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UNIQUENESS, SYMMETRY, AND
EMBEDDEDNESS

OF MINIMAL SURFACES

RICHARD M. SCHOEN

In 1956, A. D. Alexandrov [1] proved that a closed embedded hypersurface

of constant mean curvature in Euclidean space is a standard sphere. Besides

the importance of this result in differential geometry, the method employed in

its proof has been used on a variety of problems in partial differential

equations and differential geometry, first by J. Serrin [13] and more recently by

B. Gidas, W. M. Ni and L. Nirenberg [2]. In a surprising recent development,

W. Y. Hsiang, Zhen-Huan Teng and Wen-ci Yu [4] have constructed non-

spherical closed immersed hypersurfaces of constant mean curvature in R4.

These examples show that the embeddedness hypothesis is essential in

Alexandrov's theorem. In this paper we apply Alexandrov's method to minimal

hypersurfaces. The main difficulty, of course, is that minimal surfaces are

never closed, but either have boundary or are complete and noncompact. An

interesting feature of our results is that the embeddedness is not required; in

fact, a consequence of the method is that in certain cases immersed surfaces

can be shown to be embedded. This can be partially attributed to the fact that

minimal hypersurfaces do not have a distinguished side locally whereas surfaces

of nonzero constant mean curvature do.

Also in 1956, M. Shiffman [14] posed the problem of understanding minimal

surfaces in R3 whose boundary consists of a union of two Jordan curves Γ l5 Γ2

lying in parallel planes. Shiffman proved the striking result that if M is an

immersed minimal surface of genus zero with dM — Tλ U Γ2 and if Γ,, Γ2 are

convex curves (resp. circles), then M meets each intermediate plane transver-

sally in a convex curve (resp. circle). In particular this shows that if Γ, and Γ2

are circles situated so that the line joining their centers is perpendicular to the

planes in which they lie, then M is a surface of rotation, hence a catenoid. In

§1 of this paper we extend this result in various directions; for example, we

remove the topological assumption on M in the above characterization of the

catenoid, and extend the results to higher dimensions. We also show that if Γ is
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any boundary consisting of convex curves (the result is actually much stronger)
lying in a pair of parrallel planes which is invariant under reflection through
some orthogonal plane which intersects each component of Γ, then every
minimal surface spanning Γ is embedded and invariant under reflection
through the same plane. There is a similar result in all dimensions. W. Meeks
[7, p. 87] has conjectured that the genus zero hypothesis is unnecessary in
Shiffman's theorem. In Corollary 4 we prove a special case of this conjecture.
The precise context of the theorems (see Theorems 1 and 2) is minimal surfaces
having boundary lying on the boundary of a cylinder having nonpositive mean
curvature relative to the outward unit normal (convex in case of two dimen-
sions in R3). An interesting case of the embeddedness conclusion is for a
boundary Γ consisting of convex curves, one on each face of a cylinder over a
convex polygon in the plane. Our result implies that if Γ is invariant under a
reflection through a plane perpendicular to the axis of the cylinder, then every
minimal surface spanning Γ is embedded and invariant. Thus one cannot have
a pair of intersecting annular surfaces with boundaries on a pair of opposite
faces of a cube or rectangular solid. We refer the reader to §1 for precise
statements of results and a couple more examples.

In §2 of this paper we define a class of minimal hypersurfaces which are said
to be regular at infinity. For two dimensional surfaces in R3, results of R.
Osserman [10] show that this notion is equivalent to finite total curvature and
embedded ends. In higher dimensions we show that a surface whose normal
vectors behave reasonably well at infinity is, in fact, regular at infinity. (A
similar result was obtained by Jorge and Meeks [5].) These hypersurfaces also
have the property that they scale down homothetically to a limit which is a
union of hyperplanes. In §3 we show that any complete minimal hypersurface
which is regular at infinity and has two ends is a catenoid or a pair of planes.
There is some similarity between our proof in the noncompact case and the
methods of Gidas-Ni-Nirenberg [2] where they deal with solutions of certain
elliptic equations satisfying a suitable regularity property at infinity. Our proof
is complicated by the fact that there are two infinities which may behave, a
priori, differently. This is a particular problem in the two-dimensional case
where the ends may be unbounded. In a preliminary result, Lemma 2, we are
able to relate the ends in a suitable way to enable us to apply the reflection
method. A well-known general uniqueness question for minimal surfaces in R3

is the question of determining all embedded complete minimal surfaces of
finite topological type. The only known examples are the plane, catenoid, and
helicoid. Our method gives uniqueness of the plane and catenoid among
complete embedded minimal surfaces of finite total curvature with at most two
infinities. It does not seem to generalize to handle more than two ends. We
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remark that there are complete immersed surfaces of genus zero in R3 with
finite total curvature and three simple ends so that the exact analogue of our
theorem for more than two ends certainly fails.

Concerning our results for complete surfaces, there are a few previous papers
on the subject which we would like to mention. In 1962, J. C. C. Nitsche [8]
showed that the catenoid is the only complete minimal surface in R3 which
intersects each plane parallel to a given plane transversally in a star-shaped
Jordan curve. While the hypotheses of Nitsche do restrict the topological type
of the surface, the allowable behavior at infinity is considerably more com-
plicated than ours. In fact, Nitsche [9] has derived a local version of his
theorem which perhaps could be used in our setting to weaken our regularity
hypothesis. Secondly, if one assumes genus zero and regular at infinity with
two ends, it is quite easy to see that the absolute total curvature must be 4ττ.
That the surface is a catenoid then follows from a result of R. Osserman (see
[10, p. 87]).

In the case of surfaces of genus zero, Jorge and Meeks [5] have shown that
there are no embedded surfaces of finite total curvature with fewer than six
ends besides the plane and the catenoid. Recently H. Rosenberg [12] has
studied the question of C1 rigidity for complete minimal surfaces in R3 and in
flat three-dimensional manifolds. He has obtained rigidity results for a variety
of surfaces including the catenoid.

1. Compact minimal surfaces

Throughout this section B"~ι CR" + 1 will be a compact immersed C 2

boundary of dimension n — 1, and Mn will be a smooth immersed minimal
hypersurface in Rw+1 with dM = B\ that is, M is smooth in the interior and C2

at the boundary. We will distinguish the (n + l)st direction, so we identify Rn

with the hyperplane {xn+x — 0} in Rw+1. The coordinates of a point in R"+1

will be denoted (x, xn+ι) where x E Rn. Let Ω be a bounded domain in Rn

with C2 boundary. If v denotes the outward pointing unit normal to 3Ω in R",
the mean curvature function H of ΘΩ is given by

H{x) = "Ϊ (vee,) • v(x),
i=\

where x E ΘΩ, (e,, ,ert_i} is a local orthonormal basis tangent to 3Ω at
points near x, and V denotes the directional derivative in R". Note that the
boundary of the unit ball in R" has negative mean curvature under our sign
convention.
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We will need to introduce some notation. Let p: Rw+1 -> R" denote the
projection map p(x, xn+x) = x, and for t G R let Π, denote the hyperplane
{χ

n+\ = '} s o t n a t R " ^ Π o . If Σ C R"+1 is any subset and / G R, we let Σ,+
denote the portion of Σ on and above Π,, that is,

Σ,+ = {(x,xn+x): {x,xn+\) <ΞΣ,xn+] >ή.

Similarly Σ r denotes the points of Σ on and below Π r We will let ΣJ+ denote

the reflection of Σ,+ across Π,, that is,

Σ*+= {(x,2t-xn+ι):(x,xn+ι)eΣt+}.

For any set S C R"+ \ we say that S is a graph if the projection of S into R" is
one-to-one. If S is the closure of a C2 submanifold, then we say that S has
locally bounded slope if the tangent plane TpS, for any interior point p G 5",
does not contain the unit vertical vector v — (0,1). Finally, if A, B C R"+1 are
subsets, we say that A > B provided for every x G R " for whichp~\x} Π A φ 0
and/Γ1!*} n ^ ^ O w e have all points of p~\x) Π Λ lying above all points of
p-\x) Π 5; that is, if (x, xn+ι) Gp-\x) Π A and (*, Λ + 1 ) G/Γ1!*} Π 5,
then JCW+ j > yn+,. We now state the main result of this section.

Theorem 1. Suppose Bn~x C R π + 1 w α compact immersed C2 boundary, not

necessarily connected. Suppose Ω c R " is a bounded C2 domain whose boundary

has nonpositiυe mean curvature at every point. Assume that B satisfies: (i)

B C (3Ω) X R, (ii) Bo+ is a graph with locally bounded slope, and (iii) B$+ > Bo-.

If M is any immersed minimal hypersurface with dM — B and with all interior

points of M contained in Ω X R, then M satisfies: (i) Mo+ is a graph with locally

bounded slope, and (ii) M$+ > Mo-.

Remark 1. The hypothesis in Theorem 1 that all interior points of M lie in
Ω X R is not serious because if any interior point p lies on (3Ω) X R, one can
apply the maximum principle (see Lemma 1) to assert that a neighborhood of p
lies in (3Ω) X R. Therefore the set of such p is open and closed and hence
consists of certain connected components of M. After removing these, one can
apply Theorem 1 to the remaining components. Notice that we do not require
M to be either connected or embedded in Theorem 1.

Before discussing the proof of Theorem 1, we give a few consequences. We
state the following known result to put Theorem 1 in context for the reader.

Corollary 1. Suppose ΘΩ has nonpositive mean curvature, and Bn~λ is a C2

boundary contained in (ΘΩ) X R which is a graph with bounded slope. Then any

smooth immersed minimal hypersurface M with dM = B is the graph of a smooth

function defined on Ω.

The corollary follows from Theorem 1 by choosing coordinates so that
B C {xn+ι > 0} so that Bo+ = B and observing that by Theorem 1 all of M
must be a graph with bounded slope.
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It is generally false that a minimal surface spanning a boundary inherits the

symmetries of its boundary. One such example is discussed below. The

following theorem gives sufficient conditions under which minimal surfaces do

inherit symmetries. An interesting feature of the result is that it yields

symmetry for certain boundaries which span a multitude of minimal surfaces.

Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied and in

addition it is true that Bξ+ = Bo-. If M is a smooth immersed minimal surface

spanning B such that every interior point of M lies in Ω X R, then in addition to

the conclusions of Theorem 1, Λf satisfies M$+ — Λf0-. Moreover, if B is em-

bedded, then Λf is embedded.

We can derive Theorem 2 from Theorem 1 by first noting that Theorem 1

can be applied from above or below (i.e., changing xn+x to -xn+{) to assert

that both Mζ+ > Λf0- and Λ/J-< Λfo+ , or equivalently M^+ < Λf0-. Now if Λf,

is any component of Λf, and Bx is a boundary component of Λf, which is

contained in Π o , then Λf, = Λf = Ω and hence the theorem holds. Otherwise,

let p G Bx Π {xn+x > 0} and let p* G B be the reflection of p through Π o .

Now in a neighborhood of p, M is a smooth graph with bounded gradient, and

this is likewise so in a neighborhood of p*. The orderings for Λf̂ + , Af0- taken

together then imply that a neighborhood of p* in Λf, coincides with a

neighborhood of p* in Λf,*. Since Λf, is connected, it follows that Λf,* C Λf. But

Λf, was any component of Λf, and so we must have Λf * = Λf. Finally, suppose

B is embedded. It follows that Λf is embedded in a neighborhood of B. Notice

that the hypothesis that 3Ω have nonpositive mean curvature implies that 3Ω is

connected. Let Σ be the set of points of self-intersection of M. Since both Λfo+

and Λf0- are graphs, it follows that Σ C Π o . Since Λf is embedded near 2?, we

have Σ compactly contained in Ω. Since Σ consists locally of intersection points

of distinct minimal surfaces, it follows that Σ is an (n — l)-dimensional real

analytic variety. Thus there exists a domain Ω, C Π o with 3Ω, C Σ and hence

3Ω, Π 3Ω = 0 . Since 3Ω is connected, it follows that Ω, is compactly con-

tained in Ω. Now go to a regular point x of 3Ω,, and observe that there are two

pieces of surface £>,, D2 C Λf such that TXDX is not vertical and D2 = D\*. Such

/>,, D2 must exist because the boundary point lemma implies (see Lemma 1)

that no two pieces of Λf passing through x can be vertical since Λf,+ is

embedded for / > 0. Therefore it follows that/?(Λfo+) contains a neighborhood

of x. Lety G Ω, and >>„+, > 0 such that (y, yn+]) G Λfo+ . For t <yn+x, let G

be the component of (y, yn+x) in Mt+. Thus G is a smooth graph, and we

assert that p(G) C Ω,. This is so because Λfo+ is a graph, and 3Ω, C Λfo+ so

that (3Ω, X R) Π Λf,+ = 0 for any t > 0. Thus we must have (3G) Π B = 0

and hence 3G C Π r This contradicts the fact that xn+, cannot have an interior
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maximum in G. This shows that M is embedded and completes the proof of

Theorem 2.

We explicitly mention a couple of corollaries relating to the case of

boundaries lying in parallel hyperplanes.

Corollary 2. Suppose B — Bλ U B2 where each Bt is connected and lies in a

hyperplane P(. Assume that P{ and P2 are parallel and that B is invariant under

reflection through a hyperplane Π which is orthogonal to Pλ, P2. Assume moreover

that each piece of Bi bounded by Π is a graph over Π with locally bounded slope.

Then every smooth immersed minimal surface bounding B is embedded and

invariant under reflection through H. If M is a connected minimal surface

spanning B, then the part of M on either side of Π is a graph over Π with locally

bounded slope.

To prove Corollary 2 from Theorem 2 one simply chooses coordinates so

that Π = {(x,0)} and observes that B lies on the boundary of a suitably

chosen cylinder of nonpositive mean curvature. The following result also

follows directly.

Corollary 3. // B — Bχ U B2 where Bx, B2 are spheres in parallel planes with

the line I joining their centres being orthogonal to these planes, then any immersed

minimal surface M spanning B is a hypersurface of revolution with axis I. In

particular, M is a catenoid or a pair of plane disks.

Remark 2. Results of the type of Corollaries 1 and 2 were first proven by

M. Shiffman [14]. For n — 2 Shiffman proved that if /?,, B2 are convex curves

(resp. circles), then any minimal annulus spanning B intersects every inter-

mediate plane in a convex curve (resp. circle). Although we are not able to get

as delicate information as Shiffman, our result has the advantages that the

dimension is arbitrary and especially that we make no topological assumption

on M. A few years ago, W. Meeks [7] conjectured that the topological

assumption can be removed in Shiffman's theorem. We believe it likely that

this is the case. We can prove a partial result in this direction.

Corollary 4. Assume n — 2, and B — Bλ U B2is the union of two C2 Jordan

curves in parallel planes. Assume that there are two distinct planes Π,, Π 2

orthogonal to the planes of the Bt such that B is invariant by reflection through

both Π, and Π 2 and such that both Π, and Π 2 divide B into pieces which are

graphs with locally bounded slope over the dividing plane. If M is any connected

immersed minimal surface spanning B, then M is topologically an annulus and is

an embedded surface meeting each parallel plane between the planes of the Bt

transversally in smooth Jordan curves.

Proof. Let P be any plane intermediate and parallel to the planes oiBλ,B2.

Since M is connected, M Π P =£ 0 . By Corollary 2, Γ = M Π P is invariant

under reflection through distinct lines /,. = P Π Π, for / = 1,2. Moreover, each
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/, divides Γ into graphs over /, of localy bounded slope. Let Ω,, ,Ωr be the

bounded components of P ~ Γ. Since each line orthogonal to lλ meets Π in at

most two points, it follows that each Ω, is simply connected. Let {x0} = lλ Π l2

and observe that if JC0 £ Ω, for a given /, then Ωy Π lλ lies in a component of

Ω, ~ /2, and it is not possible for Qλ to be symmetric in both /, and /2.

Therefore r — 1 and P ~ Γ has a single bounded component. It follows that P

intersects M transversally because otherwise Γ has a point from which at least

four arcs emanate. In such a case, P ~ Γ would have more than one bounded

component. This proves Corollary 4.

FIGURE 1
FIGURE 2

For the purpose of illustration we consider two examples. We consider the

boundary Γ, in R3, which consists of two copies of Figure 1 in parallel planes.

Similarly Γ2 consists of two parallel copies of Figure 2. Observe that both Γ,,

Γ2 are invariant under a pair of reflections in the vertical planes over the x and

y axes in Figures 1, 2. We refer to these as the x and y reflections. Note that

there are several minimal surfaces spanning Yλ which are not invariant under

the y reflection. For example, we can connect the pair of plane disks spanning

the left half of Γ, to the stable catenoid spanning the right half by a pair of

thin bridges. On the other hand, Corollary 2 applies to show that any

immersed minimal surface spanning Γ, is embedded and invariant under the x

reflection. We can apply Corollary 4 to Γ2 to assert that every connected

minimal surface spanning Γ2 is an embedded annulus. There will be at least

two of these, one stable and one unstable, if we take the parallel planes close

together.

We devote the remainder of this section to proving Theorem 1. The proof is

a suitable version of the reflecion method of A. D. Alexandrov [1] and, as such,

is based essentially of the Hopf maximum principle. We state a well-known

lemma which summarizes the versions of the maximum principle which we

require.
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Lemma 1. The following two assertions hold.

(a) {Boundary point lemma) Suppose Mx, M2 are C2 hypersurfaces with

boundaries Bx, B2. Suppose 0 is an interior point of both Bx and B2, and suppose

the tangent planes of both MX9 M2 and Bλ, B2 agree at 0, that is, suppose

TOMX = T0M2, TOBX = T0B2. Assume that TOMX = {JCΠ + 1 = 0} so that both

M,, M2 are given graphically near 0. Let Hv H2 be the mean curvature functions

of M,, M2 computed with respect to the upward pointing normal. If Hx ^ 0 and

H2 > 0 near 0, then it is not true that Mx > M2 in a neighborhood of 0 unless

Mλ — M2 in this neighborhood.

(b) {Interior maximum principle) Suppose 0 is an interior point of both Mx,

M 2, and suppose T0M{ = T0M2 = {xn+ι = 0}. // Hλ < 0 and H2^0 near 0,

then it is not true that Mx > M2 near 0 wπfe^ M, = M2 in a neighborhood ofO.

Proof. Observe that if Ml9 M2 are the graphs of/, g respectively, then the

hypotheses Hx < 0, H2 > 0 imply

Setting u—f—g, one then observes that u satisfies

Σ aijUχιXj + Σ

where

17 'J l + i v / i 2 'v/i2

Since/and g are C 2 , one can apply the usual maximum principle; see [3.3.2] to

prove Lemma 1.

Proof of Theorem 1. First observe that the hypotheses on B imply that for

/ ^ O w e have B*+ > Br. We let t — max{xn + 1: (x, x n + 1 ) E 5 for some x G

Rw}. Note that if /"< 0, then Mo+ either has no interior points or is a region in

Π o by Lemma 1. In any case, the conclusion of Theorem 1 is true. Thus we

may assume ί> 0. Define T to be the set of t E [0, t] such that Mt+ is a graph
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with locally bounded slope and M*+ > Mr. It is clear that t E T. The proof of

Theorem 1 will be finished if we can show that 0 6 Γ . This will be accom-

plished by showing that T is an open and closed subset of [0, t]. Notice that if

/ , G Γ and t2 E (/„ ί], then it follows that t2 E T. Thus T is an interval.

We first show that Tis closed. Assume (ί, t] C Tfor some / G [ 0 , ί), and we

must show t E T. To show that Mt+ is a graph we observe that if both

(x, xn+\) and (x, yn+x) belong to Mt+ with xn+λ >yn+}9 then we must have

yn+ j = t since s E T for s > t. By the hypothesis on /? we must have x E Ω so

that (x, /) is an interior point of M. But recall that the slope of M at (x, xn+x)

is finite so that a neighborhood of (JC, x w + 1 ) can be represented as a graph over

a neighborhood of (x, ί) in Π r This implies that for (y, t) E Π, sufficiently

close to (x, ί), /J"1^} Π Ms+ contains a point near (x, xn+λ) for 5 slightly

larger than /. Since ί E Γ , this is the unique point of p~λ{y) Π Ms9 and hence it

follows that a neighborhood of (x, t) in M lies below Π r Thus by Lemma 1

and a continuation argument, a component of M is contained in Π,, and hence

a component of B is equal to ((ΘΩ) X R) Π Π r This contradicts the hypothesis

on B since we are assuming t > 0. Therefore Mi+ is a graph, and the fact that it

has locally bounded slope follows immediately. The fact that M*+ > Mr

follows because the contrary would mean that there are points (x, xn+1) E Mt+ ,

(x, yn+\) E M r with It — x w + 1 < ^ π + 1 . It follows that xn+λ > t and hence for

s > t sufficiently close to t we contradict Af*+ > Ms~. This completes the proof

that T is closed.

To prove that T is an open subset of [0, f]9 we let t > 0 with t E Γ and show

that a neighborhood of t is contained in Γ. To carry out this plan we first show

that every point p = (x, r) E M Π Π f has the property that v & TpM where

ϋ = (0,1) is the unit vertical vector. To see this, first observe that for/? E B Π

Π,, if ϋ E Γ^M, then we must have TpM - ^((ΘΩ) X R) since v g 7^5, and

an application of Lemma 1 shows that a neighborhood of p in M is contained

in (8Ω X R) contrary to assumption. Therefore v £ TpM for p E B Π Π r If

/? E Λf Π Π, is an interior point of Λf, we restrict attention to a simple

embedded disk D in M containing p. (There might be several if p is a point of

self-intersection.) Since t E Γ, we have /)£ ^ Z) r, but if TpD contains υ, then

the half disks Dfi, D r meet tangentially along a smooth boundary at /?, and

hence by Lemma 1 we have D?+ — Dt- in a neighborhood of p. This would

imply that the component of M containing D, called Mλ, is invariant by

reflection through Π,, and this clearly contradicts the assumption on B.

Therefore we must have v (£ TpD for any smooth embedded piece D of M

containing /?. We now show that there are no points of self-intersection of M

lying in Π r Suppose on the contrary that Z), D are smooth embedded disks in

M which both contain p. We then have D*+ ^ Dr and Z),̂  ̂  Dr which is the
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same as saying D* ^ Dt+ , D*+ > Dr which implies D* > D. Since p E D* Π D

we can thus apply Lemma 1 to conclude D* = D. Thus if Mλ is the union of

the components of M containing D U Dy then we must have Mf = Mx again

contradicting the assumption on B. We have thus shown that every point of

M Π Π, is a point of embedding of M and a point of finite slope. Therefore we

can find a sufficiently small positive number ε0 such that for ε E (0, ε0 ], the set

Uε — M Π (I χn+1 — 11< ε) is a graph with bounded slope over a subset of R".

If we take s E (0, t] with 15 — 11< εo/2 and denote by ps reflection in Us, then

we see that ρs(Uεo/2) C UEQ and so that ps(Ms+ Π £/eo/2) ^ Af,-. On the other

hand, Ms+ ~ £/εo/2 is a compact set with the property that its image under pt is

disjoint from Mr. Therefore by continuity if s is sufficiently close to /, we will

have ps(Ms+ ~ L̂  / 2 ) ^ Ms-. Thus we have Λί*+ > Ms- for .s near /, as well as

the fact that Ms+ is a graph with locally bounded slope. This completes the

proof that T is open, and finishes the proof of Theorem 1.

2. Preliminaries on complete minimal surfaces

In the next section we will extend some of our uniqueness results to the case

of complete minimal hyper surf aces. These extensions will apply only to hyper-

surfaces which are well behaved at infinity. We now define the precise class we

will consider.

Definition. A complete minimal immersion Mn C R"+ 1 is said to be regu-

lar at infinity if there is a compact subset K C M such that M ~ K consists of r

components Mu- ,Mr such that each Mi is the graph of a function w, with

bounded slope over the exterior of a bounded region in some hyperplane Π,.

Moreover, if xl9— 9xn are coordinates in Π f , we require the wz have the

following asymptotic behaviour for | x \ large and n — 2\

Ui(x) = a logW + b + y ^ + ^ + θ(\xf2).

While for n > 3 we require

Ui(x) = b + a\x\2~" + 2 CJXJ\XΓ + θ(\xΓ)
7 = 1

for constants α, 6, cj depending on i. The expression O(\x\~n) in the above

equations is used to indicate a term which is bounded in absolute value by a

constant times | x |~" for | x \ large. We refer to the M, as the ends of M.

Notice that our definition of regular at infinity requires that each Mf be

embedded but it does not prohibit two different M/s from intersecting. We

first analyze the case n = 2 in the following.



UNIQUENESS OF MINIMAL SURFACES 801

Proposition 1. A complete minimal immersion M2 C R3 is regular at infinity

if and only if M has finite total curvature and each end of M is embedded.

Proof. That regular at infinity implies finite total curvature and embedded
ends follows from the fact that |ΛΊ= O(\x\~A) on each Mi which can be seen
directly from the given asymptotic expansion of ut (we assume the expression
can be differentiated).

To prove the converse we need a few facts about finite total curvature
surfaces which are due to R. Osserman [10, Chapter 9]. First we need the fact
that each infinity is conformally a punctured disk, the Gauss map extends to
infinity, and the surface Mt is given by

Xj(u9 υ) = R e | ( " ' %.(w) dw, 7 = 1 , 2 , 3 ,

where w = « + / - l ι ? e 2 ) - {(0,0)}, and φy are holomorphic in Z>\{(0,0)}
with at most poles at (0,0). The φy satisfy Σ3

=1φy = 0. Having chosen
coordinates in R3 so that the limiting normal vector at infinity on Mi is (0,0,1),
we deduce that φ3 has a milder pole than φ, and φ2. The embeddedness of Mi

implies that both φλ,φ2 have poles of order 2, and hence φ3 is either regular or
has a pole of order 1. One checks from the relation on φ,, φ2, φ3 and the
condition that the x be single valued that φλ, φ2 have now"1 term in their
power series. Thus we have

φ,(w) = aw'2 + 0(1), φ2(w) = βw~2 + O(l),

Φ 3 (w) = yw'1 + τ + O(\w\), a2 + β2 = 0, γ G R .

By changing coordinates in the jc,x2-plane we can assume a is real and β
— v^T. Upon integration we conclude

*,(«, υ) = - α - ^ + O(\w\), x2 = -a-2-τ + 0(\w\),
\w\2 |w|2

Λ:3 = γ log|w| + T,M - τ2ϋ + θ(\w\Z),

where T = T, + ̂ Yτ2. From these expressions we observe

u = - α " Ά + 0(\x\'\ υ = -α- 1^- + θ(|jcf3).
\x\2 υ ' \x\2 V l y

Thus we have | w | = | α p ' |JCp1 + O(\x\~3), where we are using x = (x,, x2).
Substituting this information into the expression for x3 we get

for suitable constants a, b, c{, c2. This shows that M is regular at infinity and
completes the proof of Proposition 1.
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The general principle concerning minimal immersions is that they should

either be very pathological at infinity or be regular at infinity. A very strong

characterization of this type has been proven by R. Osserman [11].

Proposition 2 (Osserman). A complete minimal surface M in R3 either has

finite total curvature or the normals to M assume all values on the sphere

infinitely often with the exception of at most a set of logarithmic capacity zero.

For n ^ 3, it is not possible for such a strong result to hold. We can prove a

weaker version of Proposition 2 for n > 2, which states that the asymptotic

expansions required of a hypersurface to be regular at infinity follow from the

condition that each end be a graph of bounded slope.

Proposition 3. Assume n > 3, and Mn C R " + 1 is a minimal immersion with

the property that M ~ K, for some compact K, is a union of M l 5 ,Mr where

each Λff is a graph of bounded slope over the exterior of a bounded region in a

hyperplane Pf . Then M is regular at infinity.

Proof. We work with a given Λff and show that the asymptotic expansion is

valid over some plane Π, which may differ from P,. The first step is to show

that the tangent plane to Mi has a limit at infinity. Suppose xn+λ = v(x%

where JC = (JC,, ,JCΠ) E P, is the graphical representation of Mt defined on

Pz ~ Ω for some bounded open set Ω C Pf . We will show that for each

k— \, —9n the function dv/dxk has a limit at infinity. We set w(x) — dv/dxk

and recall that w satisfies the equation

Lw = >, —
. . . OJl

Since | Vt> | is assumed to be bounded, we see that L is uniformly elliptic on

Pi ~ Ω. For convenience we extend both L and w smoothly inside Ω so that L

remains elliptic and

Lw=f, / = 0 outside Ω.

We now recall a result of Littman, Stampachia, and Weinberger [6, Theorem

7.1] which asserts the existence of a Green's function G(x, y) for L on Pt

satisfying

for a suitable constant K and all I J G Pr Since/has compact support, we can

define

w}(x)=ί G(x,y)f(y)dy9
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and we have Lwx — f and wx = O(|Λ: | 2 ~ Λ ) . Therefore w — wx is a solution of

Lu — 0, which is bounded and hence constant by the DeGiorgi-Nash theory.

Thus we have shown (dv/dxk)(x) = <xk + O(\x\2~n) for k = 1, ,« and

suitable constants ak. Hence the upward normal vector to Λf, has the limit

(1 + I a | 2 )~ 1 / 2 (-α, 1) at infinity, and we let Π / be the hyperplane orthogonal to

this limit. It follows that after removing a compact subset from Mi if necessary

we can express Mt as the graph of a function u defined in the exterior of a

bounded open subset 6 of Π f . Moreover, we have l i m ^ ^ | v « \— 0 since Π/ is

the limiting tangent plane to Λίj at infinity. We choose coordinates (JC,, , x n )

E Π / and show that u has the desired expansion. We extend u smoothly inside

0 and argue as above that w = du/dxk satisfies

Lw=f, / = 0 outside Θ

for L a uniformly elliptic operator on Π,. Let W,(JC) be the function considered

above, and observe that both w and wλ satisfy the same equation and have

limit zero at infinity. Therefore w = w, and we have shown | V W | ( J C ) =

O(\x\2~n). This implies, by integration along rays, that u grows at most

logarithmically (in fact, |u\— O{\) for n > 3). Thus we can repeat the above

argument using the fact that u satisfies a uniformly elliptic divergence form

equation to show u{x) = b 4- O ( | J C | 2 ~ " ) for some constant b. It is now a

simple matter to apply elliptic theory to assert | Vw|= O(\x\ι~n), \ V Vw| =

O(| x I""). We can now derive the expansion by writing the minimal surface

equation

=/,, / i = Σ
+ | V κ | 2

f2 = 0 outside θ.

We have the bound/, = O(\ x \2~3n) for | x \ large, and hence we can show

u(x) = b-(n- 2yλω-:f \x - y\2'"/,( y) dy.

Now observe that for \y | < { \ x \ we have
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Using this together with the decay rate onfλ one can then obtain

II(JC) = b + a\x\2~n + 2 CJXJ\XΓ + O ( | J C Γ ) ,

7 = 1

fx(y)dy9

yjfλ(y)<fy.

This completes the proof of Proposition 3.
Remark 3. So far as the author knows, the only known nonplanar example

of a complete minimal hypersurface in Rπ+1, for n > 2, which is regular at
infinity, is the rotationally symmetric higher dimensional catenoid. In the next
section we show that it is the only such hypersurface with two ends. We
certainly believe that there are many with more than two ends. For n = 2, of
course, there is hope to construct such examples by complex analytic methods.
While there are a number of examples of finite total curvature surfaces known,
some being regular at infinity, it is not known whether an embedded example
exists besides the catenoid and the plane.

3. A uniqueness theorem for complete minimal surfaces

In this section we will apply the reflection method of §1 to complete
immersions which are regular at infinity. Our results apply to immersions with
two ends. The proof is most delicate in the case n — 2, so we prove the
following preliminary lemma for that case.

Lemma 2. Let M2 C R3 be a complete minimal immersion which is regular at
infinity. If M has two ends, then either both of the ends are bounded (i.e., a — 0 in
the expansions), or the ends are parallel. In case the ends are parallel, we can
expand both in the same coordinate system, and if <2(1) and aS1^ denote the
coefficients 6>/log|;c| on the ends, we have # ( 1 ) 4- # ( 2 ) = 0, and neither a^l) nor
a(2) is zero.

Proof. Assume the ends are given by

x3 = uλ(x) = aλ log|x| + 0(1), y3 = u2(y) = a2 \og\y\ + O(l),

where X = AY, X ='(x,, x2, * 3 ) , Y =t(y\, J ^ ΛX and^4 = (α/7) is an orthog-
onal matrix. Let /? = (/},, β2, β3) be any vectors, and consider the function

h = βX= Σβi*i.
i=\
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Since M is minimal, h is a harmonic function on M. For any R large let MR be

the compact part of M bounded by the vertical cylinders of radius R over the

limiting planes at the two infinities. Thus we have dMR = CR U CR where

CR = {(*, ux(x)): I JC | = R}, C2 = {(y, u2(y)): \y\ = R}. An easy calculation

shows that the normal vector ni to CR is given by

nx = / Γ 1 ^ , , * 2 , α,) + O(R~2)9 n2 = / T 1 ^ , , >>2, a2) + O ( / T 2 ) .

Since Λ is harmonic, we have Σ?=i Jc^Cdh/dn^ds = 0 for any /?. Since

h = βX = βAY, we let # -> oo to obtain

3

03*1 + Σ A«/3«2 = 0,
/ ' = 1

for any β E R3. First assume β3 — 0, and allow /?I? β2 to be arbitrary to

conclude α 1 3 « 2

 = 0 = cc23a2. If ^ 2

 = 0> t r χen from above we also have ax — 0,

and both ends are bounded. The other possibility is α 1 3 = 0 = a23. Since yl is

an orthogonal matrix, we would then have α 3 1 = 0 = α 3 2 and α 3 3 = ± 1 .

Hence we have x3 = ±y3, and we have shown that the ends are parallel. We

can thus take y3 — x3 and X = Y, and the linear equation above becomes
a\ + a2 — 0 Since M is conformally a surface with punctures, x3 cannot be

bounded, and hence neither ax nor a2 can be zero. This completes the proof of

Lemma 2.

Theorem 3. The only complete minimal immersions Mn C R " + 1 , which are

regular at infinity and have two ends, are the catenoids and pairs of planes.

Proof. Let Π , , Π 2 denote the limiting tangent planes at the two infinities.

We distinguish two cases depending on whether Ux and Π 2 are parallel or

transverse to one another. The first case we consider is:

Case 1. Ilx is not parallel to Π 2 . In this case we can apply Lemma 2 to

assert that both of the ends are bounded. We thus have expansions for the ends

*n+ι = *i + θ{\x\~l)9 yn+x =b2 + 6>(bΓ),

in suitable coordinate systems. By a change of coordinates we can assume

bx — 0 = b2 and xi — yi for / = 1, ,« — 1. Thus if e,, -,en+ι are the

orthonormal basis vectors corresponding to the x coordinate system, we have

the representations for Π x and Π 2 given by

Π, = {X ' en+x = 0}, Π 2 = [X (aen + βen+ι) = 0},

where a2 + β2 — 1, a ^ 0. Now define a vector υ to be

v = (aen + βen+ι + en+λ)/ («2 + (β + \)ψ\
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and let Pt = {X v = /} for / E R. Observe that Ux U Π 2 is invariant by

reflection through Po and that (Π, U Π 2 ) 0 + = {X E Π, U Π 2 : X t; > 0} is a

graph over P o . Since M is pointwise close to Π, U Π 2 at infinity, we can show

that M is invariant under reflection through Po and that Mo+ is a graph over

Po. To see this, let z1?- ,zw, z w + 1 be a Euclidean coordinate system corre-

sponding to Po, i.e., zn+ι — X - υ. For Λ large, let CR be the cylinder CR =

{(z, z π + 1 ) : | z | = R) peφendicular to Po. Let MR = M Π {(z, z Λ + 1 ) : l*l< # }

so that ΘMΛ C CΛ. Now for any t > 0 we can choose Λ sufficiently large so

that the hypotheses of Theorem 1 are satisfied by MR relative to the plane Pr

Thus we can apply Theorem 1 to assert that MR* > Mt

R and that MR is a

graph over Pr Letting t tend to zero we conclude M$+>M0-. Applying a

similar argument from below we conclude that M* = M where * denotes

reflection through Po.

To finish the proof observe that the above argument could have been

applied with the vector

w = (aen + βen+] - en+ι)/ (a2 + (jB - \f)W2

replacing υ, and the planes Qt = [X w = t) in place of P r We therefore can

assert that M is also invariant under reflection through Qo and that M is

embedded outside of Qo. It follows that the self-intersection set S of M

coincides with the (n — l)-plane Po Π Qo. We now see that M ~ 5" is disjoint

from both P o and β 0 because for example if ( z , 0 ) G 5 C M and also (z, z r t +,)

E M for some z π + j > 0, then we have contradicted the fact that M Π {zn+ι >

0} is a graph. (Note that Po and Qo are orthogonal planes.) Therefore M ~ S

consists of at least four components lying in the four "quadrants" of R"+ 1 ~

(Po U Qo). The graphical property of M ~ S allows us to conclude that M ~ S

consists of exactly four components which are arranged so that the union of

components in opposite quadrants join together to form embedded minimal

surfaces M,, M2 each having only one end asymptotic to Π,, Π 2 respectively.

The maximum principle now implies Mi = Π, and hence M = Π 1 U Π 2 , a

pair of planes. This completes the analysis of Case 1.

Case 2. Π, and Π 2 are parallel planes. We assume that M is connected, for

otherwise the maximum principle implies that M — U} U Π 2 . We also assume

that Πj and Π 2 are parallel to {xn+ι — 0 ) . We will show that M is a

hypersurface of revolution and hence a catenoid. We first handle the case

n = 2. We then have by Lemma 2

u((x) = a(i) log|jc| + b(i) = θ(l x Γ ) ,
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where a(]) + a(2) = 0, and neither a(ι) is zero. If ux < w2, we write a — a(2) > 0

so that a(]) = -a. By translation of the jc3-coordinate we may assume b(]) + b(2)

— 0, so if we let b = b(2\ the expansions become

u2(x) = α 1

We now observe that if / > 0, then for | x | sufficiently large we have 2t — u2(x)

> ux(x) and hence choosing V — { |JC|< R] X R, B = M Π dV we have that

for R large B*+ > Br, and Bt+ is a graph with bounded slope. Thus by Theorem

1 we have (M Π K)f+ > (M Π F ) r . Since Λ is arbitrarily large, it follows that

for any / > 0 we have M*+ > Mr. Hence it follows that M^+ > Mo-. If we had

applied the same argument from below (i.e., change xn+x to - x π + 1 ) we would

have M^-^ Mo+ which is equivalent to Λ/J+ < Mo-. This immediately implies

that ux — -u2 in an open set, and hence by a continuation argument we get

M* = M. For n > 2, the above argument simplifies. We again translate xn+]

so that Z>(2) = b = -b(l\ and thus we have u2(x) = b + O ( | J C | 2 " " ) , K,(JC) = - *

+ O(\x\2~"). A similar argument then shows M* = M where * denotes

reflection in {xn+x — 0}.

We now show that M is rotationally symmetric. The argument is slightly

different for n — 2 and for n > 2, so we first do the case n — 2. We have

shown that w, = -u2 while

n2(x) - a \og\x\ + ft + j ^ + j ^ 4- O(|*Γ2),

for constants α > 0, ft, c l 5 c2. We must locate the axis of symmetry, so we

observe that if we set xx = yx + α,, x 2 = j 2 -f α 2 , then the expansion for u2 in

terms of j = (yx, y2) becomes

where ci = cf + αo, for / = 1,2. Thus if we choose α, = - α " 1 ^ , and relabel y

again as x, we may assume M2( ̂ ) = a log |x | +fc + O(|x |" 2), Wj(x) = - M 2 ( * ) -

We now show that in these coordinates the jc3-axis is an axis of symmetry for

M. It suffices to show that M is invariant under reflection in every plane

{βxX\ + β2*2 — 0} Since the expansions of uv u2 are invariant under a

rotation of xx-9 x2-coordinates, it is sufficient to show that M is invariant under

reflection in the plane {xx — 0}. This we now do by choosing a large number

Λ and writing

M Π { | J C 3 | = Λ} = Bι U B2,
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where Bx = Mλ Π {x3 = -Λ}, and B2 = M2 Π (JC3 = Λ}. For t G R we let

Π, = {*, = /}, and we wish to show that M is invariant under reflection

through Π o . Let / > 0 be given and let St+ , Sr be as in §1 with the xι and x3

coordinates interchanged. We now show that for Λ sufficiently large (de-

pending on ί) we have Bι

t+ is a graph with bounded slope over Π o and that

B^t > Bl

r for i - 1, 2. We do the analysis only for B2 as a similar argument

works for Z?1. First observe that from the expansion for u2 we have

θl/2 O*! , -3x

This implies that for x{ > t and | x | sufficiently large (depending on /) we have

du2/dxx > 0. Since for Λ large every point of B2 has \x\ large, we see

immediately that B2+ is a graph over Π o for Λ large. The fact that B2+ has

bounded slope over Π o , follows from the fact that its normal vector η in the

plane {x3 — Λ) is

and its first coordinate is nonzero for xx ^ t and Λ large. To see that B2+ > B2

for Λ large, observe that on B2 we have

\og\x\+θ(\x\~2)=a-λ(A-b)

and hence | x | e°^'2) = R for a large # . Since <?O(W~2) = 1 + O(| x |~2), it follows

that \x\= R + O(\x\~ι), and hence if |JC| is large, B2 is close in distance to a

plane circle. But note that if C is the circle of radius R centred at the origin in

{x3 = Λ}, we have

(f i s t(C,*,C,- / 2 )>ε(r),

where ε(t) > 0 is a number depending only on t. It follows that if Λ is

sufficiently large, we will have B2+ > B2+/2. Since we have already shown that

for Λ large Bt+/2 is a graph over Π o , it follows that B2* > B2 Π {xx > t/1).

Therefore we have shown B2+ ^ B2. Likewise we can assert B]t >• B)-, and B}+

is a graph with bounded slope. Hence Theorem 1 can be applied to assert

(M Π {\x3 \< A})*+ > (M Π (|JC3 | < Λ}) r for Λ large. Thus for any t > 0 we

have M*+ > Mr, and hence we can assert M$+ > Mo-. Repeating the argument

with xx replaced by -xx we can likewise assert Λ/^-< Mo+ which can be

combined with the first to assert M* = M where * denotes reflection through

Π o . This completes the proof of Theorem 3 for the case n = 2.
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The argument for n > 2 is quite similar, and we give its outline. First

translate the ^-coordinates so that the expansion for u2 becomes

u2(x) = b + a\x\2-"+O(\x\~"),

and recall that u2 = -u]9 b > 0. (Observe that we must have a Φ 0 as we can

see, for example, by applying Stokes Theorem on M Π (λ < x3 < μ) to

Δx 3 = 0 for λ < μ < b and letting μ T b with λ fixed and close to b.) One then

writes for Λ < b and near to b

MΠ {k+ 1 |=Λ} =B]UB2,

where Bι = Mi Π {xn+] = (-l)'Ά} for i = 1,2. Again we must assert reflection

symmetry in all planes of the form Σ " = 1 βjXj = 0 and by rotation symmetry of

the expansion we need to consider only the plane x} — 0. Let Π, = {x{ = t)

and we show that for Λ sufficiently near b and any t > 0 we have Bι

tt > Bι

r,

and Bι

t+ is a graph with bounded slope. The argument for this is similar to that

given so we omit it. We then apply Theorem 1 to assert M*+ > Mr for all t > 0

and hence M$+ > Λf0-. Repeating the arguments from the opposite direction

we then get M* = M as desired.
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