LIE'S THIRD THEOREM FOR INTRANSITIVE LIE EQUATIONS

JOSÉ M. M. VELOSO

Introduction

In [4], H. Goldschmidt used the formalism developed by B. Malgrange [9] to prove Lie's third theorem in the context of transitive Lie algebras: "If $L_{k+1} \subset J_{k+1} T \mathbf{R}_{0}^{m}$, where $k>0$, is a $(k+1)$-truncated transitive Lie algebra such that the symbol of $L_{k}=\pi_{k} L_{k+1}$ is 3-acyclic, then there exists a formally integrable analytic Lie equation $R_{k} \subset J_{k} T \mathbf{R}^{m}$ such that $R_{k+1,0}=L_{k+1}$."

In this paper, we show that the above R_{k} can be constructed without using the Cartan-Kähler theorem; our proof only requires Frobenius' theorem. Consequently, in the intransitive case, we are able to prove a version of E. Cartan's results [1] without assuming that the structure functions $c_{i j k}$ and $a_{i j \lambda}$ are analytic.

Our main result is the following theorem, which we state here only in the transitive case for simplicity.

Theorem. Suppose $L_{k+2} \subset J_{k+2} T \mathbf{R}_{0}^{m}$, where $k>0$, is a $(k+2)$ truncated transitive Lie algebra. Then there exists a C^{∞} vector sub-bundle $R_{k+1} \subset J_{k+1} T \mathbf{R}^{m}$ such that:
(i) $R_{k}=\pi_{k}\left(R_{k+1}\right)$ is a vector sub-bundle of $J_{k} T \mathbf{R}^{m}$;
(ii) $\left[R_{k+1}, R_{k+1}\right] \subset R_{k}$;
(iii) $R_{k+1,0}=L_{k+1}$;
(iv) $R_{k+1} \subset\left(R_{k}\right)_{+1}$

If the symbol of $L_{k}=\pi_{k} L_{k+1}$ is 3 -acyclic, then L_{k+1} can be prolonged to L_{k+2}. We know that all its prolongations are isomorphic, thus the assumption in Goldschmidt's theorem gives us a ($k+2$)-truncated transitive Lie algebra.

The equation R_{k} in the Theorem may not be formally integrable (we only know that $\pi_{k}:\left(R_{k}\right)_{+1} \rightarrow R_{k}$ is surjective). However, when the symbol of L_{k} is 2-acyclic, Theorem 4.1 of Goldschmidt [2] implies that R_{k}

[^0]is formally integrable. Therefore Goldschmidt's theorem can be obtained as a consequence of our theorem.

To prove our result, we first consider the flat connection ∇ on $J_{k+2} T \mathbf{R}^{m}$, as in [4], defined by a section

$$
\omega=\sum d x^{i} \otimes j^{k+3} \frac{\partial}{\partial x^{i}}
$$

i.e., $\nabla \xi=[\tilde{\omega}, \xi]$ for $\xi \in \mathscr{J}_{k+2} \mathscr{T} \mathbf{R}^{m}$. We construct R_{k+2} by taking the parallel transport of L_{k+2}. Then $R_{k+1,0}=L_{k+1}$, and [R_{k+1}, R_{k+1}] \subset R_{k}. Now we twist R_{k+1} by a section $\phi \in \widetilde{\mathscr{Q}}_{k+2}$, as in [4], so that the new R_{k+1} satisfies our condition (iv). To achieve this, we must solve the equation

$$
\begin{equation*}
\mathscr{D} \phi=-\pi_{k+1} \omega \quad \bmod T^{*} \otimes R_{k+1} \tag{*}
\end{equation*}
$$

In [4], the sophisticated Spencer operator is used. However, the first nonlinear Spencer operator \mathscr{D} seems to us to be more appropriate for this problem because the bracket in L_{k+2} is defined pointwise.

We associate to $(*)$ the submanifold $S^{k+2} \subset Q_{(1, k+2)}$. We prove that: (1) the symbol of S^{k+2} is the tensor product of T^{*} and a vector bundle, (2) the mapping $\pi_{1}:\left(S^{k+2}\right)_{+1} \rightarrow S^{k+2}$ is surjective. Then our equation may be solved using Frobenius' theorem, as is shown in the Appendix.

To prove statement (2), we consider a section $X \in \mathscr{S}^{k+2}$, and lift it to $\tilde{F} \in \mathscr{Q}_{(2, k+3)}$ with $\pi_{1, k+3} \tilde{F} \in \mathscr{S}^{k+3}$, where S^{k+3} is defined in the same way as S^{k+2}, replacing k by $k+1$. We show that

$$
p_{1}(\mathscr{D}) \tilde{F}=j^{1}\left(-\pi_{k+2} \omega\right)+y-x,
$$

where $y \in J_{1}\left(T^{*} \otimes R_{k+2}\right)$ and $x \in \operatorname{ker} \sigma\left(\mathscr{D}_{1}\right)$. The sequence

$$
S^{2} T^{*} \otimes V Q_{k+3} \xrightarrow{\sigma_{1}(\mathscr{D})} T^{*} \otimes T^{*} \otimes J_{k+2} T \xrightarrow{\sigma\left(\mathscr{V}_{1}\right)} \bigwedge^{2} T^{*} \otimes J_{k+1} T
$$

is not exact, but

$$
\pi_{k+1}\left(\operatorname{ker} \sigma\left(\mathscr{D}_{1}\right)\right)=\sigma_{1}(\mathscr{D})\left(S^{2} T^{*} \otimes V \mathscr{Q}_{k+2}\right)
$$

hence there exists $h \in \mathscr{S}^{2} \mathscr{J}^{*} \otimes \mathscr{V} Q_{k+2}$ such that $\sigma_{1}\left(\mathscr{D}_{1}\right) h=\pi_{k+1} x$. This explains why we must start from a $(k+2)$-truncated Lie algebra L_{k+2} instead of one of order $k+1$. Then $\tilde{X}=\pi_{2, k+2} \tilde{F}+h$ is a section of $\left(S^{k+2}\right)_{+1}$ which proves (2).

The proof in the intransitive case follows the same lines. We only have to add the hypothesis: L_{k+2} is defined on a submanifold N transverse
to the orbits, and the restriction of the linear Spencer operator D to $\mathscr{T N}$ sends \mathscr{L}_{k+2} into $\mathscr{T} \mathscr{N}^{*} \otimes \mathscr{L}_{k+1}$.

In a separate paper, we shall define the intransitive Lie algebras, a notion of isomorphism, and prove realization theorems analogous to those of Guillemin-Sternberg [6].

Preliminaries

Throughout this paper, we shall use the notation of Malgrange [9] or of Goldschmidt-Spencer [5], unless it is stated otherwise.

All the results are local. Let M be an open subset of \mathbf{R}^{m} containing 0 , let $\left(x^{i}, y^{j}\right)$ be coordinates on M, and let H, V be sub-bundles of $T=T M$ such that H (resp. V) is generated by $\left\{\partial / \partial x^{i}\right\}$ (resp. $\left\{\partial / \partial y^{j}\right\}$).

We denote by $J_{k} V$ the sub-bundle of $J_{k} T$ of k-jets of sections of V. Then

$$
D: \mathscr{J}_{k+1} \mathscr{V} \rightarrow \mathscr{T}^{*} \otimes \mathscr{J}_{k} \mathscr{V}
$$

is defined by $D \xi=[\psi, \xi]$ (see [9, Proposition 3.7]), where $\psi=\psi_{H}+\psi_{V}$ and

$$
\psi_{H}=\sum d x^{i} \otimes \frac{\partial}{\partial x^{i}}, \quad \psi_{V}=\sum d y^{j} \otimes \frac{\partial}{\partial y^{j}}
$$

The decomposition $T=H \oplus V$ induces a decomposition $D=D_{H} \oplus D_{V}$, with $D_{H}\left(\mathscr{J}_{k=1} \mathscr{V}\right) \subset \mathscr{H}^{*} \otimes \mathscr{J}_{k} \mathscr{V}$. It is easily verified that $D_{H} \xi=\left[\psi_{H}, \xi\right]$ and $D_{V} \xi=\left[\psi_{V}, \xi\right]$. We can extend D_{H} to a mapping

$$
D_{H}: \bigcap \mathscr{T}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V} \rightarrow \mathscr{H} \wedge\left(\Lambda \mathscr{T}^{*}\right) \otimes \mathscr{J}_{k} \mathscr{V}
$$

by

$$
\begin{equation*}
D_{H}(\alpha \otimes \xi)=d_{H} \alpha \otimes \pi_{k} \xi+(-1)^{\operatorname{deg} \alpha} \alpha \wedge d_{H} \xi \tag{1}
\end{equation*}
$$

where again $d=d_{H}+d_{V}$. Also, D_{V} extends in a similar way.
We denote by $Q_{k}(V)$ the manifold of k-jets of diffeomorphisms f of M, which are equal to the identity mapping in the variables x, i.e., of the form $f(x, y)=(x, g(x, y))$. So $Q_{k}(V)$ is a submanifold of Q_{k}, and we denote by $\tilde{Q}_{k}(\mathscr{V})$ the sheaf of invertible sections of $Q_{k}(V)$.

The first nonlinear Spencer operator

$$
\mathscr{D}: \widetilde{\mathscr{Q}}_{k+2}(\mathscr{V}) \rightarrow \mathscr{T}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V}
$$

acts on $\tilde{\mathscr{Q}}_{k+2}(\mathscr{V})$ by

$$
\begin{equation*}
\mathscr{D} F=\psi-F^{-1}(\psi) \tag{2}
\end{equation*}
$$

(see [9, p. 520]). The formula (6.8) of [9] tells us that

$$
\begin{equation*}
(\mathscr{D} F)_{x}=\left(\lambda^{1} F(x)\right)^{-1} \cdot j_{x}^{1} \pi_{k+1} F-j_{x}^{1} I_{k+1}, \tag{3}
\end{equation*}
$$

where I_{k+1} is the identity section of $Q_{k+1}(V)$. We identify I_{k+1} with M. We can interpret this formula in the following way: $j_{x}^{1} \pi_{k+1} F$ and $\lambda^{1} F(x)$ define invertible linear maps from $T_{x} Q_{k+1}(V)$ onto $T_{\pi_{k+1} F(x)} Q_{k+1}(V)$, so $\left(\lambda^{1} F(x)\right)^{-1} \cdot j_{x}^{1} \pi_{k+1} F$ is an endomorphism of $T_{x} Q_{k+1}(V)$ which induces the identity on $T_{x} M$; thus for $v \in T_{x} M$ we have

$$
i(v)(\mathscr{D} F)_{x} \in V Q_{k+1}(V)_{x} \cong J_{k+1} V_{x}
$$

i.e.,

$$
\begin{equation*}
i(v)(\mathscr{D} F)_{x}=\left(\lambda^{1} F(x)\right)^{-1} \cdot j_{x}^{1} \pi_{k+1} F \cdot v-v . \tag{4}
\end{equation*}
$$

The following formulas hold for \mathscr{D} ([5], [9]):

$$
\begin{gather*}
\mathscr{D}(G \circ F)=\mathscr{D} F+F^{-1}(\mathscr{D} G), \quad F, G \in \widetilde{\mathscr{Q}}_{k+2}(\mathscr{V}), \tag{5}\\
D \xi=[\mathscr{D} F, \xi]+\left(\pi_{k+1} F\right)^{-1}(D F(\xi)), \quad \xi \in \mathscr{J}_{k+1} \mathscr{V}, \tag{6}\\
D \mathscr{D} F-\frac{1}{2}[\mathscr{D} F, \mathscr{D} F]=0, \tag{7}
\end{gather*}
$$

where $F()$ denotes the action of F on $\Lambda \mathscr{J}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V}$. If

$$
\mathscr{D}_{1}: \mathscr{T}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V} \rightarrow \Lambda^{2} \mathscr{J}^{*} \otimes \mathscr{J}_{k} \mathscr{V}
$$

is the operator defined by

$$
\begin{equation*}
\mathscr{D}_{1} u=D u-\frac{1}{2}[u, u] \tag{8}
\end{equation*}
$$

for $u \in \mathscr{T}^{*} \otimes \mathscr{J}_{k+1}(\mathscr{V})$, then it follows from (7) that $\mathscr{D}_{1} \mathscr{D} F=0$, so we get the first nonlinear Spencer complex

$$
\begin{equation*}
\tilde{\mathscr{Q}}_{k+2}(\mathscr{V}) \xrightarrow{\mathscr{D}}\left(\mathscr{T}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V}\right)^{\wedge} \xrightarrow{\mathscr{D}_{1}} \Lambda^{2} \mathscr{T}^{*} \otimes \mathscr{J}_{k} \mathscr{V}, \tag{9}
\end{equation*}
$$

which is exact ([9], [5]), where

$$
\left(T^{*} \otimes J_{k+1} V\right)^{\wedge}=\left\{u \subset T^{*} \otimes J_{k+1} V: \pi_{0} u+\mathrm{id}_{T} \in T^{*} \otimes T \text { is invertible }\right\}
$$

The operator \mathscr{D} induces a surjective morphism

$$
p(\mathscr{D}): Q_{(1, k+2)}(V) \rightarrow\left(T^{*} \otimes J_{k+1} V\right)^{\wedge}
$$

where $Q_{(1, k+2)}(V)$ stands for the 1-jets of elements of $\widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$. It follows from (3) that

$$
\begin{equation*}
p(\mathscr{D}) X=\left(\lambda^{1} \pi_{0, k+2} X\right)^{-1} \circ\left(\pi_{1, k+1} X\right)-j_{\pi(X)}^{1} I_{k+1} \tag{10}
\end{equation*}
$$

The symbol of \mathscr{D} is a mapping

$$
\sigma(\mathscr{D}): T^{*} \otimes V Q_{k+2}(V) \rightarrow T^{*} \otimes J_{k+1} V
$$

Lemma 1. If $\alpha \otimes \xi \in T_{x}^{*} \otimes V_{Y} Q_{k+2}(V)$, then

$$
\begin{equation*}
\sigma(\mathscr{D})(\alpha \otimes \xi)=\alpha \otimes\left(Y^{-1} \cdot \pi_{k+1 *} \xi\right) \tag{11}
\end{equation*}
$$

where $Y \in Q_{k+2}(V), \alpha \in T_{x}^{*}, \xi \in V_{Y} Q_{k+2}(V)$, and $\pi(Y)=x$.
Proof. Let X be an element of $Q_{(1, k+2)}(V)$ such that $\pi_{0, k+2} X=Y$, and $u \in T_{x}^{*} \otimes V_{Y} Q_{k=2}(V)$. There exists a curve X_{t} in $Q_{1, k+2}(V)_{x}$ such that $X_{0}=X$,

$$
\pi_{0, k+2} X_{t}=Y,\left.\quad \frac{d}{d t} X_{t}\right|_{t=0}=u
$$

If

$$
Y^{-1}: T_{\pi_{k+1}(Y)} Q_{k+1}(V) \rightarrow T_{I_{k+1}(x)} Q_{k+1}(V)
$$

we have

$$
\begin{aligned}
\sigma(\mathscr{D}) u & =\left.\frac{d}{d t} p(\mathscr{D}) X_{t}\right|_{t=0}=\left.\frac{d}{d t}\left(\lambda^{1} \pi_{0, k+2} X_{t}\right)^{-1} \circ \pi_{1, k+1} X_{t}\right|_{t=0} \\
& =\left.\left(\lambda^{1} Y\right)^{-1} \cdot \frac{d}{d t} \pi_{1, k+1} X_{t}\right|_{t=0}=Y^{-1} \cdot \pi_{1, k+1 *} u .
\end{aligned}
$$

As a consequence of this lemma, we see that

$$
\sigma_{1}(\mathscr{D}): S^{2} T^{*} \otimes V Q_{k+2}(V) \rightarrow T^{*} \otimes T^{*} \otimes J_{k+1} V
$$

is determined by

$$
\begin{equation*}
\sigma_{1}(\mathscr{D})(\alpha \cdot \beta \otimes \xi)=\alpha \cdot \beta \otimes Y^{-1}\left(\pi_{k+1 *} \xi\right) \tag{12}
\end{equation*}
$$

where $\alpha, \beta \in T_{x}^{*}, \xi \in V_{Y} Q_{k+2}(V), Y \in Q_{k+2}(V)$, and $\pi(Y)=x$. We associate to \mathscr{D}_{1} the morphism

$$
p\left(\mathscr{D}_{1}\right): J_{1}\left(T^{*} \otimes J_{k+1} V\right)^{\wedge} \rightarrow \Lambda^{2} T^{*} \otimes J_{k} V
$$

whose symbol

$$
\sigma\left(\mathscr{D}_{1}\right): J_{1}\left(T^{*} \otimes J_{k+1} V\right) \rightarrow \Lambda^{2} T^{*} \otimes J_{k} V
$$

is equal to $\sigma(D)$ and is given by

$$
\begin{equation*}
\sigma\left(\mathscr{D}_{1}\right)(\alpha \otimes \beta \otimes \xi)=\alpha \wedge \beta \otimes \pi_{k} \xi \tag{13}
\end{equation*}
$$

where $\alpha, \beta \in T^{*}$ and $\xi \in J_{k+1} V$.
The following lemma is easily verified.
Lemma 2. If $X \in J_{1}\left(T^{*} \otimes J_{k=1} V\right)^{\wedge}$ and $z \in T^{*} \otimes T^{*} \otimes J_{k+1} V$, then

$$
\begin{equation*}
p\left(\mathscr{D}_{1}\right)(X+z)=p\left(\mathscr{D}_{1}\right) X+\sigma\left(\mathscr{D}_{1}\right) z \tag{14}
\end{equation*}
$$

Main theorem

Theorem. Suppose that L_{k+2} is a vector sub-bundle of $\left.\left(J_{k+2} V\right)\right|_{N}$, satisfying:
(a) $\pi_{0} L_{k+2}=\left.V\right|_{N}$;
(b) $L_{k+l}=\pi_{k+l}\left(L_{k+2}\right)$ is a vector sub-bundle of $\left.\left(J_{k+l} V\right)\right|_{N}$ for $l=0,1$;
(c) $\left[L_{k+2}, L_{k=2}\right] \subset L_{k+1}$;
(d) $D_{H}:\left.\mathscr{L}_{k+2} \rightarrow \mathscr{H}^{*}\right|_{\mathcal{N}} \otimes \mathscr{L}_{k+1}$.

Then there exists a vector sub-bundle $R_{k+1}^{\prime} \subset J_{k+1}$ such that:
(i) $R_{k}^{\prime}=\pi_{k}\left(R_{k+1}^{\prime}\right)$ is a vector sub-bundle of $J_{k} V$;
(ii) $\left[R_{k+1}^{\prime}, R_{k+1}^{\prime}\right] \subset R_{k}^{\prime}$;
(iii) $\left.R_{k+1}^{\prime}\right|_{N}=L_{k+1}$;
(iv) $R_{k+1}^{\prime} \subset\left(R_{k}^{\prime}\right)_{+1}$.

Proof. We set

$$
\omega=\sum d y^{j} \otimes j^{k+3} \frac{\partial}{\partial y^{j}} \in \mathscr{T}^{*} \otimes \mathscr{J}_{k+3} \mathscr{V}
$$

and we define the following (partial) flat connection (see $[4, \S 3]$)

$$
\nabla: \mathscr{J}_{k+2} \mathscr{V} \rightarrow \mathscr{V}^{*} \otimes \mathscr{J}_{k+2} \mathscr{V}
$$

by

$$
\begin{equation*}
\nabla \xi=[\tilde{\omega}, \xi] \tag{15}
\end{equation*}
$$

for $\xi \in \mathscr{J}_{k+2}(\mathscr{V})$, where the bracket

$$
[,]: \tilde{\mathcal{L}}_{k+3} \mathscr{V} \times \mathscr{J}_{k+2} \mathscr{V} \rightarrow \mathscr{J}_{k+2} \mathscr{V}
$$

is given by $[9,(2.3)]$. If $\bar{\xi}$ is a section of $\mathscr{J}_{k+3} \mathscr{V}$ such that $\pi_{k+2}(\bar{\xi})=\xi$, then

$$
\begin{equation*}
\nabla \xi=D_{V} \bar{\xi}+[\omega, \bar{\xi}] \tag{16}
\end{equation*}
$$

We have

$$
\nabla(\nabla \xi)=[\tilde{\omega},[\tilde{\omega}, \xi]]=[[\tilde{\omega}, \tilde{\omega}], \xi]-[\tilde{\omega},[\tilde{\omega}, \xi]] ;
$$

since $[\tilde{\omega}, \tilde{\omega}]=0$, we see that ∇ is flat. In the same way, we can define connections ∇_{k+l} on $J_{k+l} V$ in terms of $\omega_{k+l+1}=\pi_{k+l+1}(\omega)$ for $l=0,1$.

It follows from Jacobi's identity that

$$
\begin{equation*}
\nabla_{k+1}[\xi, \eta]=[\nabla \xi, \eta]+[\xi, \nabla \eta], \tag{17}
\end{equation*}
$$

where $\xi, \eta \in \mathscr{J}_{k+2} \mathscr{V}$. Let $\xi_{i}, 1 \leq i \leq r$, be a basis of sections of L_{k+2}, and let $\xi_{i}^{\prime}, 1 \leq i \leq r$, be sections of $\mathscr{J}_{k+2} \mathscr{V}$ such that

$$
\left.\xi_{i}^{\prime}\right|_{N}=\xi_{i}, \quad \nabla \xi_{i}^{\prime}=0
$$

Let R_{k+2} be the sub-bundle of $J^{k+2} V$ generated by the $\xi_{i}^{\prime}, 1 \leq i \leq r$, and set $R_{k+l}=\pi_{k+l}\left(R_{k+2}\right)$ for $l=0,1$. Then by (b), R_{k+l} is a sub-bundle of $J_{k+l} V$ for $l=0,1$; also, we have

$$
\begin{equation*}
\nabla\left(\mathscr{R}_{k+2}\right) \subset \mathscr{T}^{*} \otimes \mathscr{R}_{k+1} \tag{18}
\end{equation*}
$$

Furthermore, we obtain from (17)

$$
\nabla_{k+1}\left[\xi_{i}^{\prime}, \xi_{j}^{\prime}\right]=0
$$

and from (c),

$$
\begin{equation*}
\left[R_{k+2}, R_{k+2}\right] \subset R_{k+1} \tag{19}
\end{equation*}
$$

Lemma 3. Let u be an element $\bigwedge \mathscr{H}^{*} \otimes \mathscr{J}_{k+2} \mathscr{V}$ satisfying

$$
\left.\left.u\right|_{N} \in\left(\Lambda \mathscr{H}^{*} \otimes \mathscr{R}_{k+2}\right)\right|_{\mathscr{N}}, \quad \nabla u \in \mathscr{V}^{*} \wedge\left(\Lambda \mathscr{H}^{*}\right) \otimes \mathscr{R}_{k+2}
$$

Then u belongs to $\bigwedge \mathscr{H}^{*} \otimes \mathscr{R}_{k+2}$.
Proof. Let. $\xi_{i}^{\prime}, 1 \leq i \leq s$, be a basis of sections of $\mathscr{J}_{k+2} \mathscr{V}$, such that $\xi_{i}^{\prime}, 1 \leq i \leq r$, is a basis of \mathscr{R}_{k+2}, and $\nabla \xi_{i}^{\prime}=0$ for $1 \leq i \leq s$. Then

$$
u=\sum_{i=1}^{s} \alpha_{i} \otimes \xi_{i}^{\prime}
$$

with $\alpha_{i}=\sum f_{\beta}^{i} d x^{\beta} \in \bigwedge \mathscr{H}^{*}$, and $f_{\beta}^{i}(x, 0)=0$ for $r<i \leq s$. Therefore

$$
\nabla u=\sum_{i=1}^{s} d_{V} \alpha_{i} \otimes \xi_{i}^{\prime}
$$

and by hypothesis

$$
d_{V} \alpha_{i}=0, \quad r<i \leq s
$$

This implies that

$$
\frac{\partial f_{\beta}^{i}}{\partial y^{j}}=0, \quad r<i \leq s
$$

Hence $f_{\beta}^{i}(x, y)=f_{\beta}^{i}(x, 0)=0, r<i \leq s$, and $u \in \bigwedge \mathscr{H}^{*} \otimes \mathscr{R}_{k+2}$. q.e.d.
On account of the equalities $\left[\psi_{H}, \psi_{V}\right]=\left[\psi_{H}, \omega\right]=0$ we obtain

$$
\begin{aligned}
\nabla_{k+1}\left(D_{H} \xi_{i}^{\prime}\right) & =\left[\psi_{V}+\omega_{k+2},\left[\psi_{H}, \xi_{i}^{\prime}\right]\right] \\
& =\left[\left[\psi_{V}+\omega, \psi_{H}\right], \xi_{i}^{\prime}\right]-\left[\psi_{H},\left[\psi_{V}+\omega, \xi_{i}^{\prime}\right]\right] \\
& =-D_{H}\left(\nabla \xi_{i}^{\prime}\right)=0
\end{aligned}
$$

It follows from hypothesis (d) that $\left.\left.\left(D_{H} \xi_{i}^{\prime}\right)\right|_{N} \in\left(\mathscr{H}^{*} \otimes \mathscr{R}_{k+1}\right)\right|_{\mathscr{N}}$, and from Lemma 3 that $D_{H} \xi_{i}^{\prime} \in \mathscr{H}^{*} \otimes \mathscr{R}_{k+1}$ for $1 \leq i \leq r$. Thus

$$
\begin{equation*}
D_{H}\left(\mathscr{R}_{k+2}\right) \subset \mathscr{R}^{*} \otimes \mathscr{R}_{k+1} \tag{20}
\end{equation*}
$$

We have finished the first step of the proof of the theorem, namely constructing the vector bundle R_{k+1} satisfying properties (i), (ii), (iii), and (20). Now, we are going to twist equation R_{k+1} by a section of $\widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$ such that (iv) holds for the twisted equation. If $\xi \in \mathscr{R}_{k+1}$, and $\phi \in \widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$, it follows from (6) that

$$
D \phi(\xi) \in \mathscr{T}^{*} \otimes \pi_{k+1} \phi\left(\mathscr{R}_{k}\right)
$$

if and only if

$$
\begin{equation*}
D \xi-[\mathscr{D} \phi, \xi] \in \mathscr{T}^{*} \otimes \mathscr{R}_{k} \tag{21}
\end{equation*}
$$

If ϕ is an element of $\widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$, with $\left.\phi\right|_{N}=j^{k+2}$ id, for which (21) holds for all $\xi \in \mathscr{R}_{k+1}$, then $R_{k+1}^{\prime}=\phi\left(R_{k+1}\right)$ is a sub-bundle of $J_{k+1}(V)$ satisfying the condition of the theorem. For $\xi \in \mathscr{R}_{k+1}$, we have

$$
D \xi=D_{V} \xi+D_{H} \xi=D_{H} \xi+\pi_{k}\left(\nabla_{k+1} \xi\right)-\left[\omega_{k+1}, \xi\right] ;
$$

thus, by (18) and (20), we see that (21) is equivalent to

$$
\begin{equation*}
\left[\mathscr{D} \phi+\omega_{k+1}, \xi\right]=0 \quad \bmod T^{*} \otimes R_{k} \tag{22}
\end{equation*}
$$

It follows from (19) that (22) holds for all $\xi \in \mathscr{R}_{k+1}$ if

$$
\begin{equation*}
\mathscr{D} \phi=-\omega_{k+1} \quad \bmod T^{*} \otimes R_{k+1} \tag{23}
\end{equation*}
$$

Thus it suffices to solve (23) for an element ϕ of $\widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$, with $\left.\phi\right|_{N}=$ j^{k+2} id.

Set

$$
\begin{equation*}
A^{k+l}=\left(-\omega_{k+l}+T^{*} \otimes R_{k+l}\right) \cap\left(T^{*} \otimes J_{k+l} V\right)^{\wedge}, \quad l=1,2 . \tag{24}
\end{equation*}
$$

We have $-\pi_{0} \omega+\mathrm{id}=\sum d x^{i} \otimes \partial / \partial x^{i}$, and by hypothesis $(\mathrm{a}), \pi_{0}\left(R_{k+l}\right)=$ V and $A_{x}^{k+l} \neq \varnothing$ for every $x \in M$. Furthermore, since $\left(T^{*} \otimes J_{k+l} V\right)^{\wedge}$ is open in $T^{*} \otimes J_{k+l} V$, we see that A^{k+l} is open in $-\omega_{k+l}+T^{*} \otimes R_{k+l}$. This implies that $V A^{k+l} \cong T^{*} \otimes R_{k+l}$.

Define

$$
\begin{equation*}
S^{k+l+1}=\left\{X \in Q_{(1, k+l+1)} V \mid p(\mathscr{D}) X \in A^{k+l}\right\}, \quad l=1,2 . \tag{25}
\end{equation*}
$$

Then S^{k+2} is the partial differential equation associated with the relation (23). We will show the following:
(e) $S^{k+l+1} \rightarrow Q_{k+l+1}(V)$ is surjective, for $l=1,2$;
(f) $\pi_{1, k+2}: S^{k+3} \rightarrow S^{k+2}$ is surjective;
(g) $\left(S^{k+2}\right)_{+1} \rightarrow S^{k+2}$ is surjective;
(h) If g_{X}^{1} is the symbol of S^{k+2} at the point $X \in S^{k+2}$, with $\pi(X)=x$, then

$$
g_{X}^{1}=T_{x}^{*} \otimes\left(\left(\pi_{k+1}^{k+2}\right)_{*}^{-1} \cdot\left(\pi_{0, k+2} X\right) \cdot R_{k+1, x}\right)
$$

From (g) and (h) and by the theorem of the Appendix, there is a $\phi \in$ $\widetilde{\mathscr{Q}}_{k+2}(\mathscr{V})$ such that $\left.\phi\right|_{N}=\left.j^{k+2} \mathrm{id}\right|_{N}$, and $j^{1} \phi \in \mathscr{S}^{k+2}$. Then $R_{k+1}^{\prime}=$ $\phi\left(R_{k+1}\right)$ satisfies the conditions of the theorem.

In the proof of (e)-(h), the following diagram will be useful; the dotted vertical arrows represent affine actions:

Proof of (e). The morphism

$$
p(\mathscr{D}): Q_{(1, k+l+1)}(V) \rightarrow\left(T^{*} \otimes J_{k+l+1} V\right)^{\wedge}
$$

is surjective and has constant rank, and A^{k+l} is a submanifold of $\left(T^{*} \otimes J_{k+k+1} V\right)^{\wedge}$. Hence

$$
\begin{equation*}
S^{k+l+1}=p(\mathscr{D})^{-1}\left(A^{k+l}\right) \tag{26}
\end{equation*}
$$

is a submanifold of $Q_{(1, k+l+1)}(V)$. From (5), we see that

$$
p(\mathscr{D})(H \circ X)=p(\mathscr{D}) X+\left(\lambda^{1} X\right)^{-1}(p(\mathscr{D}) H) .
$$

If $p(\mathscr{D}) X=h=p(\mathscr{D})(H \circ X)$, then $p(\mathscr{D}) H=0$, so

$$
\begin{equation*}
p(\mathscr{D})^{-1}(h)=Q_{k+l+2}(V)_{\beta(X)} \circ X \tag{27}
\end{equation*}
$$

where $\beta: Q_{k+l+2}(X) \rightarrow X$ is the "target" projection. When $X \in S^{k+l+1}$, we have $Q_{k+l+2}(V)_{\beta(X)} \circ X \subset S^{k+l+1}$ which implies (e).

Proof of (f). If $X \in S^{k+2}$, then $h=p(\mathscr{D}) X \in A^{k+1}$. Let \tilde{h} be an element of A^{k+2} such that $\pi_{k+1}(\tilde{h})=h$. Then there is an $\tilde{X} \in S^{k+3}$ such that $p(\mathscr{D}) \tilde{X}=\tilde{h}$, so that $p(\mathscr{D})^{-1}(\tilde{h})=Q_{k+4}(V)_{\beta(X)} \circ X$. Hence we have $\pi_{1, k+2}\left(Q_{k+4}(V)_{\beta(\tilde{X})} \circ \tilde{X}\right)=\pi_{1, k+2}\left(p(\mathscr{D})^{-1} \tilde{h}\right)=p(\mathscr{D})^{-1} h=Q_{k+3}(V)_{\beta(X)} \circ X$ which implies (f).

Proof of (g). Take $X \in \mathscr{S}^{k+2}$. We must show there exists $\tilde{X} \in$ $\left(\mathscr{S}^{k+2}\right)_{+1}$ with $\pi_{1, k+2}(\tilde{X})=X$. It follows from (f) that there is an element F of \mathscr{S}^{k+3} such that $\pi_{1, k+2} F=X$, hence $p(\mathscr{D}) F=-\omega_{k+2}+\theta$, with $\theta \in \mathscr{T}^{*} \otimes \mathscr{R}_{k+2}$. Choose $\widetilde{F} \in \mathscr{Q}_{(2, k+3)}(\mathscr{V})$ satisfying $\pi_{1, k+3} \tilde{F}=F$. Then

$$
\pi_{0}\left(p_{1}(\mathscr{D}) \tilde{F}\right)=p(\mathscr{D}) F=-\omega_{k+2}+\theta
$$

If $z=p_{1}(\mathscr{D}) \tilde{F}-j^{1}\left(-\pi_{k+2} \omega+\theta\right)$, then $z \in \mathscr{T}^{*} \otimes \mathscr{T}^{*} \otimes \mathscr{J}_{k+2} \mathscr{V}$ and

$$
\begin{aligned}
\sigma\left(\mathscr{D}_{1}\right) z & =p\left(\mathscr{D}_{1}\right)\left(p_{1}(\mathscr{D}) \tilde{F}\right)-p\left(\mathscr{D}_{1}\right)\left(j^{1}\left(-\omega_{k+2}+\theta\right)\right)=-\mathscr{D}_{1}\left(-\omega_{k+2}+\theta\right) \\
& =D \omega_{k+2}+\frac{1}{2}\left[\omega_{k+2}, \omega_{k+2}\right]-\left(D \theta+\left[\omega_{k+2}, \theta\right]\right)+\frac{1}{2}[\theta, \theta]
\end{aligned}
$$

by (14). By the choice of ω, we have

$$
D \omega_{k+2}=\frac{1}{2}\left[\omega_{k+2}, \omega_{k+2}\right]=0
$$

It follows from (16), (18), and (20) that

$$
D \theta+\left[\omega_{k+2}, \theta\right]=D_{H} \theta+\pi_{k+1}(\nabla \theta) \in \Lambda^{2} \mathscr{T}^{*} \otimes \mathscr{R}_{k+1}
$$

and from (19) that

$$
\frac{1}{2}[\theta, \theta] \in \Lambda^{2} \mathscr{T}^{*} \otimes \mathscr{R}_{k+1}
$$

Thus

$$
\sigma\left(\mathscr{D}_{1}\right) z \in \Lambda^{2} \mathscr{T}^{*} \otimes \mathscr{R}_{k+1}
$$

By (13) we see that $\sigma\left(\mathscr{D}_{1}\right): \mathscr{T}^{*} \otimes \mathscr{T}^{*} \otimes \mathscr{R}_{k+2} \rightarrow \Lambda^{2} \mathscr{T}^{*} \otimes \mathscr{R}_{k+1}$ is surjective, and so there exists $y \in \mathscr{T}^{*} \otimes \mathscr{T}^{*} \otimes \mathscr{R}_{k+2}$ such that

$$
\sigma\left(\mathscr{D}_{1}\right) y=\sigma\left(\mathscr{D}_{1}\right) z \quad \text { or } \quad \sigma\left(\mathscr{D}_{1}\right)(y-z)=0
$$

The sequence
(28) $S^{2} T^{*} \otimes V Q_{k+3}(V) \xrightarrow{\sigma_{1}(\mathscr{D})} T^{*} \otimes T^{*} \otimes J_{k+2} V \xrightarrow{\sigma\left(\mathscr{D}_{1}\right)} \bigwedge^{2} T^{*} \otimes J_{k+1} V$
is not exact. From (13), it follows that

$$
\operatorname{ker} \sigma\left(\mathscr{D}_{1}\right)=\left(S^{2} T^{*} \otimes J_{k+2} V\right)+\left(T^{*} \otimes T^{*} \otimes S^{k+2} T^{*} \otimes V\right)
$$

so that

$$
\pi_{k+1}(y-z) \in \mathscr{S}^{2} \mathscr{T}^{*} \otimes \mathscr{J}_{k+1} \mathscr{V}
$$

Using (12) we obtain that

$$
\sigma_{1}(\mathscr{D})\left(S^{2} T^{*} \otimes V Q_{k+2}\right)=S^{2} T^{*} \otimes J_{k+1} V
$$

hence there exists $h \in \mathscr{S}^{2} \mathscr{T}^{*} \otimes \mathscr{V} \mathscr{Q}_{k+2}(\mathscr{V})$, with

$$
h(x) \in S^{2} T_{x}^{*} \otimes V_{\pi_{0, k+2} X(x)} Q_{k+2}(V)
$$

for all $x \in M$, such that $\sigma\left(\mathscr{D}_{1}\right) h=\pi_{k+1}(y-z)$. Set $\tilde{X} \in \pi_{2, k+2} \tilde{F}+h$. Then $\pi_{1, k+2}(\tilde{X})=\pi_{1, k+2}(\tilde{F})=X$, and

$$
\begin{aligned}
p_{1}(\mathscr{D}) \tilde{X} & =p_{1}(\mathscr{D})\left(\pi_{2, k+2} \tilde{F}\right)+\sigma_{1}(\mathscr{D}) h \\
& =\pi_{1, k+1}\left(p_{1}(\mathscr{D}) \tilde{F}\right)+\pi_{k+1}(y-z) \\
& =\pi_{1, k+1}\left(j^{1}\left(-\omega_{k+2}+\theta\right)+z\right)+\pi_{k+2}(y-z) \\
& =-j^{1} \omega_{k+1}+j^{1} \pi_{k+1} \theta+y
\end{aligned}
$$

hence

$$
p_{1}(\mathscr{D}) \tilde{X}=-j^{1} \omega_{k+1} \quad \bmod \mathscr{J}_{1}\left(\mathscr{T}^{*} \otimes \mathscr{R}_{k+1}\right)
$$

and $\tilde{X} \in\left(\mathscr{S}^{k+2}\right)_{+1}$, which proves (g).
Proof of (h). Denote the canonical projection by

$$
\rho: T^{*} \otimes J_{k+1} V \rightarrow\left(T^{*} \otimes J_{k+1} V\right) /\left(T^{*} \otimes R_{k+1}\right)
$$

Then

$$
S^{k+2}=[\rho \circ p(\mathscr{D})]^{-1}\left(\rho\left(-\omega_{k+1}\right)\right),
$$

and therefore

$$
g^{1}=\operatorname{ker} \rho \circ \sigma(\mathscr{D})
$$

(cf. [3]), i.e., if $X \in S_{x}^{k+2}$, then

$$
g_{X}^{1}=\left\{h \in T_{x}^{*} \otimes V_{\pi_{0, k+2}(X)} Q_{k+2}(V) \mid \sigma(\mathscr{D}) h \in T_{x}^{*} \otimes R_{k+1, x}\right\}
$$

From (11) it thus follows that

$$
g_{X}^{1}=T_{x}^{*} \otimes\left(\pi_{k+1}^{k+2}\right)_{*}^{-1}\left(\left(\pi_{0, k+2} X\right) \circ R_{k+1, x}\right) .
$$

Corollary. In the hypothesis of the theorem, suppose furthermore that $h_{k}=\left\{\xi \in L_{k} \mid \pi_{k-1} \xi=0\right\}$ is 2-acyclic at every point $x \in N$. Then R_{k}^{\prime} is formally integrable.

Proof. We must show that $g_{k}=\left\{\xi \in R_{k}^{\prime} \mid \pi_{k-1} \xi=0\right\}$ is 2-acyclic. We know $\left.g_{k}\right|_{N}=h_{k}$. Applying an argument of [4] (cf. Remarque after Proposition 5.3), adapted to the intransitive case, we get

$$
H_{k+l, j}\left(g_{k}\right)_{(x, y)} \simeq H_{k+l, j}\left(h_{k}\right)_{(x, 0)}
$$

Hence g_{k} is 2-acyclic. Now, from Theorem 4.1 of [2], it follows that R_{k} is formally integrable.

Appendix

We prove here a generalization of Theorem 5.1 of [8] which we state in a simplified form.

Let $\pi: E \rightarrow M$ be a fibered manifold, where $\operatorname{dim} M=m$ and $\operatorname{dim} E=$ $m+n$. The manifold $J_{1} E$ of 1 -jets of sections of (E, M, π) has dimension $m+n+m n$. If $\left(x^{i}, y^{j}\right)$ is a fibered chart of E, then $\left(x^{i}, y^{j}, p_{i}^{j}\right)$ is a chart for $J_{1} E$, where

$$
p_{i}^{j}\left(j_{a}^{1} f\right)=\frac{\partial f^{j}}{\partial x^{i}}(a),
$$

and $f=\left(f^{1}, \cdots, f^{n}\right)$ is a section of (E, M, π). We denote $x=$ $\left(x^{1}, \cdots, x^{m}\right), y=\left(y^{1}, \cdots, y^{n}\right)$, and $p^{j}=\left(p_{1}^{j}, \cdots, p_{m}^{j}\right)$.

If we denote $V_{0} J_{1} E=\operatorname{ker}\left(\pi_{0}\right)_{*}$, then it is well known ([8]) that

\[

\]

Theorem. Suppose $R_{1} \subset J_{1} E$ is a system of partial differential equations such that:
(1) $\left(R_{1}\right)_{+1} \xrightarrow{\pi_{1}} R_{1}$ is surjective;
(2) $\pi_{0}\left(R_{1}\right)=E$;
(3) the symbol $g_{1}=\left(V_{0} J_{1} E\right) \cap T R_{1}$ of R_{1} is equal to $T^{*} \otimes F$, where F is a vector sub-bundle of $V E$.

Then, for every $X \in R_{1, a}, a \in M$, there exists a solution f of R_{1} such that $j_{a}^{1} f=X$, and this solution depends arbitrarily on r functions, where r is the dimension of F.

Proof. Choose a chart on E such that F_{a} is generated by

$$
\frac{\partial}{\partial y^{n-r+1}}(a), \cdots, \frac{\partial}{\partial y^{n}}(a)
$$

Choose $\left\{\phi_{\sigma} \mid \sigma \in \Sigma, \phi_{\sigma}: J_{1} E \rightarrow \mathbf{R}\right\}$, with $d \phi_{\sigma}$ linearly independent, such that

$$
R_{1}=\left\{X \in J_{1} E \mid \phi_{\sigma}(X)=0, \sigma \in \Sigma\right\} .
$$

Clearly, Σ has $m(n-r)$ elements. Let

$$
v=\sum_{j=1}^{n-r} \sum_{i=1}^{m} a_{i}^{j} \frac{\partial}{\partial p_{i}^{j}}(a)
$$

be an element of $V_{0} J_{1} E$. Then $v \in V_{0} R_{1}$ if and only if the linear system

$$
\sum_{j=1}^{n-r} \sum_{i=1}^{m} a_{i}^{j} \frac{\partial}{\partial p_{i}^{j}}(a)=0
$$

has only the trivial solution $a_{i}^{j}=0$; thus

$$
\left(\frac{\partial \phi_{\sigma}}{\partial p_{i}^{j}}(a)\right)
$$

$\sigma \in \Sigma, 1 \leq i \leq m, 1 \leq j \leq n-r$, is an invertible matrix. The implicit function theorem allows us to replace $\left\{\phi_{\sigma}, \sigma \in \Sigma\right\}$ by

$$
\left\{\phi_{i}^{j}=p_{i}^{j}-\psi_{i}^{j}\left(x, y, p^{n-r+1}, \cdots, p^{n}\right), 1 \leq i \leq m, 1 \leq j \leq n-r\right\}
$$

For every $X \in R_{1, a}$, we choose r functions $f^{n-r+1}(x), \cdots, f^{n}(x)$ such that $y^{k}(X)=f^{k}(a)$ and $p_{i}^{k}(X)=\left(\partial f^{k} / \partial x^{i}\right)(a)$ for $1 \leq i \leq m, n-r<$ $k \leq n$. Set

$$
\begin{aligned}
& \tilde{\phi}_{i}^{j}=p_{i}^{j}-\psi_{i}^{j}\left(x, y^{1}, \cdots, y^{n-r}, f^{n-r+1}(x), \cdots, f^{n}(x)\right. \\
&\left.\frac{\partial f^{n-r+1}}{\partial x}(x), \cdots, \frac{\partial f^{n}}{\partial x}(x)\right),
\end{aligned}
$$

$1 \leq i \leq m, \quad 1 \leq j \leq n-r$.
This is a Frobenius system and its integrability conditions are a consequence of hypothesis (1) (cf. the proof of Theorem 5.1 of [8]). If $\left(f^{1}(x), \cdots, f^{n-r}(x)\right)$ is a solution of $\tilde{\phi}_{i}^{j}=0$, such that $y^{j}(X)=f^{j}(a)$ and $p_{i}^{j}(X)=\left(\partial f^{j} / \partial x^{i}\right)(a)$, then $\left(f^{1}, \cdots, f^{n}\right)$ is a solution of R^{1}. The same proof works when the initial data is well posed on a submanifold of M.

References

[1] E. Cartan, Sur le structure des groupes infinis de transformations, Ann. Sci. École Norm. Sup. 21 (1904) 153-206; 22 (1905) 219-308.
[2] H. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967) 246-270.
[3] __, Integrability criteria for systems of non-linear partial differential equations, J. Differential Geometry 1 (1967) 269-307.
[4] ___, Sur la structure des équations de Lie: I. Le troisiéme théorème fondamental, J. Differential Geometry 6 (1972) 357-373; II. Équations formellement transitives, J. Differential Geometry 7 (1972) 67-95.
[5] H. Goldschmidt \& D. Spencer, On the non-linear cohomology of Lie equations. I, II, Acta Math. 136 (1976) 103-239.
[6] V. W. Guillemin \& S. Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964) 16-47.
[7] I. Hayashi, Embedding and existence theorems of infinite Lie algebras, J. Math. Soc. Japan 22 (1970) 1-14.
[8] M. Kuranishi, Lectures on involutive systems of partial differential equations, Publ. Soc. Mat. São Paulo, 1967.
[9] B. Malgrange, Équations de Lie, I, II, J. Differential Geometry 6 (1972) 503-522, 7 (1972) 117-141.

Universidade Federal Do Pará, Brasil

[^0]: Received April 17, 1987 and, in revised form, January 20, 1989. This work was partially supported by FAPESP, Brasil.

