) ¥
for any y € ¢(U¢). Then, f is Lipschitz continuous on ¢( U¢), and C'
on ¢(V,). We now fix any » > 0 and 7,z € B(x,r). Let P:R" —
R"™' be the orthogonal projection from R" to the hyperplane (which is

identified with R""" ) containing the origin 0 and normal to the vector
¥y — Z . By the coarea formula (cf. [9, 2.10.25]), we have

/R""aé VH1(¢(U¢ -v,)n P @) <e V' (p(U, - V,))

0,

where ¢ > 0 is a constant. This implies that VH1(¢(U¢ - n)ﬂP_l(é)) =0
for almost all ¢ € R"™', so that there exist two sequences {r;} and {z;}
of points in B(%, r) such that P(y,) = P(z,) =:¢; and V' (p(U,-¥,)N

P7'()) = 0 for every i and that lim, ,_y, = y and lim,_,__z, =

z.
Thus, f is C' at almost all points on the line P_l(éi). Since df(x) =0,
SUD e p(x. r) |df(w)| < 6(r) . By remarking that the line segment y,z, =: I,

1

is contained in B(x, r)N P“l(éi) , we have

15— £(2)] < / \df (@) < 6(r)|7, - z,]

13w

for any i and therefore, by letting i — oo,

/)= f(2)| <0(r)|y-2zI.

Since

10° 00 ) =0’ 00! (2)| 2 IDS(P)X) - 2)| - | F) - £(2)
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we obtain ( x ) provided r, d > 0 are small enough.

(4) The differentiability of ¥, o ¢~ follows from (1). We shall prove
the differentiability of ¢ o t/7y— ' Take any fixed x € y7y(V¢ N Uwy) and any
h € R" such that |A| is small enough. Let

7z:=(aoy7;l(x+l—z)—gooy7y_l(x) and X=9oy, (%).

The differentiability of ¥, o (p" at x implies that

h= ¥, o (0‘1()=C +7l) —-y,0 (0—1()?) _ DZ(W,y)(W) o ¢_l()=c) A + o).
so that o(|k]) = o(|A|) and

h= D)% (w)ow, " (2) h+o(hl),

which means the differentiability of ¢ o 1/7;1 at x.
For any z € U¢ nu, n (X — §y) there exists p € @, such that
x y

zeV,. Then, y,0p;' =(§,0p )o(g,op ) " is C' at § (z). The
arbitrariness of z implies that y7yo¢;1 is C' on (/)(U¢ nU, N(X-Sy)).
x ¥y
q.e.d. .
From Lemma 5.1 it follows that D, := {(U; , ¢,) |p €Dy, x € v,}

isa C'-atlason X — Sy C X equivalent to the weak C latlas ® x - For
any p € X — Sy, the tangent space 7 X and the inner product (-, ) »
on TpX are induced from the weak C°-Riemannian structure connected
with ©, and g, . Forany ¢ € ®,, x € V¢, and p € U¢~7 NX-S8y),

let us define
(/9 i>
g¢x(p) o (<axl 9 3x1 p) U ]
1

where (x ,---,x"):=¢_. Letting §, := {gﬁx lpe®y, xeV,}, we
directly have

Theorem 5.2. 2 x With §y isa C !atlas with a C°-metricon X -8y C
X equivalent to the weak C Latlas ® x With the metric g, .

Theorems 4.2 and 5.2 imply Theorem B except (2).

Remark. The tangent space TpX at any p € X — S, is naturally
identified with Kp. In fact, the inner product (-, -) ’ in TpX is induced
from (-, -)W) introduced in §3, and K, is identified with (R", (-, '>¢(p))

by the isometry 1,0 (see Lemma 3.6(1)).
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6. Compatibility between the length metric
and the Riemannian structure

The main purpose of this section is to prove Theorem B(2). From now
on, assume X — S, C X to be equipped with the Riemannian structure
constructed above.

Proposition 6.1. Let y : [a, b] — X — S, be any minimal segment.
Then, MNea.p 54 C'-curve.

Proof. Fix any ¢, € (a, b) and take a ¢ € ®, such that y(¢,) € V,.
Denote by p,, -, p, the base points associated with ¢. Set 7(z) :=
V) (e+h) forany t € (a, b) and an A > 0. Note that y(¢) is independent
of h. We now fix y(t)p; such that |y(t)v,, | is minimal. Then the first
variation formula implies that '

ly(¢ + h)pil - |y(t)p,‘| = —h((1), Uy(t)p‘_> + Oy(t)(h)
for any ¢ € (a, b) and any A € R with t+ & € [a, b], so that
goy(t+h)—goy(t)=—h({(1(1), vy, )); + 0y (h),

7(0)p,

which means that ¢ o y is differentiable and not necessarily C ', More-
over, by y(¢,) € v, and Lemma 3.2(1), the function ¢ — (5’(1)(”,,(,),,.) is

continuous at ¢ = f,, and hence y is C at ty- q.ed.

Denote by L(-) the length ofa C !_curve induced from the Riemannian
structure. We have

Proposition 6.2. Any C'-curve c: [a, b] = XS, satisfies L(c) = |c]|.

Proof. For any t € [a, b] we can find ¢, € ®, such that c(?) €
V% . By remarking that ¢, o ¢ is differentiable at ¢ and using Lemma
3.6(3), we can prove the claim in the standard way. q.e.d.

In order to prove the next theorem we need

Lemma 6.3. Let 6 >0, pe X, and F C X. Assume that the metric
of F is the restriction of the metric of X, and that ||px|— |py|| < J |xy|
forany x,y € F. Set A:= B(o, |pF|; K(F/|pF|)), and the |pF|-ball
centered at o in the cone over the space F /|pF|. We fix a minimal segment
px joining p and each x € F, and definea map f : A — X by the
Jollowing: for any (¢, x) € A with t >0 and x € F we assign to f(t, x)
the point y € px with |py|=t. Then, f is an L-expanding map, where
L > 0 depends only on k, |pF|, and §.

Proof. The lemma is a straightforward consequence of the Alexandrov
convexity.

Theorem 6.4. Forany p,q € X and € > 0, there exist a point x €
X —Sy and minimal segments px, qx entirely contained in X —S, such
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that |px|+|qx| < |pq|+€. In particular, X —S, is locally path-connected.
Proof. Take p,q € X and fix a minimal segment pg joining them.
We take a nonsingular point z close enough to pg. By Lemma 3.6(4),
there exists a bi-Lipschitz natural chart ¢ : U — R” such that U is a
sufficiently small neighborhood of z. We may assume that one of the
base points of ¢ is taken to be p (cf. the proof of Lemma 3.6(4)). Let
F,:={x € U||px| = |pz|+t} for any ¢ € R. Since F, is the inverse
image of a piece of a hyperplane of R” through ¢, for a small § > 0 and
any ¢t € R with |7] <, F, has finite and positive (n — 1)-dimensional
Hausdorff measure. By the coarea formula and Theorem A, we obtain

J
/_6 V" ((FnSy)dt<cV, ({x € U|l|px| - pz|]| < 6}NnS,) =0,

where ¢ is a constant depending only on n. Hence, one can choose a
t € R with |t] < J such that

(*) v, (Fns,) =0,

where F := F,. We fix a minimal segment px joining p and each x € F,
and then define the map f: 4 — X as in Lemma 6.3, so that f is L-
expanding. Let y, for x € F be the ray in K(F/|pF|) from o of
direction x. Then applying the coarea formula and Theorem A yields

-1 —1
g Vi 0,0 f7(Sy) = B0, 1) <cV"(f7(Sy) - B(o, 1))
2x
c
| =T
for any r > 0, where c¢ is a positive constant depending only on # and

the Lipschitz constant of the central projection from A4 — B(o,r) to F.
Therefore, for any r > 0 and almost all x € F,

Vi (f()NSy—B(p, 1) =0

vV, (pxnSy - B, ) =0.
Since pxnS, =U,(pxNSy —B(p, r;)), where r, — 0, we have
V, (0xnSy) =0

for almost all x € F. Recall (see [4, 7.16]) that the space of direction is
continuous along the interior of any minimal segment with respect to the
Gromov-Hausdorff distance. Thus, px — {x} contains no singular points
for almost all x € F. _

It follows that | |gx| — |qy|| < &'|xy| for any x,y € F, where &' >0
is a constant tending to zero as  and diam(U) both tend to zero. Hence
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we can prove that gx — {x} contains no singular points for almost all
x € F in the same way as above. Moreover, ( *) states that almost all
x € F are nonsingular. Therefore, px U gx contains no singular points
for almost all x € F. Hence the proof of the first assertion is completed.

Now let us prove the second assertion. Take any fixed p € X and
r,e > 0. Any point ¢ € B(p,r) —S, and p are joined by a curve
¢, C X — Sy with length less than r+ €. The subset U :=UJ ¢, of
X — 8, is path-connected (in fact contractible) and satisfies

B(p,r)-Sy cUCB(p,r+€/2)—Sy,

q€B(p,1)

which completes the proof.

Proof of Theorem B (2). Denote by d the distance function on X -
induced from the Riemannian structure. Let p, g € X —S, be any points.
By Propositions 6.1 and 6.2 we have

d(p,q)=inf{L(c)| cisa C'-curve joining p and ¢q }
> inf{|c| | c is a continuous curve joining p and ¢ }
= |pq|.
On the other hand, for any € > 0 we take minimal segments px and ¢gx
as in Theorem 6.4 and have
dp,q)<d(p, x)+d(q, x) < L(px) + L(gx)
= |px| + |gx| < |pq| +€,

which completes the proof.

7. Addendum
7.1 Volume and Hausdorff measure. Let X be an n-dimensional
Alexandrov space. The volume vol(p(-) of any (topological) Borel sub-
set of X — .S, entirely contained in a local chart ( U,, o) is defined in
the standard way. The volume vol(4) of any Borel subset 4 C X — S, is

defined by
vol(4) := ) " vol, (A N <U¢ -U U¢_)> :
i j<i

where {(U%, P}tz 2, isa C'-atlas on X — Sy C X. Note that the
existence of the countable family {(U% s 9:)}izy 2. 1s guaranteed by the
separability of X (see the proof of Theorem 4.2(2)), and that vol(A4) is
independent of the family {(U(a,_, qol.)},.=1’2’,__ .
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Proposition. For any Borel subset A C X — S, we have
vol(4) = V" (4).

Proof. The proposition is proved in the standard way by using Lemma
3.6(3), so its proof is left to the reader.

7.2 The limit of manifolds of small excess. For a length space X and
0 < d <rad(X), we define the d-excess ed(X) of X (see[14]) by

d
e (X):=sup sup inf e
PEX x€B(p,d)9€0B(p.d) P4

().

The injectivity radius inj(X) of an Alexandrov space X is defined to be
the supremum of all r > 0 such that forany p € X and v € Zp there
exists a unique minimal segment pg such that v = Vpg and |pg| > r.
In the case where X is a Riemannian manifold, our definition of the
injectivity radius is equivalent to the usual definition. We can easily prove
that inj(X) > 4 if and only if rad(X) > d and ed(X) = 0 for any
Alexandrov space X and 4 > 0. Concerning [14], we have the following
corollary.

Corollary to Theorem B. Given m € N, k > 0, and d > 0, let
{M;} be a sequence of m-dimensional C-Riemannian manifolds such
that K,, > —x* and rad(M;) > d for any i, and that ed(M,.) tends to
zero as i = 0o. Then, there exists a convergent subsequence {M o of
{M} such that the limit space X of {M,} isa C'*-Riemannian man-
ifold of dimension 1 < dimX < m, curvature > —x* (in the sense of the
Alexandrov convexity), and of injectivity radius inj(X) > d. Furthermore
M, for every large enough i is a fibre bundle over X with the fibre whose
fundamental group is almost nilpotent.

Proof. Since the limit space X is an Alexandrov space of dimension
1 < n:=dimX < m, curvature > —xz, and of d-excess ed(X) =0,
and inj(X) > d and S, = I, for any x € X we can find a natural
local chart (U,, ¢) in such a way that x € U, C N, B(p;, d), where
Py, ,D, € X are the base points of ¢ . Thus we have U¢ = W(p , and

can construct a C'*'/%.atlas of X with C'/*-metric (see §4). An almost
Riemannian submersion ]}(i) M i~ X is constructed by the method in
[14].

Acknowledgment. The authors would like to thank Professor K.
Shiohama, T. Yamaguchi, and F. Fukaya for useful discussions.



658 YUKIO OTSU & TAKASHI SHIOYA

References

[1] A. D. Alexandrov, Almost everywhere existence of second differentials of convex func-
tions and some properties of convex surfaces connected with it, Leningrad State Univ.
Ann. (Uchenye Zapiski) Math. Ser. 6 (1939) 3-35. (Russian)

[2] R. D. Anderson & V. L. Klee, Convex functions and upper semi-continuous collections,
Duke Math. J. 19 (1952) 349-357 .

[3] V. N. Berestovskii, Introduction of a Riemann structure into certain metric spaces,
Sibirsk Mat. Zh. 16 (1975) 651-662. (Russian)

[4] Yu. D. Burago, M. Gromov & G. Perelman, 4. D. Alexandrov’s space with curvature
bounded from below I, preprint.

, A. D. Alexandrov’s space with curvature bounded from below. I, rev., Uspehi

Mat. Nauk 47 (1992) 3-51. (Russian). Russian Math. Surveys 47 (1992) 1-58 .
[6] H. Busemann, The geometry of geodesics, Academic Press, New York, 1955.
7 , Convex surfaces, Interscience Tracts Pure and Appl. Math., No. 6, Interscience,
New York, 1958.
[8] L. C. Evans & R. F. Gariepy, Measure theory and fine properties of functions, CRC
Press, Boca Raton, FL, 1992.
[9] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
[10] K. Fukaya, A boundary of the set of the Riemannian manifolds with bounded curvature
and diameter, J. Differential Geometry 28 (1988) 1-21 .
[11] M. Gromov, Sign and geometric meaning of curvature, preprint.
[12] (rédige par J. Lafontaine et P. Pansu), Structure métrique pour les variétés rie-
manniennes, Cedic/Fernand Nathan, Paris, 1981.

[13] K. Grove & P. Petersen, On the excess of the metric spaces and manifolds, preprint.

[14] Y. Otsu, On manifolds of small excess, Amer. J. Math., to appear.

[15] , Almost everywhere existence of second differentiable structure of Alexandrov

spaces, in preparation.

[16] C. Plaut, Almost Riemannian spaces, J. Differential Geometry 34 (1991) 515-537 .

[17] , Metric curvature, convergence and topological finiteness, Duke Math. J. 66

(1992) 43-57 .
[18] T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math.
(2) 133 (1991) 317-357 .

[3]

UNIVERSITY OF TOKYO
KyusHU UNIVERSITY





