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SIMPLE CLOSED GEODESICS
ON CONVEX SURFACES

EUGENIO CALABI & JIANGUO CAO

Abstract

A geodesic is said to be simple if it does not have any self-intersection
point. It will be shown that the shortest closed geodesic is simple on any
smooth Riemannian 2-sphere of nonnegative curvature.

We will also derive various estimates for lengths of simple closed
geodesies, in terms of the diameter D , total area A , and curvature K
of a given surface M . In particular, if we let L be the length of
the longest simple closed geodesic on a smooth Riemannian sphere of
curvature 0 < K < 1 , then ID < L < A/2. Furthermore, equality
L = A/2 holds if and only if M2 is isometric to the unit sphere.

Finally, if M2 is a Riemannian sphere with nonnegative curvature,

then we find that the isoperimetric inequality A < 8Z) jπ is useful.

Introduction

The purpose of this note is to study simple closed geodesies on compact
oriented convex surfaces. A geodesic γ is said to be simple if y has
no self-intersections. In what follows, all geodesies are assumed to be
nontrivial. Hence, any point curve will not be counted as a closed geodesic.
If a Riemannian surface M2 is homeomorphic to the two-sphere S2 and
if M2 has nonnegative sectional curvature, then M2 is called a convex
surface.

First, we would like to find out which closed geodesies are simple on a
given surface. The following theorem gives a partial answer.

Theorem D. If g is a C 3 smooth metric on a two-sphere S2 with
nonnegative curvature, then any nontrivial closed geodesic of the shortest
length is simple.

In Theorem D, we only consider the C 3 smooth metric g, since there
are examples of nonsmooth metrics on a two-sphere S2 in which the short-
est geodesies are not simple. For instance, the bi-equilateral triangle (two
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equilateral triangles glued along the boundary) has both simple and non-
simple closed geodesies of shortest length (cf. [10, p. 20]). The convexity
assumption is needed in Theorem D because when the curvature becomes
negative, one can find some examples where the shortest closed geodesic
is not simple (cf. [19, p. 31]).

Second, we would like to work on other aspects of closed geodesies.
In particular, it might be an interesting problem to study simple closed
geodesies more quantitatively. Hence, we are led to estimate lengths of
simple closed geodesies, in terms of other geometric data: such as the
diameter, total area, and upper bound of curvature of a given surface.
The first main estimate in this note is:

Theorem A. Let M2 be a C 3 smooth Riemannian surface diffeomor-
phic to S2, with curvature 0 < K < 1 and area A. Then the length of any
simple closed geodesic γ is less than or equal to A/2, i.e., L(γ) < A/2.
Furthermore, equality holds if and only if M is isometric to the unit sphere.

Using Theorem A, one can easily derive the following fact.
Corollary A. Let Jfχ (M) be the moduli space of all simple closed geo-

desies in a smooth Riemannian surface M. If M is a two-sphere with
nonnegative curvature, then Jίχ{M) is a compact subspace of C°(Sι, M).

The conclusion of Theorem A (resp. Corollary A) fails if the hypothesis
K > 0 is weakened to K > -e2 for any e > 0. For example, on a flat
torus or a two-sphere of bone type, there is no upper bound for lengths
of all simple closed geodesies. If M2 is a hyperbolic surface of genus n ,
then Area(Λfπ) = 4π(n + 1). It is known that lengths of primitive simple
closed geodesies are related to the moduli space of hyperbolic surfaces with
a fixed genus n , thus, they can be arbitrary long (cf. [21]). Therefore, it is
reasonable to limit our attention to two-spheres of nonnegative curvature.

There are also examples of nonsmooth metrics on a two-sphere in which
the least upper bound for lengths of simple closed geodesies is infinity. For
instance, a special tetrahedron (two rectangles glued along its boundary)
has a family of simple closed geodesies whose lengths are unbounded.

Our next step is to give a lower bound for the length of longest simple
closed geodesies. Hence, we introduce

L(M) = sup{L(γ)\γ is a simple closed geodesic on M}

During the summer of 1989, the first author found a nonsharp lower
bound for L{M) in terms of the diameter and curvature of M. Later
on, Chris Croke kindly pointed out to us that there is a sharp estimate for
L(M), which only depends on the diameter. We are grateful to C. Croke
for permitting us to quote his unpublished result.
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Theorem B. Let M2 be a Riemannίan manifold, diffeomorphic to S2,
of diameter D. Then there is a simple closed geodesic γ with L(γ) > 2D,
i.e., L(M2) > 2Ό. Moreover, if equality L(M2) = 2D holds, then there
are infinitely many simple closed geodesies of length 2D.

Finally, we wish to point out that the following isoperimetric inequality
is useful.

Theorem C. Let M2 be a Riemannian two-sphere with nonnegative
curvature. Then the following inequality holds:

Area(M2) < -D2.
71

The best estimate of A/D2 for convex surfaces could be π/2, which is
achieved by two flat discs glued together along the boundary. Our estimate
8/π is off the best conjectured constant only by a factor < 1.62.

To illustrate the usefulness of our main theorems, we present some
applications.

Corollary 0.1. Let M2 be a smooth Riemannian sphere with 0 < K <
1, and let D and A be as above. Then the longest simple closed geodesic
y exists and the length of γ satisfies the following inequalities:

y/Aπ]2 < L{γ) < A/2, 2Ό < L(γ) < 4D2/π.

Furthermore, equality L(γ) = A/2 holds if and only if M is isometric to
the unit sphere.

Corollary

curvature, ai
L(γ)<9D.

We would like to say a few words about the ratio L(M)/D2, when

D becomes infinite. In §3 of Part I, we will construct a one-family of

smooth metrics gt on S whose curvature satisfies 0 < K < 1, in which

L(Mi)/D2 > (32π)~{ and Dt -• oo as / -• oo. Hence, the upper bound

for the rate of growth L(M2) has to be quadratic in terms of D in Corol-

lary 0.1.
The least upper bound of L(M)/D2 for all smooth convex surfaces of

K < 1 is still not known. Comparing the unit two-sphere, our estimate is
off the best estimate at most by a factor 2. Our estimates 2D < L(M) <
A/2 are sharp and optimal.

There are several known methods to find simple closed geodesies. On
the two-sphere S2 with an arbitrary smooth Riemannian metric g, there
always exist three simple closed geodesies by the Lusternik-Schnirelmann
theorem (cf. [2] or [11]). However, those three geodesies may not be

Corollary 0.2. Let M2 be a smooth Riemannian sphere of nonnegative
curvature, and let γ be the shortest simple closed geodesic on M2 . Then
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shortest ones. Poincare also suggested that one could find a simple geodesic
on a convex surface M by minimizing the arclength functional over the
set J / of all simple smooth closed curves which separate M into two
pieces of equal total curvature. His method was carried out correctly by
C. Croke in [9].

The proof of Theorem D introduces a completely different approach.
We will study the space of one-cycles (also called rimmed domains) instead
of the ordinary loop space on a surface. The space of one-cycles has some
nice properties. For example, it allows us to cut and paste any nonsimple
closed geodesic along its intersection points to get a nearby family of one-
cycles, in which the lengths of one-cycles become smaller (cf. §2 of Part
II). Such perturbation is one of the basic techniques in Part II. A minimax
argument for the space of one-cycles is also needed to prove Theorem D.
In order to keep the proof short, we will quote some results of Almgren and
Pitts, which are related to the geometric measure theory. For the reader
who is not familiar with the geometric measure theory, we will also give
an independent proof of the minimax principal on the space of one-cycles
in the appendix.

In the proof of Theorem A, we will make use of an integral formula,
which is due to L. Santalό (cf. §1 of Part I). The higher dimensional ana-
logues of Theorem A are still not known to the authors. Some relevant
results may be found in [3]. The proofs of Corollaries 0.1-0.2 will be given
in §3 of Parti .

Conventions. When a metric g is continuous up to its third derivatives
on a two-dimensional manifold M2, (M2, g) is called a C 3 smooth
Riemannian surface. In what follows, we always let M2 be an oriented
two-sphere S2 endowed with a C 3 smooth metric g unless otherwise
stated. Given a piecewise smooth curve γ (not necessarily closed), by L(γ)
we will mean the length of γ. The injectivity radius of the Riemannian
surface M2 is denoted by inj(M2). If Ω is an open domain, A(Ω) is
defined to be the area of Ω. K stands for the curvature of (M2, g).
These notations will be used throughout this paper.
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PARTI
AREA, DIAMETER, AND LENGTH
OF SIMPLE CLOSED GEODESICS

1. Total surface area and the length
of simple closed geodesic

In this section, we will derive a sharp upper bound, in a smooth Rieman-
nian sphere of nonnegative curvature, for the length of all simple closed
geodesies in terms of the total area and the curvature k . By rescaling the
metric, we may assume without loss of generality that 0 < K < 1.

We will show that if M is a C 3 smooth Riemannian surface, diffeo-
morphic to S2 , with curvature 0 < K < 1 and area A , then the length of
any simple closed geodesic γ is less than or equal to A/2. This estimate is
sharp, which is achieved by the unit sphere. Inequality L(γ) < A/2 fails
if the hypothesis 0 < K < 1 is weakened to - e 2 < K < 1 for any e > 0.
The estimate also fails for flat tori and surfaces of higher genus except for
the projective plane RP 2 .

We begin with an elementary example to demonstrate the main idea of
this section. Let Ω be a rectangle with width a and height b on the
Euclidean plane E2. Obviously, one sees that ^4(Ω) = ab, the area of
Ω, and L(dΩ) = 2{a + b)., the perimeter of Ω. Our goal is to study
the upper bound of the ratio L(dΩ)/A(Ω). If a = 1 and b —• 0, then
the ratio becomes infinite. However, if we denote the width of Ω by
W0(Ω) = min{a, b} , we can easily verify that L(dΩ) < 2A(Ω)/W0(Ω).

Let γ be a simple, closed geodesic on a Riemannian sphere M. Clearly,
γ divides M into two simply connected, open components, ay Ωj and
Ω2 . We will define the width, W(Ω.), of each Ω , and then estimate
L(γ) from above in terms of the area A(Ω.) and W(Ω.) for either of
two domains Ω y . There is a classical formula due to L. Santalό which
gives a sharp estimate of L(γ)/A(Ωi) in terms of the "width" (cf. [20] or
[8]). To set the stage for our application of the Santalό formula, we must
introduce an analogous notion of W(Ω.), the width of any given, open,
connected surface Ωj with boundary dΩj, as follows.

The new width W(Ω7) is defined to be the infimum for lengths of
all geodesic chords within Ω.. More precisely, we let TV represent the
inwardly pointing unit normal vector field of dΩj, UM represent the
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unit circle bundle of M, and UΩj = UM\Ω . The upper semicircle

bundle is denoted by

j = {v\ve UM\dQj, (t;, tfπ(t;)) > 0} .

For any υ e U+dΩ. or υ e UΩj , we let σy be a geodesic with σ'(0) = υ
and σ(0) = Π(τ ), where Π: UM -> M is the canonical projection map.
Naturally, we let l(υ) be the smallest value of t > 0 (possibly oo) such
that συ{t)e dΩj . Finally, one can define

W(Ωj) = inf{/(v)|v e U j }

The Santalό formula (cf. [10, p. 421]) states that

2πA(Ωj) = Vol(UM\Ωj) > J + Q l(v)(v , Nn{v)) dv

> W{Ω.)L{dΩ.) Γsin θdθ = 2W(Ω.)L(γ).
J J Jo

Hence, we have

(1 2) L{y)^wk~)Λ{ςι^ j = ι>2

In what follows, we want to estimate W{Ω.) from below in terms of
curvature of a given surface. Our lower bound for W{Ωj) will be inde-
pendent of the choice of any simple closed geodesic γ and Ω .

Lemma 1.1. Let M be a C smooth Riemannian sphere whose cur-

vature K satisfies 0 < K < 1, and let γ, Ω., and W(ΩΛ be as above.

Then l(υ) > π for all υ e U+(dΩj), i.e.,

(1.3) W(a.)>π.

Moreover, if l(υ) = π for all v e U+dΩ, then L(dΩj) = 2π.
The proof of Lemma 1.1 is quite involved, and we postpone it to the

end of this section. At this moment, under the assumption that Lemma
1.1 holds, we would like to prove

Theorem A. Let M be a C 3 smooth Riemannian surface dijfeomor-
phic to S2, with curvature 0 < K < 1 and area A . Then the length of any
simple closed geodesic γ is less than or equal to A/2, i.e., L(γ) < A/2.
Furthermore, equality holds for some γ if and only if M is isometric to
the unit sphere.

Proof of Theorem A. Let Ωj be an open component of M - γ with
the property that Area(Ω,) < \ Area(M). It follows from Lemma 1.1 and
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(1.2) that

Furthermore, equality holds if and only if Area(Ω) = Area(Λf)/2 =
Area(M \ Ω), l(v) = π for all v e U+dΩ. Using a result of Bangert,
we now conclude that Ω is isometric to the unit semisphere (cf. [4]).
One can also give an alternative proof as follows: Lemma 1.1 implies that
L(dΩ) = 2π . In this case, by (1.2) we get A(M) = 4π . It will be shown in
Lemma 1.2 that A(M) > 4π, and equality holds if and only if M is the
standard unit two-sphere. This completes the proof of Theorem A under
the assumption ihat Lemmas 1.1 and 1.2 are true, q.e.d.

In order to carry out the proof of Lemma 1.1, we need to derive some
preliminary facts.

Lemma 1.2. Let M = (S2, g) with nonnegative curvature K, 0 <
K < 1. Then the injectivity radius of M, inj(Af), is greater than or equal
to π, i.e.,

(2.4) inj(Λ/)>π.

Consequently, Area(Λf) < 4π and A(M) = 4π if and only if M is iso-
metric to the standard unit two-sphere.

Remark. Inequality (1.4) clearly fails on certain flat tori. We include
a proof of Lemma 1.2 here for the sake of completeness.

Proof. It follows from the Gauss-Bonnet theorem that max K(x) > 0.
Hence, the set G = {x\x e M, K(x) > 0} is nonempty. By Corol-
lary 5.7 in [7], we may assume that there is a smooth closed geodesic γ,
parametrized by its arc-length, with y(0) = p through p and q such that
L{γ) = 2d{p, q) = 2 inj(M). Let G be the closure of G. If γ Π G = 0 ,
we can move γ within the flat region M\G until γ hits G. Therefore,
we may assume that γ Π G Φ 0 at the beginning. Let N be the unit
normal vector field of γ which is pointing towards G and

hs(t) = expγ{t)[sN(t)].

When 0 < s < e0 = the focal radius of γ, it follows from the Corollary
of Rauch II that L(hs) < L(y) the equality holds if and only if the strip
As = {Aα(ί)|0-< a < s} is flat (see Lemma 1.4 below, [12] or [7, p. 31]).
In our case, L(hs) < L(γ) whenever s > 0, since K(x) > 0 and K > 0
somewhere in any strip As. Now, for the same reason as in [7, p. 99], we
conclude that q is conjugate to p . Hence, inj(M) = d(p 9q)>π.

Using the fact that inj(Af) > π and K < 1, one can use the standard
area comparison theorem or the Berger-Kazdan inequality to conclude that
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A(M) > 4π and the equality holds if and only if M is the standard unit
2-sphere (cf. [12], or [5], [14]). In fact, when A(M) = 4π and 0 < K < 1,
the Gauss-Bonnet formula implies that K{p) = 1 for all p e M. Hence,
M is a round sphere of curvature 1. q.e.d.

As an application of Lemma 1.2, one has
Corollary 1.3. Let M be as in Lemma 1.2, and let σχ and σ2 be two

distinct geodesic segments with the same endpoints. Then

max{L(σj), L(σ2)} > π.

We also need a special sharp version of the second Rauch comparison
theorem (Berger's Lemma) to prove Lemma 1.1. Since it was not clearly
stated in any literature, we present it here with a simple proof.

Let M be a two-dimensional Riemannian manifold with nonnegative
curvature K > 0, η: [0, 1] —> M be a geodesic with ||/7'(0)|| = 1, and
iV(0) be a unit normal vector of η at η(0).

Lemma 1.4. Suppose J is a Jacobi field along η with J(Q) = aη(0) +
bN(0), b Φ 0, and /'(0) = 0. If η has no focal points of the geodesic σ
defined by σ(s) = expη{0)[sN(0)] in [-1, 1], then

11/(011 < 11/(0)11 for all t e [ 0 , l ] .

Moreover, \\J(s)\\ = \\J(0)\\ for some s>0 if and only if K(η(ή) = 0 for
all te [0,s].

Proof Let N(t) be the unit normal vector field along η. Since dimM
= 2, one gets Nι{t)k = 0. Since / ( 0 ) = 0, it follows that / can be
decomposed into

where /(0) = b and / ( 0 ) = 0 (cf. [7, p. 19]). Clearly, one sees

Since σ does not have any focal point on η, / does not change its sign
on [0, 1]. By the assumption K > 0, we know that

= -K{η(t))f(t)9

f(t)f(t)<-K(t)f2(t)<0.

If /(0) = b > 0, then / '(/) < 0 as long as /(/) > 0. This together with
/ ( 0 ) = 0 implies that f\t) < 0 and 0 < f(t) < /(0) = b.

When /(0) = b < 0, one can also show that -/(/) < -/(0) = -b and

/ 2 W < / 2 ( 0 ) . Hence,

||/(0l|62 = a2 + / ( / ) < a2 + b2 = \\J(0)\\2.
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| |/(j)|| = ||/(0)|| holds for some s > 0 if and only if K(η(ή) = 0 for all
te[0,s]. q.e.d.

Now, we are ready to prove Lemma 1.1.
Proof of Lemma 1.1. Notice that Ω is an open domain. By the defi-

nition of W(Ω), we are interested in all geodesic chords which lie in Ω
except for endpoints. In order to give a criterion for geodesies which are
transversal to dΩ, we need to introduce an intrinsic distance function dy

of dΩ = γ .
For any pair of points {p, q} on a simple closed geodesic y, p and q

divide γ into two geodesic segments γχ and γ2. We define dγ(p, q) =

Let σ be a geodesic segment <τ with endpoints {p, q} c γ and of
length L(σ) < π. If σ is different from ^ and γ2, then it follows
from Corollary 1.3 that dγ(p, q) > π. Conversely, if ?/ is a geodesic
with endpoints p0, q0 e dΩ, and if L(η) < dγ(p0, qQ), then η is clearly
transversal to dΩ. This observation will be used later on.

We will use a contradiction method to finish the proof of Lemma 1.1.
It takes several steps to get a contradiction.

Suppose to the contrary that Lemma 1.1 is false. Then there would be
a family of geodesies σ,: (0, Lt) -> Ω with endpoints {p., qt} c γ and
of length L. < π - e0, where e0 = \\π - W(Ω)\ > 0 and L. -> W(Ω) as
/ —• oo. Clearly, by the argument above, we have

(1.5) dγ(Pi,qi)>π for a l l/ .

Since Ω is compact, we may choose a subsequence of {σj which is

convergent to a normal geodesic σ0: [0,L(σ0)] —> Ω, with endpoints

{Po 9 %} c ^ Ω , and of length

(1.6) L(σo) = W(Ω)<π<dγ(po,qo).

Because of (1.6), we know that p0 Φ q0 and σ0 is a nontrivial geodesic
which lies in the interior of Ω except for its endpoints.

Let Lo — L(σ0). Lemma 1.2 tells us that inj(M) > π > LQ. By the
definition of W(Ω) and the first variational formula, one can show that
σ0 is perpendicular to dΩ = γ at points pQ and q0. Let N be the unit
normal vector field along σ0 and G = {x\x e Ω, K(x) > 0}. Since Ω
is diffeomorphic to a disc and dΩ forms a closed geodesic, one sees that
G Φ 0 . If σ0 Π G = 0 , we move σ0 in direction N within the flat
region Ω\G until σ0 hits G somewhere. Therefore, we may assume that
σ0Γ\G Φ 0 and TV is pointing towards G. As we did in the proof of
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Lemma 1.2, we introduce a family of curves

(1.7) hs{t) = expσo(t)[sN(t)], t e [0, Lo].

If δ is the focal radius of σ0 in Ω, we claim that

(1.8) L(hs) < L(σ0), whenever 0 < s < δ.

This can be seen as follows. For any fixed s with 0 < s < δ , it follows

from Lemma 1.4 that

(1.9) Uhs)<L(σ0),

and the equality holds in (1.9) if and only if the strip Δ5 = {hu(t)\O <u<
s, 0 < t < LQ} is flat. However, our strip is not flat as long as s > 0
thus, the strict inequality (1.8) holds.

Now, we fix and s > 0 and apply the Birkhoff curve shortening process
to hs with fixed endpoints. From this, we get a geodesic σ with endpoints
hs(0),hs(LQ)eda,and

(1.10) L(σ)<L(hs)<L(σ0) = W(Ω).

It remains for us to show that σ c Ω. It is clear that there is an e > 0
such that for all x, y e <9Ω, with d(x, y) < e , the minimizing geodesic
τ from x to y satisfies τ c Ω. In other words, <9Ω is convex to Ω.
Hence, it follows that σ c Ω (cf. [10, pp. 3-7]). Furthermore, if s is
sufficiently small, we have

dγ(σ(0), σ{Lo)) = dγ(hs(0), Λ,(L0)) > dy(po, g0) - 2s > π - e0 > L(σ).

Therefore, σ is transversal to dΩ, and lies in Ω except for its endpoints.
This fact together with (1.10) gives a contradiction to the definition of
W(Ω). This finishes the proof of the first part of Lemma 1.1:

(1.11) W(Ω)>π.

The second part of Lemma 1.1 follows immediately from Bangert's re-
sult (cf. [4]).

Remark. There is another interesting estimate for the length of any
given simple closed geodesic in the two-sphere of nonnegative curvature.
Let γ be a simple closed geodesic which bounds a domain Ω. We intro-
duce the notion of p(Ω), the radius of domain Ω, by letting

p(Ω) = max{d(p,γ)\peΩ}.

If K > 0, then we claim

(*) A{Ω)>\L{y)p(Ω).

This can be seen as follows.
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Let σs = {q\d{q, γ) = s}. Using the co-area formula, one gets

> /
Jo

A(Ω)> / L(σs)ds.
J

Let f(s) = L(σs). It is clear that f(0) = 0, since σ0 is a closed geodesic.
The function / is also semicontinuous. When / is smooth at s = s0 and
K > 0, then the second variational formula tells us that f"(sQ) < 0 (cf.
[7, p. 20]). Using this fact together with /(0) = L(γ) and f{p) > 0, we
conclude that f(s) > [1 - s/p(Ω)]L(y). This leads us to

A(Ω)> Γ f{s)ds>\L{y)p{Ώ).
Jo

Since the assumption that K < 1 is not needed here, this estimate is
independent of the one given by Theorem A.

2. Diameter of a surface and the length
of simple closed geodesies

We shall discuss the relation between the length of a simple closed
geodesic and the diameter of a Riemannian sphere M. In this section,
the curvature K of M is not necessarily nonnegative. M is allowed to
have an arbitrary metric.

Theorem B. Let M be a Riemannian manifold, diffeomorphic to S2 of
diameter D. Then there is a simple closed geodesic y of length L(y) > 2D.
Furthermore, if the longest simple closed geodesic γ exists and L(γ) = ID
holds, then there are infinitely many simple closed geodesies of length 2D.

Recall that L(M) is defined to be sup{L(γ)\γ is a simple closed geo-
desic}. It is well known that the energy functional E defined on the loop
space satisfies the Palais-Smale condition. The critical points of E are
closed geodesies. Hence, if L(M) < oo, then the set of all simple closed
geodesies is a compact subset of C°(Sι, M). In particular, the longest
simple closed geodesic exists as long as L(M) < oo.

Our new observation in this section is based on the proof of the theorem
of Lusternik and Schnirelmann, which is due to Ballmann (cf. [2] or the
appendix of [15]) and Grayson [11]. The Lusternik-Schnirelmann theorem
asserts that, on any two-dimensional sphere with an arbitrary metric, there
exist at least three simple closed geodesies. We denote these three geodesies
by γx, y2, and γ3 and assume that L(yχ) < L(γ2) < L(γ3). C. Croke
observed that L(γ2) > 2D. The following proof was suggested by him.
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Proof of Theorem B. We will adopt some notation from the appendix
of [15]. It was known that the second simple closed geodesic γ2 was
found by a minimax method among some special two-parameter families
of closed curves. Denote the set of all these two-parameter closed curves
by Γ 5 where Γ is a subset of C°([- l , 1] x [0, 1] C°(Sι, S2)) and Sι

is the unit circle. The precise definition of Γ will be given later. At the
moment, we want to explain the main idea in the proof of Theorem B.
Our strategy is to show that

(2.1) max{L(ut t )| - 1 < tχ < 1, 0 < t2 < 1} > ID

holds for each u e Γ. This assertion would imply

Theorem B would follow immediately.
It will take several steps to verify (2.1). First, let us give the precise

definition of Γ as follows.
Let S2 = {(x, y, JC)|X2 + y2 + z2 = 1} . We first introduce u°, the

°generator of Γ. All other elements of Γ will be homotopic to u° under
some extra conditions (see (2.2)-(2.5) below). Our u° will consist of
all small circles on S2 that meet the yz-plane orthogonally. For any
(tχ, t2) e [-1, 1 ] x [0, 1 ] , we assign a small circle ut t of radius | cos f tχ \

as follows:

= uQ{tι, t2,s)

( n . π . ^ . π \
= I cos—/j COSZ7LS, cos—ίj s in2πs, sin— tχ)

^ Λ* JL 4* /

o, o
sinπt2

0,
0, -

Notice that

(i) For each t2 e [0, 1], u°±χ t is a point curve.

(ii) u°(tχ,0,s) = u°(-tχ, 1 , 4 ) .
(iii) For any pair of points {p, q} C S2 , there is a small circle in u

that passes through p and q .
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Naturally, we require that u € Γ if and only if u satisfies:

(2.2) u induces a continuous map from [-1, 1] x [0, 1] x S to S ,

(2.3) For each t2 e [0, 1], u±ι t is a point curve,

(2.4) u(t{ ,0 ,5) = u(-t{ , 1 , - 5 ) for all tχ and s,

(2.5) there is a continuous homotopy h between u° and u, A e

[0,1], such that h =u , hl — u, and each h satisfies

conditions (2.2)-(2.4).

It is sufficient to verify the following assertion:
Claim 1. For each u e Γ and any given pair of points of p, q e S2,

there is a closed curve ut t which passes through p and q for some
(t{,t2)e[-l,l]χ[0,l].1'2

If one chooses p, q on the Riemannian sphere M = (S2, g) satisfying
d(p, q) = D, then inequality (2.1) follows from Claim 1 immediately.
The proof of Claim 1 can be carried out by an elementary topological
argument below. (Claim 1 is obviously true for u°.)

Denote [-1, l]x[0, I J X S ^ X S 1 by Γ. Inspired by (2.4), we introduce
the following equivalence relations

( t { , 0 , s l 9 s 2 ) ~ ( - t l 9 1 , - s { , s 2 ) ,

( t { , t 2 , s { i s 2 ) - ( ί j , t 2 , s 2 , s x ) .

Using the equivalence relations above, we let f be the quotient space
of T with the quotient topology and K3 be the subspace defined by
{±l}x[0, 1 ]x.S1 x S 1 / ~ Clearly, T is a four-dimensional orbifold with
boundary K3. In fact, the four-dimensional Z2-homology of (Γ, K3) is
nonzero, i.e.,

3

where Z 2 = 2/2Z and Z is the ring of all integers.

On S2xS2 we also introduce an equivalence relation by letting (p, q) ~

(q, p) for any pair of points p, q e S2 . Let [p, q] be the equivalent class

of (p, q), [S2 x S2] be the quotient space of S2 x S 2 , and Δ = {[p, p]\p e

S2} . Obviously [S2 x S2] is a four-dimensional orbifold with boundary

Δ. Clearly, one sees that H4{[S2 x S 2 ] , Δ : Z2) = Z 2 .

For each u e Γ, we assign a continuous map FM from f to [S2 x S2]
as follows:

(2.6) Fu{tx ,t2,sx, s 2 ) = [ ! ! (* ! , ί 2 , s { ) , w ( ^ , t2,
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It follows from (2.3) that Fu maps K3 to Δ. Let deg2(FJ denote the

Z2-degree of the map Fu:(f,K3)^ ([S2 x S2],A). In what follows, we

will compute deg2(/Γ

M).

When u = u°, Fuo is a one-to-one map on the open set

G = {(*! ,t29sl9 s2)l ~ I - 1 < tχ < 1, 0 <t2 < 1, 0 < s{ < s2 < 1}.

Note that G is dense in f. Hence, G represented a generator of
H4(f, K3;Z2), and so does its image. Therefore, we have demonstrated
that Fuo induces an isomorphism

(iy>),: H4(f, K3; Z2) - H4([S2 x S2], Δ; Z 2 ) .

In particular, the Z2-degree of the map Fuo: ( f , ϋ:3) -> ([52 x 5 2 ] , Δ) is
nonzero, i.e., deg2(Fwo) = ± 1 ^ 0 (mod2). It follows from (2.5) that
deg2(i7

M) Φ 0 for all w e Γ. Hence, Claim 1 has been verified. This
completes the proof of (2.1).

When L(M) = ID holds, we know

ID < L{γ2) < L{γ3) < L{M) = ID.

Hence, L(y2) = L(γ3) holds in the Lusternik-Schnirelmann theorem, which
guarantees the existence of infinitely many simple closed geodesies of
length ID (cf. [15]).

3. An isoperimetric inequality and its applications

In this section, we will give a nonsharp isoperimetric inequality and
derive various estimates for lengths of simple closed geodesies.

We begin with a very crude observation:
Theorem C. Let M be a Riemannian surface, diffeomorphic to S2,

with nonnegative curvature K >0. Then

Area(M) < -D2.
n

Proof. This is an easy consequence of the two eigenvalue estimates
which are due to Hirsch and Zhong-Yang respectively. Hirsch's theorem
tells us that, on any Riemannian sphere M, the first eigenvalue of M,
λχ, is less than or equal to Sπ/A, i.e.,

(3.1) λ{

(See [13] and [22].)
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On the other hand, for any Riemannian manifold with nonnegative
Ricci curvature, Zhong and Yang found a lower bound of λχ in terms of
the diameter D (cf. [24]):

(3.2) λχ > π2/D2.

Combining (3.1) and (3.2), we get the desired result.
Remark. Estimate (3.2) is optimal for certain flat tori, not for round

two-spheres (cf. [23, p. 114]).
Using Theorems A, B, and C, one can easily derive:
Corollary 0.1. Let M be a smooth Riemannian sphere with 0 < K < 1.

Then the longest simple closed geodesic γ exists and

(0.1)

(0.2) 2D<L(γ)<4D2/π.

Furthermore, equality L(γ) = A/2 holds if and only if M is isometric to
the unit sphere.

We would like to say a few words about the ratio L/D2 , when D be-
comes infinite. The following example shows that there is a family of
smooth metrics gt on S2 whose curvature is bounded by 0 < K < 1, in
which diameter D —> oo and LJD2 > (40π)~1 as / -» oo .

Example 3.1. Let us take two copies of a square rectangle of width
2πκ, and then glue them along the boundary smoothly except for corner
points. The resulting surface is a flat, nonsmooth two-sphere S2 with four
exceptional points. Let us call these four points p{, p2, p3, p4 . Around
each point p. we circle out [/., a neighborhood of p.. Replace [/.
by a quarter of the unit sphere and make the metric smooth under the
curvature restriction 0 < K < 1 within a metric ball of radius π centered
at p.. Thus, we get a smooth Riemannian sphere of Mk of diameter Dk

satisfying Kπ < Dk < 2πκ\β> + δ , where δ is independent of K .
We claim that there is a simple closed geodesic γk of length L(yk) >

kπ\/l6 + κ2/2 within the flat region of Mk . In order to see this, one

needs to view Mk in a different way. Let Z be the ring of all integers and

let us take a lattice Dc in R2 given by

Γ^ = {(4κπi{ + 2κπ, 4κπi2 + 2κπ)\ix, i2 e Z}.



532 EUGENIO CALABI & JIANGUO CAO

Clearly, R 2 / ^ is a flat torus. Notice that the origin (0, 0) is not an

element of Γ, , when K is a fixed positive integer. Denote the group of

{± Id} by Z 2 , where - Id is the antipodal map of R . I t is not hard to see

that the orbit space of the group Z 2 acting on R /Γk , say Z 2 \ (R /Γk) =

S2, is homeomorphic to Mk. A fundamental domain of this orbifold

can be chosen to be an open rectangle Q = (0, 2πκ) x (-2πκ, 2πκ).

Let us identify Q with the birectangle given at the beginning. Denote the

quotient map from R2 to S2 by Fk . The preimage of singular points {p.}

via Fk is exactly 2πκ(ZθZ). If 55 denotes the union of all disks of radius

π whose centers are elements of 2πκ(Z θ Z), then Fk maps R2 - © to

the flat region of (Mk , gk), which is locally an isometry. Clearly, there is

a straight line γk within R2 - 03 which passes through the point (0, 3kπ)

with slope κ/4. The projection of γk is the desired closed geodesic γk

of length κπVl6 + κ2/2. Hence, we conclude that L(γk)/D2

k > (407Γ)"1

and Dk > xπ , when K is sufficiently large.

Example 3.2. In Example 3.1, if we replace Γ^ by an affine lattice Γ̂ .
of angle 60° and mesh size 4κπ, then it is easy to see that the resulting
surface is a tetrahedron, which is homeomorphic to S2 with four singular
points. However, in this case, the fundamental domain for this quotient
space Z 2 \ (R 2/f k) can also be chosen to be an equilateral triangle of
length 4πκ . Smoothing the metric along four vertices of the tetrahedron
as in Example 3.1, we get a smooth Riemannian sphere Mk of curvature
0 < K < 1. One can easily show that κ% < Dk < 4κπ + δ, where δ
is independent of K . Obviously, there is an affine map from R2 to R2 ,
which takes Tk to Γ^ . Playing the same game as before, one can find
a simple closed geodesic γk in the flat part of Mk of length L(γk) =

κπ\/κ2 + 4k+ 16/2. This fact implies that L(M)/D2

k > (32π) - 1 and
Dk> kπ , when K > 1.

Finally, we wish to point out that there is an estimate for the length of
the shortest simple closed geodesic, which grows at most linearly in terms
of D.

Corollary 0.2. Let M be a smooth Riemannian sphere of nonnegative
curvature. If γ is the shortest simple closed geodesic on M, then L(γ) <
9D.

Proof It will be shown in Part II that the shortest closed geodesic
is simple on a smooth Riemannian sphere of nonnegative curvature (cf.
Theorem D). On the other hand, L(γ) < 9D holds for the shortest closed
geodesic γ (cf. Theorem 4.1 in [10]).
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PART II
THE SHORTEST CLOSED GEODESIC IS SIMPLE

ON SMOOTH COMPACT CONVEX SURFACES

1. BirkhofΓs ideas and rimmed domains

In order to find the shortest closed geodesic, we will work on a varia-
tional problem for the space of all one-cycles in a given closed, smooth
Riemannian surface. In order to get started, we want to borrow two major
ideas from Birkhoff which are related to the ordinary loop space (cf. [2],
[10]). The first one we will use is his method of finding closed geodesies
on spheres, which is called the minimax method.

Let M be the two-sphere S2 endowed with a C 3 smooth metric g.
Given a piecewise smooth curve γ (not necessarily closed), by L(γ) we
will mean the length of γ. We denote the injectivity radius of the Rie-
mannian surface M by inj(Λf).

If ft is a one-parameter family of closed curves starting and ending at
a point curve in such a way that the induced map f:S2-+S2 (see Figure
1) has nonzero degree, then BirkhofFs argument (or minimax argument)
allows us to conclude that M has a nontrivial closed geodesic of length
less than or equal to the length of the longest curves in this one-parameter
family. We shall extend his method to the space of one-cycles to get an
analogous minimax principle (cf. §2 of this part).

The second idea that we will use is the BirkhofF case shortening process,
B.C.S.P. (which Birkhoff used in the above mentioned argument). The
precise definition of B.C.S.P. is given in [15] and [10]. Since we need to
derive some new properties of B.C.S.P., we recall it here.

In general, the B.C.S.P. βN depends on an integer N > 2, where N is
chosen so large that L(γ)/N is smaller than the injectivity radius, inj(M),
of the surface M. For any piecewise smooth closed curve y, we will define
a new curve βN(γ) as well as a homotopy y J } ί € [ 0 , l ] , from γ = γo

to βN(y) = yx . The homotopy γs will be defined in such a way that
L(γs) < L(γs ) whenever s2 > sχ.

FIGURE 1
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We may assume that y: [0, 1] -> M is a closed curve parametrized pro-
portional to arc-length; if not, the first part of the homotopy reparametrizes
γ so that it is. We define γι.2 to be the unique piecewise geodesic closed
curve such that γ{/1(i/N) = γ(i/N) for all integers / = 1, 2, , TV. For
s e [0, j], γs will be given by

γs{i/N + 0 = τ*(ί), when 0 < t < 2s/N,

γs(i/N + ή = γ(i/N + t), when 2̂ /iV <t<l/N,

where τ* is the minimizing geodesic from γ(i/N) to γ(i/N + 2s/TV)
parametrized on the interval [0, 2s/iV] proportional to arc-length.
Finally, yχ is defined as the unique closed broken geodesic with
yx(i/N + l/(2N)) = yι/2(i/N + l/( 2 Λ 0) which is parametrized propor-
tional to arc-length on each interval [i/N+ ί/(2N), (/ + 1)/N + l/(2N)].
We then define γs for s € [j, 1] to be a homotopy between γχ.2 and
yt in the same way that γs, 5 € [ 0 , j ] , homotopes from y0 to y1/2.

We will apply B.C.S.P.. to some special closed curves which have non-
negative geodesic curvatures. More precisely, we let y be a simple (no
self-intersections) closed curve on M which divides M into two compo-
nents. Let Ω (open) be one of these components.

Definition 1.0. A closed curve γ will be called convex to Ω if there
is an e > 0 such that for all x, y e γ, with d(x, y) < e , the minimizing
geodesic τ from x to y satisfies τ c Ω.

The following has been shown in [10].
Lemma 1.1. Let y be convex to Ω and have length L, and let N >

L/inj(Aί) {also N > 2). Then if we apply B.C.S.P. with N breaks to y
the resulting curves yt satisfy

(i) ytcΩ,
(2) yt is simple and convex to Ω, = Ω - {x £ γs\0 < s < t}.
Using Lemma 1.1, we have
Lemma 1.2. Let γ be convex to Ω and have length L. Then there

exists either a simple closed geodesic σ of length L(σ) < L, or a homotopy
σs, ί G [ 0 5 1], which satisfies the following conditions:

(1.1) σχ = γ, σ0 = a point curve, and L{σs) <L for alls,

(1.2) {σJO < s < 1} gives rise in a natural way to a map Fσ from

the two-disk D2 onto Ω with y as the boundary, and σ has

degree ±1.

Proof Let ΛL be the space of piecewise smooth closed curves α: [0, 1]
-• M with length less than or equal to L, and where AL has the C°-
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topology. It is known that the B.C.S.P. βN: AL —• ΛL is continuous when

N > (4(inj(M))~1)L (cf. [15]). The nontrivial closed geodesies or point

curves are the only fixed points of βN. It can be shown that, for the curve

γ given above, the sequence of simple curves {yj defined by γ0 = γ and

γt = βN{yi__x) converges to either a simple closed geodesic σ of length

L(σ) < L or a point curve (cf. [10, pp. 4-7]). If the limit is a point curve,

then the homotopies {yJo<s<oo S*ve ^ s e *n a n a t u r a l w a Y t 0 a m a P fr°m

the two-disk D into Ω with γ as the boundary. In fact, setting

(1.3) D2 = {set2πi\(s,t)e[O,l]x[O,l)},

one can define

β',(O = J'(i- ί ) / j(O. Fσ:D
2^Ω, and i ^ e 2 7 " ) = σ,(t).

Assertion (1.1) follows from the definition of σs. Using Lemma 1.1, we

know that Fσ maps D2 onto Ω with γ as boundary and Fσ has degree

± 1 . q.e.d.
In the applications in this paper γ will be a piecewise geodesic curve. In

this case, the definition that γ being convex to Ω reduces to the condition
that all the angles of γ are convex to Ω.

Let us now consider an interesting example. Suppose η: [0, 1] —• M
is a nonsimple closed geodesic and M is a sphere. Obviously, η divides
M into more than two components, say, Ω 1 , Ω 2 , , Ωfc , k > 3. Now,
we fix an orientation of M and let Ω 1 , Ω 2 , , Ω have the inherited
orientation from M. For each Ω z, 1 < / < k, it is not hard to see that
dΩι, the boundary of Ω*, consists of broken geodesies whose angles are
convex to Ω'. This leads us to make the following observation.

Corollary 1.3. Let η, Ω! , and dίl1 be as above. Then there is either
a simple closed geodesic σ of length L(σ) < L(dΩ!) or a homotopy as,
s e [0, 1], which satisfies

(1.5) aχ = dΩι, ao= a point curve, and L(as) < L(dΩΪ) for all s.

(1.6) { α j gives rise in a natural way to a map Fa from the two-

disk D onto ΩΪ with poι as the boundary of degree ±1.

Proof If dΩι has no self-intersection points, Corollary 1.3 follows

from Lemma 1.2 immediately. In the case that dΩι has self-intersection

points qχ, , qn , n > 1, and if qt is one of them, we notice that the

angles of dΩι at q. are strictly convex to Ω'. Without loss of generality,

for each qt, we may assume that there are locally two curves a and β
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such that max{L(α:), L(β)} < inj(M),

a:[a,b]-^dΩ\ β: [a,b]-^

such that α(ί) φ β{t) for t φ (a+b)/2 and a(a+b)/2 = β((a+b)/2) = qx

We move a away from β , by the following local homotopy:

(1.7) as(t)k = a{t), when tφ

(1.8) a(t) = τs(t), whence

2 ' 2

b-s(b-a) a + b + s(b - a)

where τ5 is the minimizing geodesic from γ((a + b - s(b - a))/2) to

γ((a + b + s(b - a))/2) parametrized proportional to the arc-length on the

i n t e r v a l [(a = b - s(b - a))/2 ,(a + b + s(b- a))/2].

Therefore, when dΩ.1 has self-intersection points, we choose the first

part of the deformation as, s e [0, e], locally given by (1.7)—(1.8). The

resulting new domain Ω^ is still connected and the boundary dΩ,[ is

the union of simple closed curves. Moreover, d£lι
€ is convex to Ω^.

Let σ be one of those closed curves, σ c dΩι

e. In what follows we

shall show that dΩι

e = σ if there is no shorter closed geodesies. In fact,

Lemma 1.2 tells us that there is either a simple closed geodesic γ with

the length L(γ) < L(dΩι

e) < L(dΩι), or there is a homotopy σs given

in Lemma 1.2. When the second case occurs, one can show that the set

G = {x e σs\0 < s < 1} is equal to Ω^ by the Jordan curve theorem, since

Ω^ is path-connected. Therefore, one knows that dΩ\ - a . Hence, dΩ1

is connected (by letting e —• 0). This completes the proof of Corollary

1.3.

We remark that the orientation of aχ in Corollary 1.3 does not neces-

sarily coincide with the original orientation of η .

2. The space of one-cycles and a minimax principle

In this section we will treat nonsimple closed geodesies as one-cycles.
In addition, we will discuss a minimax principle (the generalized Birkhoff
argument) on the space of one-cycles with integer coefficients over a surface
M.

There are many ways to define the topology on the space of one-cycles.
At the moment, we use the weak topology which was first introduced by
deRham. Roughly speaking, the space of one-cycles can be thought of as
a subspace of the "dual" space of one-forms on M.
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Let Λ1 (M) be the space of all C°° smooth one-forms on M. For any
oriented one-dimensional rectifiable set T, there is a corresponding linear
function defined on Aι(M) which is

(2.1) T(φ) = ί φ for all φ e AX{M).
JT

In what follows, T will also be called a rectifiable current.
Furthermore, if a rectifiable current T satisfies

(2.2) T(df)= ί df=0
JT

for all smooth functions / , then T is said to be closed, or T is a one-
cycle.

The weak topology of the space of one-cycles can be described in the
usual way. We only have to define the limit of a sequence of currents
{ΓJ . We require that

(2.3) lim Tt = T
I—KX)

holds if and only if

(2.4) lim T.(φ) = T(φ) for all ^ G Λ 1 (Af).
/—κx> ι

This weak topology is closely related to the "mass" distance ffl. Recall
that g is the metric defined on S which induces a natural pointwise
metric on Aι(M). For any currents T, we introduce

(2.5) m[T) = sup I / φ \φ(x)\ < 1, φ e Aι(M) and x e Λί\ .

Suppose γ is a piecewise smooth curve and γ has only finitely many
self-intersection points. Then one can verify that

(2.6) m{γ) = L(γ) = the length of γ.

From now on, we let Z be the ring of all integers and we will work on
the set

(2.7) Z{(S2, Z) = [Y^aiTi a. € Z is an integer and Tx is a

rectifiable one-cycle | .

Z{(S
2, Z) is called a one-dimensional cycle group, or the space of one-

cycles with integer coefficients in Z . It has the weak topology mentioned
above.
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The space of one-cycles Zχ(S2, Z) has been studied by Almgren and
others. In particular, one of Almgren's results implies the following.

Lemma 2.1. Let Uχ (Zx (S2,Z), {0}) be the fundamental group of space

Z^S2, Z) with the topology above. Then there is a natural isomorphism

\Z) {0}) H2(Sι, Z) = Z

two-dimensional homology

(2.8) Ψ: Π, (Zj(S\Z), {0}) - H2(

between Π^Z^S 1 , Z)) and H2(S2, Z), ίAe
group of S2 with integer coefficients in Z .

Proof This is a special case of the main theorem in [1].
Notice that the isomorphism Ψ above was intuitively taken by using

the "evaluation map" F in Figure 1. There are some useful methods to
find a one-parameter family of one-cycles σt, t e [0, 1], with the property
Ψ([σl) Φ 0 F° Γ instance, let / : M -* [0, 1] be a Morse function. Then,
if we take the sublevel set Dt = / " ι ([0, t]) and the level set σt = f~ι (t) =
dDt with the induced orientation from Dt, it is easy to see Ψ([σ]) is a
generator of H2(M, Z ) . In some special cases, σs and ψ(σ) can also
be constructed by using broken geodesies. For example, see the following
lemma.

Lemma 2.2. Let η be a nonsimple closed geodesic of length L. Then
there exist either a nontrivial closed geodesic σ of length L(σ) < L, or a
one-parameter family of one-cycles σt, t e [-1, 1], satisfying the following
conditions:

S2 of

(2.9) L(σt)<L forallte[-l, 1],

(2.10) {σt} gives rise in a natural way to a map Fσ: S
2

degree ±1.

Proof Since η is a nonsimple closed geodesic, η divides M into k
connected components Ω 1 , Ω 2 , , Ω* with k > 3. Let Ω' (open) be
one of these components. We think of M as a λ -legged star fish with legs

Ω1 , Ω* (see Figure 2).

FIGURE 2. 3-LEGGED STAR FISH.
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Applying Corollary 1.3 to dΩι and Ω', we get either a nontrivial closed
geodesic σ of length L[σ) < L, or a homotopy aι

s which satisfies (1.5)-
(1.6). We may assume that there is no nontrivial closed geodesic σ of
length L(σ) < L. The rest of the proof uses {a1} , 1 < i < k, to construct
σt, t e [0, 1], which satisfy (2.9)-(2.10).

Fix an orientation of M, let Ω* have the inherited orientation from

M, and let Z 2 be the group Z/2Z . Since the one-dimensional homology

group of M with Z 2 coefficients vanishes, [η] £ H{(M, Z2) = 0, there

exist domains Ω*1, , Ω.k" such that

(2.11) η = Σdak' nZi(M,Z2).

Let H{(M, Z) be the first homology group with integral coefficients. By
using (2.11), one can also show that

(2.12) η = Σnid^ki in Z{(S2, Z) and Λ. = ± 1 .

Finally, we choose σ0 to be

(2.13) * 0

Applying Corollary 1.3 to σ0 and Ωki, / = 1, , n , one gets half of the
homotopy σs, s e [-1, 0]. The other half can be derived from the rest
of the domains by the same method. We remark that the orientation of
σ0 does not necessarily coincide with the orientation of η , since some of
{/ij in (2.12) may be - 1 . q.e.d.

We are interested in the one-parameter family of one-cycles σt given
by Lemma 2.2, because there is a minimax principle which works on such
families. In general, we shall consider all one-parameter families of one-
cycles {σt} which are not homotopic to 0 in the space of one-cycles.

More precisely, let σ: [0, 1] -+ Zχ(S2, Z) be a continuous loop in

Zχ(Sι, Z ) , σt = σ(t), such that

(2.14) σt starts and ends at the sum of point curves, hence, σQ = σι = 0 ;

(2.15) [σ]φθ, i.e., σt is a nonnull homotopy loop in Π^Z^S ,Z), {0}).

We define a critical value (minimax value) of the mass functional 22
to be

(2.16) c0 = inf sup {m(σt)} ~ inf sup {L(σt)} .
[ σ ] ^ 0 0 < κ i [σ]^0 0 <ί<l

We would like to say a few words about the relations between the length
of the nonsimple closed geodesic and the critical value c0 given in (2.16).
Lemma 2.2 tells us that, for any nonsimple closed geodesic γ of L(γ),
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either γ is not the shortest, or L(γ) > cQ. The next lemma asserts that the
equality L(γ) = c0 never holds when γ has more than one self-intersection
point (counting multiplicities).

Let γ be a closed geodesic. Then γ will be said to have k - 2 self-
intersection points if M - γ has k connected components.

Lemma 2.3 (Almgren-Pitts). Let y be a nonsimple closed geodesic of
length L which has more than one self-intersection. Then there exists either
a nontrivial closed geodesic σ of length L(σ) < L, or a one-parameter fam-
ily of one-cycles σt, t e [0, 1], satisfying(2Λ4)-(2Λ5) and m a x ^ , ^ L(σt)
< L. Furthermore, σt can be chosen so that σt is made of at most two
closed curves for each t e [0, 1 ].

Proof (Pitts). If there is no closed geodesic σ of L(σ) < L, we will
construct a one-family of one-cycles σt so that L(σt) < L(γ) and σt sat-
isfies (2.14)—(2.15). Such a one-parameter family σt could be constructed
by the same argument as in the proof of Lemma 2.2 with some modifica-
tions.

Let Ω', dΩι, and a1 be as in the proof of Lemma 2.2, / = 1, , k .
Since γ has more than one self-intersection point, one knows that k > 4.
Almgren and Pitts, in particular, found the desired σt for the case γ has
two self-intersections pχ, p2 and a four-legged star fish k = 4 (cf. [19,
pp. 35-40]). For k > 4, the proof remains the same with little changes.
We recall Pitts' argument here, since it will be used in the appendix.

To describe the path σt, t e [0, 1], we subdivide the interval [0,1]
into five subintervals (cf. Figure 3). For t e [0, 1/5], we bring a cycle
up to two of the legs of the star fish; σ(l/5) is a figure eight, and so
has one self-intersection. From 1/5 to 2/5 , using (1.4)-( 1.5), we "open
up" the figure eight σ(l/5) by a length-decreasing homotopy. When / is
in [2/5,3/5), σ{ has two components: the curve σ(2/5) plus a second
cycle moving up the third leg of the star fish, which can be done by using
as given in Corollary 1.3. At t = 3/5, σ(3/5) has one self-intersection.
From 3/5 to 4/5 , we once again "open up" the figure eight σ(3/5) by a
mass-decreasing homotopy; from t = 4/5 to t = 1, we "slide" the cycle
<τ(4/5) to a point by using Lemma 1.2. It is clear that <τ(3/5) is the cycle
of longest length in the path {σt} and L(σ(3/5)) < L(γ) = L. q.e.d.

The following one-dimensional minimax theorem is due to Almgren and
Pitts.

Theorem 2.4 (Almgren-Pits). Let c0 be as in (2.16). Then there is a
nontrivial closed geodesic γ0 of length L(γo) = co. Furthermore, if γ0 is
also the shortest closed geodesic on M, then γ0 is either simple, or a figure
eight.
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FIGURE 3. 4-LEGGED STAR FISH.

Proof. See [18] and [19, p. 162], or an independent proof in the ap-
pendix, which does not use the geometric measure theory.

3. The proof of Theorem D

In this section, we shall show that, on any smooth Riemannian two-
sphere of nonnegative curvature, the shortest closed geodesic is simple. In
this case, we will also demonstrate that the length of any shortest closed
geodesic is equal to the minimax value c0, given by (2.16).

Notice that, if the curvature is negative somewhere on a given two-
sphere, then the length of the shortest closed geodesic is not necessarily
equal to the minimax value c0. Standing as the counterexample is the
"dumbbell" (cf. [6]). The "dumbbell" manifold is homeomorphic to S2 ,
shown in Figure 4 (next page). The pipe connecting the two halves is to
be thought of as having fixed length Lo and varying radius e -> 0. Using
the Clairaut's relation, one can verify that the minimax value c0 > 2πe ,
where 2πe is the length of the shortest geodesic.

Now, we are ready to prove

Theorem D. If g is a C -smooth metric on a two-sphere S with
nonnegative curvature, then any nontrivial closed geodesic of shortest length
is simple.

Proof Let γ be a nontrivial closed geodesic of the shortest length. It
follows from Lemma 2.3 and Theorem 2.4 that γ is either a figure eight
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FIGURE 4. THE DUMBBELL.

or a simple closed geodesic. We will show that γ cannot be a figure eight
by a contradiction method. According to the minimax principal (Theorem
2.4), it is sufficient to verify the following assertion:

Claim 1. If γ were a figure eight, there would be either a shorter closed
geodesic σ of L{σ) < L(γ), or a one-parameter family of one-cycles σt,
te [-1, 1], satisfying

(3.1) L(σt)<L(γ) for all t e [ - l , 1];

(3.2) σ_j = σ{ = 0 are zeros as one-currents. Moreover, a_χ

and σ{ are sums of point curves

(3.3) σt is a nonnull homotopy in Ylχ{Zχ(S2, Z ) , {0}),

i.e., [σ]φθ.
The construction of σt is done in several steps by the same method as

in the proof of Lemma 2.2, with some changes. The new ingredient in
the construction is to use the second variational formula. First, we need
to deform the closed geodesic γ to a new figure eight σ0 which satisfies
(3.1).

Step 1. A new figure eight σ0 of length L(σ0) < L(γ). Clearly, the
given γ violates restriction (3.1). Hence, we have to replace y by a
"nearby" figure eight with smaller length. The desired σQ can be found by
using the exponential map along the parallel normal vector field n of γ.

By the assumption, the curvature K of the metric g is nonnegative and
M is homeomorphic to S2. It follows from the Gauss-Bonnet formula
that there is a nonempty open set G in M on which the curvature is
strictly positive, i.e., G = {x\K(x) > 0} Φ 0 . If the metric is flat in a
neighborhood of γ, K = 0, then one can move γ by a translation to get a
family of new closed geodesies of figure eight type. Such a translation will
stop until a new geodesic hits G, the closure of G. Therefore, we may
assume that there is a point q on γ such that q £ G.

Let n(s) be the smooth unit normal vector field along γ(t) pointing
inward to G. Now we define a small perturbation of γ by the exponential
map:
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(3.4)

For the same reason as in the proof of Lemma 1.2 in Part I, we see that
there is an e > 0 with

(3.5) L(ft) < L(γ) for all t with 0 < t < 2e ,

For simplicity, we change the parametrization of fe so that fe: [-1, 1] ->

S2 and /e(0) = fe(-l) = / e (l) = Po, which is the unique intersection

point.
Step 2. Cut and paste fe at its intersection point pQ. In order to get a

new closed curve σQ which is a limit of simple closed curves, we let

J =Λl[0,l]> J = M[-1,O]' σ0 = f ~f '

P\ = < 7 θ ( e ~ ! ) ' ^ 2 = σ θ ( e ) ' P3 = ( T θ ( 1 ~ € ) ' / 7 4 = C Γ θ ( - 6 )

For any pair of points {/?, q} with rf(^, q) < \ inj(M), we denote the

minimal geodesic from p to q by ~pq. Finally, we define

σ_e = η +P^P*2 + η+ +pj?l, <7e = 1/

One can find the homotopy between σ_e and σe, say σt, ί e [-e, 6],
such that L(σf) < L(cr0) < L(y) for t e [-e, e] . This part of the con-
struction of {σj , t e [-e, e] , is straightforward.

Our final step is to shrink σe and σ_e to the point curves.
Step 3. The deformation from σe and σ_e to point curves. We cannot

apply Lemma 1.2 to σe or σ_e directly, since σ±e may not be convex to
the domain it encloses. This leads us to make the following observations
on each part of σ_e and σe. Let

qχ = γ(e - 1), q2 = γ(e), q3 = γ(l - e), q4 = γ(-e),

°2-e = y~l + ^ 2 + y+ + ^ 4 ' σ2e = 7" -h ̂  + y+ + ^ .

Obviously, there is a homotopy of σ,, t e [e , 2e] u [-2e , - e ] , such that

(3.6) L(σt) < L(γ) - δ < L(γ),

where δ is a positive constant which depends on

^., <70(0)) + d(qM , σo(O)) - rf(^ , ί / + 1)} > 0.
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Because each component σ2e and σ_2e is a broken closed geodesic
which is convex to the domain it encloses, one can use Lemma 1.2 to find
either a shorter closed geodesic σ of L(σ) < L(γ), or the rest of σt,
t e [-1, -2e] u [2e , 1], such that

(3.1) L(σt)<L(γ) for all* G [-1, -2e] U [2e , 1].

(3.2) σ_j = σχ = 0 are zeros as one-currents. Moreover, they

are sums of point curves.

Combining Steps 1-3, we get the {σt}, t € [ - 1 , 1 ] , as claimed in
(3.1H3.3).

This finishes the proof of Claim 1. Thus, Theorem D follows from
Lemma 2.3 and Theorem 2.4 immediately.

We conclude this part by studying the length of the shortest closed
geodesic.

Theorem 3.1. Let g be the metric on the two-sphere S2 with nonneg-
ative curvature K > 0 and let γ be a nontrivial closed geodesic of shortest
length L. Then L is equal to the minimax value c0 given in (2.16).

Proof. It follows from Theorem 2.4 that L(γ) < cQ. Hence, we only
have to demonstrate L(γ) > c 0 . For a closed geodesic γ of the shortest
length, it suffices to construct a one-parameter family of closed curves ft,
t e [-1, 1], starting and ending at a point curve in such a way that the
induced map F: S2 —> S2 (see Figure 1) has nonzero degree, L(ft) < L(γ)
and fo = γ.

Theorem D tells us that γ is simple. Therefore, γ divides S2 into two
components Ω~ and Ω+ . We will shrink γ — dΩ+ to a point curve with
the domain Ω+ by ft, t e [0, 1]. One can play the same game on the
other "half of S2, Ω" .

The perturbation ft of γ, for t > 0, will be carried out by the same
method as in Step 1 in the proof of Theorem D. Suppose γ: [0, 1] —> M is
a parametrization proportional to the arc-length, and let n(s), s e [0, 1],
be the unit normal vector field which points inward to Ω + . Let G =
{x\x e Ω+ and K(x) > 0}. For the same reason as above, we may
assume that γΠG ^ 0 and n points inward to G. Let

(3.4) F(s 0 = ft{s) = cxpγ{s)[tn(s)], s e [0, 1].

Using Lemma 1.4 of Part I and K > 0 on G, one can show that there is
an e > 0 and

(3.7) L{ft) < L(γ) for all t with 0 < t < c .
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Now applying the Birkhoff curve shortening process to fe, we get a limiting
curve fχ. Since γ is the shortest closed geodesic, fχ has to be a point
curve. Because 5Ω + is convex to Ω+ (cf. §1), we know that /j e Ω + .
Using the same argument as in the proof of Lemma 1.2, we get a homotopy
ft, t e [e , 1], which satisfies L(ft) < L(fe) < L(γ). This gives the desired
ft for 0 < t < 1. The remaining part of ft, - 1 < t < 0, can be produced
by the same method. Hence, we get {/J_ 1 < κ l which induces a map

/ : S2 -> S2 of degree ± 1 , L(ft) < L{γ) and fo = γ. This completes the
proof of Theorem 3.1.

Appendix

In this appendix, we will give an alternative proof of the minimax prin-

cipal for the space of one-cycles (cf. Theorem 2.4) without using the geo-

metric measure theory. All notation remain the same as in§2 of Part II

unless otherwise specified.

The main tool that we will use is the variational method. However,

there are some technical difficulties. Recall that we introduced the "mass"

functional ffl on the space of one-cycles (cf. (2.5)). The "mass" functional

22 is only a semicontinuous function with respect to the weak topology on

Z{(S2, Z ) . For example, let {(x, y)} be the geodesic normal coordinates

at a given point p , and let σe be the ellipsoid given by (x/c)2 + (y/e)2 = 1

with counter-clockwise orientation, where c< ^inj(M) is a constant. One

can see that, in such a family of one-cycles, σe,

(A.I) σ e ->0 in Z ^ S ^ Z ) and 2ί(σ0) = 0 a s e ^ O ;

(A.2) Tl{σ€) >2cφQ for all e > 0.

In order to get around the unpleasant situation above, we need to re-
place the mass functional M by the length functional L on the space of
all parametrized one-cycles. The length functional L has some nice prop-
erties. For instance, the sum of the lengths of two curves is independent of
the choice of orientations on two curves. We also notice that, for any finite
number of paths φχ, φ2, , φn , φ.\ [0, 1] -> S2, with the constraint
Σ[P/0) ~ P| (0)l = 0, the sum of these paths gives us a one-cycle ]Γ φ..
For the purpose of this appendix, Lemma 2.3 tells us that it is sufficient
to consider all one-cycles which have at most two connected components.
Therefore, we are going to work on the set of all pairs of paths {{φχ, φ2)}
with the constraint

(A.3) φι(l)
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For simplicity, we denote this set by Γ:

(A.4) Γ = {Φ|Φ = (φχ, φ2), φ..: [0, 1] -> S2 is a piecewise smooth

path and ] Γ ^ (1) - X ^ ( 0 ) = 0, i.e., Φ satisfies (A.3)}.

Notice that there is a natural map which takes Γ to the space of one-cycles:

(A.5) &>:Γ-+Zι(S2

9Z)

When Φ = (φχ, φ2), by L(Φ) we mean the sum L(φ{) + L(φ2). We
would like to define a strong topology on Γ so that & and L become
continuous maps. One good choice is the modification of the Frechet
topology.

We shall now define the modified Frechet distance d(Φ, Φ) between
two elements Φ = {φχ, φ2) and Φ = {φχ, φ2) e Γ as follows. For sim-
plicity, let C/e = [0, e] U [1 - e , 1]. We may also assume that the surface
M is isometrically embedded in the Euclidean space Rn by Nash's theo-
rem. The distance d consists of two parts. First, we consider the matched
pair of arcs:

(A.6) d,(Φ, Φ) = e max_e d{9i(t), ^.(0) + [ '' 1^(0 - ΨM)\2 dt.

The residue part can be measured by

(A.7) d€i(Φ, Φ) =

Finally, we define d to be the greatest lower bound for every choice of
€ . € [ 0 , 1], 1 = 1 , 2 ,

(A.8) d(Φ, Φ) = o m f i

From now on, we will simply denote the topological space (Γ, d) by Γ.
It follows from the definition of d that & is in fact a continuous map
from Γ to Z{(S2, Z). Since Γ is relatively easy to deal with, we will
transfer our geometric problem on Z{ (S2 , Z) to a variational problem on
Γ via the map £P .

For any given path Φ: [0, 1] —• Γ, if 3°{Φ) satisfies conditions (2.14)-
(2.15), then Φ is said to be admissible, or briefly [Φ] Φ 0.

For the set of all admissible paths in Γ, one can find the following fact
about its minimax value.
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Lemma A.I. Let cQ be the minimax value of the mass function ffl on

Z{(S2,Z) given in (2.16). Then

(A.9) c n = inf maxI(Φ s ).

Proof Using the same argument as in the proof of Lemma 2.3 of Part
II, one can show that c0 can be taken among all nontrivial paths {σs},
s e [0, 1], in the subspace &>{Γ) of Z{(S2, Z ) , where &>(Γ) is the set
of all one-cycles which have at most two components.

Recall that, if Φ only has finitely many self-intersections, then, by (2.7),
one knows 22(^(0)) = L(Φ) .1 The set of all such Φ is a dense subset of
Γ. Hence, (A.9) holds.

Proof of Theorem 2.4. In order to carry out the proof, we need to con-
sider the variation of the length functional L on Γ. Let X(M) be the set
of all smooth vector fields on M. For any X e X(M), X generates a one-
parameter group of diffeomorphism ht (cf. [16, p. 10]). The derivation
of L at Φ G Γ in direction X is defined by

If SLφ{X) = 0 for all X e X(M), then Φ is called a critical point of L
in Γ and L(Φ) is called a critical value of L.

Our next step is to show that cQ is a critical value of L. This can be
done by a finite-dimensional approximation of a subspace of Γ̂ 1 = {Φ|Φ €
Γ, L(Φ) < c{}, where c{ > c0 is a constant. Such an approximation can
be described as follows. Choose an integer N > 2 so large that c{ /N >
inj(M). For any Φ = {φ{, φ2) e Γ 1 , applying the first half of B.C.S.P.
to each φi9 i = 1, 2, one can get a new element Φ £ Γ, as well as a
homotopy Φs, s e [0, 1/2], from Φ° = Φ to Φ 1 / 2 (cf. §1 of Part II).
The homotopy was defined in such a way that L(ΦS) < L(Φτ) whenever
s > τ. Hence, if JK is the product of 2N copies of M, then Γ̂ 1 is
homotopic to a compact quotient space of JV. Using the same argument
as in [16, pp. 88-100], one can show that c0 is a critical value of L.

Suppose that Φ = (φχ, φ2) is a critical point in Γ with L(Φ) = c0 we
want to show that φιUφ2 forms a closed geodesic. When Φ is a critical
point, φ{ and φ2 have to be geodesic paths. Since φ{+φ2 is a closed one-
cycle, endpoints of φ{ and φ2 have to meet at at most two distinct points.
When the set {φ{(0), φ{(l), φ2(0), φ2{l)} has exactly two distinct points,
it is easy to verify that φχ and φ2 form a closed geodesic or a union of
closed geodesies (or possibly point curves). If endpoints φχ and ψ2 meet
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at a single point and both are nontrivial geodesic loops, then we let

e4 = φ2{l)/\\φ2{l)\\.

Using the fact δLφ{X) = 0 for all X e X(M) and the first variational
formula in [7, p. 24], one knows that

Using (A. 11) and the fact that ||ez | | = 1, 0 < / < 4, one may assume
that eχ = —e3 and e2 = -e4 after reindexing en 1 = 1 , 2 , 3 , 4 , suitably.
Therefore, φχ U φ2 forms a closed geodesic after changing the orientation
of φχ appropriately.

Moreover, if there exists the shortest closed geodesic γQ of length L(γ0)
= c0 on (S , g), then using Lemma 2.3 and the argument above, we
conclude that γ0 has at most one self-intersection. This completes the
proof of the minimax principle.

Remark. Suppose M is a closed smooth Riemannian surface of genus
k and γ is a nontrivial closed geodesic of shortest length among its ho-
mology class [γ]. Then using the argument above, one can estimate the
number of self-intersections of γ . In particular, if [γ] = 0 in H{(M, Z ) ,
then γ has at most 2k + 1 self-intersections.
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