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THE HODGE COHOMOLOGY
OF A CONFORMALLY COMPACT METRIC
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Abstract

The Hodge Laplacian acting on differential fc-forms is examined for a
class of complete Riemannian manifolds with negative sectional curva-
ture near infinity. These manifolds have C°° compactifications on which
the metric is conformal to one smooth up to the boundary with confor-
mal factor p~ 2 , p a defining function for the boundary. An example is
the Poincare* ball, which serves as a model throughout. The Schwartz
kernel of a parametrix for the Laplacian is described for all degrees k ex-
cept those near half the dimension of the manifold. Its asymptotics are
determined in sufficient detail so that we may identify the L2 harmonic
spaces with the relative and absolute cohomology of the compactifica-
tion for k < (n — l)/2 and k > (n + l)/2, respectively. In addition, we
locate the essential spectrum of the Laplacian in each degree. The con-
struction relies on a calculus of pseudodifferential operators well adapted
to the type of degeneracy exhibited by the Laplacian at the boundary
of the compactified manifold.

1. Introduction and geometric preliminaries

A. A complete simply-connected Riemannian manifold of negative curva-
ture is diffeomorphic to Euclidean space. If in addition its metric is of bounded
geometry then we might expect its Hodge Laplacian, which acts on differen-
tial forms, to behave much as the corresponding operator on the constant
curvature model space H n . As we shall see, only sometimes is this the case.

The salient properties of the hyperbolic Laplacian are well known. Those
which concern us here involve its spectrum on L2(dgH), dgπ ^hyperbolic
measure, and the existence of bounded harmonic functions or forms with given
"asymptotic" boundary values—including representation theorems in terms of
these boundary values. Thus, if Δ/c denotes the Laplacian on fc-forms, then
Δfc has no point spectrum unless k = n/2, in which case it has only an
infinite dimensional eigenspace at zero (Dodziuk [5]). From Donnelly [6] its
continuous spectrum is known to be unitarily equivalent to a finite sum of
multiplication operators a2 + x2 acting on L2(R+, H), H an auxiliary Hubert
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space. In particular, the range of Δ& is closed and the continuous spectrum
is bounded away from zero except when k = (n ± l)/2. This behavior for
values of k near the middle degree results from the conformal equivariance
of the coboundary operator <5, and the conformal invariance of the L2 norm,
in the middle degree. As for bounded harmonic functions, these exist in
abundance. There are classical Poisson representation formulas for them in
terms of their boundary values and, due to the representation theorists, one
may even allow hyperfunction boundary value (although the corresponding
harmonic functions are no longer bounded then). Similar theorems hold in
the setting of differential forms.

Let us now quote some of the relevant variable curvature results. To fix
notation, let M be a simply-connected complete Riemannian manifold of di-
mension n, the sectional curvatures of which satisfy bounds — b2 < KM <
—a2 < 0. There is a geometrically natural compactification M = MU S<χ>
homeomorphic to the ball Bn, first defined in Eberlein and O'Neill [8]. Points
of SQO m aY D e thought of as classes of mutually asymptotic geodesies. A priori
M exists only as a topological manifold.

In this generality rather more is known about Δo than other degrees. For
example, it is quite trivial that there are no L2 harmonic functions since such
a function must be constant and the volume of M is infinite. More strongly,
McKean [13] proved that specΔ0 lies in [(n — l)2α2/4,oc). The multiplicity
of the continuous spectrum presumably varies in a complicated manner in
[(n — l)2α2/4, (n—1)262/4] and there are no other L2 eigenfunctions. However
there are many bounded harmonic functions. By the work of Anderson [1] and
Sullivan [18], for each continuous function / on SQQ there is a unique harmonic
function u on M which assumes the boundary values / in the topology of
M; Yau's asymptotic maximum principle shows that u is bounded. Later
Anderson and Schoen [3] gave a representation formula for u in terms of /, in
the process showing that Soo has a natural Holder structure with exponent
a = a/b.

The situation for other values of k is rather more subtle and less is known.
A strong vanishing theorem, which Donnelly and Xavier [7] were able to prove
by assuming that the curvature is tightly pinched, \a/b—\\ < ε(n, fc), concerns
the L2 harmonic space

oo, k = n/2.

They also establish nonzero lower bounds on the spectrum. Dodziuk [5] proved
a vanishing theorem of the form (1.1) for complete manifolds with rotational
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symmetry. (He actually used hypotheses on the growth of the metric, and as-

sumed nothing about the curvature.) Rather surprisingly then, Anderson [2]

produced examples of manifolds with the correct geometry but for which %?k

is infinite dimensional for any one fixed value of k φ 0, n, in the process show-

ing that the pinching constants used by Donnelly and Xavier to obtain (1.1)

are sharp. Finally, very little is known about the solvability of the asymptotic

Dirichlet problem for forms. It is closely related to the L2 theory above, in the

same relation for example as between the homogeneous and inhomogeneous

Dirichlet problem for the Laplacian on a finite smoothly bounded domain.

B. In this paper we describe and study a class of manifolds for which a

finiteness theorem for the Hodge cohomology spaces %?k analogous to (1.1)

may be proved. The manifolds in this class are modelled closely after H n in

their metric asymptotics. In particular they possess a smooth, albeit extrin-

sically defined, ideal boundary.

Thus let M be a compact manifold with boundary and p a positive defining

function for dM:

For any smooth metric h on M define

(1.2) g = p~2h.

This metric g, which we term conformally compact, and its Laplace operator

are the focus of this paper. It is a complete metric since the singular factor

p~2 has the effect of pushing dM out to infinity. The relevant geometry is

summed up in the:

Proposition. (M, g) is a complete manifold. Ifη is a nontrapped geodesic

then η(t) tends to a definite point η^ G dM as t —» oo and V(£) tends

in direction to the h-unit normal to the boundary v at η^. Furthermore,

the curvature tensor at η(t) becomes increasingly isotropic for t large, with

sectional curvatures all tending to — {dp/du)2^^).

This is verified by straightforward computation. So although the topology

of M and the geometry of g are arbitrary in the interior, their behavior at

infinity is distinctly reminiscent of the hyperbolic model.

The Hodge Laplacian Δ& for the metric g, for which we derive the explicit

expression in the next section, is also quite similar to its hyperbolic analogue.

Indeed, in a sense to be made precise later, the hyperbolic Laplacian is an

asymptotic limit of the variable curvature operator. Hence it may be re-

garded as an elliptic operator on the compactification M = M U dM which

degenerates rather thoroughly at dM. Our main result is
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(1.3) Theorem. For the conformally compact metric g of (1.2) there are

natural isomorphisms between the [finite dimensional) spaces

^k^(Hk(M,dM), fc<(n-l)/2,

I Hk(M), k> (n + l)/2.

If —CLQ = sup—(dp/dι/)2 is the maximum limiting curvature at infinity, then

the essential spectrum of Δfc is [a%{n - 2k - l)2/4,oo), {0} U [αo/4,oo),

[α§(n — 2k + l) 2/4, oc) /or fc < n/2, A; = n/2, k > n/2, respectively. In

particular, λ = 0 is an isolated eigenvalue of infinite multiplicity for Δn/2

This result provides a topological interpretation of the harmonic spaces

on certain open manifolds. Notice that, in place of the relative or absolute

boundary conditions for the Laplacian necessary for the standard Hodge the-

orem for compact manifolds with boundary, the L2 condition alone provides

the boundary condition here. (1.3) may be regarded as asserting Fredholm

properties for a certain asymptotic elliptic boundary problem.

The proof is microlocal. §2 contains a description of a space of pseudo-

differential operators large enough to contain parametrices for the degenerate

operators Δfc. These have genuine symbol ellipticity once the definition of

symbol has been suitably reinterpreted. But, as with classical elliptic bound-

ary problems, an additional boundary ellipticity condition is required before

Fredholm properties will hold. Whereas the classical Lopatinski-Schapiro con-

dition is algebraic, the condition here is differential and requires the invert-

ibility of certain model operators. This analysis is the subject of §3. Finally

in §4 we gather the machinery developed and complete the proof.

This approach to certain degenerate elliptic equations originates with

Richard Melrose, to whom the author is indebted for thoughtful supervision

during the writing of the thesis upon which this paper is based. More thor-

ough treatment of many of the results here is to be found in that thesis [11].

These techniques have also been used to prove the existence of a meromorphic

continuation of the resolvent for ΔQ—as well as of the Eisenstein series for

certain quotients of H n — for those conformally compact metrics with asymp-

totically constant curvature at infinity [12]. Finally, the asymptotic Dirichlet

problem for differential forms may be studied by these methods.

C. We now briefly derive an expression for the Laplacian Δfc corresponding

to the metric (1.2). For reasons to become clear later, it is natural to consider

instead the conjugate

P = pkAkp-h.

From Δfc = dδ + δd it follows that

(1.4) P = (pkdp-k~ι)(pk+1δp-k) + (pkδp-k+1)(pk-1dp-k).
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Thus we first compute p>+ιdp~3 and pJ~1δp~J for each j . The first of these
is trivial:

fp^γdp~3ω = pdω — jdp Λω, ω GΩJ.

As for the second, a duality argument shows that

(1.5) pj~1δp-jω = pn-j+ιδh(p-nω = pδhω + (n - j)t{Vp)ω, ω G Ωj,

since δ(fω) = fδω + t(V/)w. In (1.5) *,( ) is contraction, Vp is the gradient
with respect to Λ, and likewise δh is the coboundary for the metric h.

Insert these identities into the factorization for P. A bit of bookkeeping
then leads to the desired expression

Pω = p2Δhω + (2 — k)pdp Λ ό̂ α; — kpδh{dρ Λ ω)

(1.6) + (n - k)pLVpω - 2pi(Vp) dω + (n- 2k)dρ Λ

- jfc(n - fc - l)^(Vp)(dp)α;, CJ G Ω*.

Lvp is the Lie derivative and Δ^ is the Laplacian for the metric h.

2. Analysis

A, Any differential operator L G Diff (M) is locally the sum of products of
vector fields. Correspondingly, natural subrings of Diff (M) may be defined as
generated in this sense by certain geometrically natural subalgebras of the Lie
algebra T(TM) of all smooth vector fields. Such a subalgebra Ύ* which differs
(in its sheaf of germs) from T(TM) only at the boundary is called a "boundary
structure." The associated space of operators is denoted DifiV(M).

Elements of a subring of Diff (M) defined in this manner all degenerate in
some uniform fashion at the boundary. However, there is still a good notion
of ellipticity in this context, and a class of pseudodifferential operators exists
which contains parametrices with compact remainder for elliptic elements in
DifiV(M). Concrete examples of this theory (work in progress of Melrose-
Mendoza) have been worked out fully in only two cases. The first, by Melrose
[14]—whence the general program originates—and Melrose and Mendoza [15],
involves the algebra ^5 of totally characteristic vector fields—those tangent
to the boundary and otherwise unconstrained in the interior. Totally charac-
teristic operators, the space of which is abbreviated DifT&(M), arise naturally
in geometric problems on conic spaces. The other example involves the al-
gebra % of vector fields which vanish at dM (and are unconstrained in the
interior). The associated space of operators, now abbreviated Diffo(M), also
arise naturally in geometric problems as we shall see. The theory of ^ pseu-
dodifferential operators is developed fully in Mazzeo [11], and less completely
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in Mazzeo and Melrose [12]. Here we outline the main ideas and results, and

refer to these papers for complete details and proofs.

Near a point q G dM choose coordinates z 1 , , zn such that zn vanishes

on dM. For convenience we shall usually write y — (z1,-** , 2 n ~ 1 ) , x —

zn. Now ^6 as defined above is obviously closed under Lie bracket, and is

generated over C°°(M) by

ΓW
Thus, in these coordinates, a typical L G Diff™(M) has the expression

(2.2) L=

r+|α|<m

Notice that P of (1.6) is of %-type; % has many close connections with

hyperbolic geometry.

A global way to regard 2*6 is as the full set of sections of a certain bundle

°TM—the 2*6 tangent bundle. It is canonically isomorphic to TM over the

interior of M, and there is a natural map °TM —• TM induced by the inclu-

sion ^o —• Γ(ΓM). (2.1) gives a spanning set of sections for T M ; conversely

they may be used to define it, although invariant definitions are easy to come

by. Dual to °TM is the % cotangent bundle °T*M. A spanning basis of

sections for it, dual to those in (2.1), is

dy1 dy"-1 dx

Any L G Diff^(M) has a symbol which is a smooth function on °T*M and

polynomial (in fact homogeneous) on the fibers. If L is as in (2.2) then

(2.4) °σm(L)(y,x,η,ξ)= £ aa,x(y,x)ηaξx.

\a\+r=m

Here (y, x, 77, ξ) refers to the point (y, z, ̂  Ήi dyι/x 4- ̂  dx/x) of °T*M. Now,

L is defined to be elliptic (in the sense of 2*6) if

Finally, each L G Diff^(M) has an important model at every q G dM which

plays a seminal role in the theory. Choose a chart 0 around q G d M mapping

into Mq with 0(<?) = 0, 0*|o = /. Also let Rr denote the dilation by r on Mq.

Then define the normal operator to L at q by

(2.5) Nq{L)u = \ϊmR*rφ*L{φ-ι)*Rl/ru.
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It is easy to check that for L as in (2.2)
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(2.6) Nq(L)= £ αα,r(0,0)(zd,Γ(xcyί\ g=(0,0).
|α|+r<m

Note that this operator is invariant not only under the dilation group, but
also under translations by vectors in dMq. In fact, it is left invariant for the
group Gq, the semi-direct product of these two actions.

B. We now proceed to define a microlocalized version of Diffo which con-
tains parametrices for the elliptic % differential operators. Elements of this
new space of pseudodifferential operators are best approached through their
Schwartz kernels. Although these are distributions o n M x M , they live more
naturally on a slightly larger manifold, M Xo M, obtained by "blowing up"
M x M along the diagonal in its boundary. Let us first recall the geom-
etry of the manifold with corner M x M. It has two natural codimension
one boundary components: d[ = dM x M, d\ = M x dM and the corner
d2 = dM x dM. The only other natural submanifolds are the diagonal At and
its boundary dAi C #2. If {y, x) are coordinates of the usual type on the first
M factor, and (y, ί) identical ones on the second, then these submanifolds
have the defining equations

At = {x = ί, y = 2/}, dAt = {x = x = 0, y = y}.

FIGURE l

Next we define M Xo M by a C°° process of blowing up analogous to
the usual algebraic one. Set theoretically M Xo M is M x M\dAt union
S++NdAc, the inward pointing quarter of the spherical normal bundle to dAt
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in MxM. This has a natural C°° structure [16] such that polar coordinates on

M xM around dAt lift to a nonsingular chart via the canonical "blow-down"

map

(2.7) b: M x o M ^ M x M ,

which collapses the new face S++NdAt to dAu and is the identity elsewhere.

We proceed with a local coordinate description of its geometry. Thus,

define the new (polar) variables

(2.8) Y = y-y, Λ = [z2 + | Y | 2 + ί 2 ] 1 / 2 , ω = R~ι{x,Y,x),

so that R > 0 and ω = (ωo,ω',ωn) £ S++> i e., ωo> un > 0. We shall use

(R,ω,y) as a full set of coordinates. Note that

x = Rω0, y = y + Rω', x = Rωn.

This % stretched product M XQ M has three codimension one boundary

components:

F={iϋ = 0}, T={ωo = 0} = b~1(dι)/F1 B = {ωn=O} = b~1(dr)/F,

the front, top and bottom faces, respectively. In addition, the interior of At

lifts to a submanifold whose closure

has boundary dAt0 = {ω = (l/\/2,0, l/y/2),R — 0} contained in the interior

of F—away from all corners

FIGURE 2

The front face F has the structure of a quarter-sphere bundle over dAt.

Each fiber Fq over (7, q),q G dM, may be identified with three distinct objects.

On the one hand, it is equivalent (away from its bottom edge Fq Γ\B) with the

half tangent space Mq. Mq, as the first summand of T(<3?Q)(M x M), projects
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stereographically to the quarter-sphere S++NqdAt = Fq. On the other hand,

Fq as a quarter-sphere is diffeomorphic to the manifold-with-corner obtained

by blowing up the ball Bn around a point p in its boundary. If the blow-

down map is called /?, β\Fq —• J5n, then we make the identification so that

β~x(p) = FqΓ\B. Finally, Fq may also be thought of as the compactification

of the group Gq mentioned above.

M Xo M has been defined because it is well adapted to the algebra % in a

variety of ways. For example, we now calculate how ^6 itself, initially lifted

to the first factor of M x M, then lifts nonsingularly to M Xo M. It suffices

to examine the lifts of the generators xdx, xdyi. In the coordinates (2/, a:, y, x)

on M x M these become vector fields which are written the same way. Next,

in the coordinates (2.8) we may check that

6* X = xdx, b*Y{ = xdyi,

where

X =

(2.9)

These vector fields X, Yi, the unique smooth lifts of the generators, actually

lie tangent to all faces of M XQ M including F. In other words, vector fields

need to be at least as degenerate as those in % to lift nonsingularly from M

to M x 0 M .

For later use we introduce projective coordinates which are typically simpler

to use than the polar ones in computations. Set

(2.10) β = x/i, u={y-y)/x,

and use (s,u,x,y) as a full chart. These are nonsingular except along B,

where x = 0. Then we see that X = sds and Y{ — sdUi.

The last bit of structure on the stretched product which we require are a

family of density bundles. First generally, suppose X is any manifold with

codimension one boundary components dX\, , dX^ which have defining

functions pi, , PN, respectively. Now define

Γ0(X) = {smooth densities v on the interior of X such that

P™ " P*N ' v extends smoothly to all of X}.

Let <2${X) be the line bundle for which Γo(X) is the full set of sections. Then,

specializing to X — M xM or M XQ M, we have the
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Lemma. 6\2&(M x M) s ^ ( M x 0 M).
Proo/. Away from F and 9Δt there is nothing to prove since b is a diffeo-

morphism then. At F use the polar coordinate chart. Then

\dxdydxdy/(xnxn)\ =

The initial term generates Γ0(M x M) while the final one generates
Γo(M Xo M), which gives the result.

C. Having carefully set up the geometry, it is now straightforward to intro-
duce the space of Ψ§ Schwartz kernels. Recall first that a standard pseudo-
differential operator on M is one whose Schwartz kernel is a distribution on
M xM conormal along the diagonal and C°° elsewhere (see [9]). (A distribu-
tion is said to be conormal to a submanifold S if all its derivatives by vector
fields tangent to S are of fixed Sobolev regularity. Equivalently, its Fourier
transform in directions normal to S must be a symbol.) However, since Δt
intersects the corner #2, such a kernel could potentially behave in various
ways at this submanifold of intersection. For example, a standard elliptic
parametrix will have a kernel which is a restriction of a kernel conormal along
the diagonal of M x M, where M is an open extension of M. We shall use
another type of extension behavior. Let [M Xo M]2 be the ^6 stretched pro-
duct doubled across the front face. It has the structure of C°° manifold with
corners up to codimension two. Furthermore, the doubled diagonal [Δί,o]2 lies
in its interior.

[Aίx0Λ/]

FIGURE 3

Definition. K^(M;T^2) is the space of distributional sections of

Ty2(M x 0 M) which extend to the double as distributional sections of

Γ Q / 2 ( [ M X 0 M]2) conormal along the doubled diagonal of order m, and van-

ishing to infinite order on the doubled boundary faces T and B.

ΦQ 1 (M; ΓQ/2) is the space of operators with Schwartz kernels on (M x M)

obtained as pushforwards of elements of KQ1(M] Γ O )•
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1II

Here Γg is the space of half densities associated with Γo. In an abuse
of notation, the kernel κ(A) of A G Φ™ w iU ltse^ be said to belong to K™,
disregarding the intermediary pushforward. Also, more significantly, 6*/c, K e
K™, is always well defined by wave front considerations. For the intersection
of F, where b is only a submersion, and Δt0, where K, is singular, is transversal,
and away from F b is an isomorphism.

The action of A e ΦO 1 (M;ΓQ / 2 ) near the boundary is easily represented.
Set as standard half-densities

(2.11) μ =
dxdy 1/2

7 =
dx dy dx dy

xnxn

1/2
dx dy ds du

sx71

1/2

Then κ(A) = κ,(s,u,x,y) η where K, is conormal of order m along {s = 1,
u = 0} and decreases rapidly as s —• 0, oo or \u\ —> oo. On the half density

ffay)-μ,

{Af){x,y) = I / /cίθ,u,^,j/- ̂ u)f(^y- ^u)'Jdu\ 'μ'

since x — x/s, y = y — xu/s. In particular the kernel of the identity is

As for any space of conormal distributions there is a symbol map

- 1 - 5m(iY*Δt0,Γ0(M)(8)Γ(nber))/5m-1.

The symbol spaces on the right take values in the density bundle on the fibers
of the conormal bundle by use of the invariant Fourier transform. The extra

1 /2

Γo(M) factor results from restricting Vo

/ (M XQM) to Δ^o It is now possible
to "divide" by a canonical density and also to identify N*ALO with °T*M (see
[11] for details) to arrive at the Ψ§ symbol isomorphism

(2.12) °σm:ΦSrι(M;Γo

This leads to a satisfactory symbol calculus since the product formula

(2.13) V m i + m a ( i 4 i A2) =° σ m i μ 1 ) ° σ m 2 μ 2 )

is also valid. The principal difficulty in establishing this last formula is veri-
fying that A\ A2 still lies in the same space of operators. However, if A\ is
differential this fact is quite trivial. We should also note that the symbol map
as defined in (2.4) agrees with that in (2.12).

The space ΦQ ^S slightly too small to contain parametrices for the elliptic
elements in Diffo, due to the infinite order vanishing of its kernels on the top
and bottom faces. To remedy this, suppose % is the Lie algebra of vector
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fields on [M x 0 M] 2 tangent to the (doubled) top and bottom faces T and B,
and let pr and pB be defining functions for these faces. Now set

j / α ' 6 = {ue &'{[M xo M] 2 ) : Vi "VjU G p% pb

B {log pτ log pB)
NL°°

for K G % ί = 1, , j , for all j and for

some TV independent of j}.

This has a natural subspace of polyhomogeneous elements

{ oo N

u^w .u 2^2.
i=0j=0

(2.14)

near T, with an analogous expansion near B } .

Here the Uij are C°° and depend only on the tangential variables
Definition.

< g \M x 0 M),

/fo

m α ' 6 (M; Γj/2) = K?(M; Γ^/2) Θ fCo-0 0'"''^; Γj/2),

Φ^ α 6 (M;Γέ / 2 ) = {A:κ(A) € K™'a>b}.

In other words, the kernels in K™'a'b are sections of ΓQ which are C°° in
the interior and up to F and have classical expansions at T and B.

The symbol map (2.13) extends readily to φ ^ ' α ' 6 by setting

°σm(A) =° σm(i4i) if A = Aλ 4- Aa, Ax G ΦJ1 and Λ2 G ΦQ °°'α'6.

As a final embellishment on these spaces of operators we shall need to
consider the form bundles and % operators acting between them. Over M
itself the basic ingredients are the ^o cotangent bundle °T*M and its exterior
powers °Ak(M) = Ak(°T*M). These have spanning sets of sections:

w h e r e | / | = fci | j | = * _

The operator P of (1.7) is the one induced by Ak on sections of °Ak written
in this basis, i.e.,

Pω

We may pull °Ak back to either the left (first) or right (second) factor of
M x M, these pullbacks being denoted °Λf, and °Ak, respectively. These in
turn may be lifted to M x 0 M and will be denoted by the same symbols there.
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In order that ΦJ a c ^ between these bundles, it is simply necessary to tensor
with Hom(°Λf ,°Λ*). Unfortunately though we shall require operators with
slightly byzantine boundary behavior. By specifying a conformal structure the
fc-form bundle splits at the boundary into tangential and normal components:

and similarly for °λk. In fact, we may even assume that °Λ* splits in a
neighborhood of dM; this is less natural, but any two splittings compatible
with the conformal structure agree to first order at the boundary. It is then
well defined to require that the tangential and normal components of a form
ω = ωt + ωn vanish at different rates at the boundary, or in fact to require
that

O p̂hg being defined as in (2.14) with reference to a single boundary compo-
nent) but only when \a — b\ < 1. This restriction arises because ωt and ωn are
only defined to first order at dM.

Now, any G 6 Hom(°Af ,°Λ{?) corresponds to a matrix

G =

where

The Gij are called the components of G.
Finally, suppose σ and r are two-by-two real matrices

σ = {σij), r = {Tij), i,y = ί,n.

Definition.

tfo-~'σ'r(M;°Λ* ® Γj/ 2) = {G = {Gij), ij = t,n,

with #™'σ'r and Φ ^ ' σ ' r defined in the obvious way.
As before, these spaces make sense only when

|min(σ tt,σn t) -min(σ t n ,σ n n ) | < 1,

and similarly for r.
D. The continuity properties of operators in ψ^1'0'6 are easily stated. At-

tention here is restricted to the scalar case for simplicity: all results generalize
easily to the vector case, for example by referring to local trivializations. In-
troduce first the Sobolev-type spaces

HF{M',Tl/2) = {u: (xdxγ(xdy)
au G L2(M;r£/2),z + |α| < m}

for any nonnegative integer m.
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(2.15) Proposition. A E %m'α'6 is bounded between

provided r'<r,a-r>{n- l)/2, b + r' > (n - l)/2, a + b> n-1, and for

s,ra = 0,1,2, .

The proof appears fully in [11]. As usual, the main point is to establish
boundedness of residual operators, m = — oo, on L2. The rest follows from
the symbol calculus and by commuting vector fields through A.

In this context though, the residual operators are somewhat nontrivial to
analyze. For it is one of the central issues of this theory that these residual
operators, while smoothing in the interior, are not compact on any reasonable
space. To get compactness one requires slightly more regular kernels.

Definition. Λ*/f^°°>α'6 denotes the space of kernels in jFC^°°'α'6 vanish-
ing to order i, i = 1,2, , oo, at the front face F. i?*Φ^"°°'α'fe is the associated
space of operators.

(2.16) Proposition. If A E i ? 0 0 * " 0 0 ' " ' 6 then for α, 6, r, r' as in (2.15)

is compact.
This is proved by using the vanishing hypothesis (which is far stronger

than it need be) to provide the uniform smallness near dM in applying the
L2 Arzela-Ascoli theorem.

We mention one other result of a slightly different nature, which shall be
strengthened considerably later in a special case. Let C°° denote the space of
functions vanishing to infinite order at dM, and define ^>hg a s ^n (2-14) but
with respect to the single boundary component dM. Then from the formula
for Af we easily get

(2.17) Proposition. For any a,b,m e R and A G Φ^'α ' 6, A:C°° -•

J^hg *'θ bounded.
E. To conclude this discussion of the general theory, we now examine how

?̂ o pseudodifferential operators are modelled at dM. The normal operator of
L E Diίf^(M) defined in (2.5) is already an example of such a model. In fact
a normal operator exists for any A E ψ^'α' fe. Set, for q E dM,

(2.18) Nq(A) = κ{A)\Fq.

For m = -oo, which is the only case we need, this is an element of
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Although as it stands there is nothing "operator-like" about Nq(A), recall

that the interior of Fq may be thought of as the group Gq, so that Nq(A)

may be interpreted as a convolution operator. Recalling also that Fq may be

identified with the half tangent space M g, the operator Nq(L) of (2.5) when

regarded in this sense, agrees with its alternate definition (2.18). There is also

a product formula of great importance

(2.19) Nq(LΆ)=Nq{L)Nq(A).

If L E Diff™(M) is elliptic, a parametrix may be constructed for it in two

or three stages. The first is quite familiar from the usual theory; the symbol

calculus is used to find a first approximation to the parametrix, E\ E Φ ^ m ,

such that

T τp Γ r\ /O îTf~°°

Lt,\ — 1 — Qι, VIGWQ .

Since the remainder Q\ is not compact, this step alone will not guarantee

finite dimensionality of the null-space of L in L2. What is needed, as noted

in the last section, is a remainder the kernel of which vanishes to infinite—or

even just high—order at F. Thus, write

valid asymptotically near F. We seek an operator E2, also residual, such that

L{E\ + E2) = / — Q2, i.e. LE2 — Q\ — Q2 where /c(Q2) vanishes to infinite

order on F. That is, LE2 must cancel the terms in the expansion for κ(Qi).

This is possible under certain additional ellipticity assumptions, but at the

expense of adding boundary terms: E2 G \j/~°°'α'6 for some α,δ.

The additional ellipticity hypothesis arises from trying to solve LE2 = Qι

asymptotically near F. E2 must satisfy the normal equation

Nq{L)Nq{E2) = Nq{Qι).

Obviously it is necessary to require that Nq(L) be invertible on some rea-

sonable space in order that this equation (as well as others corresponding to

higher terms in the series) have solutions.

The construction is almost complete, save for a relatively minor third step

involving another model, the indicial operator. For A e Λ 0 0 ^ 0 0 ' 0 ' 6 , define

I (A) by the projection

Λ oo φ -oo,α f 6 ^ ^ α . 6 0 /$
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Roughly, I (A) captures the leading term of the expansion for κ(A) at the top

face T. Any L G Diff™ has a somewhat differently defined indicial operator

I(L) which satisfies

(2.20) I{L A)=I{L)I{A).

Strictly speaking there are many choices for I(L) such that (2.20) is satisfied.

But a natural choice is

(2.21) J2
r<m

for L as in (2.2).

Finally, provided I{L) is invertible, the parametrix construction is com-

pleted by finding an E3 € φ~°°'α'fe7 v/ith κ,(E3) vanishing to infinite order on

F, and such that

i.e., LE3 =Q<2-Q3 with Q3 e R00^00'00*. This requires solving

Now, with E = Eι + E2 + E3, elliptic finiteness theorems will follow immedi-

ately.

3. Model operators

A. Before we may apply the general theory sketched in the last section

to the specific operator P of (1.6) we must examine the invertibility of its

normal and indicial operators. Indeed, this is the only part of the analysis

that depends on more than general symbol ellipticity notions. First we must

compute these operators explicitly in the coordinates (y1, ,ΐ/n~1,a;).

From the limit definition it is readily verified that

xdx, j = l, { l j

(no terms with j < 1 or j < 2, respectively, occur in a % operator), and

similarly for terms with y derivatives. Hence computation of the normal

operator becomes purely formal: one discards all but the first term in the

series expansion for each coefficient so that only dilation invariant expressions

remain. Applying this to P itself, and using the notation p{y, x) — a(y)x + 6,
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b = O(x2), we finally arrive at the formula at q = (0,0):

a{0)-2Nq{P){ωI dy1 + ωjdyJ Λ dx)

-x2AEωi + (n - 2)x-^- -k(n-k- l)ωj dy1

dx J

+ ί- i 2 Δ s ωj + (n - 2 ) x ^ - (* - l)(n - k)ωj\ dy3 A dx

(3.1) + 2(-l)fc ̂  * Jΐj£(-i)-i V Λ s Λ dx

3

Here AE = d2

x + E ^ t

 τ h e product formula (2.19) shows that

where Δ& is the Laplacian on fc-forms for the conformally compact metric g.
It is interesting (and quite useful) to realize the

Proposition. Nq(Δk) is the Hodge Laplacian on k-forms for the metric
(dx2+dy2)/a(0)2x2,q=(0,0).

This identification is immediate if one specializes g to the hyperbolic metric
above and notes that its Laplacian is already dilation invariant.

The indicial operator is obtained from (2.20):

α(0Γ2J f l(P)(ω/ dy1 + ωj dy3 Λ dx)

(3.2) = [~χ2^gf + (n ~ 2 ) χ d j ^ -Kn-k- 1)W/] dy1

d2/J Λ dx.+ (" 2 ) ^ ^ (fc 1)("dx

Hence the solutions to Iq(P)ω = 0 are of the form

(3.3) ω = (cxx
k + c2x

n'k'1) dy1 + {dxx
k'1 + d2x

n-k) dyJ Λ dx.

A most fortuitous property of the operator P, resulting from its invariance
under a group, is the constancy of the exponents in (3.3). This need not be
the case for the so-called indicial roots of a general ^6 operator and the final
analysis would then be more complicated.

It is also possible to reduce Nq(P) to an ordinary differential operator by
conjugating with the partial Fourier transform in the y variables. If η is
dual to y, then having performed this conjugation we may choose the basis
elements, confusingly also called dy1, etc., so that η = lηldy1. Then the
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normal operator simplifies substantially , and almost uncouples. Neglecting
the harmless α(0)2 factor, the operator—which we relabel Np—has three
separate actions:

(i) If ω = ωj dy1 and the first index i\ > 1, then

(x2\η\2-k(n-k-l))ωI] dy1.

(ii) If ώ = ώj dyJ Λ dx and j \ = 1, then

NPώ = (P2ωj) dy3 Λdx= \-x

+ (x2\η\2 -(k- l ) ( n - k))ώj] dy3 Λ dx.

(iii) If ώ = ώIdyI +ώjdy3 Adx and / = ( ή , , ύ ) = (hji, - Jk),

then

NPώ = [Piώi + 2(-l)fc+1zx|/7|ώj] dy7

+ [P2ώj + 2(-l)fctx|ι/|ώ/] dί/J Λ dx,

where ώ/, ώj are the Fourier transforms in y of CJ/, ώj.
B. The primary task facing us is to fully understand the kernel which in-

verts Nq(P) on L2(x~n dx dy). The choice of this space is both natural—since
the measure is the invariant hyperbolic one—and tantamount to imposing a
vanishing Dirichlet condition on the problem Nq(P)u = f. At any rate, it
suffices to understand the kernels inverting each of the three Bessel-type op-
erators in (3.4) on the space L 2 (R + ,x~ n dx\L2{Wι~ι,dη)). We do this first
for fixed η and then examine the dependence on η.

Being uncoupled, the operators Pi and P2 are much simpler to analyze
than the one in (iii). The first step is to understand all solutions to P{U — 0,
i — 1,2. These may be found explicitly:

PιUι = 0 => Ui{x) = c^-Wl^xW) + c2χ(n-ιM2KVi{x\n\)i
( 3 5 ) . 1 O n-2k-l n-2k-l

ι = l,2, i/i = , i/2 =

Iv and Kv are the modified Bessel function of the first kind and Macdonald's
function, respectively, of order v.

We consider only the values k < (n —1)/2. Values k > (n+l)/2 are treated,
for example, by duality and the analysis breaks down for k = (n - l)/2, n/2,
(n + l)/2. Hence we now assume that both vγ,v2 > 0. The asymptotics of
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the solutions in (3.5) are well known [10]. Thus near x — 0.

whereas as x —> oo

(3.7)

for i = l,2. Notice that the rates of vanishing of the solutions in (3.6) match
those in (3.3); that is, the operators Ip and Np have the same indicial roots
(in the sense of Fuchsian operators). Furthermore, in order that a solution
Ui of Pi lie in L2(x~n dx) near x = 0 it is necessary that c<ι = 0 in (3.5). On
the other hand, a solution Ui increases exponentially unless C\ = 0. Hence
PiU = 0 has no solutions which lie in L 2 (R + , x~n dx).

Inverting kernels are now easily obtained. These will be functions Gi(x, x, η)
satisfying Gτ G L2(x~n dx):

PτGi(x, x, η) = xnδ(x - ί ) , i = 1, 2,

which is the kernel of the identity on L2(x~n dx). The usual methods [4] for
self-adjoint operators (both Pi and Pi are formally self-adjoint with respect
to x~n dx) yield

Gi(x,x,η) C Λ , , ^ ^ ^

+ Ivi(x\η\)K,,i(x\η\)H(x-x)Y,

H is of course the Heaviside function. It is important to note the constant
Ck,n in front does not depend on η. One may then employ Schur's criterion
for the boundedness of integral kernels along with the asymptotics in (3.6),
(3.7) to prove the

Proposition. For i = 1,2, f(x) ι—• f Gi(x,x,η)x~n dz is a bounded
transformation on L 2 (R + ,x~ n dx).

It is not possible to find quite as explicit an inverse for the coupled operator
L of (3.4) (iii). The first issue is to determine the nature of the solutions to
Lώ — 0. There are no solutions in L2(x~ndx) on all of R+, reasonably
enough, since the existence of such a solution is equivalent to the existence
of a form ω in L2(x2k~n dxdy) satisfying the hyperbolic Laplace equation
Δj/ω = 0. But for k < (n —1)/2 such a form does not exist [5]. (This is a good
moment to point out that one reason for using the conjugate P = xkAx~k is
to eliminate the dependence of the measure on k—a technical convenience in
proofs.)

General perturbation considerations indicate that there should be a two-
dimensional family of solutions to Lώ — 0 which increase exponentially but
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lie in L2(x~n dx) near 0, and another two-dimensional family of exponentially
decreasing solutions which do not lie in L2[x~n dx) near 0. This is actually
the case, and we may even find one function in each family. For, corresponding
to the decomposition Δ = dδ + δd corresponds another, by virtue of (2.19):

NP = N{x~k dxk-x)N(x-k+Hxk) + Nix^δx^Nix-1*-1 dxk).

Thus we look for joint solutions to

N{χ-k~λ dxk)ώ = 0, N{x~k+Hxk)uj = 0,

which then automatically satisfy Npώ = 0. These two equations when written
out may, by a simple change of basis, actually be uncoupled. Thus with
straightforward computation one finds the solutions

{x\η\) dy1 + dVι {X\Ϊ)\) dyJ Λ efz),

M*\)dv* + c!Kyι{x\'n\)dvJ ί^dx).

The constants c,c' depend only on fc,n and (linearly on) \η\. v± and v<ι are
the same numbers as in (3.5). Thus ώi belongs to the first, exponentially
increasing, family and ω<ι belongs to the second.

We now seek two additional functions, one in each family, so as to have
a full basis of solutions to Lώ = 0. Inasmuch as L is an operator of regular
singular type, all solutions are given by Frobenius series. The indicial roots of
L are the same as those of the uncoupled system (Pi, P2), namely fc, n — k — 1
and k — l,n — k. In fact, Frobenius theory implies that the two additional
functions we seek have expansions (setting |?7| = 1 for the time being)

x»-*-i + .

These are exponentially increasing and decreasing, respectively, and column
vector notation replaces the use of dy1 and dyJ /\dx.

Although we know the behavior of these solutions at x = 0, it is also
important to know their precise asymptotics as x —• 00. Of course, such
asymptotics for ώi and ώg follow from (3.7). Up to constant factors,

/z n/ 2 + \

U*n/2+ J ;

the dots indicate a formal series in descending power of x. The operator L
has an irregular singularity at x = 00, but a satisfactory theory exists for
determining asymptotics of its solutions (see [4, Chapter 5]). Thus, if one can
find formal solutions of the form above, then real solutions exist with these
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asymptotics. Such formal solutions are readily obtained for L, and two of

these match precisely the asymptotics of ώi, ώ2* The other two must therefore

correspond to ώ$ and ώ4, as follows from the absence of solutions to Lώ = 0 in

L2{K+ ^x~n dx). This absence is proved in turn by the previously noted fact

that such a solution, were it to exist, could be used to construct a nontrivial

harmonic L2 fc-form on hyperbolic space, which is impossible. Alternately,

the obvious integration by parts as above show that an L2 solution to Lώ = 0

must also satisfy N{x~k~ι dxk)ώ = 0, N(x~k+Iδxk)ώ — 0, and hence be a

combination of ώ\ and cl>2, neither of which lie in L2. This integration by

parts is justified by estimates analogous to those by which one concludes that

an L2 harmonic A -form on a complete manifold is both closed and coclosed,

and in any case is completely straightforward. Hence we get that

χn/2-2 _,

as x —• 00, again all assuming \η\ = 1. We should note that none of the

constants ci, c2,C3, C4, c,c', A, B may vanish.

Finally we may construct the inverting kernel Gc{x,x,ή), \ή\ = 1. (We

shall analyze //-dependence later.) It has a form similar to that of the scalar

kernels:

(3.9) Gc{x, i, ή) = U{x)V{x)*H{x - x) + V{x)U{x)*H{x - i),

where U and V are two-by-two matrices the columns of which are linear

combinations of ώi,ώ3 and 0)2,^4, respectively. The condition LGC =

xnδ(x — x) Id entails, among other relations, that

U'{x)V{x)* -V'{x)U(x)* = -\xn~2\a.

This implies that

(3.10) U{x) = (αώ3 6ώi), V{x) = (cώ2 dώ4)

for some nonvanishing constants α, 6, c, d. By estimates similar to those used

for Gi, C?2 we have the

Proposition. Gc induces a bounded integral transformation on

L2{x~ndx).

Finally then we may reinsert ^-dependence and prove the

Proposition. There exists a unique kernel G(x, x, η) which is bounded

on L2{R+,χ-ndx;L2(Rn-1,dη)) and such that

NP{xdx,ixη)G(x, ί, η) = xnδ{x - x) Id, k < (n - l)/2.

Proof. Uniqueness follows from the nonexistence of L2 harmonic forms

for the stated range of values of k. Let GQ(X, X, ή) be the kernel obtained by
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piecing together the kernels Gi, G2, Go for each fixed ή of unit modulus. Re-
place z, x by x\η\, x\η\ and use the homogeneity of δ to deduce the relationship

NP(xdx, ix\η\ή)G0(x\η\, x\η\, ή) = \η\n-ιxnδ(x - i) Id .

Hence

G{x,x,η) = \η\1-nGo(x\η\,x\η\,η/\η\)

for any η φ 0.
The L2 boundedness of G is inherited from that of Go as follows. First

observe that the dilation

f{x) ~ fo{x) = a^-^fiax), a G R+,

is an isometry on L2(x~n dx). Replace / by fa in

ί ίG0{x,x,ή)f{x)χ-ndx x~ndx<c f\f\2χ-ndx,

where c is independent of ή G Sn~2. The new right-hand side is independent of
α, whereas the inner integral of the left-hand side, after a change of variables,
becomes

J
Dilating this function of x by a *, then setting a = \η\ \ we arrive at the
inequality

ί [ G0{x,x,η)f{x)χ-ndx x~n dx < c ί \f\2x~n dx

for each η. Finally, if / is allowed to depend on η also, then one need merely
integrate both sides of this inequality with respect to η and the proof is
complete.

The inverse for the partial differential operator NP is given by

G(x,y,x,y) = cn / eι(y~~y)ηG(x,x,η)dη.

The reason for the painstaking explicit construction of this kernel, particularly
inasmuch as its existence is well known, is so we may fit it into the framework
of the last section.

(3.11) Proposition. G(z, z) 7 G /f^2'<τ'τ(R^,°Afc 0 Γ*72) where

σ = , r = σ* when k < [n - 1/2,
\ n-k n - k J '

( k k \

I, r = σ* when fc > (n + l)/2,
/c — 1 /c -f~ 1 /

2 , i G R!J. αnJ 7 2,9 Λ̂e half-density of (2.11).
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The proof is fairly long, but the main point is to use formulas (3.8), (3.9),

(3.10) and the known asymptotics of the special functions involved to derive

symbol estimates for G(x, ί,r/), uniform down to x — 0 or x = 0. These

transform to the necessary estimates for G(z,z) in the Fourier integral. As

always, full details appear in [11].

Recall the discussion in §2.B, wherein the interior of the half space Mq

(~ R+) is naturally identified with the interior of Fq (~ S++) for each q G

dM. Fq should also be thought of as the ball Bn blown up around a point

p on its boundary. Through the combination of these identifications G may

be transferred to a kernel GB on the ball. It is the inverse of the operator

induced by Δ # on °Ak(Bn). If G Δ is the inverse of the Laplacian on Λfc, then

it follows from (3.11) that

(3.12) Corollary. GA{w,w) 7 G Kό2'σ~k'τ~k(Bn,Kk ® Γ Q / 2 ) .

Here σ, r are as in (3.11), W,W are coordinates in Bn, and for any real

number c, σ + c is the matrix with entries σ^ + c.

C. The final parametrix construction requires specialized mapping prop-

erties of G Δ which depend on the fact that it is the inverse of a differential

operator. To state these efficiently, let us first define analogues of the spaces

in (2.14).

(3.13) Definition. For a — (auan) a pair of real numbers, set

sfpkg{X, Ak) = {ω = ωt + ωn near dX such that

ωτ e sQg{X) 0 Γ(Λfc)} for X - M or Bn.

Similarly, recall the blow-down map β: S + + —» {Bn,p) which collapses one

edge of S++ to p G dBn. For δ — [bu δn) another pair of real numbers, set

nt/a^(f>n \k\ _ o* rχfθί,δ ( qn \k\
^phg V^ i A ) — P W V^ + + ,Λ J.

Thus elements in this space have expansions, with leading terms regulated

by α,<5, near the two codimension one boundaries of S^ + , respectively, or

equivalently, near Bn\{p} and {p}.

As always we require \at — otn\ ^ 1> \δt — δn\ < 1.

(3.14) Proposition. Let μ G j / p £ + g \ B n , Λfc), a = (n - 2k - l ,n - 2k)

if k < (n - l)/2 and a = (0,-1) if k > (n + l)/2, 9 G Z + and where

a -f (7 = (at -h 9, θίn -f q) in either case. Then there exists a unique ω G ̂ h g

such that Aω = μ.

Proof. We reduce to the case of Proposition (2.16) by solving inductively

for the terms in the expansion for μ at the boundary. Thus, if p is a defining
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Here 0 is the coordinate on the boundary. Since Δ — l^'.stfP —• j / / ? + 1 for
any /?, we first choose ωt o, ΐ = ί, n, so that

z=o
This is always possible since 7A is an ordinary differential operator of Euler
type. Successively choose ω^ so that I^^ij — μ'ij where the μ'- have the
correct homogeneity and depend only on μij and (Δ — 7A)C^™, m < j . Each
of these equations has a unique solution since each exponent oti + q -f j is
greater than any indicial root of 7Δ .

Asymptotically sum the ω^ to an ω0 with (ωo)i ~ Σ^ϋ"? z = ^n- Then
Aω0 - μ = / € C°°. Apply (2.16) now, that is, set ω\ = GBf 6 ^ S g Hence
ω = CJO — ωi G -^hg ^s t n e desired solution.

(3.15) Proposition. For any μ e ^plp
ίβ{Bn,Ak), q e Z+, a the two-

vector of (3.14) and β any two-vector with integer entries (and \βt — βn\ < 1)
there is always a solution ω to Aω = f, ω G J^p^

β(Bn,Ak).
The style of proof here is rather more involved than that for (3.14), but

the idea is first to subtract off the additional singularity, thereby reducing
to (3.14). This is a local question, so we may replace Bn by R!f_, with p
corresponding to 0, and also assume that μ is supported in \z\ < 1, say.

The principle tool we use is the Mellin transform in the (polar) variable r,

u(r,0)->UΛf(?,0)= r-ς~1u(r,θ)dr,
(3.16) J

u(r,θ) = (27Γ)"1 rζuM(ς,θ)dς.

The inversion formula, and all of the facts we need about this transform
follow from the observation that it is just the Fourier transform in logarithmic
coordinates; in any case they also appear in [15].

If u vanishes for r > 1, as we shall always assume, then UM is defined and
analytic in a half-space Reς < a. The integral for the inverse transform is
taken over a contour Re ς = c. The number a is closely related to the decay
rate of u as r —• 0. If there is a definite power of vanishing here then UM is
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rapidly decreasing as | Imf | —> oo, Reς fixed. But most importantly, if u has
a classical expansion as r —• 0, then UM continues meromorphically to the
whole plane. The poles occur only at ς G βo + Z + if βo is the most singular
exponent in the expansion. The order of the pole at βo + i is iV* +1 if there are
Ni logarithmic factors in the zth term of the expansion. Conversely, if v(ς,θ)
is meromorphic in ς with only real poles and decreases rapidly on each line
Reς ^constant, then (3.16) defines a function with an expansion as r —• 0
in powers of r, these powers corresponding to the locations of the poles of
v—and the order of the poles related to the number of logarithmic factors. In
addition, only those powers occur which correspond to poles to the right of
the contour of integration.

Now, define the operator Lζ by (AU)M = LζUM{ζ,θ) so that

Lς = \z\~*Δ\z\*.

Since Δ is invariant under the homothety z —> az, Lς is also. Hence it
is algebraic in ς, and differential in θ. In fact, as an operator on S^"1 =
{θ: θn > 0} it lies in Diffo Its indicial operator is nothing but that for Δ,

The strategy now is to invert Lς. Its inverse Gς does not exist for every
value of ς, but rather is meromorphic on the ς plane. It is defined formally as
follows. Let p(r) G C£°(R) equal 1 near r = 0. Then for / G C 0 0 ^ " 1 ) (g>Λfc

set

Gςf(θ) = ]im Mt (r-'GΔ(r<p(r)/(0))),

where G Δ is the inverse of the hyperbolic Laplacian and Mt is the dilation
map. By substituting the integral defining GΛ we get

(3.17) GJ(Θ)= f H((θ,θ)f(θ)(θn)-ίn-V dθ,

where
/•OO ϊ

(3.18) Hς{θj)= / G Δ ( ί , r ί V - ^ .
./o τθn

If ς assumes a value for which (3.18) converges, then Gς is a well-defined
inverse for Lς. To determine these values of f, fix θ φ θ and note that by
homothety invariance GΔ(Θ,TΘ) = G^{τ~ιθ,θ). The components Gi3 of G Δ

decay at various rates as r —• 0 or oo, but if k < (n - l)/2, then Gtt is the
extreme case. From (3.12) one sees that

Gtt{θ,τθ)~τn-2k-\ r -0 ,

Gtt{τ-ιθ,θ)~τ-(n-2k-ι\ r-,00.
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Thus (3.18) converges when -(n — 2k — 1) < Re ς < n - 2k - 1. Bookkeeping
with the expansions for the various components of G Δ shows that

Lemma. Hς extends meromorphically to the whole ς-plane with poles at
ς e ±{n - 2k - 1 + Z+) if k < (n - l)/2 and ς e Z if k > (n + l)/2. TΛese
poles are at most of order two, and the residues at ς = N of Hς and (ς — N)Hς

are operators of finite rank.
Since LςGζ — (θn)

n~1δ(θ — θ) when (3.18) converges, by analytic continu-
ation this equation must also hold on the whole ς -plane away from the poles.
Furthermore, as an operator on S^"1, Hζ almost lies in ^ - 2 ' σ - / c ' τ + / c - 1

5 σ

and T the matrices of (3.11). In fact all its singularities and expansions near
Δi 0, T and B (of S^"1 x 0 S+~x) are of the correct type, as is seen from
(3.18). The only difference is that it also has logarithmic growth near F.
This does not affect any of its continuity properties, so the proof of (3.14)
may be repeated to show that

has a unique solution ω G ̂ h g ί ^ ΐ " 1 >^k) depending meromorphically on ς.
Its poles are precisely those of Hς.

Proof of (3.15). As above, consider μ as a form on R™ supported in
\z\ < 1. Its Mellin transform in r, μM{ζ,θ), is meromorphic with poles at
min(/?t,/?n) H- Z + , μM still lies in s/p^

q on S^"1. Next let ωM{ς,θ) =
GςμM{ζ,θ) It too is meromorphic in ς and lies in ^ h g ί ^ ΐ " 1 ) - Since
the βi are integers, its poles occur at ς G ±(n — 2fc — 1 -f Z+) (or Z) and
min(A,/3n) + Z+. Define

α; 1 (r,^)-(2π)- 1 / r*ωM{ς,θ)dς.
JReς=τnm(0t,βn)-l/2

Then ΔCJI - μ = g vanishes to infinite order at r = 0. Transferred back to
Bn, g lies in j*^+*(Bn,Λ*). Now apply (3.14) to solve

CJI - u>2 is the desired solution.

4. Hodge cohomology

A. It is now a simple matter to use the machinery thus far developed to
construct a parametrix for Ag by the method sketched in §2.E. The first of the
three steps is valid for all degrees / since it requires only symbol ellipticity.
Thus with the aid of the symbol map (2.12) we find
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satisfying

(Notice that we are using the "less natural" bundle λk rather than °Λ/c to
simplify the asymptotics exponents later on.)

In an ordinary problem this would complete the process. But Qo, while
smoothing, is not compact on L2. Hence we must continue. In the next step
we seek an operator

E1 e %°°>σ'y, σ' = σ-k,τ'=τ-k,

σ,τ the matrices of (3.11), which satisfies

Δg£α = Qo - Qu Qi e i ? 0 0 * ^ 0 0 ' " ' ' ' .

This step requires the invertibility of the normal operator and thus fails in
the middle degrees k = n/2, (n ± l)/2.

We need only determine the power series expansion of E\ at F, and then
choose an operator with this as its Taylor series, in order that this last formula
obtain. So, its first term E\$ is chosen so that

Nq(Ag)NQ(Eh0) = Nq(Qo), q E dM.

This is possible since Nq(Q0) vanishes to all orders on the boundary of Fq,
hence also on dBn if the equation is transferred to the ball. The solution is
well behaved:

N^F^es/XfiFvA").
Now set

ΔgElt0 = Qo- Qi.i, QΊ,i e iϋΦo°°'σ/'r/

Actually Q[ x lies in the slightly better space R^Q°°'σ + 1 ' r since /(Δo) an-

nihilates the leading term of the expansion for ϋ?ii0 at the top face. Thus we

may write

1,1 =Z<9l,H Ql,l ^ Φ 0

To find the other items in the series for Eι it is convenient to use a Taylor
expansion in x rather than in R:

The advantage is that Δ^ acts directly on the coefficient operators

Wo also define QltJ = (x/x)Q'{ • for each j . The inductive step is to solve
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for each j . Here we expect

Qi,3 € Φ~°°'σ + 1 ' τ + J o Q"j G Φo °°'
σ 'T 3 -

But (3.15) guarantees the existence of a solution E\j, and the remainder

Qϊ j+i ι s thereby determined. It is because Nq(Qιj) becomes increasingly

singular near the bottom edge of Fq that we require the full strength of (3.15).

Finally, since
x ^lj G Ψ o

for each j , we may asymptotically sum the series of these terms so as to obtain

Eι—which lies in the same space.

The third and last step is to find E2 for which

AgE2 = Qι — Q2 ) Q2 G i? ΦQ ' ' ,

that is, to cancel off the expansion for Qι at the top face. This is accomplished

by solving a sequence of equations where the operator in question is simply

J(Δg), and is straightforward.

The sum E — Eι +• E2 + E% G Φ ^ 2 ' σ ' r is our final parametrix.

(4.1) Theorem. ΔgE = I - Q, Q G R00^00'00^. The remainder Q

and its adjoint Q* G Λ 0 0 *^ 0 0 '* ' ' 0 0 are compact on L2Ωk{M,dg), and so Ag

is Fredholm on that space.

B. An immediate consequence of (4.1) is the finite dimensionality of

β?k = {ω G L2Ω fc(M, dg): Agω = 0}

for k away from the middle degrees. In fact, (3.14) also shows that for such

ω, since then ω = Q*ω, we have

. ( (n-2k-l,n- 2/c), k < (n - l ) / 2 ,
(4.2) w G < h ε ( M , A f c ) , a=\K h ^ " '

I ( 0 , - 1 ) , k> ( n -
It remains for us to compute the dimensions of the %?k. Since any harmonic

form in L2 on a complete manifold is closed, there is a map

(4.3) &kBωi->[ω]eHk(M)

into the absolute cohomology. When k < (n — l)/2 (4.2) shows that i*ω = 0,

i: dM c-> M the inclusion. Hence we obtain a map into the relative cohomol-

ogy for these degrees:

(4.4) &k3ω*[ω)e Hk(M, dM),

since these relative groups may be defined using forms pulling back to zero

on the boundary [17]. A modicum of care is required since the forms in %fk

are not C°° up to the boundary, but their use is easily justified.

Proof of the Main Theorem (1.4). By duality it suffices to prove that (4.4)

is injective when defined (i.e. below the middle degrees) and (4.3) is surjective
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above the middle degrees. Let us prove injectivity first. We need to show
that if ω G 2Pk:, k < (n - l)/2, and ω = dη, i*η = 0, then ω = 0. Choose
coordinates near dM so that the components of the metric satisfy h{n = 0,
i < n, hnn = 1, and so that zn is globally defined in a collar neighborhood of
the boundary. Then since δω = 0

= {dη, ω) - (η, δgω) = I d{η Λ *gω)

= lim /
^J{zn=e

/ '
Jo

ηΛ*hω.p2k-n.

For the last equality we used Stokes' Theorem and the equality *g = p2k~~n*h
on Ώk. By the assumption on the coordinates only ηt and ωn = {*hω)t enter
into this last integral. From (4.2) we know that

ωn = O{pn-2k{\ogp)N)

for some TV (actually N = 1 works). We therefore need to show that ηt

vanishes as some power of p to ensure that the integral vanishes in the limit
so that we may conclude ω = 0.

For this we use the chain homotopy operator R of [17]. If ω = ωjdy1 +
' dyJ Λ dx and ωi(y, 0) = 0, i.e., i*ω = 0, then define Rω = [Rω)j dyJ by

ωj{y,tx)dt.
!o

It may be shown that this is coordinate independent and dRω + Rdω = ω
(provided i*ω = 0). Note also that i*Rω = 0. Thus if dω = 0 then ω — dRω
near dM where R is defined. Hence if ψ is supported in this neighborhood
and is identically one near dM then ω — d(ψRω) represents the same relative
class as ω and vanishes near the boundary. Thus there exists a smooth form
β with

i*β = 0, ω- d{φRω) = dβ.

Hence with η = β + ψRω we see that ηt = O(p\ogρ) and the integral vanishes
as ε —• 0.

On the other hand, when k > (n+ l)/2, let a be a smooth representative
for an arbitrary absolute cohomology class. Obviously a G L2Ώk(dg) so by
(4.1) we may decompose a as

ex — Δgβ -\- ω, C J G ffl , β G Li Ω .

But da = 0 so that α = dδβ + ω; hence [α] = [ω] and so (4.3) is surjective.
Next, any n/2-form on M smooth up to the boundary and satisfying dω =

0, δ^ω = 0 is in ̂ nl2\ hence this space is infinite dimensional. The spectrum
is nonessential in 0 < λ < a\{n — 2k — l)2/4, k < n/2 (the case k > n/2
following by duality), because for these values of λ the general methods of
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this paper also yield a parametrix for Ag — λ. In fact, since we are not
interested in precise asymptotics, we may take this E(λ) of the form E\ + E2

— Eι is constructed using the symbol calculus and E2 is chosen to cancel only
the constant term in the Taylor expansion of the error Qi left by E\. This
in turn requires the invertibility on L2 of a2 AH — λ, a = dp/dv(q), q G dM.
Since by definition α0 = inf α, this last step is always possible by the results
of [6].

Finally, to show that each λ > OQ(Π — 2k — l)2/4 (again for k < n/2) lies
in the essential spectrum we must produce for each such λ and each ε > 0 an
infinite dimensional family of forms for which ||(Δ^ — λ)ω|| < ε\\ω\\. These are
obtained from the generalized eigenforms fμj{x) = (χ(n-2 / c- 1)/2+ ϊ/ i) dy1 on
H n . These satisfy (a%ΔH-λ)fμj = 0 with λ = α§((n-2fc- l)2/4 + μ2), but
of course just miss lying in L2. Then, a brief calculation shows that one may
choose φ(x,y) with support in {\y\ < x,a < x < b} and such that φ{x,y)fμj
is an approximate eigenform for CLQAH provided α, b are suitably small. Now,
if q G dM is chosen so that dp/dv(q) — α0, and if coordinates are chosen so
that q = (0,0), then φ fμj may be considered as a form on M supported
near q. It will satisfy the necessary inequality if α, b are small enough, and
the infinite dimensional family is spanned by such forms. Hence λ is in the
essential spectrum. The proof is complete.

A finer analysis of this essential spectrum, perhaps to rule out the existence
of point spectrum in this range, seems a difficult problem in general. In the
special case when k = 0 and the limiting curvature is constant one may show
(see [12]) that the spectrum in this range is absolutely continuous with no
embedded eigenvalues.

We conclude with a simple observation. A space closely related to %?k:, but
usually larger, is the more widely studied L2 cohomology space L2Hk. The
two spaces are identical when the range of A^ is closed, so we obtain the

Corollary. L2Hk ~ ^ k for all values of k φ (n ± l)/2. In particu-
lar, if also k φ n/2, L2Hk is of finite dimension (and is identified with the
topological cohomology of M).
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