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HOMOGENEOUS EINSTEIN SPACES
OF DIMENSION FOUR

GARY R. JENSEN

Introduction

Given a manifold M with a Riemannian metric gu, Riemannian curvature
tensor Rijkl, and Ricci tensor Rtj = Σ Rkikj, then M is defined to be an

Einstein space if RtJ = λgt1 for some scalar function λ on M. In fact,
X = R/n, where R — J] Ra *s the scalar curvature of M and n — dim M. It

i

is a classical theorem that, for n > 3, λ is a constant if M is connected. A
general problem of Riemannian geometry is the determination of all Einstein
spaces.

It is also of interest to consider pseudo-Riemannian metrics giy Indeed,
in the case of dim M = 4 and for a Lorentzian metric, (signature + + H—
say), the equations RtJ = λgtj are specializations of Einstein field equations
of General Relativity: Rtj — Igiά = Tu, where Ttj is some tensor field with
variously specified properties.

From the physicist's point of view M is often not specified. Indeed M is
often, on first consideration, taken to be an open subset of Euclidean space
and the Einstein equations are solved locally. However, our point of view
differs from theirs in that we desire to know whether a given manifold can be
an Einstein space. This question has interest only for dim M > 4, since all
two dimensional Riemannian manifolds are Einstein spaces, and any three-
dimensional Einstein space necessarily has constant curvature.

A fairly comprehensive list of known Einstein spaces is given by M. Berger
[1, pp. 41, 42] and J. A. Wolf [9].

A natural starting point for the determination of Einstein spaces is with
four-dimensional homogeneous Riemannian spaces. It is the purpose of this
paper to determine all such spaces which are Einstein spaces. A homogeneous
space M can be represented as a quotient G/H, where G is a transitive group
of isometries on M and H is the isotropy group at some point p0 e Ni. In
Chapter II it will be seen that when G is large enough, for example when
dim/f > 1 , then the solution of the problem is fairly easy. However, when G

Received May 31, 1968. The author wishes to express his gratitude to Professor S.
Kobayashi for his guidance and generous help. This paper is the author's Ph. D.
dissertation written under the direction of Professor S. Kobayashi.



310 GARY R. JENSEN

is small, for example when G acts simply transitively on M, the problem seems
to be much more difficult. For this reason we were led into some general
investigations of group manifolds, that is, a manifold with a group of isometries
acting simply transitively on it. The results of this investigation are contained
in Chapter I. Chapter II deals with the situation when G is large enough, as
mentioned above, and finally Chapter III contains the determination of all
four-dimensional group manifolds which are Einstein spaces.

All four-dimensional, simply connected, homogenous Einstein spaces were
found and they are listed in the following table. All of these spaces are
Riemannian symmetric spaces. An interesting problem therefore arises as to
whether a direct proof of this fact can be found. However, in higher dimen-
sions a homogenous Einstein space is not necessarily symmetric. Indeed, there
exist bounded homogeneous, but non-symmetric, complex domains of complex
dimensions four and five [7]. Bounded homogeneous complex domains with
the Bergmann metric are Einstein spaces (cf. [2, p. 300]). J. A. Wolf [9] has
recently classified all non-symmetric isotropy irreducible homogeneous Rieman-
nian spaces, which are Einsteinian, and his list contains a space of dimension 7.

Four-dimensional, simply connected, homogeneous Einstein spaces

S = Ricci tensor field, g = metric tensor field on M, S = λg, λ € R.

M

λ>0
λ = 0
λ<0

C( + , 4), P(2, C), C( + , 2) x C( + , 2) (equal curvature on each factor),
C(0, 4),
C ( - , 4), H(2, C), C ( - , 2) x C ( - , 2) (equal curvature on each factor),

/+ \ /+\
where Cl 0, n\= space of constant! 0 J curvature and dimension n, P(2, C)

= complex projective space of two complex dimensions, H(2, C) = hermitian
hyperbolic space of two complex dimensions.

The last four spaces listed in the table are realizable as group manifolds.
Matrix representations of all the distinct Lie algebras cj giving rise to them are
listed below. They are all solvable, cj and the metric on g are defined by taking
Xx, ., XA to be an orthonormal basis over the reals.

C(0,4):

0
0
0

0

0
0

- 1

0

0
1
0

0

0
0
0

0

o

. o o 0

1
0
0

0 _
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X,= o
0 0 0

0
1

0

0 ^

C(-,4):

X,=

0 0 0 0 0"
0 0 t 0 0
0 -t 0 0 0
0 0 0 0 1
0 0 0 1 0

0

o

0 0

0
0
1

0 _

Xo =

0

0

o
1

1

0

0

0

- 1

0

o

0

1

0

1
1

-

0
0

o
0
0

o
0
0

0
0

1
1

- 1

0

0

o
0

0

- 1

o

1 "

0

0

0 ~

0

1

where 0 < t < oo. Distinct / give non-isomorphic groups.

iϊ(2,O:

— i-
It
3

0

0

0

it

1

0

1

it

ΊΓ

2 . L i

1
0
0

- 1
0
0

Γ°
/

A

i
0

0

— ί-

0

0-
xt =

where 0 <, t < oo. Distinct t give non-isomorphic groups.

C(-,2)χC(-,2):

Γ°0
.0

0
/

I

O-i

— i

—— I

"I 0
0 0

. o
" O

o

o

o .
O "

1 0
0 0

, Xz =

, X3 =

Ό 1
0 0

. o
" O

o

o

o .
O "

0 1
0 0

Chapter I

Throughout this chapter G will denote a connected Lie group and g will
denote its Lie algebra. We regard g as the tangent space at e of G, but as a
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Lie algebra, g is identified with the Lie algebra of all left-invariant vector
fields on G. On G we consider a left-invariant Riemannian metric, which is
determined uniquely by a positive definite inner product <, > on Q. Namely,
let g e G , and X, YeTg(G), and define (X, Y>? = <lg-xJC, /,-wV>, where
lg (or rg) denotes left (right) multiplication by g in G. The curvature tensor
R of a left-invariant metric is itself a left-invariant tensor field on G, and is
therefore uniquely determined by its values on g. Thus we regard the curvature
tensor R as a quardrilinear form on cj.

The objectives of this chapter are to determine a formula for the curvature
tensor in terms of the inner product and Lie bracket on g, to apply this formula
in such a way as to classify G according to the nature of its Ricci tensor, and
finally to determine what conditions a four-dimensional G must satisfy in order
to be an Einstein space.

Before deriving a formula for R, it is necessary to establish some notation
and conventions. The Riemannian connection on G is defined by the formula

2<FXY, zy == *<y, z> + y<*, z> - z<*, y>

+ <[* n z> + <z, * ] , y> + <*, [z,

where A", y , Z are any vector fields on G (cf. [4]). Define the operator Lx by
LX(Y) = [X, y ] , and let Λ τ = Vx - Lx. It is well known that Ax is a (1, 1)
tensor field on G, which is skew-symmetric with respect to the metric if and
only if X is a killing vector field. Also it is known that AXZ — —VχX for
any vector field Z on G. (Cf. [4, pp. 235, 237]).

Let A e g, X and Y be, respectively, the left-invariant and right-invariant
vector fields generated by A, and at = e x p M , teR. Then the 1-parameter
groups of diffeomorphisms generated by X and Y are {rαj and {/π J , respect-
ively. Thus y is a killing vector field, since laι is an isometry of G for each ί.
Finally, observe that if Z is any right-invariant vector field on G then [Z, AΊ
= 0. In fact, for g e G,

[Z, * ] , = l i m l { r Λ | Z), - Z,} - lim -{r(ll.Z(jn_t - Z J

= lim l{r a i .r 9 f ,_ ( .Z f - Z,} = lim 1 (Z, - Z 9) = 0 .

Theorem 1. Let A and B be orthogonal unit vectors in cj, and Ax, , An

an orthpnormal basis of c\ with Ax = A, A2 — B. Then

(1.2) - <M, BUA, B]> - Σ <^, M, /<,]> <B, [B,

+ 4- Σ {<A, [B, A<]> + <B, M, Ajy + < A ( , M, B]>}2.
4 <
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Proof. Let X = Xu , Xn be the left-invariant vector fields generated by
At, , An) respectively, and Y the right-invariant vector field generated by
B. A well-known formula for R is

R(X, Y,X,Y) = <yj?yγ - V/XY, xy,

since [X, Y] = 0. But now Y is a Killing field and VVX - VXY = [Y, X] = 0.
Thus

<Fyrxγ, xy = -<FXY, vvxy + Y<VXY, xy = -<VXY, vxγy,

since

<yxγ, xy = -(Avx, xy = (x, Avxy = -<*, vxγy.

This gives the following formula for R:

(i.3) R(x, Y, x, Y) = <rjrtγ, xy + <yxγ, vxγy.

In the following, g will denote a point in G, and e the identity element of
G. The first step is to determine the vector FXY in terms of the orthonormal
frame field Xx, , Xn. Making use of (I.I) we have

<yxγ, xty = 1 {X<γ, xty - xt<γ, xy + <r, ιx{, x]y + γ<xu xy

+ <x, [xu y]> + ζxu [x, y]»

= I {x<χ, x(y - xt<γ, xy + <y, ιxιt x]y},

since <XU Xy is a constant on G and [A',, Y] = 0, ΐ = 1, , n. Let
a] = exp tA u taR, i = 1, ,n. Then

X<Y, Xty(g) = X(ad{g-ι)B, Aty = {-L\ ad{a_t)ad{g->)B, λS

Thus ΛΓ<y, ΛΓ,χβ) = - <M, B], ̂ ( >.
Likewise, ΛΓt<y, Xy(e) = - ζ[Ait B], Ay. So

(1.4) <VXY, Xύie) = i { - <W, B], Aty + </l4, B],

(15) < Γ * y '

4 i = i
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W e n e x t d e t e r m i n e P V Y in t e r m s of Xλ, ••-, Xn. B y ( I . I ) a n d [Xh Y] = 0 ,
we have <VyY, Xt> = Y(Y, X<> - %Xt(Y, Y>. But

Y<Y, >D'Λi?=\-dl___

= < - ad{g->) IB, B], Aiy = O,

, At

xt<j, y>(g) = «

= -2<Ai,ad(g->)B),ad(g-')B>.

Thus

Finally, we compute ΓxΓyY from this expression. Since

= Σ
i

we have

, ad(g~ι)B],

vjyγ, xy
= XQA, ad(g-ι)B], ad(g->)B> U ad(g-')B], Xh X} .

Now

Xζ[A, ad(g-ι)B], ad(g-')B}(e)

dt
, ad(a^)ad(g-')B], ad(a_t)a<Krλ)B){e)

= -<!ίA,[Λ, B]], B) - {[A, B], [A, BY) ,

and <yxXt, Xy(e) = ζ[A, A,], A), from (1.1). Putting these together we obtain

(I 6) <F*F»Y> X>(e) =-<WΛA, B]], B} - ζ[A, B], [A, BY)

The formula for R(A, B, A, B) now follows immediately from (1.3), (1.5)
and (I.'6).

As an immediate application of the above formula for R we have
Theorem 2. Denote the Ricci tensor of G by S and regard S as a sym-

metric bilinear form on c\. If X e (\ is a central element, i.e., [A', Y] = 0 for
every Y&Q, then S(X, X) > 0, and S(X, X) = 0 if and only if ζX, g'> = 0,
where Q' = [g, g] is the derived algebra of g.
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Proof. Let Xx, , Xn be an orthonormal basis of g with Xx = X. Then

S(X, X) = Σ R(χ> χi> x> *<)• N o w u s e formula (1.2) and the assumption
ϊ = l

that [X, Y] = 0 for every Y € 9 to get

R(x, xu x, « = 1 Σ <*, HO, *J>2

4 i

Hence S(X, X) = — Σ <Z, PO, <ϊj>2. The conclusion is now obvious if one
4 i,j

observes that the vectors {[A"*, ̂ l}*,, span g'.
Theorem 3. Lei 5(9) denote the center of g.
1) // j(g) gt 0 αirf 5 = Λ <, >, then λ = 0 and fa) _|_ g'.
2) // 5 is positive definite, then G is compact semisimple.
3) // S is negative definite, then j(g) = 0.
Remark. In Chapter III it will be seen that, if dim g = 4 and 5 = 0, then

j(g) φ 0. The author does not know whether the converse of 1) is true for
higher dimensions.

Proof. Suppose j(g) Φ 0 and S = λ <, >. Then Theorem 2 implies that
λ > 0, with λ = 0 if and only if 5(9) _L g'.If λ > 0, then S is positive definite,
and thus Myers' theorem says that G and every covering manifold of G is
compact. In particular the simply connected covering group G of G is compact.
Thus g is a compact semisimple Lie algebra, (cf. [2, p. 1221). This proves 1)
and 2).

If S is negative definite then Theorem 2 implies that j(β) = 0.
The following corollary will be needed in the proof of Theorem 5.
Corollary 1. Suppose dim G = 4 and j(g) Φ 0. // G is an Einstein space,

then it must be locally flat.
Proof. Since j(g) ^tOwe have S = 0 by Theorem 3. It suffices to prove

this corollary for simply connected G.
Let G = Go x Gλ x x Gk be the de Rham decomposition of G, where

Go is Euclidean and Gλ, - -,Gk are the irreducible non-Euclidean factors.
Then Gl9 , Gk are subgroups of G, although the product is only that of
Riemannian spaces, (cf. [6, p. 51]).

Claim, dim Go > 1. In fact, let B e j(fl) be a unit vector, and Y the left-
invariant vector field on G generated by B. Then Y is also right-invariant,
since B is central. Let X be any left-invariant vector field on G, and Xx,
• , X4 a left-invariant orthonormal frame field on G with Λ̂  = X, X2 = Y.
Then from Formula (1.4), we have (VXY, *,>(*) = <B, [ * » , X(e)]> = 0,
since j(g) _L g' by Theorem 3. Hence Y is a parallel vector field and con-
sequently Y(e) € Γβ(G0), i.e., dim Go > 1.

Thus dim G{ < 3, i — 1, , k and consequently G* is flat since its Ricci
tensor is zero. Hence G = Go.
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Remark. In Chapter III it will be shown that a four-dimensional G with
zero Ricci tensor must have g(g) Φ 0. Thus the above corollary can be easily
extended to five-dimensional G.

Following the lead of J. A. Wolf we can sharpen the results of his theorem
in [8].

Theorem 4. Suppose G is nilpotent and non-abelian. Then there exist unit
vectors XeQandYeQ such that S(X, X) > 0 and S(Y, Y) < 0.

Proof. Let g = D°Q Z> D1Q D D D ^ ' p DkQ = 0 be the central
series of g, where D1Q = [g, D'-'g]. g being non-abelian implies that k > 2,
DklQ Φ 0. Now 0 = D*(g) = [g, D^Q] means that Dk~ιQ c j(g). Thus there
exists a unit vector X <= g(g) Π g'. By Theorem 2 we have that S(X, X) > 0.

For each / = 1, , A: let α* c £>ί-1g be the orthogonal complement of
D*Q in D1'1^. Thus D '̂̂ q = a1 4- D*g, orthonogonal vector space direct sum.

Now g = α1 + α2 + + α\ orthogonal direct sum as vector spaces.
Since g is non-abelian there is a smallest integer t, 1 < t < k, such that α*
contains a non-central unit vector, Y say. Let α = Σ π' Then α is central,

and g = α + α* 4- D£g. Choose an orthonormal basis Xl9 , Xn of g so
that the first dim α1 vectors are in α\ the second dim σ2 vectors are in α2, etc.
Then there are integers q < p such that Xx, , Λ^ € α, A'(? + ι, , Xp e α',
and Ar

p+1, , Xn e D ĝ. We may assume that Xq+ι = Y.

(*) Observe that if / < / then X( J_ [Â , Xj] for any Z 6 g.

Claim. S(Y, Y) < 0.

For 1 < / < q:

R(XU Y, Xi9 Y) = 0 by (1.2), (*) and the fact that XL is central for 1 < / < q.

For q+l<i<p:

R(Xi9 Y, Xiy Y)=- -\\[Xi9 YW by (1.2), (*) and that <*„ [Y, Xj]} = 0
4

for 1 < / < n.

For p + 1 < / < n:

u Y)=- \\[Xi9 Y]\f + 1
4

+ 1
4

by (1.4) and repeated applications of (*). Thus
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S(Y, Y)

Σ n/y γ Y v/\
/\Vy\ j , I ) Λ, , I )

* V IIΓ V VΊl|2 V IIΓV Vlll2

1 -̂i -̂ι / γ TΛ7 γ "l\2 ι -̂  V1 V7

-4- Σ H^yJII1- Σ
4 l i ^ l£i

-5- Σ Σ <**> ιr, *,]>2 + T
4 / l i 4

Σ

i- Σ
4 l£

- Σ

, Xj\y + τ Σ Σ <x» [Y, Xj]y
4 p + l £ j £ l £ i £

4- Σ HWfi.nil1. by( )
4 l i ^

- 4 Σ ιι[AΓ(, mi1 + 4- Σ
4 q+i&i&n 4 i^

+ 1 Σ ιιiy.-ϊί]iιl=-4- Σ iit^ mι 2<o,

since Y is non-central, and so [Xh Y] Φ 0 for some i.
Corollary 2. A nilpotent G can be an Einstein space if and only if it is

abeliaft.
Theorem 5. Suppose that G is non-abelian, four-dimensional and Einstein-

ian. Then G must be solvable, but non-nilpotent.
Proof. G cannot be nilpotent by Corollary 2.
Let r be the largest solvable ideal of g. Then fl/r is semi-simple and there-

fore must have dimension three or zero, because there are no two or four-
dimensional semi-simple Lie algebras. Thus dim r is one or four, i.e., either
dim r = 1 or G is solvable.

Suppose dim r = 1. We shall prove that in this case G cannot be an Einstein
space, g is the semi-direct sum r + y, where Sf is a three-dimensional simple
subalgebra of g. Explicitly, there is a Lie algebra homomorphism η: y —>
End (r), given by η(X) (Y) = [X9 Y] for X e Sf, and Y e r. Then dim Ker η
> 2. Since Sf has no non-trivial ideals, Ker η = Sf, i.e., η is trivial. This just
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means that g is the direct sum r 0 ^ , and Sf is an ideal of g. But then it is
clear that r = j(g) and, consequently, j(g) Φ 0. Hence G must be locally flat
by Corollary 1.

Since r = j(g), the invariant vector fields on G generated by elements of r
are parallel, as was seen in the proof of Corollary 1. Thus r is invariant under
the linear holonomy representation on g. But then so is $f, since £f _[_ r by
Theorem 3. Hence it follows that the simply connected covering group G of
G is a direct product—as groups and as Riemannian spaces—G = R X 5,
where S is the analytic subgroup of G corresponding to Sf. Now G being simply
connected and flat implies that 5 is simply connected and flat also. But this is
impossible since a semi-simple connected Lie group cannot act transitively on
R3 as a group of Euclidean motions, (cf. [5, Chapter X]).

Theorem 4 reduces the problem of finding all four-dimensional G with a
left-invariant Einstein metric to the case where G is solvable but non-nilpotent.
It will be seen in Chapter III that G must have a discrete center in order to
be an Einstein space. This result is indeed stronger than Theorem 4 since there
are four-dimensional solvable non-nilpotent Lie groups with non-discrete
center. For example

ί
/l a ft

\0 0 1

Chapter II

Throughout this chapter Λί denotes a simply connected, homogeneous,
Riemannian manifold and G is a connected group of isometries acting trans-
itively and effectively on Λί. Our problem is to determine all such four-
dimensional M which are Einstein spaces. S. Ishihara [3] used a general
method of E. Cartan's in order to determine the topological structure of four-
dimensional Λί. Ishihara's methods solve most of our problem except for the
case when G acts simply transitively on Λί, that is, the case when Λί is a
group manifold with a left-invariant metric.

This chapter is divided into three sections. § 1 contains a determination of
the subalgebras of so(4), §2 is a summary of Cartan's method as applied by
Ishihara, and § 3 contains the application of these and some other methods to
our problem.

1. Fix a point p0 e Λί, and let H be the isotropy subgroup of G at p0, and
SO(M) be the principal bundle of oriented orthonormal frames on Λί with
structure group SO(n), n — dimΛί. Fix a frame «0<=SO(Λί) over pQeM.
Define F: G -> SO{M) by F(q) = q+u0, and the homomorphism /: H -* SO(n)
by F(h) = uj(h) for hzH. F defines a bundle map of G(G/H, H) into
SO(M)(M,SO(n)):
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H \ JK SO(n)

Consider the map /*:!)—> so(ri), where ί) is the Lie algebra of H. An
evident way to divide this investigation of Λί into more tenable pieces is to
determine all the subalgebras of so(ή) and then to consider separately each
case as /*(ί)) ranges over this collection of subalgebras. For this reason we
determine the subalgebras of so(4).

Let θ be the canonical 1-form on 5O(4), θ — (0^), θυ + θn = 0, 0 < /,
/ < 3. The Maurer-Cartan equations for 50(4) are then

Mtj = Σ On A θkj .
k

Define the following forms:

ψ\ = #01 — #23> ψl — #02 — #31 > ^ 3 = ^03 ~ ^12 »

Without difficulty one can obtain the following proposition.
Proposition. Let ΐ} be a subalgebra of the Lie algebra so{4). Then under

an adjoint transformation induced on so(A) by an element of 0(4), ί) is
equivalent to one of the subalgebras defined by the following equations:

II. <pι = φ3 = 0.
III. φx — φx = 0, ψ2 — ψ2 = 0, ψz — ψ2 = 0.
IV. P l = ^ = ^ = 0.

V . <p2 = <p3 = ψ2 = ψ3 = 0 .
VI. <p2 = <p3=z ψ2 = <f>3 = 0 , m ^ = ψx(m> 0 ) .

VII . φι = <p2=z <pz = ψ2 = ψ3 = 0 .
VIII. t) = 0.
2. Let ω denote the Riemannian connection form on SO(M), and 0 the

canonical 1-form on SO(M). Note that θ no longer denotes the canonical form
on SO(n) as it did in § 1, but all other notation in this section is the same as
that in § 1. Write ω = (ωp, ω) + ω{ = 0, and θ = (00, 0 < /, /, . , < n - 1.
Then the structure equations are

do>) = - Σ <4 Λ ω) + Ω) ,
k

where Ω) is the curvature form.
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G(G/H,H) is a subbundle of SO(M)(M,SO(n)), but the Riemannian
connection cannot, in general, be reduced to G. Recall that F(e) = w0, and
thus F^Q = TUo(F(G)). The vertical subspace of F^g is F^ί), which means that
t) = {Z € g I F*θUo(X) — 0} and F*α> restricted to ί) is the identity homomorphism.

/*!) is a subalgebra of 5Ό(W), and thus, is defined by a set {Aa} of linear
functional on so(n), i.e., /*!) = {X <zSθ(ri)\Aa(X) = 0, for all a}. Write
Λα = (AaiJ), Aaij + Aaji = 0. For each fl, the linear 1-form Σ Aaij^ω)

vanishes on ί), i.e., it is a horizontal form, and therefore

Σ AaijF*ω) — Σ caiF*θι, for certain constants caί ,

since the θi span the space of all horizontal forms.
We can obtain relations on the cai by differentiating these equations and

evaluating each side on pairs of the form (X, 7), where X € ί), Ye c\. Let F^X
= (%fΛ Xfj + Xji == °> a n d Σ χtĵ fl/j = 0, for all a. Then

F*dω)(X, Y) = - Σ ωί Λ ω J ί F ^ ^ ^ Y ) + ί J ' / F ^ ^ ^ y )

= - Σ ωi Λ θk(F*X,F,Y) = --J- Σ
A: 2 A;

We have used the fact that F^X is vertical while Ω and θ are horizontal.
Hence we get the following relations on the cai:

ΠT 1Ϊ F* V Λ (v n\k _ι_ v ί.\kΛ F* V r v flk

A:

where

XiΊt "+• Xki = = ^ 5 2 J ^ α i λ Xifc = : "

for each α.

3. In this section we determine all four-dimensional simply connected
homogeneous Riemannian Einstein spaces M — G/H, except for the case when
M is a group manifold. This remaining case will be dealt with in Chapter III.
We consider eight cases, each case being numbered according to which type—I
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through VIII of the proposition in § 1—/*ί) belongs. In some of the cases the
results are easily extended to higher dimensional M. In such cases the results
are stated and proved in as much generality as possible. Case II is done in
additional detail in order to illustrate the general method, which is essentially
the same in each case, except for Case IV, which requires a few different
methods.

For convenience we let C(+>n), C — ,n) and C(0, n) denote the simply
connected Riemannian spaces of n dimensions with constant positive, negative
and zero curvature, respectively.

Case I. iift = so(4). In general, if dim M = n, and /*!) = so(n), then M
is one of C( + , n), C ( - , ή) or C(0, ή).

Case II. f+fy is defined by the equations φι = <p3 = 0. Thus

0 a

a 0

b—c

c -d

be
c d

0 a

-a 0

= iι(2)

In general, suppose that dim M — n = 2m, and
of u(m) in so(n) given by

w(m)3/i = Λ, + iΛ2*
 Γ A l ~h

is the standard imbedding

h e so(n) ,

where hx and h2 are real m x m matrices.
We shall determine what M must be in this general case. To do this, we

make use of the equations (II. 1) in § 2, and shall omit the F* in these equations,
so in the following it is to be understood that ω and θ are restricted to the
subbundle G(G/H,H). Now there are m(m — 1) linear equations defining
fj), namely,

(II.2) y = y

(Π.3)

where 1

1 < U h *
in so(ή).
equation,

(Π.4)

S U h k> * < "i> (in the following we make the convention that
, . . < m), and where χ = (χα 6), 1 < Λ, fc < n, denotes any element
Thus, for each fixed pair i, /, with 1 < i < / < m, we get the
from (II.2) and (II. 1),

= Σ

- cumθι) ,
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and the equation, from (II.3) and (II. 1),

Σ

( π 5 )

Σ {χ*M+Σ
= Σ Xuidkθ

ι - dtθ
k

k<l

+ Σ x*,ι
k£l

In (II.4) and (II.5) the variables χab which appear are all independent, that is,
these equations are identities which must hold for any choice of the χab which
appear. Hence the coefficients of the χab on each side of the equation must be
the same. Equating the coefficients of χtj in (II.4) we get that 0 = eft* — cfl1

+ cUm&+m - cj+mθi+m. Thus ct = c5 = ci+m = cj+m = 0, since the θk are
linearly independent. Equating the coefficients of χ M + m in (II.4) we then get

(H.6) ω)+m + ωj+ m = 0 .

Similarly, we get, from (II.5),

(Π.7) ω)Tm - ω) = 0 .

Equations (II.6) and (II.7) hold for any /, / satisfying 1 < i < j < m. Thus
these equations imply that the connection form ω, when restricted to
G(G/H,H)y takes values in /*ί). This means that the connection can be
restricted to G(G/H,H).

Define

π) = ω) + iω)+m, 1 < /, / < m,

φ) = Ω) + iΩ)+m, on G(G/H, H)

Then

dπι = -Σ A Λ ^ >
j

dπ) = - Σ 4 Λ π) + Φ) ,
k

Thus τr\ , τrm define a Hermitian structure on M, which is torsion free, so
that Λί is a Kahlerian space. Now H ^ U(m) acts transitively on the unit
sphere in TPo(M). Hence M has constant holomorphic curvature, that is, M is
either P(jn, C) = complex projective space, or H(m, C) = hermitian hyperbolic
space, or C(0, ή).
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= so(3) .

Case III. /*ί) is defined by the equations χ01 = χ02 = χ03 = 0.

0 0 0 0"

0 0 a b

0 -a 0 c

L 0 -ί> - c OJ

In general, suppose dimM = /i, and /„<!) = JO(/I — 1), which is contained in

so(n) as

" 0 0 . . 0

0

0

so(n — 1)

Then the linear equations defining j ^ are χxj = — χ j l = 0, / = 1, , n, and
as a consequence of equations (II. 1) we get the following equations, when the
ω) and θk are restricted to G:

cή = c0', where c = constant, 1 < / < n .

Notice then that dθι = — 2 ωl Λ 0' = - 2 ^ Λ ί ^ = 0. If c = 0 then it
J 3

is not difficult to see that hi is Rι x C ( ± , w — 1) or C(0, w). If c Φ 0, then
K. Yano [10] shows that M is C ( - , « ) .

IV. /„,!) is defined by the equations

Xθl " "

0

-a

—b

- c

23 — Xθ2 ""

Λ b

0 c
—c 0

b -a

31 — %03 ~~ Xl2

c

-b

0

In general, suppose dimΛf = n = 2m, and /^ί) ^ 5 w(m) which is contained
in so(n) by the standard imbedding described in Case II for u(m).

Proposition. // m Φ 3, m > 2, then M is a Kdhlerian space with constant
holomorphic curvature equal to zero, that is, M = C(0, n).

Remark. J. A. Wolf has shown the author that in the case m — 3, M must
be either C(0,6) or G(2)/Sί/(3).

Proof. The linear equations defining f^fy in so(n) are:

Xij —

(Π. 8)

Σ
* 1

Λ+m = 0, where 1 < /, / < m
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Thus from (II. 1) and these equations (II.8) we obtain m(m — 1) + 1 equations
relating ωa

β and θr restricted to G(G/H,H), 1 < a, β, γ < n. When m = 2
these three equations all reduce to identities 0 = 0. When m = 3 these seven
equations give no information. But when m > 4 we get

ωj4m = W+m, for 1 < /, / < m .

Thus, when restricted to G(G/H,H), ω takes values in u(m) c lyo(w). If we
let πj = θj + iθj+m, 1 < / < m, then JΓ1, , 7rm define a hermitian inner
product on M, and G(G/H, H) c £/(M), where C/(M) is the bundle of unitary
frames on M.

Claim. W7i£rt restricted to C/(M), ω takes values in u(m) C so(ri).
Proof. Let u € G(G/#, H ) c ί/(Aί), and X € TU(U(M)). Then * = *> + *.,,

where Λ̂ ! e ΓU(G) and Λ'j, is vertical. Thus ω(X) = ω(Xλ) + ω(X2) € w(m), since
ωiXJ e w(m) as shown above, and ω(X2) € w(m) c ^o(«) because Λ"2 is a vertical
vector tangent to U(M) and ω is a connection form. Now, if u is any point of
ί/(M), then u = va for some v e G(G/H, H) and some α e ί/(m) c 5O(Λ), and
any vector X € TU(U(M)) is given by * = Ra.Y for some Y e TΌ{U(M)), where
i?α: U{M) -> ί/(M) denotes the right action of U(m) c SO(n) on C/(M). Thus,
using the /4d-invariance of ω, ωM(Λ") = ωuRa*Y = Ad(a~ι)(ωv(Y)) e w(m), where
y4d denotes the adjoint representation of U(m) in w(m), and the claim is proved.

The fact that ω restricted to U(M) takes values in w(m) c ^O(M) implies that
the connection can be restricted to U(M). Hence M is a Kahlerian space. Since
the isotropy group H = SU(m) c SO(n) acts transitively on the unit sphere in
TPo(M), it follows that M has constant holomorphic curvature.

In the case when m = 2, a different argument is needed in order to show
that Λf is a Kahlerian space of constant holomorphic curvature. The proof for
m = 2 is valid for any even value of m, say m = 2k.

Alternate proof for the case m — 2k. The linear isotropy representation of
H is SU(m) c SO(n), which implies that there exists an almost complex
structure JPo on TPo(M) which is invariant under the action of H. JPo can be
extended to an almost complex structure J on M using G and the fact that JPo

is invariant under H. Then the torsion tensor field N defined by 7, i.e. by N(X, Y)
= [X, Y] + J[JX9 Y] + J[X,JY] - [JX, JY] for vector fields X, Y on M,
must be zero since it is of type (1,2) and invariant under SU(2k), namely,
—/ 6 SU(2k) c SO(4k), where / is the 4k x 4k unit matrix, and thus

N(X, Y) = (-1NXX, Y) = -Λf(-Z, - Y) = -N(X, Y) ,

i.e., iV = 0. Hence this almost complex structure on M is integrable.
Now FJ, the covariant differential of J, is a tensor field of type (1,2) which
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is invariant under SU(2k), and thus, as for N above, VJ = 0. Hence M is a
Kahlerian space.

M has constant holomorphic curvature since H s SU(m) acts transitively
on the unit sphere in TPo(M).

We have now established that for m Φ 3, > 2 , M must be a Kahlerian
space of constant holomorphic curvature. We must now show that M is
actually flat.

Suppose M has positive constant holomorphic curvature. Then I0(M), the
connected component of the full group of isometries on M, is isomorphic to

SU(m + 1)

D
S(U(m) x 1/(1))

D

where D is the (discrete) center of SU{m + 1 ) , and S(U(m) x ί/(l)) is the
subgroup of U(m) χ ί / ( l ) consisting of elements with determinant equal to
one. Now H Ξ S£/(m) implies that 1 + dim// = dim S(t/(m) x ί/(l)). Thus
G must be a subgroup of SU(m + \)jD of codimension one. But it can be
easily shown that SU{m +l)/D has no subgroups of codimension one if m > 2.

Suppose M has negative constant holomorphic curvature. Then

h(M) =

SU(m, 1)

D

S(U(m) x {/(I))

where SU(m, 1) is the subgroup of SL(m -f 1,C) which leaves invariant the
hermitian form — z ^ — . . . — zmzm + zm+1zm+ι, and D is the (discrete)
center of SU(m91). Moreover, as above, G must be a subgroup of SU(m, 1)/D
of codimension one. But, as for SU(m + 1), such subgroups of SU{m, l)/D
do not exist.

Hence M must be flat.
Case V. f^§ is defined by the equations

}= so(2)®so(2)

As a consequence of equations (II. 1) we have ω\ = ω!J = ωj = ω\ = 0, i.e.,
the connection can be restricted to G(G/H, H). Hence M = Mι x M2, where
Mi is a two-dimensional space of constant curvature Kt, i = 1,2.

0
a
0
0

a
0
0
0

= *m

0
0
0

-b

0
0
b
0
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Case VI. f+ϊ) is defined by the equations

0
0

ma
0

/*

•^03 —

f

- (

0
— a

0
L 0

X12 =
a
0
0
0 -

0,
0
0
0

-ma

a<-R

(m > 0) ,

= so{2) .

As a consequence of equations (II. 1) we have ω\ — ω\ = ω\ = ωj = 0,
α)| = mωj, i.e., again the connection can be restricted to G(G/H,H). Thus
flj = 0, except Ω\ = dω? and β^ = mrfω?; and dω\ A θι = 0, 0 < i < 3, from
the first Bianchi identity: Σ Ωί Λ *' = 0. Therefore dωj = 0, and Ω) = 0

i

for all i and /. Hence M is C(0,4).
Case VII. /̂ Γ) is defined by the equations

0
— a

0
L 0

= Xl2 = *23

a 0 0
0 0 0
0 0 0
0 0

= Xn = 0 ,

aeR\ = so{2).

0 _ )

As a consequence of equations (II. 1) we have

ω

Q

2 — aθ° + bθλ ,

ω \ = -bθ° + ^ , ω 3 = eβ0 _ Cβl ^

ω\ =

where a, b, c, e, r, / are constants which must be determined. The first Bianchi
identity gives the following relations on these constants:

lab + re — 0 ,

2ae + te = 0 ,

ar + ct = 0 ,

2cb - rb = 0 ,

2α? - /ft = 0 ,

(11.9) dω\ = -2JC00 Λ f i 1 - (6r + et)θ2

where X is a constant. From the second Bianchi identity, dΩ) =

— Ωi Λ ωj, we get

(11.10) 2aK + e(br + et) = 0 ,

6(6r + e/) = 0 .

ωi Ω)
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Consider each of four cases separately.

( i ) bφθ,eφθ;
(ii) b φ 0, e = 0;
(iii) i = 0 , ^ 0 ;
(iv) b = 0, e = 0.
(i) If a Φ 0, set μ = ω\ - bθ2 - eθ\ Then dμ = 0. Since μ =έ 0, the

equation μ = 0 therefore defines a four-dimensional ideal of g, which in turn
defines a four-dimensional normal subgroup H of G. // also acts transitively
on Λf, because // Π H is discrete. Since dim H = 4 and Λf is simply connected,
// acts simply transitively on Λf.

If flf = 0, put μ = eω\ — Kθ\ Then dμ = 0 and μ =£ 0. As above the
subgroup of G defined by μ = 0 acts simply transitively on Λf.

(ii) If c Φ 0 put μ = ωj - &02, and if c = 0 put μ = bω\ - Kθ\ Then,
in either case, dμ — 0, μ -φ. 0, and μ = 0 defines a subgroup of G, which
acts simply transitively on Λf.

(iii) Same as (ii).
(iv) By virture of equation (II.9), dω\ = —2K0° A θι in this case. If a φ 0

or c ^ 0, then K = 0 by (11.10). Thus dω\ = 0, ωj =£ 0, and again ωj = 0
defines a subgroup of G, which acts simply transitively on Λf.

If a = c = 0, then we have

(II. 11) </0° = -αι? Λ θ\ dθι = — αij Λ 0°, J2J = ί/ωj = -2KΘ0 A θλ ,

(11.12) dθ2 = - r ^ 2 Λ θ\ dθ3 = - / 0 2 Λ 03, β? = - ( / 2 + r2)θ2 A θ> ,

and all other Ω) — 0. Hence Λf = Λf 1 x Λf2, where M, and Λf2 are two-
dimensional spaces with structure equations given by (II .H) and (11.12),
respectively. Since K is arbitrary, Mx is C( + ,2), C( — ,2) or C(0,2). But
ί2 + r2 > 0 implies that M2 can be C(0,2) or C ( - , 2).

Core VIII. /^ί) = {0}. G acts simply transitively on Λf.

We summarize the results of this chapter in the following theorem. A
Riemannian space which has a group of isometries acting simply transitively
on it is called a group manifold.

Theorem. Let M be a four-dimensional, simply connected homogeneous
Riemannian manifold. Then Λf must be one of the following spaces: C(0,4),

C(+,4), C(-,4), P(2,C), //(2,C), IV x C( + ,3), tf1 x C(-,3), C(0,2)
+

X C(0,2), o r α group manifold. In this list the first five spaces are Einstein
spaces, the sixth and seventh spaces are not Einstein spaces, and the last space
is an Einstein space if and only if both factors have the same sectional
curvature.

In Chapter III we shall determine which group manifolds are Einstein
spaces.
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Remark. Suppose that M has a group G, of isometries which acts simply
transitively on M. Fix pQ € M, and define F: G -> M by F(g) = g(p0). Then F
is a diffeomorphism of G onto M. Let <, > denote the metric tensor on M.
Then F*<, )> is a metric tensor induced on G, and F is an isometry with
respect to these metrics. The important fact is that F*<, > is a left-invariant
metric on G. In fact, let lg denote left multiplication by g in G. Then F olg

= g o F implies the third equality in the chain:

F*<Z, γ\ = <F* x, F* y>, ( Λ ) = <(*-ι o F)* x9 Or1 o F)* y>po

= <(Fog^,(Fo/ r , ) t y>Po =

where Z, Yg

Chapter HI

By virtue of the theorem at the end of Chapter II, the problem of
determining all simply connected homogeneous four-dimensional Einstein
spaces Λf, is solved up to the case when M is a group manifold. Due to the
remark at the end of Chapter II, we may regard a group manifold M as a Lie
group G with a left-invariant Riemannian metric. Indeed, due to the results
of Chapter I, we need only consider solvable groups G.

In this chapter we shall determine all such G which are Einstein spaces.
This chapter is divided into two sections. The first section contains the detailed
determination of all solvable group manifolds which are Einstein spaces, and
the second a summary of the main results obtained in this chapter.

1. In this chapter G is a four-dimensional solvable Lie group, g is its Lie
algebra and <, > is an inner product on g. This inner product defines a left-
invariant metric on G. Let ω and Ω be the Riemannian connection and
curvature forms, respectively, defined on G and taking values in so(4). As
with all left-invariant linear froms on G, we regard ω and Ω as linear forms
on g. Let Xl9 , X4 be an orthonormal basis of g, and let Ak = ω(Xk) e so(4),
1 < k < 4. Write Ak = (A)k), with A% + A{k = 0. Let Ojk be the structure

4

constants of g with respect to Xx, , Z 4 , i.e., [Xj9Xk] = Σ C)kXi. Then
1 4 ί = 1

dω(Xi, Xj) = — — Σ CijAk, since ω and the X{ are left-invariant.
2 *=i

Furthermore,

ω Λ ω(XkfXι) = —(AttAt — ALAk) = —[Ak>A{\ ,

where the last expression is the bracket in so{4). Thus

Ω(Xk,Xt) = dω(Xk,Xt) + ω A ω(Xk,Xt) = —(M t ,ΛJ - Σ C£,Λ,) .
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(111.1) Let Rijkl = 2Ωυ(Xk, Xt) be the curvature tensor.

The Ricci tensor is defined by

(111.2) Rμ = Σ Riju = Σ [AtMih + Σ (AtC% ,
i i i

where O = (C)k) is a 4 x 4 skew symmetric matrix.
The scalar curvature is

(111.3) R = Σ [Ai9Aj]tj + Σ Trace {A£ι) .

The {A)k} and {C)k} are related, in fact, each set is determined by the other.
For, let θ\ , θ* be the forms dual to Xl9 . , X4. Then dθ1 = Σ - <4 Λ 0*.

A;

But d0ι = - i - C ' 0 > Λ 0* and ωk = Σ Aifij- τ h u s -—Ojkθ^ Aθk =
2 y 2

— £ —(^i i — ̂ k )^J Λ 0*, which implies that C}fc = /l^ — ̂ 4^. Conversely,
k 2

permuting the indices cyclically and adding we get C)k — Ck

u -f C
j

ki — —2A)k.
The method of this chapter is a direct one. The Lie algebra g is determined

by specifying the structure constants {C^.} with respect to some basis {Λft}. At
the same time the inner product on g is specified by taking {Λ'J to be
orthonormal. The {C)k} are determined by the {A)k}. In order for g to be a
Lie Algebra the Jacobi identities must be satisfied by the Ojk and in order
for the metric to be Einsteinian the Ricci tensor must satisfy the equations
Rij = Rδu/4. The method of this chapter is to take the {A),.} as unknowns,
to set up the Jacobi and Einstein equations and to find all possible solutions
for the A)k.

Let g be a four-dimensional vector space. Our problem now is to determine
all possible ways of making g into a solvable Lie algebra with an inner product,
such that the Riemannian structure determined by this inner product is
Einsteinian. For any Lie algebra structure on g we define g7 = [g, g], g" =
[g', g'], etc. With any solvable Lie algebra structure and inner product on g it
is possible to choose an orthonormal basis on g in one of the following seven
ways. Bases chosen in the way of type ri) below will be called admissible for
any g of that type for n = 1, . , 7.

1) If dim β' = 3, dim fl" = 2, dim g'" = 1, then X4 e g'", Xz € g", X2 e g'
and * , 1 fl'.

2) If dimg / = 3, dimg / / = 2, g'" = 0, then A ^ Λ ^ g " , Xtetf and

3) If dim β' = 3, dim g" = 1, then X4 € g", Xz, X2 e g', Xx J_ fl'.
4) If dim g' = 3, fl" = 0, then *4 , *3 , X2 e g', Xx 1 g'.
5) If dim g' = 2, dim g" = 1, then X4 € g", Xz € gr, Xl9 X2 ± g'.
6) If dim gr = 2, g" = 0, then X4, X2 e Q\ Xl9 X2 ± Q'.
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7) If dim g' = 1, then XA € g', Xl9 X2y X2 _L g'.
The importance of admissible bases is the fact that they satisfy the conditions

€ span span

, , * j € span ( * „ * „ * < ) ,

Thus, with respect to an admissible basis, the structure constants C}2, C}3, C}4,
C», CJ4, CJ4, CJ3, Q4, Q4 and Q4 are all 0. Consequently, since C)k = A\$

- A)k, we have that A\l9 A\X9 A},, Λ3

2

2, Λ4

2

2, ^« = 0; and that ^J2 = Al3,
A\2 = /454, A\z = /4J,, /4J3 = y4|t. Hence we may assume that the A)k satisfy
these relations. In order to facilitate identification of the 14 remaining
unknowns let

δ, A\t =

c, Ai2 =

A\λ =

ΛJ3 = σ, Λ 2

3

4

2

t = y,

Then

0
0
0

_0

" 0

-b

-φ

_ — o

0
0

- 3
— ε —

0

-p
•x

0

0

μ

φ

P
0
0

0
e
μ

o_
σ

X
0
0_

, A. =

0
-a
-b

_ — c

' 0

—c

— (7

_ — ω

a
0
0
0

c

0

— x
—y

b
0
0

—/

σ

Z
0

— s

c
0
/

0

ω

y
s
0

The structure constants are

a = o, C 2 =

c + ε

0
0
0

C 3 =

0
0

—p — p 0 0
L-Ai-σ -%-/ 0 0 J

c =

0 a b +

- β 0 0

—b—δ 0 0

L-c-β 0 0

0 c — ε tf—μ α>

ε—C 0 χ—/ y

μ—σ f—χ 0 J

L — ω —y —s 0

The bracket operation on g is given explicitly by the equations



EINSTEIN SPACES 331

l9 X2] = aX2 + (ft - δ)Xz + (c - ε)X< , [X2, XJ = (χ

,, Z3] = (ft + <5)*2 + ^ 3 + (σ - μ)X4 , [*„ XJ = ^

,, * J = (c + ε)Z2 + (μ

Any four-dimensional solvable Lie algebra with an inner product has an
admissible basis Xλ, , XA, and consequently with respect to such a basis the
structure constants are of the above form.

Proposition. The Jacobi identities on g are equivalent to the first Bianchi
identities on the curvature form.

Proof. This proposition is true for any Lie algebra g. Let Θ\ , θn be an
orthonormal coframe of g, and ω, Ω be the connection form and curvature
form, respectively, Then d2θ — 0 is the Jacobi identity on g and Ω Λ θ — 0
is the first Bianchi identity. But dθ = — ω Λ θ and dω = — ω Λ ω + Ω, and
therefore d20 = — Ω Λ 0.

It is convenient to set up the Bianchi identities on the A)k, rather than the
Jacobi identities. The following procedure will be followed in setting up these
equations and the Einstein equations, and for solving them.

I. 1. Compute [AUAj].
Compute Rijkl from formula (III. 1).2.

3.
4.
5.

Compute Rtj from the Rijkl obtain Einstein equations.

II.

Compute R from the Ru.
Set up the Bianchi identities: Rijkl = Rklij and

^1234 + ^1423 + -^1342 = 0 .

Solve the equations in each of the following cases.
1. R = 0.
2. R Φ 0.

Case A. dimgr = 3.

i) dimg" = 2, dimg"' = 1.
dime" = 2, g ^ ^ O .
dim g" = 1.
g" = 0.

I.I.

ii)
iii)
iv)

Case B. dimg7 = 2.
Case C. dimg' = 1.

All matrices are skew-symmetric.

0 bδ + ce
0

cμ — aδ

-εf
0

— ae — bμ

δf

0

0
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[Aί,AJ =

[A2,A3] =

[At,At] =

"0

" 0

φδ + σε

0

σδ 4~ <oe

0

GARY R.

σμ -

xμ

0

ωμ —

μy -

0

JENSEN

bδ

cδ

εs

— bε — φμ~

-pμ

pε ~δχ

0

— cε — σμ~

δs- χμ

χε-δy

0

0 —bp — cχ ap + σf aX — ψf

0 b2 + χf — aφ be — pf — ac

0 φc — bσ

0

0 —feχ — cy aχ + ωf — cs ay + bs — σf

0 cb + yf — aσ c2 — χf — aω

0 σc — bω

0

0 σ/0 4- ωχ — <pχ — σy bχ — σs — cp by + φs — cχ

0 ĉ > — bσ — χs cσ -\- ps — bω

0 a1 4- χ2 - φω - py

0

1.2. J?I212 = 2(bδ + cε) - a2 - b2 - c2 ,

Rιm = 2(σμ - bδ) - b2 - ψ2 - <r ,

^iii4 = — 2(ce + σμ) — c2 — a2 — ω2 ,

Λ2323 = 2χf -aφ + V - p 2 - χ\

R*m = -2x1 ~ ao> + c2 - χ2 - f ,

RUM = σ2 + χ2 - φω- py - s2 ,

Rm3 = φ(δ - b) + σ(ε - c) - a(b + δ) + cμ ,

Rm2 = cμ- a(δ + b) + φ(δ - b) - σ(c - ε) ,

Rnι, = σδ + ω(ε — c) — α(c + ε) — b(μ + σ) ,

Run = -bμ - fl(e + c) - σ(b - δ) - ω(c - ε)

Rm = -2bp - 2cχ + cf ,

Ran = -εf - pib - δ) - χ(c - ε) ,

Rnu = -b(2χ + f)-2cy,

Run = δf- χ(b -δ)- y(c - ε) ,

Rm< = <*(P — y) + χ(ω — φ) — CS ,
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#3412 = —/fl — j(C - fi) ,

Λ1413 = -fte - ?>(μ + <y) — c(ft + δ)

#1323 = p(β - φ) + <*2f - X) ,

#23i3 = -pφ + χ(2/w - σ ) ,

#1324 = <*X +

#2413 = —pμ

#1334 = bχ -

#3413 = = P£

#1423 = = aX

#2314 = μy ~

#1424 = y(<* -

#2414 = δS —

#1434 = fty -

#3414 = X* -

#2324 = C* -

#2423 = ftC -

#2334 = e?> —

#3423 = Cφ-

#2434 = ^ -

R 2 Λ 2 . — cσ —

ωf-

- XΨ
cp-

δχ-

φf-

εs-

- ώ) —

Jα> —

CX +

δy-

aσ +

aσ —

bσ-

bσ-

bω +

bω —

cs —

— ;y(

2σs,

Kb 4

- ̂ (x
X(2μ

s(φ-

sω —

y(1-

p(χ -

2χs.

S(X-

s(p-

sy .

σy - φiχ + ί),
σ - μ) ,

t

• δ) - s(σ - μ),

•a(χ-f),

p(μ + a) ,

+ 2f) + bs,

+ σ) ,

- ω) ,

f(c + ε) ,

- χ) - p(x + f)»
f /) + y(ί - χ) ,

- / ) ,

-y),

1.3. Einstein equations: jRίy = Λ 5 o /4.

1) Λ n = -(a2 + 2ft2 + 2c2 + 2σ2 + φ2 + α,2) ,

2) Λ22 = 2(ft£ + ce) - a(φ + ω) - α2 - p2 - 2χ2 - y2 ,

3) Λ33 = 2(σμ - bδ + χf) - py - φ(a + ω) - φ2 - p2 - s2 ,

4) R44 = -2(cε + <xμ + χ/) - Py - ω(a + φ) - ω2 - / - J2 ,

5) Λ12 = p(a — φ) + y(a — ω) — 2σχ + ft^ ,

6) Rn = ft(2^ + j ) + c(χ - /) + % - ω) ,

7) ΛI4 = b(χ + f) + c(2y + p) + 2σs ,

8) # 2 3 = φ(δ - ft) + σε - fl(ft + 5) + cμ - bω + s(p - y) ,

9) Λ24 = σδ + ω(e — c) — α(c + ε) — ft// — cp + 2χj ,

10) Λ34 = ω(// - σ) - ^(χ + /) + y(/ - χ) - ?>C" + α) - c3 - fte -
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1.4. R = -((fl + ψ)2 + 2b2 + (p + y)2 + (a + ω)2 + (φ + ω)2

+ 2c2 + 2σ2 + 2χ2 + p2 + 2s2 + y2) .

1.5. Bianchi identities:

11) O = ( / - χ ) ( c + e ) - p ( & + 3 ) ,
12) 0 = (χ + f)(b + δ) + y(c + ε) ,
13) 0 = σ(p- y) + χ(ω - φ) + af - sε ,

14) 0 = ap + 2σf - 2χμ ,

15) 0 = aχ + f(ω - ψ) - cs + μ(p - y) ,

16) 0 = (χ + f)(b + ί) - s(σ + μ) - p(c + e) ,

17) 0 = αχ — f(φ — ω) + μ(p — y) + εs ,

18) 0 = ay + s(b - δ) - 2a] + 2χμ ,

19) O = y(b + δ) + φs + (f- χ)(c + ε) ,

20) 0 = *(* + / ) ,

21) 0 = ps .

II. We now find all possibe solutions up to isomorphic Lie algebras with
isometric Riemannian structures. Each solution is described in detail as it
arises. The results will be summarized in a theorem at the end of the chapter.
In the rest of this chapter equations numbered 1) through 21) refer to the
numbered equations in the above steps 1.3 and 1.5.

II. 1. R = 0. From the above equation 1.4, we get

a, φ, b, y, ω, c, σ> χ, p, s = 0 .

The Einstein equations all become identities, 0 = 0, and the Bianchi equations
become (listing only non-identities)

11) 0 = /e, 16) 0 = / 3 ,

12) 0 = fδ , 19) 0 = fε .

These equations have two sets of solutions:
a) / = 0, ε and δ arbitrary,
b) ε = δ = 0, / arbitrary.

In either case there are no conditions on μ, so μ is arbitrary.
In case a) the bracket operations become

[Xl9 X2] = -δX3 - εX< , [X2, X,] = 0,

) [Xl9 X3] = δX2 - μX< , [X29 XJ = 0,
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In case b) they become

= -fX<9

We observe that the solutions of type (III.4) can be transformed into
solutions of type (III.5) by an admissible change of basis. To see this, consider
Ad(Xx) restricted to span (X2,XZ,X<) for arbitrarily given ε,<5 and μ. The
matrix of Ad(XJ with respect to X>, Z3, XA is

0
-δ
— e

δ
0

-μ
μ

o-
Consider the standard inner product <Λ,β> = — Trace AB on so(3). Then
the adjoint representation of 5O(3) has 5O(3) acting on so(3) as orthogonal
transformations with respect to this inner product, and SO(3) acts transitively
on the unit sphere in so(3). Hence there exists an A e SO(3) such that

0

— ε

δ
0

-ft

ε

μ

o-

Γ0 0

A~ι = Vδ2 + «2 + μ2] 0 0
1-0 - 1

Thus the desired change of basis is given by A. If Xιy

new admissible basis, then

0
1
0 J

•, XA are now the

(IIL6)

where t = v<52 + ε2 + μ2. This is a solution of type (III.5) with μ = r, / = 0.
In a solution of type (HI.5), let μ2 + f > 0 be given. Let X = (μ2 +

f ) - 1 " ^ + fX2), Y = (μ2 + f)-1/2(/Jf, - /i^2), where * l f . . ,Â 4 are an
admissible basis for this solution. Then X, Y,X3,X4 are also an admissible
basis for the same solution, but with respect to this basis the bracket operations
are the same as (III.6) with t = V'μr + f. Thus we need consider only
solutions of type (III.6).

Let Xv , XA be an admissible basis for the Lie algebra Q defined by
(III.6) with t = 1. For any t > 0 equations (111.6) are satisfied by tX},
X2,X3,Xi. Hence equations (III.6) define a 1-parameter family of inner
products on a single Lie algebra cj.

Proposition 1. The left-invariant Riemannian metric defined by any of
these inner products is flat.
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Proof. X2 is a central element of g, i.e., j(g) ψ 0. Now apply Corollary 1
from Chapter I.

Let G be the simply connected Lie group with Lie algebra g. Then the above
1-parameter family of inner products on g induces a 1-parameter family of
left-invariant Riemannian metrics on G, each of which is flat by Proposition
1. Hence this is an example of a simply connected Lie group G for which
distinct inner products on its Lie algebra g define isometric left-invariant
Riemannian metrics on G.

A matrix representation of g is given by

0
0
0

. 0

Lo

0
0

- 1
0

o
0

0
1

0
0

0

0
0
0
0_

0"
1
0

X —

_

o
Lo o o

o
.0 0 0

1
0
0

0-.

0"
0
1

II.2. Recall that the equations numbered 1) through 21) refer to the
equations listed in the above steps 1.3 and 1.5.

Case A. i) dim g' = 3, dim g" = 2, dim g"' = 1. g'" φO^sφO. Thus
p — 0 by 21), and then / = — χ by 20). But this implies that dim g" < 1.
Hence there are no solvable Lie algebras satisfying these conditions.

11) dim g' = 3, dim g" = 2, g"' = 0. For convenience we rewrite the bracket
operations from page 31.

(III.7):

[Xl9 X2] = aX2 + (b - δ)X3 + (c- ε)X4 , [X2, X3] - pX3 + (χ - t)X<

[Xl9 X3] = (fc + δ)X2 + φX3 + (σ - μ)X< , [X29 X4] = (χ + f)X* + yX<,

[Xl9 X.] = (c + ε)X2 + (μ + σ)X3 + ωX< , [X39 XJ = 0 .

We may choose X3 e g' so that [XUX2] espan(X2,X2), that is, we may
assume that ε = c. Now

14) + 18) is 0 = a(p + y)9

1 9 ) - 11) is O=(b + δ)(p + y)9

12) - 16) is 0 = (c + ε)(p + y).

If p + y φ 0, then a, b + δ, c + ε = 0, and dim g7 < 2. Thus ^ 4 - ^ = 0,
p= -y.

Claim. ^ ^ 0.
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Proof. Suppose y = 0. Then dim g" = 2 implies that χ = / Φ 0 and
χ — / =£ 0. (Look at equations (III.7).) Then b + δ = 0 by 12), and dim g'
= 3 requires that a Φ 0.

6) becomes: 0 = c(χ — /), and 7) becomes: 0 = b(χ + /).
Thus b = c = 0, and £ = 0 since b + <5 = 0. Hence we now have:

σ)X2

[X2, X3] = (χ -

[Λf2, ΛfJ = (χ +

[*3, AΓJ = 0 .

0 = σχ by 5). If χ = 0, then f Φ 0, and 18) implies that σ = 0. But 13)
implies that O — aj which would be impossible. Thus χ ^ 0 and (7 = 0. Thus
/£ = 0 by 14). Consider

15) 0 = aχ + f(ω - φ),

13) 0 = (ω - φ)χ + fa,

which are linear in a and ω — φ, and a Φ 0. Thus χ2 — f = 0, which contra-
dicts that χ -f / Φ 0 and χ — / Φ 0. This proves the claim that j =̂= 0. Now
δ = - 6 by 19), and then c = 0 by 16), and ί> = 0 by 6).

Of the remaining equations consider the following four, which are linear in
α, σ9 ω — ψ and μ:

5) 0 = -y(ω - ψ) - 2χ(;,

13) 0 = χ ( ω - p ) - 2 y σ + /α,

15) 0 = Λω - 9) + χα -

18) 0 = - 2/σ + yβ +

(χ -

Again consider the table of bracket operations:

lΛ!, X2\ = aX2 > YX2i -Λ3J = — y

. 0 ; L^1,A3J = φΛz + \p — μ)Xi > L^2» ̂ 4J = VX ~

Since dim g' = 3 it follows that a Φ 0. Thus

"-y - 2 χ 0 0 '

O = det J ~2y / 0 =4tf + f)tf + y-f)9
f 0 χ —2y

0 - 2 / y 2 χ -



338 GARY R. JENSEN

and f = χ2 + y2. But, looking at (III.8), this implies that dim Q" < 1. Hence
there are no solutions in Case A, ii).

iii) dim g' = 3, dim g" = 1.
In this case we may assume that p = 0 and χ + / = 0, merely by taking

X4 e g", X29 X3 e g', and X{-Q\ which is certainly an admissible basis. Then
the following four equations are reduced to

12) 0 = y(c + ε), 16) 0 = s(σ + μ)9

11) 0 = χ(c + ε), 19) O = yψ + δ) + φs.
We shall consider two cases. Case (a): s Φ 0 and Case (b): s = 0.
Case (a), s Φ 0. Then c + ε = 0, for otherwise, χ = 0 = y b y l l ) and

12), and then ψ = 0 by 19). But then c = 0 by 15) and ε = 0 by 17); i.e.,
c + ε = 0, a contradiction. Note σ + μ = 0 by 16). The bracket operation
table has become:

[Xl9 X2] = aX2 + { b - δ)X2 + 2cXA , [X2, X3] =

[Z15 JT3] = (6 + δ)X2 + ΨX, + 2σ^ 4 , [X2, XJ = yX,,

Let F = span(X>, Xj). Then jj7 = spanCfλ ,̂ F],X4) has dimension 3, and
consequently dim [Xl9 V] = 2 and X4 $ [A ,̂ K]. Thus dim{K Π [Xu V]} > 1.
So we may pick a unit vector Y2eV such that [Λ\, y 3] <= K, and a unit vector
Y2 e V such that Y2 _[_ Y2. Then A"l5 y2, y3, A"4 are again an admissible basis.
Notice that [y 2, y3]€span(Ar

4), [y2, Ar
4] € span (*4) and [y3, X4] espan(AΓ

4)
since [F, K] and [V, X4] are both contained in span (A',,). Thus, if we relabel
this basis as A"15 , A"4, then the structure constants become:

[Xl9 X2] = aX2 + (b - δ)Xz + 2cXκ, \X19 X,]

) [Xl9 X2] = φ + δ)X2 + ΨX3, [X29 X4] = yXA,

[Xu XJ = ωXA , [A"3, A
r

4] = sXA .

In particular we have (7 = 0. Notice, however, that the condition s Φ 0 may
no longer hold.

Consider 18) 0 = ay + s(b - <5),
19) 0 = (6 + ί)y + ψs.

Looking at the first two equations in (III.9) we see that

b + δ φ

since dim g' = 3. Thus v = 0, s = 0, and χ Φ 0 since g" =£ 0. Therefore
a + φ — ω = 0by 17), and c = 0 by 6).

From 2) + 3) - R/2 = 4χ2 + 2(α + φ)\ and using 4) we get that χ2 =
— R/2A. We may set R = — 24 with no loss of generality. Then χ2 = 1, and
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(a + φ)2 = 4. Squaring the equation on the last third line on p. 338 we get
that ω2 = 4. Then

0 = 2bδ + φ2 - a2 from 3)-2)

0 = δ(φ - a) - 2b(φ + a) by 8) .

Multiplying the last equation by (φ + a), and using the equation above it we
get that 0 = b(δ2 + 4). Hence b = 0.

Now a2 + y>2 = 2 by 1). Thus 2ay> = {a + φ)2 - {a2 + φ2) = 2, and a2 = 1
by 2), and consequently φ2 = 1. But t φ = 1, and β2 = 1, p2 = 1 implies that
α = 9?.

All 21 equations are now satisfied. The solutions are: b, c, ε, μ, σ, y, s, p
= 0,5 arbitrary, χ2 = 1, a2 = 1, α = φ, ω = 2α, / = - χ with Λ = - 2 4 .
Thus

[AΓ2, A'g] = aX2 — 5 Z 3 , [^2, X3] =

(III. 10) [*„ Jf3] = δX2 + aXz, [Jff, JfJ = 0 ,

Remark. It suffices to take α = χ = 1. In fact, let εt = ± 1, i = 1,2.

Then

jΛΊ, £2^3] = (ε^) (£2^2) — fae&Xi, taA^, X J = 2(ε2χ)X4,

+ (a£ι)Xz, [Λflf JfJ = 0 ,

[X3, ^ J = 0 .

Thus by an admissible change of basis we may make a = χ = 1, although δ
may have been changed to —δ. If so then εxXx, X3, ε2X2, —XA

 a r e a n admissible
basis with structure constants a = χ = 1, + 3 .

Proposition 2. Λ// of the solutions defined by (III. 10) are, as Rieman-
nian spaces, isometric to a hermitian hyperbolic space.

Proof. By a hermitian hyperbolic space we mean the symmetric space M
= 5ί/(2,1)/S(U2 x £/j) defined by the involutive automorphism φ on su(2,1),
where

1 i s 2 x 2 s k e w hermitian, M e C2,
iaϊae R9 a + Trace Z = 0.

su(2 I) — \\Z u

' " IL'δ i

ΓZ w ] = Γ Z - i i ]

and with the bilinear form B on JH(2, 1) given by B(X, Y) = — £ Trace
Let g(δ) be the Lie algebra defined by the structure constants a = χ = 1

and 5 as in equations (III. 10) with respect to a given basis Xl9 ,Λ"4, and
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take the inner product on g(<5) defined by making Xu - , XA orthonormal.

For convenience we define ί}C.sw(2,1) to be the + 1 eigenspace of <py and

let & be the — 1 eigenspace of φ.
Consider the faithful matrix representation of Q{S):

Regard this representation as a monomorphism D: g(<5) —> su(2,1), and let
G(δ) be the simply connected Lie group with algebra g(5). Then D induces a
homomorphism D: G(δ) —• 51/(2,1), and thus G(δ) acts on M via the compo-
sition of D and the projection π: SU(2,1) —> M. This action defines a map
/: G(δ) -> M given by /(*) = π o D(JC). Then /„, = τr*£> maps g(5) onto Γ, ( l )(M),
(cf. proof of claim below). Thus / maps a neighborhood of 1 € G(<5) onto a
neighborhood of τr(l) € Af. Thus f(G(δ)) is open and closed in M and, conse-
quently, / is surjective. By dimension, /* is injective. Thus f~ι({π(l)}) is a
discrete subgroup of G(δ), and so /: G(δ) - * M is a covering space. But M is
simply connected. Hence / is a diffeomorphism, i.e., G(δ) acts simply
transitively on M.

Claim. / is an isometry.
Proof. It suffices to prove that / + : g(<5) —• Tnω(M) is an isometry. The

metric on Txω(M) is defined by identifying Tx(l)(M) with & via π* and then
taking B restricted to ̂ . (Recall that B(X, Y) = — \ Trace XY.) The metric
on q(δ) is defined by the orthonormal basis Xιy , A"4 above. Then

rθ 0 -i1
0 0 0 1 , f

-i 0 OJ

p 1
0

. - 1

Γ°
0

-0

0
0
0

0
0
I

- l - i

0
0-

0
— I

0

are an orthonormal basis of & with the inner product B.
Hence we have proven that the Riemannian space defined by g(δ) is isometric

to a hermitian hyperbolic space.
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Proposition 3. g(δ) is ismorphic, as Lie algebra, to g(μ) if and only if
\δ\ = \μ\.

Proof. By the remark on page 339 it is clear that Q(5) ^ g(—δ).
Let X19 - , ΛΓ4 be an admissible basis of g(β) with structure constants

a = χ = 1 and δ, notation as in equations (III. 10). Let X be any vector in
4

g(δ), which is not contained in g(£)'. Then X — £ atXi9 ax ψ 0. Regard Ad(X)
i = l

as a linear transformation of g(δ)' —> g(δ)'. Then the matrix of Ad (X) with
respect to the basis X2, X3, X4 is

L - 2 a ,

The eigenvalues of Ad(X) are 2ax and Λ,(1 ± iδ). Notice that |αj = length of
the component of X _]_ g(δ)'.

Now let Y be any vector in g(μ), $g(μ)'. Regarding Ad(Y) as a linear
transformation of g(μ)' -» g(μ)', its eigenvalues are 2&15 and fejίl ± iμ), where
l&il = length of the components of Y normal to g(//)'. Note |fcj ^ 0.

Suppose there exist such X and Y with equal eigenvalues. Then ax = fcj and
consequently |d| = |//|.

Recall that we are still in Case A, iii); i.e., dimg' = 3, dimg" = 1. We
have completed part a), which was headed by the assumption that s Φ 0.

b) s = 0. Thus [X,, X4] = 0. We may assume that [X2, X4] = 0, also, for
otherwise by interchanging X2 and X, we would again have an admissible basis,
and with respect to it s Φ 0. Thus we have y = 0. Recall that we already
have p = 0 and / = — χ. Thus χ Φ 0 since g" Φ 0. Consequently c + ε = 0
by 11), and μ + a = 0 by 18). Now

[Xl9 X2] = aX2 + (6 - 5)X3 + 2cX4 , [X2, X3] = 2χX< ,

[Z l 5 ΛΓ3] = (6 + δ)X2 + 9X 3 + 2σXA , [X2, Jf J = 0 ,

But this is the same situation as arose in part a) above, for note that choosing
a basis which made σ = 0 in no way depended on s being non-zero, at least
not at the stage when it was chosen. That is, we may again choose a basis, as
we did in part a), so that σ = 0, and then proceed exactly as we did then.

Case A, iv). dim g' = 3, g" = 0.
Now, with respect to an admissible basis, p, χ, /, y, s = 0. We may pick

an admissible basis which will eliminate some more of the unknowns in the
following way. Regard Ad (Xλ) as a linear transformation of g7 —> g'. Then
dim g' = 3 implies that Ad (Xx) has at least one real eigenvector, which may
be assumed to be X2. This makes b — δ = 0 and c — ε = 0. Now let V equal



342 GARY R. JENSEN

the orthogonal complement of X2 in g'. Ad (XJV must have dimension 2 since
dimg' = 3. Thus V ΓϊAdiXJV Φ 0 and we may pick X2eV such that
Ad (Xχ)X3 € F, which makes b + δ = 0. X4 is now determined up to sign.

We now have

(III. 11) [Xϊ9 X3] = φχ3 + (σ- μ)XA , [*„ *J = 0 ,

[Z3, ZJ = 0 .

The Bianchi equations are all satisfied.
Claim, c = 0.
P/w/. Suppose c ^ O . Then μ = —σ,φ= -2a by 8) and 9). If a Φ 0,

then a = — 2ω by 10) and /?/4 = 2c2 + 6ω2 by 2), which is impossible since
R < 0. Thus (7 = 0. From 1) + 4) - 2) - 3),

(III. 12) c 2 = 3a2 + R/4 .

Putting this into 1) gives ω2 = — 3Λ/4 — llίz2. Putting these into 4) gives
0 = a(5a + α>). But a Φ 0, since dimg' = 3 (look at equations (III. 11)). Thus
ω = —5a. Putting this back into 1) gives —R/2 = 24α2. Consequently, from
(III.12) we get c2 = 3JR/16 < 0, which is impossible. Hence c = 0.

Now 0 = μ(ω — ψ) — σ(ω + ψ + a) by 10); and 4) — 3) gives 0 = 4σμ
+ (ω — <p)(a + ω + ψ). Multiply through by σ and use 10) above to get
0 = μ(4σ2 + (ω- ψ)2).

Suppose μ Φ 0. Then a — 0, ω = φ9 and 0 = a(a — φ) by 1) — 3). Thus
a = φ since a Φ 0. Hence α2 = — Rj\2 by 1), and all 21 equations are now
satisfied.

Suppose μ = 0. Then 0 = σ(ω + <p + a) by 10). If ω + ψ + a — 0, then
R — 0 by 2), which is not the case. Thus σ = 0, and ω — ψ by 4) — 3). Hence
we get the same solution as above, except with μ — 0.

The solutions we have obtained in this case are: Set R = —12; then a2 — 1,
ψ = ω — a, μ arbitrary; p, χ, /, y, s, c, σ, b, δ, ε = 0. The bracket operations
are

( i n . 13) yr l f j f 3] - ax3 - μx<, yr2, * j = o ,

[Z,, ΛTJ = ^ 3 + fl*4 , [Jf3, JfJ = 0 .

Proposition 4. For ΛA7j vα/we of μ and any choice of a — ±1, the space
defined by equations (III. 13) is a space of constant negative curvature equal
to —I. Thus as Riemannian manifolds each of these solutions is isometric to
real hyperbolic space.

Proof. Directly compute the Rijkl from pages 332 and 333.
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The question remains as to which of the above solutions are non-isomorphic
Lie algebras. Let Xl9 , XA be a given basis with structure constants a and
μ as in (III.13). Then the orthogonal change of basis to —X19X29Xi9X3

changes a to — a and leaves μ the same, while the orthogonal change of basis
to Xl9X2,X4,X3 leaves a the same but changes //to — μ. Hence, in order to
determine non-isomorphic solutions, it suffices to take a = 1 and μ > 0.

Let g(μ) be the Lie algebra defined by equations (III. 13) for each value of
μ>0.

Proposition 5. g(μ) is isomorphic to Q(8) if and only if μ = 5.
Proof. Let X be any element of g(μ) not contained in g(μ)', and regard

Ad (X) as a linear transformation of g(μ)' -+ g(μ)'. As in the proof of
Proposition 3 the eigenvalues of Ad (A") are ax and ax{\ ± iμ), where \ax\ is
the length of the component of X normal to g(μ)'. In the same way, if Y e g(δ),
but Y $ Q(δ)\ and 1̂ 1 = length of the component of Y normal to Q(5)\ then
the eigenvalues of Ad(Y): g(δ)' -> g(δ)' are bλ and ί>,(l ± iδ).

Suppose there exist such X and Y with equal eigenvalues, as there must if
= g(δ). Then necessarily ax — bx and consequently μ = δ.

A matrix representation of g(μ) is given by

0
0
0
0
0

0
0

0
0

-μ
0
0

0

1
1

0
μ
0
0
0

0
0

0
0
0
0
1

0
- 1

0

o

0
0
0
1
0_

0"
1

0

1
1

-

0
0

o
0
0

o
0
0

0
0

1
1

- 1
0
0

o

0
0

- 1

o

1
0
0

0"
0
1

Note that this representation represents g(μ) as a subalgebra of ,
A simpler matrix representation of g(0), good for any dimension π, is given

by the set of all n x n real matrices which have all rows but the first equal to
0. The orthonormal basis Xl9 ., Xn is defined to be

δn '• δin

0 . . . 0
ι =

L 0 ... 0 J

and the corresponding group is
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Xi

0 1 0 -
1

• 0
0
1

> 0

Case B. dim g' = 2.
In this case, with respect to an admissible basis, a — 0, δ = —b,ε= c.

[X19 X2] = 2fcZ3 + 2cXA, [X2, * , ] = pX3 + (χ -

(III. 14) [Xl9 X,] = φXz + (σ - μ)X<, [X29 X<] = (χ + /)X3 +

[AΊ, X J = (μ + σ ) ^ + ωX4, [Λ'a, ^4] = sX4 .

Claim. ^ = 0.

Proo/. Suppose s Φ 0. Then p = 0 by 21), χ + / = 0 by 20), φ = 0 by
19), μ + σ = 0 by 16), and b — δ = 0 by 18). But this means that dim g'
< 1 (look at equations (III. 14)). Hence s = Ό.

Now g' is abelian, and Xz and ^ 4 are determined only up to a rotation.
Pick Z 4 to be a multiple of [A^, ΛΓ2] then b = 0.

Claim, c = 0.
Proo/. Suppose c =£ 0. Then χ — / = 0 by 6), 2y + p = 0 by 7), μ — σ

= 0 by 8), and 2ω + 9 = 0 by 9). Thus 10) and 13) become
10) yχ + ωσ = 0,
13) ωχ — yσ = 0,

which have a non-trivial solution in χ and σ if and only if ω2 + y2 — 0.
Suppose ω2 -\- y2 — 0, i.e., ω = y = 0. Then p = 9 = 0 by 7) and 9), and

R/4 = 2(σ2 + χ2) by 3), which is impossible since R < 0. Suppose ω2 + y2

> 0. Then χ = 0 = σ. Thus y2 = ω2 by 1) and 2), and y2 = - Λ / 1 6 by 3).
But then 16c2 = R/2 by 2), which is impossible. Hence c = 0.

The bracket operations now look as follows:

= 0,

σ)Xz

[X2, X2] = ^ 3

[*2, JfJ = (χ

[X» X,] = 0 .

(χ -

Regard Ad(X^ and Ad(X2) as linear transformations of cj'
matrix of each with respect to the basis Xj, XA is:

c\'. Then the

Ad
a — μ ω

Ad(X2)
Lχ — /

Let V = spanίZ^Zj) . It is possible to choose an orthonormal basis of V so
that μ + σ = 0. To see this, suppose μ + σ Φ 0, and let
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F(0 = cos t + " "*" *' sin ί.
(μ + σ)

Then there exists a ί0,0 < f0 < π, such that F(f0) = 0. Let Y = Λ\ cos ί0 +

Z 2 sin r0. Then

Λd(Y) = cos tQ Ad(Xx) + sin t0 Ad(X2)

= Γ* (σ + μ) cos t0 + (χ + /) sin ίol = Γ* 01

L* * J L* * J

Label a new basis Xx = Y and Z 2 € V, J_ r , unit length. Then [Xl9 X2] == 0,
and

; 1 , ^ ( j f f ) Γ ^
2σ α>J Lχ - /

i.e., // = -σ.
Now 0 = σ(χ 4- /) by 14). We must now consider two cases, namely,

X + / = 0 and χ + / Φ 0.
Core 1. Jt + / = O .
Choose ί, 0 < t < π, such that σ cos / + χ sin / = 0. Let Yx = A"j cos / +

ΛΓ2 sin ί, y 2 = — Xx sin / + X2 cos Λ Then

i4rf(y,) = cos / Ad(Xλ) + sin t Ad(X2) = Γ* °1, Λ</(Y2) = Γ* °1.
L0 *J L* *J

Thus we may assume that a = 0.
Claim, χ = 0.
Proof, Suppose χ ^ 0. Then y = 0 by 10), and ω = 9 by 13). Thus 9 ^

0 by 1), and p = 0 by 5). But then y> = 0 by 2) and 3), a contradiction.
Hence χ = 0.

Only equations 1) through 5) remain to be solved. Combing 1), 2), 3) and
4) we get 0 = py + <pω. Equations 1) though 5) are then equivalent to:

1) -R/4 = φ> + ω\ 4) - Λ/4 = ω2 + )>2,

2) - Λ / 4 = ^ + y , 5) 0 = w + ωy,
3) - R/4 = φ2 + p\ 6) 0 = py + φω.

Set Λ = —4. Then (φ,p), (ω,y), (p,y) and (9,0)) are unit vectors, with
(φ,p) _]_ (ω,y) and (̂ 0,̂ ) J_ (φ,ω). Therefore, all possible solutions are given
by:

ψ = cos t, ω = sin ί, p = + sin /, ^ = ± cos /, for 0 < t < 2π ,

and with the signs related and a, b, δ, c, ε, σ, μ, χ,f,s = 0.
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[Xl9 X2] = 0, [X29 Xz] = - ( ± ) * 3 sin /,

(III. 15) [Xl9 X3] = X3 cos /, [X29 XJ = ± X4 cos /,

Consider the solution for t — 0, and let t, 0 < t < 2 π, be given. Let Yλ

= Λ̂  cos / + A^ sin / and Y3 = — ( ± ) Â  sin / + ( ± ) Z 2 cos /. Then

,, z 3 ] - * 3 cos t, [y2, * j = ( ± ) * 4 cos /,

Hence, by an orthonormal change of basis, we obtain the solution for /. Thus
we have only one solution, which we take to be for / = 0, and the " + "
sign. The bracket operations are then:

[Xl9X2] = O, [X2,X3] = O,

(IΠ. 16) [Xl9 X3] = Xz, [Xi9 XJ = X,,

Let 3>x — span ( ^ , ^ 3 ) , and ^ 2 = span (Λ'^Λ'J. Then Q>x and £ 2̂ are
clearly ideals in g and g = S , Θ S Z . Examining the curvature tensor /?/</w it
is seen that the Riemannian metric is the product of the induced metrics on
Q)x and 3)29 and the induced metrics on <%i9 i = 1,2, are of constant curvature
equal to — 1.

This completes Case 1, where we assumed that χ + / = 0. We must now
consider Case 2. However, we shall not get any new solutions.

Case 2. χ + / Φ 0.
Now a — 0 by 14). Thus Ad(Xx) is already diagonal, ω = ψ by 13) and 15)

and the assumption that χ + / Φ 0. Thus ψι = —R/S by 1). In particular,
ψ φ 0. Thus p + y = 0 by 5).

Now 0 = y/ by 10), and 0 = χ/ by 4). But χ2 + / = -Λ/8 by 2), and
so χ and j cannot both be zero. Consequently, / = 0. Thus χ Φ 0, since
X + f Φ 0.

Set i? = - 8 . Then <p2 = 1 by 1), and χ2 + y2 = 1 by 2). Hence in this
case we have found all possible solutions which can be listed as follows:
R = — 8, ψ2 = 1, ω2 = 1, α> = φ, χ = cos /, v = sin r, 0 < t < 2π, p = —y,
a,b,c,δ,ε,f,σ,μ,s = 0.

The bracket operations are:

[Z15 JfJ = 0 , [X29 X3] = -Xz sin / + XA cos /,

(III. 17) [Jf,, Z3] - ( ± ) * 3 , [Z2, Z J = X3 cos / + Jf4 sin /,

[Xl9 XA] = ( ± ) Z 4 , [Z3, ΛfJ = 0 . (Signs are related.)
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Claim. These solutions are all the same as the solution given by equations
(III. 15) given on page 346. That is, by making an appropriate orthogonal
change of basis in any of the solutions defined by (III. 17), we will get the
same solution defined by (III. 16).

Proof. We show first that all solutions at (III. 17) are the same as the one
at (III. 17) for t = π/2 and the " + " sign, and then that this solution is the
same as the one at (III. 15) for t = π/4 and the " — " sign, except for a scale
change which comes from our choice of R = —4 at (III. 15) and R = —8 at
(111.17).

Let X19 ,X4 be an admissible basis for the solution at (III. 17) for
t = τr/2 and the " + " sign. Let Yλ = (±)Ar

1, Y2 = ΛΓ2, Y3 = X2 cos β + X4 sin β9

Y4 = —X3 sin β + X4 cos β, where β is to be determined. Then

[γl9 Y2] = o , [ Y2, y3] = - y, cos iβ + Y4 sin iβ,

(iπ.18) [γl9 y,i = ( ± ) y 3 , [y2, Y J = y3 sin iβ + y4 cos 2/3,

Given f, 0 < t < 2π, choose β so that cos 2β = sin / and sin 2/3 = cos r.
In fact, take 2jS = π/2 — t. Equations (III. 18) now show that the solution at
(III. 17) for t — π/2 and the " + " sign is the same as any solution at (III. 17).
It is obvious that this solution is the same as the one at (III. 15) for / = 7r/4
and the " — " sign.

CaseC. dimg' = 1.
In this case, with respect to an admissible basis, a, b, δ, φ, c 4- ε, μ + σ,

[Xl9 X4] = ωX4, IX,, X4] = sX4 .

There are no solutions in this case.
Equations 7) and 8) are linear in y and σ, and in c and s: 7) 0 = cy + sσ,

8) 0 = sy + 2cσ. Consider the two cases: i) 2c2 - s2 = 0 and ii) 2c2 - s2 Φ 0.
i) 2c2 - s2 = 0. Suppose also that 2σ2 - y2 = 0. Then 0 = ω2 - 2f by

1) and 2). But - J?/4 = ω2 - 2χ2 by 4). Thus 2σ2 - y2 Φ 0. But then χ =
ω = 0 by 5) and 6), and s = c = 0 by 7) and 8). Thus 0 = 2σ2 - / by 1)
and 2), a contradiction. Hence i) is impossible.

ii) 2c2 - s2 ψ 0. Then y = σ = 0 by 7) and 8), and χ = ω = 0 by 6)
and 9). Thus 2c2 — s2 = 0 by 1) and 3), a contradiction. Hence there are no
solutions when dim g' = 1.

2. The following theorem summarizes the results obtained in § 1. A ma-
trix representation for each Lie algebra is given in § 1 and in the introduction,
and so is not repeated here.
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Theorem. Let G be a four-dimensional Lie group with a left-invariant

Riemannian metric. Then G is an Einstein space if and only if its Lie algebra

g is one of the following solvable Lie algebras with the inner product defined,

up to change in scale, by Xx, , XA being an orthonormal basis. Distinct

values of t define non-isomorphic Lie algebras.

1. [XX,X2] = O, [X2,XZ] = O,

[X{,XZ] = XA, [X2,XA] = 0,

[XX,XA]=-X3, [*„*«] = 0 .

As a Riemannian space this is flat.

2. \.X\9 <Λ2J = X2 — tXz, LΛ2» Xv ~ 2 Λ 4 ,

[Xl9X2] = tX2 + XZ9 [* 2 ,*J = 0 ,

[Xl9XA] = 2XA9 [ * 3 . * J = 0 , 0 < r < o o .

As a Riemannian space each of these is a hermitian hyperbolic space with

sectional curvature K satisfying — 1 > K > — 4.

3. L^ij-Xj = X2 > L̂ 2> ̂ 3 ] — 0 ,

[Xt,X<] = ίX3 + Xt, [X3,XJ = 0 , 0 < K oo .

As a Riemannian space each oj these is a real hyperbolic space with constant

curvature K equal to — 1.

4. [ # „ * , ] = 0, [X2,X3] = O,

[Ap A3J = ΛL3 , IA2, Λ 4 J = Λ 4 ,

This Lie algebra is the direct sum of a two-dimensional Lie algebra with itself,
and the Riemannian space is the direct product of a two-dimensional solvable
group manifold, of constant curvature K equal to —I, with itself.
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