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RATIONAL CONNECTEDNESS AND
BOUNDEDNESS OF FANO MANIFOLDS

JANOS KOLLAR, YOICHI MIYAOKA & SHIGEFUMI MORI

0. Introduction

Fano manifolds are, by definition, smooth projective varieties with am-
ple first Chern class (= anticanonical class). They are of special interest
from the viewpoint of classification theory via minimal models; in fact,
a principal goal of the minimal model program is to decompose a gen-
eral algebraic variety into the Fano-like part and the minimal part (cf. [5],
[11]).

Two-dimensional Fano manifolds are usually called Del Pezzo surfaces.
Their classification into ten families of rational surfaces is an immediate
consequence of Castelnuovo's criteria for rationality and minimality and
Enriques' theory of adjunction. However, the systematic study of Fano
manifolds initiated by G. Fano has revealed that their structure is not so
simple in higher dimensions. For instance, the list of Fano 3-folds consists
of 104 deformation classes, many of which are not rational [4], [12]. In di-
mension > 4, their complete classification is thus virtually impossible and
we should rather be concerned with vague but more accessible questions:

Question 1. Does the set of ^-dimensional Fano manifolds form a
bounded family?

Question 2. What can be said about geometric properties shared by
the Fano manifolds in common?

The aim of this paper is to answer these questions: rational connected-
ness and boundedness.

A variety X is said to be rationally connected if two general points
can be joined by an irreducible rational curve on X. Rational connect-
edness is a birational and deformation invariant, thus fitting well into
the classification theory [8]. Roughly speaking, it is a crude generaliza-
tion of unirationality, which is often too subtle to deal with in a general
framework. Through crude, this generalization is natural enough to yield
most of the geometric properties known for unirational varieties such as
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1-connectedness, vanishing of global differential forms, etc. For further
implications of rational connectedness, the reader is referred to [8].

Theorem 0.1 A Fano manifold X over an algebraically closed field of
characteristic zero is rationally connected. More precisely, any two general
points x and y can be joined by an irreducible rational curve C such that
(C, -Kχ) < c(dimX), where c(n) is an effectively computable function
in n , a positive integer.

As was pointed out by G. Fano (cf. [7]), we can derive from (0.1) an
effective bound of the degree of a Fano ft-fold:

Theorem 0.2. For a Fano manifold X of dimension n over an alge-
braically closed field of characteristic zero, the degree of X with respect to
the anticanonical divisor is bounded, i.e.,

cχ(X)n<c(n)\

where the function c(n) is the same one as in (0.1). In particular, by a
theorem of Kollάr and Matsusaka [6], the n-dimensional Fano manifolds
form a bounded family, i.e., they are (noneffectively) parametrized by a
quasiprojective scheme.

This article is the third part of our joint program. In the first part [7],
Fano manifolds with Picard number one are discussed. In this specific
case, we can choose a rather small number \{n + 2)2 instead of c(n).
For general Fano manifolds with Picard number > 2 treated here, our
bounding function c(n) grows very rapidly as follows: c(n) = O(n ) .
For the explicit definition of c(n), see §4 below.

The second part [8] is devoted to the general theory of rationally con-
nected varieties, including a numerical characterization of rationally con-
nected 3-folds. Note that "maximal rationally connected fibrations" con-
structed there will provide a shortcut toward the rational connectedness
of Fano manifolds, except that we cannot keep track of the degrees of
rational curves by this method.

In general classification theory, we have to deal with Q-Fano varieties
as well. In the fourth part (in preparation), we will prove the rational
connectedness and the boundedness of Q-Fano 3-folds with only terminal
singularities.

In this paper, all schemes are defined over an algebraically closed field
with uncountable elements.

Our joint program has grown out of our discussion at University of
Utah while the two Japanese authors were visiting there with financial
support from the US-Japan Cooperative Science Program of the Japan
Society for the Promotion of Science. Partial support for the first author
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was provided by the NSF, under the grant numbers DMS-8707320 and
DMS-8946082, and by an A. P. Sloan fellowship. Essential ideas in this
article were addressed at a conference at University of Utah in October of
1990.

In his new papers [1], [2], F. Campana proves that two points on a
Fano manifold can be joined by a chain of rational curves (cf. Theorem
3.3 below). His idea is basically the same as ours in §§1-3.

1. Free rational curves and the associated rational fibration

In this section, we recall and strengthen some results in [7], [8], to which
the reader is referred for more detail.

Let Tχ denote the tangent sheaf of a smooth variety X.
An irreducible rational curve C on smooth projective X is said to

be free if Tχ restricted to C is semipositive. Let / : P1 -* X be the
composite of the normalization and the embedding of C (in what follows,
/ is called the normalization of C for simplicity). C is free if and only
if f*Tχ is generated by global sections.

Let g7 = {Cs}seS be a flat family of curves on X. *& is called a
covering family of irreducible rational curves if

(1) the parameter space S is an irreducible variety,
(2) every member Cs is an irreducible rational curve, and
(3) \JseS Cs contains an open dense subset of X.

A variety X is uniruled if and only if there exists a covering family of
irreducible rational curves on X.

Proposition 1.1. Let X be a smooth projective variety over an alge-
braically closed field with uncountably many elements. Then we have the
following:

(1) Let Σ be the set of points e X which are contained in a noncovering
family of rational curves. Then Σ is a union of countably many proper
closed subsets of X. In other words, every rational curve passing through
x e X\Σ belongs to a covering family.

(2) If the ground field is of characteristic zero, then a general member of
a covering family of irreducible rational curves is free.

The proof is easy. Note, however, that the condition on the character-
istic is indeed necessary in order to show the freeness of general rational
curves (2) above; except this statement, all the arguments in this paper are
characteristic-free. A direct consequence of (1.1) is

Corollary 1.2. Let Cs c X be a family of irreducible rational curves on
a smooth projective variety X. Suppose that C has a reducible limit C^
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which contains a point e X\Σ. Then {Cs} is a subfamily of a covering
family whose generic member is free.

Let 9 = {(x, Cs) x e Cs} be a family of free rational curves parame-
trized by an irreducible variety S. Since ί? is a locally closed subset of
I x S , w e have natural projections pr^: W —• X and pr^: ^ —• S. From
our assumption, we see that pr^ and pr 5 are both flat (if the family is
free, pr^ is smooth).

Take a general point x e X. We define Vk(x) = Vk(x, g") induc-
tively:

Vk+\x) = pr^pr

Vk(x) is the set of the points on X which can be joined with x by k or
less rational curves in ^ .

Let cl[*] denote the closure of a subset * .

Lemma 1.3. cl[F^(x)] is an increasing sequence of closed subsets, which

is stable for k > max n dimF n (x) furthermore we have d i m F + (x) >

dim Vk(x) unless cl[F*+ 1(x)] = cl Vk(x)].

Proof Take an irreducible component Vk of Vk = Vk(x). pτ~ι(v!c)

is a union of irreducible components Wk . pr^ is flat so that each W.j

is surjectively mapped onto Vk . Since pr5 is flat with irreducible fibres,

Wk. = pr; 1 vxs(Wk.) is again irreducible. Hence either cl[ϊF* ] = c l [ ^ ]

or cl[ΪF^ ] D c l [ ^ ] has bigger dimension. Thus cllpr^ίϊ^.)] is equal
k k

to either cl[F^ ] or an irreducible variety which contains V( as a proper

subvariety. In particular, cllpr^pr^1 p r ^ p r ^ ^ ^ ) ] has irreducible com-
ponents of dimension greater than dim Vk unless it is equal to c\[Vk].

This means that Vk is decomposed into f̂able U ̂ stable s u c ' 1

while cl[P^nstable] consists of irreducible components which is a proper

subvariety of components of c l f F ^ 1 ] . Let m(k) be the minimum of the

dimensions of the components of F ŝtabie* ^ e ^ e r ^ a t m(k + 1) ^

m(k) + 1 if Vk=Jable is nonempty. Thus if Fu^ s t a b l e is nonempty, then

every component of ^stable h a s dimension > k , and k < max dim V1.

The argument above is used in [7] in order to show that U Vk(x) is

dense in X with Picard number one.
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It is clear that V{x) = \JVk(x) = F d i m v{x) (x) is the set of points on X
which can be joined with x by finitely many rational curves in 9 . Hence
we infer

V(x) Π V(y) is nonempty iff V{x) = V(y).

This gives rise to a rational map π^: X —• Hilb(Ar), where π^(x) is
defined to be cl[F(jc)], the closure of V(x).

Call this rational map π^: X —> I m π ^ c Hilb(Λf) the rationally
connected fibration associated with *&, a covering family of free rational
curves.

Lemma 1.4. Let xx and x2 be two points on a "fibre" cl[F(x)] of π^,
the rationally connected fibration associated with a covering family of free
rational curves. Then there exists a chain of rational curves Tχ, , Γ^
which connects xχ and x2 such that

£ ( Γ . , -Kχ) < dim V(x)(Cs, -Kχ),
i

where Cs is a member of Ή?, parametrized by S.

Proof If xχ and x2 sit in V(x), then V(x) = V(χ.), so that they are

connected by dim V(x) or less rational curves C\ in ^ . By specializing

xz's, we get the assertion.

2. Construction of horizontal rational curves

Let X be a Fano manifold and let π: U -+ Z be a surjective proper
morphism from an open dense subset U onto a quasiprojective variety
Z . The purpose of this section is to construct horizontal rational curves
on X meeting the fibre over a given point z e Z. The technique used
here follows [10] and [9], and all the results stated in this section hold in
arbitrary characteristics.

Theorem 2.1. Let X be a Fano manifold. Suppose that there is a
nonempty open subset U of X, a smooth quasiprojective variety Z and
a proper surjective morphism π: U -> Z . Suppose that Z is of positive
dimension and let z be a general point on Z . Then there exists a rational
curve C on X with the following two properties:

(a) C meets π~ι(z)

(b) C is not contained in π~ι(z).

(Call C a horizontal rational curve meeting π~ι(z).) Furthermore, we
can choose C to satisfy

(c) (C\-i^)
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For our proof of Theorem 2.1, we define the notion of relative defor-
mations. F. Campana [2] proved (2.1) without the explicit usage of this
notion, but we introduce it here in view of interesting byproducts (2.8)
and (2.9) below.

Definition. Let X, Y and Z be irreducible schemes. Let U c X be
an open dense subset and π: U -> Z a (possibly nonproper) morphism.
Let / : Y -+ X be a morphism, with f(Y) meeting U. By a relative
deformation over Z of / , parametrized by a connected punctured scheme
(S, ό) and equipped with a base subscheme 5 c Γ , w e mean a morphism

which satisfies the following three conditions:

(3) π/^ = π / for every s e S, when viewed as a rational map.
Let H o m z ( / ; B) (5 , 0) denote the set of relative deformations of /

parametrized by (S, o). Then H o m z ( / ; 5) turns out to be a contravari-
ant functor of the category of connected punctured schemes to the category
of sets. When Y and X are both projective, it is a locally closed sub-
functor of the Hubert functor of 7 x 1 and hence representable by a
quasiprojective scheme H o m z ( / ; B), the universal relative deformation.

From now on, we assume that X, Y and Z are all smooth and projec-
tive, and that f(B) c X is contained in U, on which π is a morphism.

The differential dπ: Tυ —> π*Tz of π gives rise to a subsheaf f*Tχ,z

C f*Tχ which is defined by

, f*Tχ/z) = {ηe nV9f*Tx);dπ(η\rl(ϋ)nv) = 0}.

Thus the Zariski tangent space of Homz(Y, X\ f", B) at / is a subspace

of H°(Y, ^Bf*Tx/z), provided f(Y) ΠU φ <ΰ. When n is a smooth

morphism on an open subset containing f(Y), it is well known that the

Zariski tangent space is identical with H°(Y, ^Bf*Tχ.z), and that the ob-

struction lies in Hι(Y ,Jr

Bf*Tχ/Z) hence in this case dim Hom z (Y, X

/ , B) at / is bounded from below by

dimH°(Y, jrBf*Tχ/z) - dimHl(Y, ^Bf*Tχ/z).

Theorem 2.2. Suppose that the source variety Y is a smooth projective
curve of genus > 1 and that d i m H o m z ( y , Z / , B) > 0. Take any
curve in Homz(Y, X\ f, B) and let Δ denote its smooth compactifica-
tion. Then the naturally induced rational map F: Y x Δ —• X is never a
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morphism provided B is nonempty. Let F: W -> X be a resolution of the
indeterminacy of F. Then every exceptional curve on W {with respect to
the blowing up W -> Y x Δ) is mapped by Ύ to a fibre of π: X —> Z .
Furthermore, some irreducible component E of the exceptional divisor sat-
isfies :

(1) F(E) is not a point and contains some point of f(B),

(2) (E,F*H) < 2(deg f*H)/degB,
where H is a fixed ample divisor on X.

Proof We have only to prove that the image of an exceptional curve
is contained in a fibre of π (the rest is found in [9]). Replacing IV, we
may assume that πF: W —• Z is again a morphism. Take a suitable
ample divisor D on Z . Since πF is induced by a trivial deformation
of πf, πF({y} x Δ) is a point for a general point y e Y. Thus πF*D
is a nef divisor on S which intersects trivially with the pullback of Ay =
{y} x Δ. It follows that πF*D is algebraically equivalent to a multiple of
Δ , so that πF*D intersects trivially with the exceptional divisors. This
completes the proofs.

Corollary 2.3. Suppose that Y is a curve of genus > 1 and that Z has

positive dimension. If f: Y —• X has a nontrivial relative deformation over

Z with base points B, then we have a new morphism ff:Y-*X such

that the following hold.

(1) Either πf = πff or f'(Y) is contained in the locus of indeterminacy

ofπ\X-+Z.
(2) deg/l(y)<dcg/,(y).
(3) nf'(Y) contains a point of πf(B).
Proof Take the strict transform Y of Yx{q} which contains a point

of indeterminacy of F . Define / ' to be the restriction of F to Y .

Corollary 2.4. Assume that there is an open subset U c X such that

π\v is a proper morphism over an open subset of Z . Let f:Y-+X be a

morphism of a curve of genus > 1. If Z is not a single point, then there

exists a morphism / ' : Y —• X such that the following hold:

(1) πf' = πf,
(2) H o m z ( F , Z / ' , B) is a zero-dimensional scheme, whenever B is

nonempty.
Proof Clear by Corollary 2.3.
The above general results are applied to Fano manifolds via the follow-

ing:
Lemma 2.5. Let π: X —> Z be a dominant rational map between

projective varieties. Let H and D be ample divisors on X and Z, respec-
tively. Then there is a constant a which depends only on π: X —• Z , H
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and D such that
deg/*//>αdeg(π/)*£>

for any smooth projective curve Y and any morphism f:Y->X whose
image meets U, the domain on which π is defined.

Proof. Let p: Ύ -> X be a blowing-up such that πp is a morphism.
Then there exists a constant a and an effective divisor E supported by
the exceptional locus of p such that ap*H - E is ample on X. Hence
there is a constant b such that b(ap*H - E) - (πp)*D is ample. On the
other hand, since f(Y) is not contained in the locus of indeterminacy of
π , / naturally induces a morphism / : Y -> X . f(Y) is of course not
contained in the effective divisor E, so that deg f*(E) > 0. Thus we get

H - E) -

- E) - (πp)*D} > 0.

Now put α = l/{ab).
Corollary 2.6. Suppose that X is a Fano manifold. Let π: X —• Z

be a dominant rational map and Y a nonsingular projective curve of genus
g. Assume that π is a proper morphism over an open dense subset of
Z. Let B c Y be a closed subscheme of degree b > 0. Then there
exists a constant a depending only on (X, Z, π) such that if a morphism
f .Y -+ X satisfies

(1) f(Y) is not contained in the locus of indeterminacy of π, and
(2) d e g π / > α ( 6 + #),

then dim^Homίy, X; B, f(B)) > 0. Here Hom(r, Z; B, f(B)) stands
for the set ofmorphisms: Y -> X which map B to f(B).

Proof f has a nontrivial deformation with base points B if

is positive. Then the assertion is clear by Lemma 2.5.
Step I of the proof of Theorem 2.1: Case char = p > 0.
Let π: X —> Z be a dominant rational map as in (2.1). Take any

point z on Z and a smooth complete intersection curve Yo C X which
intersects π~\z). Fix a point Po from YQΠπ~\z). Choose a Frobenius
fc-morphism f:Y^YQcX such that degπ/ > a(g+1), where g is the
genus of Yo . Corollary 2.4 implies that we can replace / by / ' : Y -> X
such that

(1) degπ/' = degπ/> a(g + 1) and
(2) / ' has no relative deformation over Z with base point P —
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The first condition assures the existence of absolute deformation by (2.6).
Then there exists a rational curve passing through PQ which is the image
of an exceptional divisor on a blowing-up of Y xΓ. On the other hand,
since the deformation of / ' induces a nontrivial deformation of π / ' ,
some of the exceptional divisors are mapped to rational curves on Z .
We can easily check that one of them passes through z. Once we find
a horizontal rational curve meeting π~ι(z), it is a routine work to let it
split into a union of rational curves with degree < (n + 1) such that one
of them meets π~ι(z).

Step 2: Lifting to characteristic zero (when the original variety is defined
over a field of characteristic zero).

This is clear since our horizontal rational curve meeting π~ι(z) has
bounded degree < n + 1 with respect to the ample divisor -Kχ .

This completes the proof of Theorem 2.1.
As an easy application of our argument above, we have:
Corollary 2.8 (char > 0). Let π: X —> Z be a surjective smooth mor-

phism between smooth projective varieties. If dimZ > 0, then —Kχ.γ

cannot be ample.
Corollary 2.9 (char > 0). Let π: X —• Z be a surjective smooth mor-

phism between smooth projective varieties. If X is a Fano manifold, then
so is Z.

Proof. Let H be an ample divisor on Z , and a a positive constant
such that -Kχ - απ*H is nef. Then we prove that -Kz - αH is nef. Let
f:C^Z be a nonconstant morphism from a smooth projective curve
C . Let Xc denote the fibre product X x z C, and let πc and g be the
projections from Xc to C and to X , respectively. g*(-Kχ) is ample
while —Kχ ,c is not. Hence, by Kleiman's criterion, for any positive real
number ε, we can find an irreducible curve D in Xc such that

(*) (D,-KXc/c)<e(D,-gmKx).

Noting that -Kχ /c = g*π*Kz - g*Kχ , we get

(**) (D, -g*πKz) > (1 -ε){D, -g*Kχ) > (1 -ε)(£>, αg*πH).

Condition (*) implies that D is not contained in a fibre, so we can divide
the both sides of (**) by the mapping degree of D —> C, to conclude

Since ε > 0 and f:C^>Z are arbitrary, -Kz - αH is nef.
Remark 2.10. The above smoothness condition on π may look too

restrictive, but a nonsingular image of a Fano manifold by a flat morphism
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is not always Fano. An example (a conic bundle) is found in [14]. This

corollary was proved by [13] in a special case where π: X -> Z is a Ψn-

bundle.

3. Connecting two points by a chain of rational curves

We prove here that two points on a Fano manifold can be connected
by a chain of rational curves whose total degree is bounded from above.
This result is again characteristic-free.

Let Cx, , Cr be a chain of curves (or simply a union of curves) on
a polarized manifold (X, H). The total degree of this chain (or union) is
understood to be Σ ( C , H). When X is Fano, H will be the anticanon-
ical divisor —Kχ unless otherwise mentioned.

Lemma 3.1. Let X be a Fano manifold, and π: X —• Z α domi-
nant rational map onto a smooth projective variety Z. Let q: X —• X
be a resolution of the indeterminacy of π, and π: X —• Z the naturally
induced surjective morphism. Then there exists a family of irreducible ra-
tional curves %* on X which has the following two properties'.

(a) (C, -q*Kχ)<άimX+\ for C e #\

(b) πβ? is a covering family of irreducible rational curves on Z .

Proof If π: X —• Z is a proper morphism over an open dense subset

of Z , this is a restatement of Theorem 2.1. Now suppose that π has big

indeterminacy; i.e., an exceptional divisor E c X is surjectively mapped

onto Z . E is a (proper image of a) ruled variety with fibres F ~ Fr

which are nontrivially mapped to Z . Define Ψ to be the family of lines

in the fibres F. In this case, (C, -q*Kχ) = 0.

Lemma 3.2. Let the assumption and the notation be the same as in

(3.1). Assume that two points on a fibre π~ι(z) are connected with each

other by a chain of rational curvers Γ{, , Γ^ such that £ ( Γ . , -q*Kχ)

< a. Let xι and x2 be two points on X. If π{xχ) and π{x2) can be

connected by b rational curves in πβ?', then xχ and x2 can be con-

nected by rational curves Rt on X such that Σ(R., -q*Kχ) <(b+l)a +

b(dimX + 1). In particular, x. = q{xi), / = 1, 2, can be connected by a

chain of rational curves of total degree < (b + \)a + b{άimX + 1).

The proof is easy and left to the reader.

Theorem 3.3 (char > 0). Two arbitrary points on an n-dimensional
Fano manifold can be joined by a chain of rational curves of total degree
<{2n-\){n+\).
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Proof. We present here a proof in characteristic zero. In positive char-
acteristics some additional work is required.

Fix a covering family ^ of irreducible rational curves of degree <n + l
on X = Xo, which induces a dominant rational map px: X —• Xχ, where
Xχ is a suitable smooth model of n^{X). LetX01 be a modification of

X which gives a resolution of pχ, and let g^ be a family of irreducible

rational curves on XQχ as in (3.1). § ^ induces ^ and ^ j , families of

irreducible rational curves on X and Xχ, respectively. ^ is a cover-

ing family which induces π^ : Xχ —• π^(Xj). Define X2 as a smooth

model of π^ (Xχ), and p2: ΛΓ —+ X2 to be the composite of pχ and π^ .

Then, replacing p: X —> Z by /?2: X -~> X2 , we can find a family of

irreducible rational curves §*02, §^, W2 on X 0 2, Z , X2 in the same man-

ner as above (here X02 is the resolution of the indeterminacy of p2). We

can inductively define families %?k of irreducible rational curves of degree

< n + 1, which induces a covering family ^ of rational curves on Xk

via rational maps pk: X —• Xfc . Eventually we arrive at r such that Xr

is a single point. Let n̂  denote the dimension of X.. Then we have

n = no> nx > > wΓ = 0. Now it suffices to show by induction that two

points xχ and x2 on a fibre P^l(z) can be joined by a chain of rational

curves of total degree < (2n~Άk - \){n + 1). If k = 1, this follows from

the trivial inequality

dimF(;c5 %) = n - nχ < 2n~n' - 1.

Assume that the above statement is true up to k. Then (3.2) states that
two points in pklx(z) can be connected by rational curves of total degree
less than or equal to

= (2n~n^ - \){n + \).

This completes the proof, q.e.d.
In characteristic zero, it is known that the following three conditions

are equivalent [8, Theorem 2.1]:
(a) Two general points on X can be joined by an irreducible rational

curve; i.e., X is rationally connected in our sense.
(b) Two arbitrary points on X can be joined by a finite chain of rational

curves.

(c) Two general points on X can be joined by a finite chain of rational

curves.
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In [2], rational connectedness means the property (b) or (c) (the equiva-
lence of these two is immediate and true in any characteristic).

4. Gluing rational curves to a single rational curve

In this section, we show that two or more rational curves on a given
manifold can be fused to a single rational curve under a certain condition.
The material is found in [8], but we include the proof here to specify an
effective bound of the degree of curves.

Let / be a finite set, and let P., i € / , be distinct points on D = P 1 .
Let Ej denote the curve U, € / D.\JD, where Dt = P 1 , and the point oo on
D. is identified with P.. Ej is a connected curve with | / | ordinary double
points and has an |/|-dimensional versal deformation g^ —> (57 , o), where
Sj is a smooth scheme of dimension | / | .

Given two smooth protective schemes X and Y together with closed
subsets A and B of X and 7 , respectively, let Hom(y, X; B, A) de-
note the set of morphisms / : Y —> X such that f(B) c A. Hom(7, X
B, A) is a locally closed subset of Hilb(Γ x X), when morphisms are
considered as subvarieties given by the graphs.

The following lemma was implicitly proven in [10].
Lemma 4.1. Let C c X be a rational curve on a nonsingular projective

variety X. Let f:Ψι-+X be the normalization of C. If the inequality

din^HomtP1, X; {0, oo}, {/(0), /(oo)}) > 2

holds, then we can find a rational curve C' such that
(1) C' passes through a prescribed point x on C,
(2) C is algebraically equivalent to C'+ (nonzero effective curve).
The following theorem is given in [8, Corollary 1.6] in a more general

situation.
Theorem 4.2 (Gluing lemma). Let Cr i e I, be free rational curves on a

smooth projective variety X, and C = /(P 1) a rational curve on X, with
Hom(P , X\ {0, oo}, {/(0), /(oo)}) being one-dimensional Assume that
C meets each C. at Qi and fix a point QeC-\JQrIf\I\> d i m X + l +
(C9Kχ), then there exist a subset J c /, a one-dimensional subscheme T
of Sj and a morphism Txs %j -> XxT, which induces a one-parameter
family of curves containing Q such that

(a) it extends the natural morphism fj\ Ej -• C u \ J i e J C t ,
(b) a general member of this one-parameter family is an irreducible ra-

tional curve.



RATIONAL CONNECTEDNESS OF FANO MANIFOLDS 777

Proof. The Zariski tangent space of Hom^ ( ^ , 1 x 5 ^ at fj is ~

H°(En Ts Θ f)Tχ), so that dim,- Horn > χ{f)Tχ) + \I\. One base

condition imposed by Q decreases the dimension up to dim X, so that

dimFHom5( Q) > (-Kχ){C + ΣC ) + |/ | . On the other hand,

di Hom(J?7, X Q) is, by an easy calculation, bounded by

(~κχ) ( Σ Ci)(~κχ) ( Σ Ci) + dimHom(£ 0 , X {one point}, {Q})
)

Thus, if |/| > dimX + 1 - {-Kχ)C, then Hom(£7, X {point}, {(?}) is
a proper subset of Hom5 (^ , X x Sj), hence the assertion, q.e.d.

A similar but easier argument shows

Proposition 4.2bis. Let Cχ and C2 be free rational curves on X, a

smooth projective variety. Assume that they meet each other at P and fix

a point Q on C2\P. Then the natural map E^{ 2, —• Cχ U C2 extends to

^{i 2} ~* % such that the image of every curve passes through Q.
Theorem 4.3 (char = 0). Let x e X be a sufficiently general point of

a Fano manifold X (more precisely, x e X\A, where Δ is the countable
union of subschemes covered by the noncovering families of irreducible ra-
tional curves). Let C1[F(Λ:)] be the fibre containing x of the rationally
connected fibration π%> associated with Ψ, a family of free rational curves.
Let y be an arbitrary point on cl[F(.x)]. Then there exists a one-parameter
flat family {ΓJ of degree

(Γt,-Kχ)<a(n,e,d),

such that (1) Γt(t Φ 0) is an irreducible rational curve containing y, and
(2) Γo is a connected union of rational curves containing the prescribed
general point x. Here a(n,e,d) is a function in n = dimX, d =
dim V(x), e = {Cs, -Kχ), Cse&\ a(n,e9d) grows like nede.

Proof Let Cχ, , Cm be a sequence of rational curves which con-
nects x and y . Choose a sequence x0, x{, , xm such that xQ = x,
xt e C z nC / + 1 , xm = y. Assume that this sequence is maximal in the sense
that no component C{ (i > 1) deforms to C z

+uC~ with x. e C*, xi+ι e
C~ . This condition implies that dim^Hom(P1, X\ {0, oo}, {x{, xi+ι})
= 1 for i > 1. Since x e C{ is very general, there exist free rational
curves Di in ^ passing through general points on C{. Thus there are
distinct points p - 1, , pk on Cχ and free rational curves D{9 --- , Dk

passing through them. Then the gluing lemma asserts that Cχ \JDχU-
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can be deformed to a single rational curve C[ D {x{}. We can choose
k < n + 1 + (Cj, Kχ) so that

< (n + 1 + CχKχ)e + ( C t , - ^ )

< ne + (q , - ^ ) .

Since CJ belongs to a covering family with base point x{, we may as-

sume that C[ is free by (1.2); thus there are infinitely many points on C2

through which pass free rational curves D\ in the deformation class of

C[. If we repeat the above argument by replacing Dt by D\ and C{ by

C 2 , we can perform the same procedure to get an irreducible curve C'2
connecting x2 with a point e X whose specialization is x reiterating

things in this way, we eventually come across a one-parameter family of

irreducible rational curves Cm t joining y to xt whose limiting point is

x . The degree of C\ is estimated inductively by

<n(C'k,-Kχ)

<n « + l + r .
~ V n - l j n - l

On the other hand, since the total degree of the chain is bounded by
ed, the length m of the chain is bounded by ed. This completes the
proof, q.e.d.

The same method, together with the specialization argument, yields the
following.

Theorem 4.4 (char = 0). Let x be a sufficiently general point on a Fano
manifold X of dimension n. Assume that a point y on X can be joined
with x by a sequence of rational curves of total degree < N. Then x and y
can be joined by a single free rational curve of degree < enN( 1 + £ + J ^ n ) >
where e is the degree of a free rational curve passing through x.

Combining (4.4) with (3.3), we get Theorem 0.1, with the function
c(n) = (n + l)«(2"~1)(n+1){l + I + ^^±I_}. Fano's beautiful idea to de-
duce the bound of the degree of a Fano «-fold in terms of c(n) is to use
the asymptotic Riemann-Roch theorem for n(-Kχ - rP), where n is a
sufficiently large and divisible integer, r a positive rational number and
P 2i general point on X for details, see [7]. Finally, the result that the
bound of the degree of c{ implies the boundedness of Fano n -folds is a
special case of a theorem of Kollar and Matsusaka [6].
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Remark 4.5. Our estimate of the minimum degree of rational curves
connecting two points is, though indeed effective, very far from being
sharp. This is a consequence of theoretical possibility of the existence
of rational curves whose deformations are highly obstructed. When every
rational curve is free, that is, when X has semipositive tangent bundle,
two arbitrary points are connected to each other by an irreducible curve
C of degree < (\){n + 2)2 , so that

In
<

in such a case. It seems possible that the bounding function c(n) could
eventually be linear in n .
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