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CHERN CLASSES OF VECTOR BUNDLES
WITH HOLOMORPHIC CONNECTIONS ON
A COMPLETE SMOOTH COMPLEX VARIETY

HELENE ESNAULT & V. SRINIVAS

Introduction

Let X be a complete smooth variety over the complex field C, X,
the associated complex manifold, and % a holomorphic vector bundle
(locally free sheaf) on X, with a holomorphic connection V: % —

& ®g, Q! X, where Q is the sheaf of holomorphic 1-forms on X,

It is well known that & has vanishing Chern classes in H(X,, o), so that
the integral Chern classes are torsion.
Recall that the ith Deligne complex Z (i) = Z(i)X,, is defined by

where Z(i) is the subsheaf of abelian groups of the constant sheaf C on
X,, generated by (27v/—1)'Z. The Deligne-Beilinson cohomology group
(see [4] and the references given there) HJQ(Xan , 1) is defined to be the
Jj th hypercohomology of & (i). Then there is an exact sequence

0—J'(X) = Hy(X,,, i) % Hg'(X,) =0,

where H gi(Xan) CH 2"(X , Z(i)) is the subspace of classes of Hodge type
(i, i) (i.e., which maps to F'Hz'(X C) in H¥(X_, C), where F de-

an’ an’

notes the Hodge filtration), and J'(X) is the ith intermediate Jacobian
of X, defined by

JI(X) 21-— 2i—1

(X,,, C)/{imH* " (x,,, Z(i)) + F'H' (X, , O)}.

an’

The topological Chern class ¢,(%) € Hg'(X,,) C H’-'(Xan , Z(i)) is the im-
age under p of the “refined” Chern class with values in Deligne-Beilinson

cohomology,
C; (%) € Hg (X s D)
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If # has a connection V, then ¢;(¥) is the torsion, so for some integer
N>0, Nc(%)eJ'(X).

For i =1, JI(X) = PicO(X), the Picard variety of X, and it is a
consequence of Hodge theory and GAGA that every element of PicO(X )
is the class of an invertible sheaf . with an integrable connection.

For i = 2, Bloch [2] shows that the elements of H;,(Xan , 2), which

are second Chern classes c?(%) for locally free & with an integrable
connection, form a countable set. More precisely, he defines a countable
subgroup A C C using the dilogarithm function, and shows that

A) - H'(X,,, C) = J' (X)),

n > an?’

N& (%) e im(H (X,

where N is the exponent of ¢,(%) in H;(Xan , Z(2)) . He also comments
on the relationships between his results and a conjecture of Cheeger and
Simons, in the light of which he conjectures that ci9 (%) is the torsion for
all i > 1 for any locally free sheaf % with integrable connection.

Our aim in this note is to prove the following result.

Theorem. Let X be a smooth complete variety over C. Then for any

i>1, the set
{c;@(a) € H-f; (X,,> D)l & has a holomorphic connection}

is countable.
Note that we do not require the connections to be integrable.

1. Proof of the Theorem

We begin by noting that by GAGA,

(i) if & is alocally free &, -module of finite rank (i.e., a holomorphic
vector bundle), then there is émlocally free &,-module ‘55 , unique up to
isomorphism, such that & is the associated analytic sheaf;

(i) if &, &, are as in (i), and V is a holomorphic connection on %,
then there is an algebraic connection V, on %, unique up to isomor-
phism, such that the associated analytic connection on (%]),, ~% is V.

One way to see (ii) is as follows: if X is any smooth algebraic variety,
and ¥ a locally free &,-module of finite rank, then consider the sheaf
of algebraic 1-jets of the locally free &,-module 7 , defined by

FUF) =p.(01F 85 Oyl ),
where 7, is the ideal sheaf of the diagonalon X x X ,and p, : X xX — X
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are the projections. The natural exact sequence (the jet sequence)
* 1 1
*) 0——><7®(9XQX/C—>/¢(9)—>.7—>0
obtained as p,, of the sequence by tensoring
0~ A/ = Oyxl Sy =y =0

with pf.? , yields an extension class

1 1 1 1

AF) e Ext (¥, F By, Qyo)~H (X, %ndyx(.?) By, Qy/c)

the Atiyah class of ¥ , whose vanishing is a necessary and sufficient condi-
tion for & to have an algebraic connection (see [1]). In fact connections
on & are naturally in bijection with splittings of the jet sequence.
There is a corresponding Atiyah class for the existence of a holomorphic
connection on %, which lies in
H'(X Endy (o) @, Q)

an’
where Q}( is the sheaf of holomorphic 1-forms on X, . Further, the
jet sequenca"e for &, is the sequence of holomorphic sheaves associated to
the algebraic jet sequence, so A(F) — A(¥,,) under the natural map on
cohomology groups. By GAGA, if X is complete, then the map on coho-
mology is an isomorphism, and therefore in this case, if 4(%,,) vanishes,
so does A(F).

Hence, in (ii), we see that &, has some algebraic connection V'. Now
o =V, —V is aholomorphic section
Endy (%)e,, Q).

an

o GHO(X

an’

Again by GAGA, any holomorphic section g as above is of the form
o=1 where 7 is an algebraic section

T€E HO(X, %”dyx(%) s, Qzl\’lc);

an’

now V= V' —1 is an algebraic connection on %, such that (V),, =V.

The Atiyah class A(%) is also related to the topological Chern classes
c(F,) €EH gi(Xan) CH 2"(Xan , Z(i)), as follows (see [1]-this relationship
will be exploited in the proof of the Theorem). If X is any smooth al-
gebraic variety over C, and % is locally free of finite rank on X, then
the exterior product of differentials and composition of endomorphisms
induces a map of sheaves

(‘gndyx &) ®g, Q;(/C)@ - %"dyx &) ®s, Q;(/c ’
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and hence a map on cohomology
v H'(X, Bndy ()8, Qo) — H (X, Endy (F) 8, Qy0)-
Let
M(F) =y AF)®) =y (AF) @ ® AF))
€H'(X,&nd, (F)®y QUyc)

and let . )
‘ 1 1
.Nl(.?_) = tr(Mi(y)) €H (X, QX/C)>
where ‘tr’ is the map on cohomology induced by the trace on the sheaf of
endomorphisms. The classes N,(#) are the Newton classes of # , where
N,(%) is a polynomial (with integral coefficients) in the Chern classes

c(F) e H (X, Q)

for j < i, such that ¢,(¥) has a nonzero coefficient (in terms of the
splitting principle, the Newton class N, is the sum of the ith powers of
the ‘Chern roots’). Conversely, the i th Chern class is a polynomial (with
rational coefficients) in the Newton class N j(? ) for j<i.

In particular, if the Atiyah class A(#) vanishes (i.e., if & has an alge-
braic connection), the Chern classes with values in H i(X , QY /C) vanish.

If X is smooth and complete over C, the topological Chern class
¢,(#,,) is compatible with the Chern class ¢,(¥) € H'(X, Qyc in the
following way: Hodge theory and GAGA vyield maps (the latter two are
isomorphisms)

Hg'(X,,) - F'H"(X,O)nFH"(X,C) 3 H'(X,,, Q) )

an’
S H(X, Q)
under which ¢,(&,) maps to c,(¥). Hence for smooth and complete
X, c(F) =0 & c(F,)q = 0, where ¢(F,,) — ¢(F,)q € H,(X,,)
®QC H(X,,, Q(i)).

More generally, if k is a field, f : X — S a smooth morphism of
smooth k-varieties, and .# a locally free @y-module of finite rank, then
one has the notion of an algebraic connection on ¥ relative to S, which
is a map of sheaves

1
satisfying the Leibniz rule. There is a Atiyah class
1 1
A(F)eH (X, %ndyx(?) By, QX/S),
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constructed using the ideal of the diagonal in X x ¢ X', whose vanishing is
equivalent to the existence of an algebraic connection on & relative to S.
This is compatible with the ‘global’ Atiyah class A4, (X) (the obstruction
to the existence of a connection relative to Speck ), in the sense that
A(F) — Ag(S) under the map induced by the sheaf map
Q,lv/k - Q,lr/s-

Further, it is compatible with base change S’ — S, where S’ is a smooth
k-variety.

The following result is the main step in the proof.

Proposition 1. (Rigidity). Let X be a smooth complete variety over
C, and Y a smooth connected variety over C. Let & be a locally free
Oy y-module of finite rank on X x Y which has a connection relative to
the projection p,: X xY — Y . Then for any i > 1, the mapping

c(i): ¥ = Hy(X,,, i), ¥+ (BeCH),),
is constant.

Proof. To simplify the notation, we drop the subscript ‘an.” Since any
two points of Y lie on the image of a morphism from a connected smooth
affine curve, we are reduced to the case where Y is an affine curve.

The map c(i) has the following alternative description. One has the
‘algebraic’ Chern class ciCH (€) =& € CH'(X x Y), the Chow group of
codimension i algebraic cycleson XxY (see[5]), for example. The Chern
class ciCH(% ®C(y)) € CH'(X) is the image of ¢; under the natural map

iy: CH'(X x Y) - CH'(X),
where i,: X - Y xY is i,(x)=(x,y). The map c(i) is then given by
c(i)(y) = Clg(iy, &),

where i ’

Clg,: CH (X) — Hg (X, i)
is the cycle class map with values in Deligne-Beilinson cohomology. If
we fix a base point y, € Y, then the algebraic cycle i; &) - i;o &) is
(co)homologous to 0 on X, and

c(i)(¥) — c(i)(vy) = Cly (i3(&)) = Cly (i3(E)) € T'(X),

the ith intermediate Jacobian of X ; one property of the cycle class in
Deligne-Beilinson cohomology is that this element of J'(X) is the image
of iy(¢) - i, (£) under the dbel-Jacobi mapping.

0
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Let Y be the projective smooth curve associated to Y, and let
g eCH'(XxY)
be a preimage of ¢; under the restriction map
CH' (X xY)— CH'(X x Y).

Choose an algebraic cycle ). g Z. ; representing ¢, , and take Ei to be the
class of Z n; Z , where Z is the Zariski closure Z ir Then the Abel-

Jacobi map gives a map from zero cycles of degree 0 on Y to J i(X ),
by

9: Z( — () = Cl, (Z(: - i €) )) e J'(X),

whose value on (¥)— (¥,) is c(i)(¥) — c(i)(y,) for y € Y. The mapping
0 clearly factors through the Jacobian of Y, since Cl,, is well defined on
rational equivalence classes, and so there is an induced mapping

[E1: J(¥) - J'(X).
We are reduced to proving this map is constant. .

The mapping [¢,]: J(Y) — J'(X) induced by the class &, € CH'(X x
Y) is related to the topological cycle class of Ei in H (X xY, Z(i)) in
the following way (see Part One of the article [3] of Clemens and Griffiths).
There is a Kiinneth component 7, € HZi_l(X L) H 1(7, Z) of this
topological cycle class (this Kiinneth component in fact depends only on
&, ); its image in H*(X xY,C) liesin F'n F', where F' is the Hodge
filtration on H 2"(X x Y, C). Under the isomorphism (Hodge theory)

F'nF ~ H(Xx Y, QXxY/C)
1; is mapped to an element in the subspace
) 1 —
H'(X, Qo) e H(Y,Qp) e H (X, Q) o) o H'(Y, &),

and these two summands are the complex conjugates of each other. Hence
we may write image (n,) = u; + 1, with

j i—1 0~ -
€ H'(X, Q) 0c H'(Y, Qp) ~ Hom(H' (Y, &), H'(X, Q).
and 7; is the complex conjugate of u,, since their sum is a real cohomol-

ogy class. Similarly we may regard 7, as an element of

2i—1

Hom, (H' (Y, Z(1)), H* ™' (X, Z(i))).



CHERN CLASSES ON A COMPLETE SMOOTH VARIETY 263

This homomorphism is the mapping on lattices inducing the Abel-Jacobi
map [¢]: J(Y) - J 2=1(x); the mapping u; , composed with the inclu-
sion

H(X, Q0 ~F'nF - B"(x,0)/F' H"(X, ),

is the corresponding map of C-vector spaces.
The upshot of this is that we are reduced to proving that x4, =0.
Since 4,(%) =0,

A(Z) eker(H (X x Y, €nd(%) ®s, .y Q,lvxy/c)

—H' (XxY,%nd(%) ®s,. . Q,IYxY/Y))'

Now the natural map
1 1
Qyy y)c ™ Qy, Y)Y
induces an isomorphism

* ~1 1
P Qyc = Qyyyys

and similarly there is an isomorphism

* ~1 1
Pzg)'/c = QXxY/Y'
This leads to a direct sum decomposition
1 * ~1 * ~1
Qy,y =D Qy/c €B1’291’/C 5

there is a similar decomposition on X x Y. This yields a direct sum
decomposition

H'(XxY,%nd(#)8, Qy.yc)

=H'(XxY,%nd(®)®,  p;Qyc)

@H (X x Y, &nd(%) ® P, Qy0)

such that the Atiyah class 4(%") has components 4,(%) =0 and 4,(%)
in the respective summands. Hence A(%) = 4,(%) lies in the subgroup

H'(X Y, %nd(®)®,  0;Qyc)-

Since Y is a curve, Q;,/C =0 for i > 1. Thus

M(&)e H(X xY,Znd(@) 8, Q. yc)
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lies in the subspace
i * ~1 .
H(XxY,&nd(%) ®s P,Qyc) =0 fori>1.

Hence the Newton classes N,(%") vanish for i > 1. This implies that the
Chern class . _
(B)eH (X xY,Qy v

is a rational multiple of Nl(%)i , where
1 1
N(®)eH (X XY, Qy,y0)-
But again N, (%) lies in the subspace
H' (X xY,p;Qp0),

SO
N,(%) € H'(X x Y,p;Q’Y/C) =0 fori>1.

We observe that the restriction map
H' X xY, Q30— HX XY, Q)
respects the decompositions
H'(XxY,Q3/0)=HXxY,pQ )
1 =5 * ~I—1 * ~1
O H' (X xY,pQc ® _ P%c)
H' X xY,Q y0)=HXxY,p;Qyc)
] * ~i—1 * ~1
SH (X xY,p[Quc® Py c).
The summands
H'(X xY,p}Qc), H(X XY, piQyc 84 _P;%c)
further decompose respectively as
i i 0, i—1 ' 1~
H(X,Qu)eH (Y, ) eH (X,Q)e0H (Y,5),
| i—1 0, 1 j—1 i—1 1, 1
H(X,QoH(Y,Qp)eH (X,Q)eH (Y, Q)
Thus _ )
> 1 1
Cl¢)eH (X xY, QXX,,/C)

is a sum of four components, two of which are u; and 7, ; in particular
4, is the component in

H'(X, Q)@ H' (Y, Q).
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The restriction map
H'X Y, piQyc ® _p;Q5c) = H'(X x Y, Qe ® p;Qyc)
is injective on the summand
H'(X, Q) @ H'(Y, Qp/0)

of the domain, and vanishes on the other summand. Since the restriction

of Cl(éi) vanishes for i > 1, u, restrictstoOon X x Y, ie., 4, =0, as
desired. q.e.d.

We now give a short alternative proof using the construction of the
Deligne-Beilinson cohomology ng(i) of open smooth complex varieties
(see [4]) but not using [3].

Alternative proof. As before, we reduce our proof to the case where
Y is a smooth, connected affine curve, so that the Chern classes c,(%) €

H i(X xY, Qf\,xy) vanish for i > 2. There is an exact sequence

0-H" ' (XxY,C/Z(i)/F H" " (X xY)
—~ Hy(X x Y, i) — Fp, H' (X x Y) -0,
where
FjH' := {® € F'H' such that image of o vanishes in H'(C/Z(1))}.
One has an exact sequence
1 o . .
0— Fz‘(*i)H (X xY) = Fpy H'(X x Y) » H'(X x Y, Q) 5(log D)),
where Y is as above, D = X x {oo} with {o0}:=Y — Y, and
H'(X x¥, Q) 5(log D))
—H'X,Q)eH'(Y,f)eH (X, Q7)o H(Y, Qy(log{xo}))
oH (X, Q)0 H (Y, &)
(Since Y is an affine curve, H ](7, Qly(log{oo})) = 0.) In this decomposi-
tion the image of c?(%”) € H;;(Xx Y, i) iswrittenas a; ;+a; | ,+4a; ; ;-
From the vanishing image of ci@(%) in
HXxY,Q, ) =HX,Q)eH(Y,5,)
' i—1 0 1
oH(X,Qy )®H (Y,Qy),
and from the injectivities of H°(Y, &) and H (Y, Qy(log{co})) respec-
tively in HO(Y, y) and HO(Y, Qi,), it follows that @, ; =a, | ; =0.
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Asa; | ;=a; ; ,,where the dual space to H(Y, O5) is HO(Y Ql—) i
HO(Y Ql (log{cc})), one obtains that cg(%) maps to FZ'(+)1H2’(X xY).

As FZ’Z‘Hz’(X x ¥) =0, one has F,) H*(X x Y) & Fp,_  H*~'(X x

{oc}) = 0 via the Gysin sequence. Therefore c; (‘5) comes from a class
y € H'"\(X x Y, C/Z(i)), with y, = a; + B,, o, € H' (X, C/Z(i)) ®
H'Y,Z), B, e H (X, C/Z(i)) ® H' (Y, Z), and one has

17 P . .
c; (%|Xx{y}) = (%)lXx{y} via the morphlsm

HY(X XY, i) — Ha(X x {y}, i
= image (y;|X x {y}) via the morphlsm
H' (X x Y, C/Z(i)) » HY(X x Y, i)
= image(o,|X x {y}) via the morphism
2i— . j
H"™ (X x {y}, C/Z(i)) - Hg (X x {y}, i)

The class of «; is constant as desired. q.e.d.

The proof of the Theorem is now completed by a routine argument.
Let k c C be a countable algebraically closed field of definition for X .
Let X, be a model of X over k, i.e., a smooth complete k-variety with
X, X Speck SpecC = X . First note that, up to isomorphism, there is only
a countable number of locally free ﬁXO-moduIes &, which have an alge-
braic connection over k. This is because there are in fact only countably
many locally free &, -modules up to isomorphism over k (cover X, by
mﬁmtely many aﬂ”me Spec 4, ; there are only countably many projective

A;-modules up to 1somorphlsm for each i, and only countably many pos-
sibilities for transition matrices).

Each locally free sheaf % defined over k and carrying a connection
yields a locally free &,-module & by extension of scalars. Clearly there

are only countably many classes c;@(% ) with & of this special form.
By the rigidity result, it then suffices to prove that if % is any locally
free &;-module with a connection, there exist the following:

(i) a connected smooth variety Y, defined over k, and the corre-
sponding complex variety Y = (Y;)c,
(ii) alocally free ﬁxoxyo-module %, with a connection V,, relative to
Y, , and the corresponding objects &, V over C, and
(iii) a closed point y € Y such that (£, V) ® C(y) is isomorphic to
the given locally free sheaf % with its given connection.
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Given this data, the Chern class c;@ (¥) equals c?(%) , where y, € Y,
is a closed point, regarded in a natural way as a C-pointof Y, and % =
Z®C(y,). Then &, = &, ® k(y,) is a locally free sheaf defined over k
with a connection, and (%)) = € . This would prove the Theorem.

To make the claimed construction, note that ¥ and its given connec-
tion are defined over a finitely generated k-subalgebra K of C. Let S
and V be corresponding objects over K . Let Y, be a smooth k-variety
with function field K; then X, is the generic fiber of the proper and
smooth morphism X, x, ¥, — Y. By replacing Y, by an open subset
if necessary, we may further assume that there exists a locally free sheaf
?0 on X, x Y, with a connection relative to Y, whose restriction to the
generic fiber over Y is &, and with the connection V, (to verify that
the connection extends to an open set, one may think of it as a splitting of
the jet sequence (*)). The given embedding K C C determines a closed
point y € Y, such that y maps to the generic point of Y. If (¥, V) is
the locally free sheaf with a connection relative to Y obtainedon X x Y,
then (¥, V)®C(y) =~ (F, Vi) ®, C, which by choice is the sheaf &
with its given connection. Hence the proof is complete.
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