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AREA AND THE LENGTH OF
THE SHORTEST CLOSED GEODESIC

CHRISTOPHER B. CROKE

1. Introduction

The main purpose of this paper is to prove the following theorem:
Theorem 4.2. For any metric on a two-dimensional sphere 31y(/F > L, where

A represents the area, and L the length of the shortest nontriυial closed geodesic.

The constant 31 above is not the best constant. One suspects that the best
constant would be 31 / 421 / 2 = 1.86121. We will discuss this later.

The question, for which the above theorem is the answer in two dimensions,
was posed by Gromov for all closed manifolds in [12, p. 135]. The correspond-
ing theorem is known for all other closed surfaces as we will see below. The
difficulty with the sphere is that it is simply connected. In fact, all other results
relating area (or volume) to the length of closed geodesies concern essential
(not null homotopic) geodesies. That is, they concern sys(Λf) (read "systole of
M "), the length of the shortest essential geodesic.

The first theorem of this type was proved by Loewner in 1949 in an
unpublished work (see [3] and [4]). He showed that for any metric on the two
torus 31 / 421 / 2yU(M) > sys(M) with equality holding if and only if M is a
flat equilateral torus. (The fact that the constant is the same as the conjectured
constant for S2 comes from the fact that both extremal metrics are built out of
two flat equilateral triangles.) The proof of the theorem relies on the fact that
all metrics are conformal to a flat metric. Using a similar method Pu in 1952
(see [17]) showed that for any metric on RP2; ŷ ττ/2 yJA{M) > sys(M), with
equality holding if and only if M has constant curvature.

In 1960 Accola [1] and Blatter [6] independently showed that there was a
function f(g) such that for any metric on a surface of genus g, f(g)]/A(M)
> sys(M). Unfortunately, as g tends to oo the function /(g) tends to oo while
one would expect it to tend to 0. In 1981 Hebda [15] and independently
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Burago and Zalgaller [7] improved this result by showing that for all surfaces

of genus > 1, ]/2]/A(M) > sys(M).

The major work in this field is the recent work of Gromov [12]. In it are

many results. Among them is the result that for a surface of genus g,

f(g)]jA(M) > sys(M), where, in this case, /(g) is a function (given ex-

plicitly) which tends to 0 as g tends to oo (see [12, pp. 4-5], Theorem 0.2.A).

The main result of [12] is a higher dimensional theorem: There is a constant

c(n) depending only on dimension n such that for every essential manifold M

of dimension n we have c(«)/Vol(M) ^ sys(M) (c(n) can be taken to be

6(n + \)n ]/(n + 1)!). In the above statement " M essential" means that there

is a map / from M to a k(π, 1) such that f*[M] Φ 0 where [M] e Hn(M) is

the fundamental class (use Z 2 coefficients if M not orientable). As examples of

esssential manifolds we have RP" and Ύ".

It is easy to construct examples of nonessential manifolds with sys(M) = 1

and arbitrarily small volume, for example take product metrics on 5 1 X S 2

where S2 gets arbitrarily small. However, they may still have short nones-

sential closed geodesies. The general question of volume versus the length of

the shortest closed geodesic is still very much open in higher dimensions. The

goal of this paper is to answer the question in two dimensions.

The paper is divided into six sections, the first of which being this introduc-

tion. The second section recalls the Birkhoff curve shortening process, the

fundamental tool in this paper, and derives some new properties. The third

section contains the basic lemmas from which the theorems are proved in §§4

and 5. The key to all the proofs is Lemma 3.1.

In §4 the main theorem is proved. Along the way we also prove

Theorem 4.1. For any metric on S2 we have 9D ^ L where D represents the

diameter.

In §5 we consider complete noncompact surfaces of finite area A. It was

shown in [20] and [2] that all such surfaces have closed geodesies (in fact

infinitely many). Gromov in [12] showed (as a special case of Theorem 4.4.A)

that for most such surfaces we have const\//Γ ^ L. We show that the tech-

niques used to prove the main theorem serve to show constv^/Γ > L for all such

surfaces. The two main cases not covered by Gromov's theorem are the plane

and the cylinder.

In §6 we consider the case of convex hypersurfaces of R" + 1. We show

Theorem 6.1. If Mn c R" + 1 is a convex hypersurface, then c(n)]/\o\(M)

> L.

The constant c(n) is discussed and is in some sense only off by a factor of

two from the sharp constant. In particular c(2) = 2 3 1 / 4 2 1 / 2 . The argument
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leads one to guess as to the optimal metric. In particular the extremal metric in
two dimensions should be two copies of an equilateral triangle glued together
along the boundary (of course this is a degenerate metric).

Andre Treibergs [19] has independently proved Theorem 6.1 as well as an
extension to higher dimensional minimax volumes (yielding in particular upper
bounds for areas of minimal surfaces in convex three spheres). We have
nevertheless included our proof (which was proved at about the same
time—Summer 1983) because it is significantly easier than the proof in [19]
and it leads one to a conjecture as to the sharp constant. In [19] a different
metric is conjectured as optimal. However, the geodesic used in the calculation
in [19] was not the shortest closed geodesic. In fact the extremal metric
conjectured above (two equilateral triangles) is better than the one suggested in
[19].

Gromov has suggested that using the main Lemma (3.1) along with ideas in
[12] one should be able to show that the filling radius (see [12] §1 for a
definition) is larger than a constant times the length of the shortest closed
geodesic. This, along with the main theorem (1.3.A) of [12], its extension ([12]
4.4.C), and results in [16], would yield an alternative proof of the main results
in this paper.

Many thanks are due to M. Gromov for helpful conversations on all aspects
of this paper. Thanks are also due to H. Karcher for early discussions on §5,
G. Thorbergsson for arousing my interest in the problem, and M. Berger for
help in finding references.

The author would also like to thank Max-Planck-Institut Fur Mathematik,
Institut des Hautes Etudes Scientifiques, and Mathematical Sciences Research
Institute for their hospitality and financial support during the preparation of
this paper.

2. Birkhoff's Ideas

In this paper we will work in the space Λ of piecewise smooth closed curves
γ: [0,1] -> M, where M is a riemannian manifold and Λ has the C°-topology.
By L(γ) we will mean the length of γ.

We borrow two major ideas from Birkhoff (see [5]). The first idea we will use
is his method of finding closed geodesies on spheres. In particular when M is
S 2 we will find a 1-parameter family of curves starting and ending at a point
curve in such a way that the induced map F\ S2 -> S 2 (see figure) has nonzero
degree. Birkhoff s argument (or the minimax argument) allows us to conclude
that M has a nontrivial closed geodesic of length less than or equal to the
length of the longest curve in the 1-parameter family. We will use this



CHRISTOPHER B. CROKE

argument in the proofs of the main Theorems 4.1 and 4.2. We will use the

higher dimensional version of this in §6 in discussing convex hypersurfaces.

Further, we will even use a modification of this argument in the case of

noncompact surfaces (§5).

The second idea that we will use is the Birkhoff curve shortening process,

B.C.S.P. (which Birkhoff used in the above mentioned argument). Since we

need to derive some new properties of B.C.S.P., we will recall it here.

The B.C.S.P., βN: AE -» AE, depends on an integer parameter N, and is a

map from ΛE, the space of curves of energy less than E, to itself, βN is called

the B.C.S.P. with N breaks. For fixed E, N is chosen so large such that {Έ/N

is smaller than the injectivity radius of the manifold, inj(M), or in some cases

the injectivity radius of a part of the manifold. In each application we will

choose the number of breaks large enough to suit our purposes.

Given a curve γ G Λ£ we will define the new curve jS^γ) e A £ as well as a

homotopy ys, s e [0,1], from γ = γ0 to βN(y) = yv The homotopy will be

defined in such a way that L(γ 5 z ) < L(γ 5 i ) whenever S2> Sv

We will assume that γ is parametrized proportional to arclength. If not the

first part of the homotopy is to reparametrize γ so that it is. We define γ 1 / 2 to

be the unique piecewise geodesic closed curve such that γ 1 / 2(//Λ0 =

for all integers i = 0,1,2, , N, and such that Ύι/2\[i/N,(i+i)/N] * s

ing geodesic parametrized proportional to arclength. The uniqueness of γ 1 / 2

comes from:

For ί G [0, ΐ ] we define γ5 by
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where τf is the minimzing geodesic from y(i/N) to y(i/N + 2s/N) parame-

trized on the interval [0,2s/N] proportional to arclength. The uniqueness and

continuity of the ys follows (as before) from the fact that L(τ/) < inj(Λf) for

all / and s.

γx is defined as the unique piecewise geodesic closed curve with

yλ(i/N + 1/(2iV)) = yι/2(i/N + 1/(2 ^0) which is parametrized proportional

to arclength on each interval [i/N + l/(2N),(i + 1)/N + 1/(2 # ) ] . We then

define γ5 for s G [J, 1] to homotope between γ 1 / 2 and yx in the same way that

ys, s G [0, j] homotopes from γ 0 to γ 1 / 2 . The continuity and uniqueness follow

as before.

Birkhoff shows that βN: AE -* AE is continuous if N is large in terms of E

and the geometry of M (we will not need this fact directly). The closed

geodesies are the only fixed points of βN. Birkhoff also shows that for any

γ e Λ £ the sequence {γ,}, defined by γ = γ 0 and γ / + 1 = fiN(yt), converges to

a closed geodesic. However, this closed geodesic may be a point curve. If the

limit is a point curve then the homotopies described above give rise in a

natural way to a map from the two disk D2 into M with γ as the boundary.

We should remark that since the first step in B.C.S.P. is to reparametrize

proportional to arclength and since βN(y) will not in general be globally

parametrized by arclength parts of the map from D2 into M will consist of

simply reparametrizing these curves.

For the rest of this section let M be a complete connected oriented surface

(two dimensional). Let γ G Λ be a simple (no self intersections) closed curve

on M which divides M into two components. Let Ω (open) be one of these

components. Then γ will be called convex to Ω if there is an ε > 0 such that

for all x j E γ , with d(x, y) < ε, the minimizing geodesic τ from x to y

satisfies T c Ω. In fact this means that if x j e S ! with d(x, y) < ε then

T c Ω. For if not there would be points x, y e γ π T such that the segment f

of T from x to y does not lie in Ω. But d(x, y) = L(τ) < L(τ) < ε. Hence, by

the definition of ε, f c Ω yielding a contradiction.

In the applications in this paper γ will be a piecewise geodesic curve. In this

case, the above definition reduces to the condition that all the angles of γ are

convex to Ω. In general it means that, in addition to the angles being convex to

Ω, at the C 0 0 points of γ the curvature vector points toward Ω.

For x G M, we let inj(x) represent the injectivity radius at x (i.e. the

minimum distance from x to its cut locus). For a compact set K we let

in j(#) = min{inj(x)|x G K).

For γ convex to Ω as above we define ε(γ) > 0 as follows. For each x E γ

we let yx = y\[a b] be the largest connected open segment of γ containing x
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such that for all y e yχ9 d(x, y) < inj(γ). Let ε(x,γ) = jd(x,y - yx) (if

γ = yx then set ε(x,y) = ^inj(γ)). We then define

ε(γ) = min{ε(.x,γ)|Λ: e γ} .

Note that ε(γ) < \ inj(γ).

We now introduce an elementary lemma. The proof is straightforward but is

included for completeness.

Lemma 2.1. Let y be convex to Ω. Then

1) For x e γ andy e yx the unique minimizing geodesic τ from x toy satisfies

r c Ω and either τ Π 3Ω = {x, y) or τ c ΘΩ.

2) for x G γ and y e Ω swcΛ ίΛαί J(x, j ) < ε(γ), ίλe wH/̂ we minimizing

geodesic τ from x toy satisfies τ c Ω.

3) Let x e γ flm/j> e Ω. ΓΛefl (/" T is the shortest path in Ω from x toy then τ

is a geodesic of M, τ Π 3 Ω = {x}, W τ'(0) w not tangent to y = 3Ω.

4) L^/ x, ^ e Ω ΛWJ T /Λ̂  shortest path in Ω /r^w Λ: to J>. 77Ẑ W T C Ω.

Proof. We start by noting that if τ is a geodesic segment such that τ c Ω

and T^XQ) is tangent to γ = 3Ω for some JC0 G γ then the convexity of γ

implies that T C 3Ω = γ. In fact, if x0 is not a C 0 0 point of γ then the above

holds under the assumption that τ'(x0) is tangent to either of the tangents

of γ.

The second part of (1) follows from the first part (i.e. τ c 8 ) and the above

by noting that if an interior point of τ intersects γ then it must be tangent to γ

at that point since the angles of γ are convex to Ω.

To see the first part of (1), we assume for simplicity that x = γ(0), y = y(a)

and for all 0 < / < β, d(x,y(t)) < inj(γ). Let T, be the unique minimizing

geodesic from x to γ(/). Since d(xy y(t)) < inj(γ), T, varies continuously with

/. Let t = sup{ί e [0,a]\τs c Ω for s < t). By the definition of convexity

t > 0. By the continuity of T, we have T, C Ω. Assume t Φ a. There are two

cases. In the first case T, C 3Ω. In this case the convexity of 3Ω makes it clear

that τ-ί+s c Ω for small δ contradicting the definition of t. In the other case

T, Π 3Ω = (JC, γ(ί)} Assume T,: [0,1] -> M is parametrized proportional to

arclength and has length l(t). Let ε > 0 be less than the ε in the definition of

the convexity of γ and less than l(t)/3. Since τ,-[ε//(ί),l - ε/l(t)] c Ω

we can choose δ > 0 so that for all / < / < / + δ , τt[ε/l(t),l - ε/l(t)]

c Ω. Further for such t T/[0, ε/l(t)] c Ω since ^(0), τ,(ε/l(t)) e Ω,

ί/(τ(0),τ,(ε//(/))) = ε, and the definition of ε. Similarly τ,[l - ε/l(t\\] c Ω.

Thus we have T, C Ω contradicting the maximality of /. Thus we have shown

2.1.1.
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To see 2.1.2, let τ be the unique (since ε(γ) < \ inj(γ)) geodesic from x to

y. If T <£ Ω then there is an interval [t0, tλ] such that τ(/ 0 , tλ) c M - Ω while

τ ( ' o ) , ^ i ) g Ω . But L ( τ ) < ε ( γ ) < ε(τ(/ 0 ),γ) means T ^ ) <Ξ γ τ (,o ) which

contradicts 2.1.1. _

For 2.1.3 and 2.1.4 we see that if T is a minimizing curve in Ω then T Π Ω is

a geodesic of M. Further τ Π ί l can only intersect 3Ω at an endpoint of τ. To

see this we note that τ cannot be tangent to 3Ω unless τ Γ\ ίl = 0 (i.e.

T c 3Ω) as mentioned before, but on the other hand if an angle is made τ can

be shortened by "cutting the corner". The convexity of γ allows this "cutting

the corner" to happen through curves in Ω even at non-C0 0 points. 2.1.3 and

2.1.4 now follow easily.

Lemma 2.2. Let y be convex to Ω and have length L. Assume Ω is compact

and let N > L/inj(Ω) (also N » 2). Then if we apply B.C.S.P. with N breaks

to y the resulting curves γ, satisfy:

(1) γ, c Ω,
(2) yt is simple and convex to Ω, = Ω - { χ G γ 5 | 0 < j < / } .

Proof. We can assume γ is parametrized proportional to arclength for if

not we can homotope the parameter to make it so. Each γ,, / e [0, \] consists

of segments of γ and minimizing geodesic segments T/ between y(i/N) and

y(i/N + 2ί/W)._Since ^ ( y | [ i y ^ / / ^ + 2 r / ^ ) < L/N < i n J W < inj(γ), Lemma
2.1.1 says T/ C Ω. Further by 2.1.1 T/ Π γ = [y(i/N),y(i/N + 2t/N)} or
Ίl = y\[i/Nj/N+2t/N] ( w e n o t e ^ a t τ c a n n o t coincide with the other arc of γ

because it is too long since N > 2). To see that γ, is simple we need only see

that T/ intersects τj only at common endpoints if / Φ j . Since they are both

minimizing geodesies they can intersect at most once. But consider the open set

Ω; C Ω bounded by r/ U (-y\[i/N,i/N+2t/N]) (this is empty if r/ c γ = 3Ω). If

τj intersects T/ at interior points of T/ and τj then it must intersect trans-

versely and hence enter Ω{ (in this case ΩJ of course cannot be empty), τj must

thus leave ΩJ again but since it cannot intersect T/ again and does not intersect

y\\i/N i/N+2t/N) w e S e t a contradiction. Thus γ, is simple. Since γ is convex to

Ω and T/ c Ω we see that the angles of γ, are convex to Ω - U ^ Ω , ' . Now

Ωf = { χ e τ / | 0 < s < f } by the convexity of Ω,' and the fact that ΩJ lies

inside the injectivity radius of y(i/N). (The fact that τf

 5 c ΩJ follows from the

proof of Lemma 2.1.1.) Thus we see that γ, is convex to ΩΓ

The proof for / e [\,ϊ] follows in exactly the same way since inj(Ω) <

Remark. If AT is a compact set and N is chosen such that N >

then the above lemma holds as long as γ, c K even if Ω is not assumed to be

compact.
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3. The Main Lemmas

We now prove the lemma which is the heart of this paper.

Lemma 3.1. Let yλ and γ2 be two piecewise smooth curves from x to y such

that yx U — γ 2 forms a simple closed curve which is convex to an open disk Ω.

Assume further that for every z 6 β , d$(x, z) < Z>, where d^ represents the

distance as measured in Ω and D is some real number. Then either there is a

nontrivial closed geodesic lying in Ω of length less than or equal to L =

^(Yi U — γ 2 ) or γx is homotopic to γ2 through curves from x to y lying in Ω of

length < 3L + ID.

Proof. Assume there is no nontrivial closed geodesic in Ω of length less

than or equal to L. Applying B.C.S.P. repeatedly to γx U - γ 2 and using

Lemma 2.2 we get a homotopy σ,, t e [0,1] from σ0 = yλ U - γ 2 to a point

curve σx (say σλ = {z}). Further each σ, is convex to Ω, (Ωo = Ω) with

Ω, c Ω5 for t > s. In particular z e Ω, for all / e [0,1). Let t0 =

min{ί I z e 3Ω, = σ,}. It is clear that for / < /0, z G Q( and for t > ί0, z e σΓ

Let T: [0,1] -» M be a minimizing path from Λ: to z in Ω. τ will be a geodesic

of M iϊ t0Φ 0 by Lemma 2.1.3, and we will have no need of τ if t0 = 0.

We claim that for all t < t0, τ Π σ, is a single point z r The fact that x £ Ω,

and z e Ωf implies that T Π σr is not empty. By Lemma 2.1.3 we need only

show that τ(^) e σ, implies τ | W ] c Ω r We now f̂ ix s e [0,1]. We let ^ =

|min{/|τ(5) = max{/|τ(s) and ί~= sup{ ί | τ | [ j f l ] c Ω,}. To
]

prove the claim we need to show t > min{/5, t0}. We can assume t < t0. We

see by continuity that τ | [ s λ] c Qi and by the maximality of t that τ | [ s χ ] Π σf =̂

0 . By Lemma 2.1.4 τ(s) e Ωr and hence we see ts ^ t > ts. Choose 0 < ε <

ε(σ,) and 50 such that s < s0 < 1 and L(τ\[s s ^ < ε. Since τ| j X] c Ωf- there

is a δ > 0 such that T\[SQ χ] c Ω, and ε(σ,) > ε for all / with t < t < t -hδ.

Thus for all ; , / < ; < min{ί5, ί0, ί H-δ} we have τ | [ s j c Ω, by Lemma 2.1.2,

and hence τ | [ s x ] c Ω r Thus the maximality of t forces t = min{^, / 0 ) and the

claim follows.

the curves σt
ht,O<t<t
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We are now ready to define the homotopy. First homotope yλ to γx U - γ 2

U γ 2 through curves of length < 2L. Now for each / G [0, t0) let s(t) be the

unique value of s such that τ(s(t)) G σ r Let s(t0) = sup{s(/) 11 G [0, ί 0)}. We

homotope Y l U - γ2 U γ2 to τ | [ O f j ( , o ) ] U α ί β U - τ | [ O f J ( , o ) ] U γ2 through the

curves ht = τ | [ 0 s{t)] U σ, U - τ | [ 0 ) j ( r ) ] U γ2, where σ, represents going once

around σ, starting and ending at r(s(t)). The length of ht is less than

D + L + Z> + L = 2L + 2D. Let τ,o = τ | [ O f j ( / o ) ] and σ,o represents the short-

est arc of σ0 from τ(s(tQ)) to z. We now homotope τt U σ, U - τt U γ2 to

τ,o U σ,o U σ/o U - σ,o U - τ , o U γ 2 , where here σ,o represents going once

around σ,o starting and ending at z, through curves of length < D + L/2 + L

+ L/2 + Z) + L = 3L + 2D. This curve is in turn homo topic to τt U σt U

— σ, U — T, U γ7 via the curves ht = rt U σ, U σ, U - σ, U — T. U γ9 for

t e [/0,1], whose lengths are less than 3L + ID. This last curve is clearly

homotopic to γ 2 through curves of length less than 2L + 2D and the lemma

follows.

Remark 1. 3L + ID is not optimal. One could probably improve this to

\L + ID with a little work, but examples show one cannot expect to do much

better. As neither estimate leads to sharp answers in the theorems we will not

worry about it.

Remark 2. One should note (we will use this fact later) that the homotopy

defined above defines a map from the disk D2 to Ω of local degree ± 1 since

the generic point will have a single preimage.

We now come to the lemma in which the area A of the manifold enters. It

enters in the (coarea) formula

fh L(S(x,t))dt

where oo > b ^ a > 0, x is a fixed point in M, and S(x, t) = [y e

MI d(x, y) = t}, i.e. S(x, t) is the "circle" of radius t centered at JC. In general

S(x, t) need not be very nice, but for generic t (i.e. for all but a closed set of

measure 0) S(x, t) is a piecewise smooth disjoint union of Jordan curves. This

was shown by Hartman [14, Proposition 6.1] who generalized results of Fiala

[11] to the differentiable category (Fiala considered analytic metrics). The

above coarea formula can be found, for example, in equations 6.30 and 6.31 of

[14].

Lemma 3.2. Let M be a complete oriented surface of finite area A. Let

x, y,z G M with τ*9 T/, and τ* minimizing geodesies connecting the respective

points. Then:

(1) // w G τ* is such that d(w, x) > {A and d(w, y) > {A , then there is a

closed curve through w which is essential in M — { x, y } and has length < 2y[A .
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(2) Let dx = d(x, τ?) (similarly for dy anddz). Ifdx > ]/ΪA, dy > y/ΪA and

dz > ]/2A , then there is a nontriυial closed geodesic of length < \SA .

(3) If M is compact, d(x, y) = D(M), the diameter of M, and dz > 2/2A ,

then there is a nontriυial closed geodesic of length < 4%A .

(4) In the case where M is diffeomorphic to Sι X R1 and γ is a line in M (γ

minimizes distance between any two of its points) and for some z, d(z, γ) > ]/2A

then there is a nontrivial closed geodesic of length < JΪA .

Proof. We begin by noting that for a piecewise smooth simple closed curve

σ on a complete surface M, in particular for a component of S(x, t) for fixed x

and generic t9 either σ is essential in M or σ splits M into two pieces Mx and

M2. In the latter case σ is essential in M — {JC1,JC2} f°Γ x i G ^ i a n ^

x2 e M 2 . One sees this by assuming that σ does not split M. In which case one

can create a closed curve τ intersecting σ transversely exactly once. Hence the

intersection number modulo 2 of σ with τ is nonzero and σ is essential. In the

case where σ divides M, choose T to be a curve from xx to x2 intersecting σ

once transversely. The same argument gives σ essential in M — {JC1? x2}. It is

easy to see that if Λf, is noncompact jt, can be taken to be oo (i.e., not included

in the removed set).

Let T: [0,1] -> M be τv

x parametrized by arclength with τ(0) = x, τ(L) = y,

and r(t0) = w. By assumption ί0 > / ί and L - to> {A . Since

^ L(S(x,t))dt and

there is a generic t e [/0 - \/Z,/ 0 + \/Z] such that L(S(x,t)) < 2\/Z -

2|/ — ίo|. Let σ be the component of S(x, t) through τ(t). σ is a simple closed

curve (by the genericity of t) with L(σ) < l{A - 2\t - to\ and σ is essential

in M — (JC, y). That σ is essential in M — {JC, y) follows since either σ is

essential in M (hence in M - {JC, ̂ }) or it splits M into two pieces with x in

one and y in the other since T intersects σ transversely exactly once. Thus the

curve T L fλ U σ U — τ | r , #1 is a closed curve through w of length < l{A and

essential in M — {JC, y).

The first step in the proof of (2) is to note that dx + dγ > d(x, y) = L(τ v

x)

= L. This is proved by adding the four natural triangle inequalities involving

dx and dv (for example if q e τv

z is the closest point to x on τyv, i.e.

d(x,q) = dx, then two of the triangle inequalities are dx + d(q, z) ^ d(x, z)

and dx + d(qy y)^ d(x, y)). You get strict inequality since the four inequali-

ties cannot be simultaneously equalities (since z £ τv

Λ). On the other hand

L = rf(x, JO ̂  max{</x, rfy} > JlA .

Let T: [0, L] -> M be T^ with the arclength parameter /. Choose t0 e [0, L]

such that yjA/2 < tQ< dx and jA/2 < L — t0 < dγ, which can be done
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since dx + dv> L and dx, dy > yfΪA > y/A/2. Now B(x, t0) Π B(y, L - t0)

has measure 0 so

A > Area(£(;c, /0)) + Area(#( j>, L - t0))

L(S(x,to-s))ds+ [^ L(S(y,L-to-s))ds.

Hence as before there is a generic s e [0, ]/A/2] such that

L(S(x, t0 - s)) + L(S(y, L - t o - s ) ) ^ lyfϊJX - As

and both S(x, t0 - s) and S(y, L - t0 — s) are disjoint unions of simple

closed curves. Let σx be the component of S(x, tQ - s) through τ(t0 - s) and

σ2 the component of S(y, L — tQ - s) through τ(t0 + s). Since t0 < dx,
σ i n Tv = 0 - If σ i ^ o e s n o t s e P a r a t e M then applying B.C.S.P. repeatedly

yields the desired nontrivial (in fact essential) closed geodesic of length < ^SA .

So we can assume σλ separates M which must have x on one side and y and z

on the other. σx intersects both T/ and Ί* transversely (in fact perpendicu-

larly) in one point. Similarly we can assume σ2 intersects τz

v and τv

x trans-

versely once. Define σ to be σ, U τ | r , , , , U σ9 U — T L t , ,. We see

that L(σ) < ]/SA . We make sure to choose the orientation of σλ and σ2 so that

σ has the form of a figure 8 around x and y, that is so that the oriented

intersection number of σ with T (say in M - [x, y}) is +2 rather than 0.

Applying B.C.S.P. repeatedly to σ leads either to a closed geodesic of length

< L(σ) < JΪA or to a point curve. But it cannot lead to a point curve for if it

did some curve σs in the homotopy would have to pass through a vertex (x, y

or z) while still intersecting the opposite geodesic (τz

y, ΊV*, or T*) which we see

by intersection number arguments. Now the fact that L(σsJ < yί%A and dx,

dv and dz > ^y/SA yields the desired contradiction.

Part (3) follows directly from part (2) and triangle inequalities. Let w e T/

be such that d(x, w) = dx. Then dx + d(w, y) ̂  d(x, y) = D > d(z, y) and
rfx-h d(w, z) > J(JC, z) > 2yf2A . Adding the above gives J x > yl2A . Similarly

Part (4) also follows from part (2). Choose w e γ such that J(z, w) = J(z, γ)

and choose JC and y on γ such that d(w, y) > d(z,w) + V̂2v4 , J(w, x) >

ί/(z, w) + y/2A and w is between x and _y, i.e. d(x, y) = J(JC, w) 4- d(w, y).

We therefore have d(x, w) + rf(w, j ) = d(x, y) ^ dx + d(z, y) < dx +

rf(z, w) + J(w, ^ ) . Hence rfx > rf(jc, w) - έ/(z, w) > \/2^" Similarly rfv

> }/2A . Since we have by assumption d2 > y/2A part (2) yields part (4).

We now study further the case of Lemma 3.2.1. We will consider the case of

a geodesic segment T in M; we are interested in three cases in particular. The

first is when M is diffeomorphic to S2 and T is a minimizing geodesic. The
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second is when M is diffeomorphic to R2 and T is a ray (i.e. T: [0, oo) -> Λf

and T is a minimizing geodesic between any two points on it). The third is

when M is a cylinder Sι X R1 and τ is a line (i.e. T: ( + oo, oo) -> M and it

minimizes between any two points on it). We will speak of r as a minimizing

geodesic from x to y but either one or both of c and y will represent oo in the

second and third cases above.

Lemma 3.3. Let M be one of the three cases above and τ a minimizing

geodesic from x to y (as discussed above). Let w e τ be such that d(w, y)> {A

and d(w, x) > y[X. Then there is a shortest closed curve γ through w which is

essential in M — { x, y }. If yγ and γ 2 are two such shortest curves we have:

(1) γ;: [0, lw] -> M is a simple closed geodesic loop (not necessarily smooth at

w) at w of length lw < 2yCT.

(2) γ, Π τ = { w } and the vectors γ/(0) and — γ/(/w) He on opposite sides

of r.

(3) γ; Π Ύj = {w} oryt = Ίj.

(4) Assume further that both γ, separate M into two pieces. Let Ωz be the

component of M — γ, such that γ, is convex to Ω, (this must be true for at least

one component for yi has but one angle). Then either Ω, Π Ωy = 0 , Ωf c Ωy, or

Qj c Ω, .

Proof. By Lemma 3.2.1 there are such short curves of length < l{A . Since

w is further from x or y than y[A a shortest such curve cannot pass through x

or y hence must be a geodesic loop yw. The above holds in all cases even

though x or y may be oo, by choosing points close to oo (after fixing w) and

then applying Lemma 3.2.1. We now see that yw(Ί τ = {w}, for if not we

could replace one arc of yw with a segment of τ reducing the length (since τ

minimizes from x to y) and staying essential in M - {x, y) (for the correct

choice of arc to replace). Now if both vectors γ^(0) and -y'w(lw) lie on the

same side of τ then the fact that τ (Λyw= {w} implies that γ^ can be

homotoped to miss T. Since M — τ is simply connected and M - {x, y] z> M

- τ we see γ^ cannot be essential in M - {x, y}. Hence γ^(0) and - γ ^ ( / w )

lie on opposite sides of τ as claimed. Now assume γ^ was not simple.. By

throwing away part of γ^ one can construct a closed curve γ^ through w which

is shorter than γ^ but whose intersection with r is the same as γw's, that is yw

intersects τ transversely in one point. Thus γ^ is essential in M — {x, y}. This

contradicts the minimality of γ^ and hence γ^ is simple. This proves (1) and

(2).

Assume that γ^ and γ^ are two such loops. Orient them so that γ^(0) and

γ^(0) lie on the same side of T. If γ^ and γ^ intersect then one can construct

two closed curves rx and τ2 through w as follows: τλ starts at w follows yw to

the point of intersection and then follows γ^ back to w. τ2 does the opposite.
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Both τx and τ2 intersect r only at w and are transverse there and hence are

essential in M - {x, y}. Now L ^ ) + L(τ 2 ) = ^(γ^) 4- L(yw) = 2/w so one

of τλ or τ2, say τ;, satisfies L(τ f ) < /w. But τf is not smooth at the intersection

point of γ^ with γ^ and hence can be shortened contradicting the definition of

lw. Thus (3) follows.

From (3) we see that yi•- {w} c Ω̂  or γf. — {w} c M — Ωy . We can tell

which of these two cases happens by looking near w. Look at the angle

between 7/(0) and — 7/(/w) (the one that is less than π or in the case of the

angle equal to π the one containing Ωy). If both γ/(0) and — γ/(/w) lie in this

angle then γ.•— {w} c Ωy. If not, they must both be outside since γ, - {w} c

M - Ώj. It is not hard to see that if yi - {w} c M - Ωy and γ7 - { w} c M

- Ω, then Ωf. Π Ωy = 0 . Further if γ, - {w} c Ωy and γy - {w} c M - Ω,

then Ω, c Ωy. Thus we need only consider the case γ7 - (w) c Ω/. and

yi•— {w} c Qj. But this cannot happen since it says γ/(0) and — γ/(/w) lie

between γ^O) and -y'j(lw) and vice versa.

This concludes the proof of the lemma.

4. The Main Theorems

In this section we consider the case where M is diffeomorphic to S2.

Theorem 4.1. Let M be a riemannian manifold, diffeomorphic to S 2 , of

diameter D. Then L < 9Z), where L is the length of the shortest nontrivial closed

geodesic on M.

Proof. Choose X J G M such that d( JC, y) = D. Let 31 = { T | T is a mini-

mizing geodesic from x to y). Berger's lemma (see [8, p. 106]) says that for

every V e TXM there is a r e % such that (F, τ'(0)> > 0. Similarly for every

W e ΓVM there is a T e 31 such that (W, -τ\D)) > 0. Thus we can pick a

finite number of distinct geodesies τ1 ? τ2, , τw G 31 (in fact it is not hard to

see that n can be taken to satisfy 2 < n < 4) such that {τ1? τ2, , τn} satisfies

the same property as 31. We can assume n Φ 2 for if so τλ U - τ2 is a closed

geodesic of length ID. We order them so that the τ/(0) come in order

counterclockwise from T^O). Since τf minimizes length τf Π τy = (x, 7} for

/ Φ j . Since for every V ^ TXM there is an / such that (K, τ/(0)) ^ 0 we see

that <(τ/(0), τ/+1(0) < 7r, where the angle is measured in the counterclockwise

sense (here n + 1 is the same as 1). Similarly <( —τ/+1(Z>), —τ-(D)) < π. In

particular τι U — τ / + 1 is a simple closed curve which is convex to the domain

Ω, lying between them (in the obvious way). If z e Ω, then the minimizing

geodesic from z to y must lie in Ω, by the minimality of T, and τ/ + 1. Thus by

Lemma 3.1 either there is a closed geodesic of length < ID or - T , is
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homo topic to — τ / + 1 through curves of length < 3L + 2D = SD lying in Ω;.

We now describe a short homotopy from the point curve {x} to the point

curve { y}:

{x} ~ ( T l U - r j - ( T l U - T 2 ) ~ •••

where the homotopy from - η to — τ / + 1 is through curves in Ω, as in Lemma

3.1. Remark 2 following Lemma 3.1 shows that the induced map from S2 to

S2 has degree 1. Hence by Birkhoff s idea there is a nontrivial closed geodesic

of length less than the length of the longest curve in the homotopy, i.e., less

than 92).

Remark. 9D is clearly not the best constant for this theorem. In fact by

improving Lemma 3.1 as suggested in the remark following it one could

improve this to 6D but this is also unlikely to be sharp.

Theorem 4.2. Let M be a riemannian manifold, diffeomorphic to S2, of area

A. Then L < 31\^4 , where L is the length of the shortest nontrivial closed

geodesic.

Proof. By Theorem 4.1 we can assume D > ^-{A > l{A . Let x, y e M

such that d(x, y) = D. Let τ be a minimizing geodesic from x to y parame-

trized by arclength T: [0, D] -> M. For each t e (JA, D — λ/A) there is a

simple geodesic loop γ, (not necessarily unique) through τ(t) as in Lemma 3.3.

γ, separates M into pieces Ω ,̂ Ω^ with x e Ώ,x and y e Ω^ and, since it is a

geodesic loop, is convex to Ωx or Ω r For each t e (y/A, D — JA) we say

t e Sx if there is a γ, as in Lemma 3.3 with yt convex to Ω .̂ Similarly define

Sy. It is easy to see that both Sx and 5^ are closed subsets of (JA , D — y[A). It

follows from the fact that a sequence of geodesic loops has a convergent

subsequence to a geodesic loop (the resulting loop can't pass through x or y

for length reasons). Thus either Sx Π S Φ 0 or one of Sx or Sy is empty.

We first consider the case where Sx Π Sy Φ 0. Let to<= SXΠ Sy. This

means there are geodesic loops γ^ and yy through τy(t0) with yx convex to Ω̂ .

and γ^ convex to Ω ,̂ where Ωx and Ω^ are open with x e Ώ,x and j e Sl'r If

yx = γ v then it is a closed geodesic of length < i{A (by Lemma 3.3) and the

theorem follows. If not then Lemma 3.3 tells us that yx Π γ v = {τ^(/0)} and

Ωx Π Ω^ = 0 since x £ tiy and y £ Qx. Let Ω = M - (Ωx U Ω^). Then

ΘΩ = yx U — γ^ which is convex to Ω by Lemma 3.3.2. Assuming there are no

closed geodesies of length < 2y[λ in Ώ,x repeated applications of B.C.S.P. and

Lemma 2.2 show yx is homotopic to a point curve through curves in Ωx of

length < 2]/A . Similarly yy is homotopic to a point curve through curves in

Ω^ of length < 2jA . Further, if there is no closed geodesic in Ω of length
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< 4γ/Z, yx is homotopic to γ̂  through curves in Ω of length < Yl{A + ID
by Lemma 3.1, where D = max{dΩ(z, τy(t0)) \z e Ω ) . (As stated one cannot
apply Lemma 3.1 directly to γ̂  U - yy since it is not strictly speaking a simple
curve. But after the first application of B.C.S.P. it becomes simple and the
argument carries through.)

By putting these three homotopies together we get a one parameter family of
curves from a point curve to a point curve such that the induced map from S2

to S2 has degree 1 (see the remark following 3.1). Thus the Birkhoff method
yields a nontrivial closed geodesic of length < 12/A + ID.

We thus need to bound D. Let z E ίi. By Lemma 3.2.3 we may assume that
d(z, T/) < 2]/2A. Since r/ Π yx = {τ/(/0)), τx Π yy = {τ/(f0)}, x e Qx, and

Thus if ^ Π

y e tiy it is easy to see that τy Π Ω = 0. Thus d(z, yx U - γ^) < 2v2Λ and

0 there is a nontrivial closed geodesic of length < (14 +

We now consider the case where one of Sx or Sy is empty. We can assume
Sx = 0 and S = , D — yA ). In fact there will be a simple closed geodesic
loop γ at τ(jA) which is convex to ίly, is essential in M — {JC, y}, and has
length < 2{A . We find γ as a limit (of a subsequence if necessary) of minimal
loops at τ(r ;) for ti \ {X. All of the properties follow immediately once we
see that γ c M — {x, y). y £ γ by length considerations. If x e γ then γ
must have length = 2{X and both arcs of γ are minimizing geodesies from
τ(]/A) to x but this cannot be as τ| [ 0^-j is the unique minimizing geodesic
from τ(0) = x to τ{yfA) (since it minimizes past ]/A).

Since x is at maximum distance from y we can use Berger's lemma (see [8,
p. 106]) to find minimzing geodesies τλ and τ2 from x to y such that ^'(0),
r^O), and τ2(0) do not lie in an open half plane. (It may happen that there is
only one other geodesic τx in which case τ{(0) = -^'(O). The arguments that
follow work equally well in this case but we will make them in the case where
τλ and τ2 both exist.)
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The geodesic loop γ intersects each of τ*, τ l 5 and τ2 in one point z 0 = τ*]/A,

zl9 and z 2 respectively (see figure). This is true since if not we would be able to

replace a segment of γ with a segment of η decreasing the length and leaving

the new curve essential in M — {x, y}. This would contradict the minimality

of the length of the geodesic loops which converge to γ.

We will use the notation xzi and ztZj to represent the geodesic segments (in

figure) between the corresponding points. Note that ztZj is the appropriate

segment of γ and not necessarily a minimizing geodesic.

We know L(xΓ0) = \/J, L(z~z) < l{λ and L(3cz~) < l{A for / = 1,2 since

L ( γ ) < 2]/A . The geodesic triangles xzozl9 xzλz2, and xz2z0 are convex to the

domain Ωo, Ω l9 and Ω2 respectively (see figure). We can assume by Lemma

3.2.3 that for every z e M, d(z,τy

x) < 2]/ΪA . If Z G Ωf. then du(z,x) <

(2i/2* 4- 2)]/A, since the minimizing geodesic from z to T* must hit 3Ω, and

any point on 3Ω/ is connectable to x along 3Ω, through curves of total length

< 2]/A . (The last part of the above can be seen as follows: Starting a t w G γ

one can trace along the short loop of γ to z 0 (length < y[A) then follow xz0

back to x (length = yfλ). This curve may leave 3Ω/ but the curve that starts

like this until it hits a z7 and then runs to x along η must be even shorter. Of

course if w G 3Ω7 - γ one simply follows a τ to JC.)

We now create a homotopy from the point curve {x} to γ using Lemma 3.1

repeatedly as follows:

{x} -

- γ.

The longest curves in this homotopy have length < {A + 2^A + 3(6}/A )

+ 2(2\/2 + 2){λ = (25 + Ay[2){A < ΊA{A . Since γ is convex to Ωv we may

assume as usual that γ is homotopic to a point curve through curves in Ωv of

length < 2]/A . Combining these homotopies the Birkhoff idea (since once

again the induced map from S 2 to S2 has degree 1) yields a nontrivial closed

geodesic of length < 31\//Γ. The theorem follows.

5. Noncompact Surfaces of Finite Area

It is known (see [20] and [2]) that every complete surface of finite area has

closed geodesies (in fact infinitely many). In this section, using ideas developed

in previous sections, we show:
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Theorem 5.1. There is a constant c such that if M is a complete surface

{without boundary) of area A then c{A ^ L, where L is the length of the shortest

closed geodesic.

Proof. By taking oriented double covers we may assume M is orientable.

As discussed in the introduction, previous work had reduced the compact case

to the case of S2. Since Theorem 4.2 takes care of the S2 case we may assume

M is not compact. By Theorem 4.4A of [12] we may assume that M is

diffeomorphic to S2 - (points). We treat this as three cases. Case 1 is when M

has at least three ends. In Case 2, M is diffeomorphic to 5 1 X R1 and in Case

3, M is diffeomorphic to R2.

Case 1. M has at least three ends.

Choose JC0 e M and Ro > 0 so large that three of the ends of M — B(x0, Ro)

are pairwise disconnected in M — B(x0, Ro). Choose xλ, x2, and x3 one in

each end such that d(x0, xt) = 2R0 + JΪA . Let τx* ' be minimizing geodesies

from xi to xj9 i = 1,2,3. If we show d(xl9τg) > yflA', d(x2,τ£) > ]/2A
and d(x3,τ*1) > y/lA then Lemma 3.2.2 proves the theorem. By the triangle

inequality (in fact a sum of two) 2d(xv τ**) + d(x2, x3) > d(xl9 x2) +

d(xvx3). We also have 4R0 + 2y/2A > dix^Xj) > 2R0 + 2}/2A . Thus
2d(xλ, τ£) + 4R0 4- 2y/2A > 4R0 + 4^2A and hence d(xλ, τ£) > {2A . The
same argument for x2 and x3 yields the result.

Case 2. M is diffeomorphic to S 1 X R1.

Let τ(t), t G ( - oo, oo), be a line in M. (You can find τ by taking a limit of

minimizing geodesies yi from xi to yi where x,; -* - oo and yt -> + oo.) We

now apply Lemma 3.3. Thus for each / we get a geodesic loop γ, (not

necessarily unique) at τ(ί), of length L(t) < 2{~A\ satisfying (1), (2) and (3) of

Lemma 3.3. γ, separates since it is simple (Lemma 3.3.1) and essential. Hence

Lemma 3.3.4 applies.

If γ, is convex to 4- oo (and not a closed geodesic) then there is an ε > 0

such that L(t) < L(t0) for all t e ( ί 0 , t0 + ε). One can see this by looking at

the curves γ / ( ) | [ δ L{t )_ δ ] U σ, where σ is the minimizing geodesic from

γ, (L(t0) — 8) to γ, (δ). Each of these curves is shorter than γ, and is essential

for small 8. The set of points where these curves intersect τ (each curve once)

includes some interval τ((ί 0, /0 4- ε)) by the convexity assumption. Similarly if

γ, is convex to - oo there is an ε > 0 such that L(t) < L(t0) for all

ί e ( / 0 - ε , ί 0 ) .

Since the area is finite L(t) cannot be bounded from below as t -> 4- oo or

as / -> - oo, for if so, then L(S(x,t)) would also be bounded below as / -> oo

implying the area is infinite. Thus we see that there is a γ/() and a γ^ such that

yt is convex to - oo and γ, is convex to 4- oo. Now by an easy limit argument

both {/13 γ, convex to 4- oo} and {t \ 3 γ, convex to — oo} are closed. Hence
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there is a t2 in the intersection of these sets giving geodesic loops γ + and γ_ at
t2 with γ_ convex to - oo, γ + convex to + oo, and satisfying (1), (2), (3) and
(4) of Lemma 3.3.

Let Ω be the open disk between γ + and γ_. We may assume by Lemma
3.2.4 that for all Z G S I , d(z,τ) < JlA . Hence da(z,τ(t2)) < \yJΪA (follow
the minimizing geodesic going from z to r until it hits 3Ω then follow a
boundary curve back to τ(t2)). Thus by Lemma 3.1 we may assume γ_ is
homotopic to γ + through curves in Ω of length < (12 4- 3}/2)}/A .

Now since γ_ and γ + are convex to + oo and - oo respectively the argu-
ment proceeds as usual except since we are in the noncompact case we need to
modify B.C.S.P. slightly. This is done in [2, pp. 87-88].

Case 3. M is diffeomoiΌhic to R2.

Pick x0 G M and let r0: [0, oo) -> M be a ray from JC0. By Lemma 3.3 there
is a shortest geodesic loop γ0 at ro(6\/Z) of length < l{A essential in
M — {x0}. Let K be the relatively compact (i.e. K is compact) component of
M — γ0. K Φ 0 since JC0 e K. Let x e K maximize the distance to γ0. So, in
particular, d(xyγ0) > d(xo,yo) > 5\//Γ. Let r be a ray from x. Again, by
Lemma 3.3, for t > {A there are geodesic loops γ, through r(ΐ) (not unique as
usual) of length < 2^A, essential in M — {x}, and satisfying Lemma 3.3.

As in the proof of the S1 X R case there are large / with γ, convex to oo.
The proof, as usual breaks up into two cases. Either all the loops yt, t > {A ,
are convex to oo or for some t0 > {A there are two such loops, one convex to
x and one convex to oo.

The case where all γ, are convex to oo is treated as in the S2 case. Let γ be
such a loop at r(]fA) and let Ω be the relatively compact component of
M - γ. Ω is contained in K since d(x, γ(/)) < l{X for all t while d(x, γ0) > 5
{A. Now for z e Ω, d(z, γ) 4- d(y, γ0) < d(z, γ0) < d(x, γ0) < d(x, γ) + {A
+ d(y,y0) < 2]/A + d(y,y0). Hence for all Z G S I , d(z,y) < l{A . Since x is
at a local maximum of the distance to γ0, the proof of Berger's lemma (see [8,
p. 106]) yields minimizing geodesies τz from x to γ0 such that for all V e TXM
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there is an / such that (V, τ/(0)> > 0. Thus the same proof as in the S2 case

shows that γ is homotopic through short ( < constyCί) curves in Ω to the point

curve {x}. The rest of the argument is the modified B.C.S.P. since γ is convex

to oo.

In the other case there are two such geodesic loops, γ1 ? and γ2 at r(t0) with

yx convex to x and γ2 convex to oo. Let Ω be the disk between them. The proof

would follow as before if we could show that for all Z E S I , d(z, ΘΩ) < const\//Γ.

In fact, we will show that if for some z e Ω, d(z, 3Ω) > A{A , then applying

B.C.S.P. to yx U γ2 yields a nontrivial closed geodesic of length < 4]fA . Thus

let z e Ω be such that d(z, 9Ω) > 4{X. We see that t0 > 3\/Z, for if t0 < l{λ,

y 2 c l and d(z, γ 2) < 4\/Z by the arguments for the previous case. Let σx be

a smooth curve from z to oo lying in the unbounded component of γx which

intersects γ 2 transversely once, and let σ2 be a smooth curve in the bounded

component of γ 2 intersecting yx transversely once from z to JC. NOW γx U γ 2

has intersection number 1 with σλ and with σ2 while it has intersection number

2 with r. Hence if yx U γ2 were to shrink to a point or run off to oo under

B.C.S.P. then some curve h in the homotopy must either pass through z while

still intersecting r or pass through x while still intersecting σv But d(z, r) >

ί/(z,3Ω) > 4\/Z and d{x,oλ) > dfXγO > tQ- ]/A ^ l{A . In either case

L(Λ) > 4v^Z contradicting L(/z) < L(yλ U γ 2)

The theorem follows.

6. Convex Hypersurfaces

For Dn c Rw a convex domain and / a line through the origin the width of

D in the direction of / is the distance between the two (parallel) tangent spaces

to 3Z> perpendicular to /. The width of D is the minimum over all directions /.

The main theorem in this section leads us to consider the constants:

co(n) = inf (Vol(D) | Dn c Rn is convex of width 1}.

Unfortunately the value of co(n) is only known in the case n = 2. In this case

the infimum is achieved for D equal to the equilateral triangle of side 2/ yfϊ

and co(2) = 1/ i/3 .

It is easy to get a lower bound for C(n), however, the exact value is

unknown (see [13, Problem 26]). The best known lower bound for C0(n) is

2}/3/n\9 which is due to Firey [10].

Theorem 6.1. Let Mn c Rw+1 be a convex hypersurface and L the length of

the shortest nontrivial closed geodesic. Then

JVol(M) > L.
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n,

Remarks. One suspects that the best constant would be 2/ y2c0 (in which

case the theorem is off by a factor of 2) and that equality would hold (in a

generalized sense) for Mn = two copies of Dn glued together along 9D, where

D is the best domain in the definition of co(n). In particular for n = 2 (even

without the convexity assumption) one suspects the best constant to be

achieved only by the bi-equilateral triangle (two equilateral triangles glued

along the boundary). It was pointed out by Calabi that this (degenerate)

convex two manifold has a simple and a nonsimple closed geodesic of shortest

length. Recently Calabi has shown that the shortest closed geodesic on a

convex (nondegenerate) surface is in fact simple. In the nonconvex case it is

easy to find examples where the shortest closed geodesic is not simple.

To prove the theorem we need

Lemma 6.2. Let Mn c Rw+1 be a convex hypersurface. Then

(1) If P2 is a two plane in R" + 1 and UPi\ Rn + 1 -• P2 is the orthogonal

projection then L(3(Π />2(M))) > L.

(2) If P" c R" + 1 is a hypersurface and Tip,, is the orthogonal projection then

Vo\(M)> 2Vol(Π p n (M)).

Proof of Lemma 6.2. Statement (2) is clear. Statement (1) follows from

Birkhoff s idea. By slicing M with 2 planes parallel to P2 we get a family of

curves for which Birkhoff s idea works (for the details of this see the proof of

Lemma 1.6 of [9]). Hence L is less than or equal to the length of the longest

curve in this family. But since each curve in this family projects onto P2, in a

length preserving way, to a convex curve inside Θ(Π^2(M)), we see that the

length is less than or equal to L(d(TίP2(M))) and the lemma follows.

Proof of Theorem 6.1. Let Kn + ι be the convex body such that dK = M and

let ε be the width of K, which we assume is in the direction of a line lv Let Pn

be the hyperplane perpendicular to lλ and D = Upn(M). Let w be the width

of D, which we assume is in the direction of a line l2. Let P2 be the plane

determined by lλ and /2. Applying Lemma 6.2 to P2 and P" yields:

L < L ( θ ( Π p 2 ( M ) ) ) < 2ε + 2w < 4w

and

Vol(M) > 2Vol(Π/>,,(M)) > 2co(n)w".

Combining these two inequalities yields the theorem.
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