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1. Introduction

There have been many results about the relation between the curvature of a
Riemannian manifold M and its characteristic numbers. S. S. Chern and J.
Milnor [3] proved that a 4-dimensional manifold with sectional curvature
everywhere of the same sign has nonnegative Euler number. M. Berger [1]
and N. Hitchin [6] considered the case of an Einstein manifold. H. Donnelly
[4] obtained inequalities involving the Euler number and the Pontrjagin
number of Einstein Kahler manifolds. S. T. Yau [11] and A. Polombo [8]
generalized Gray-Hitchin-Thorpe [5], [6], [9] inequality to λ -Ricci pinched
manifolds and considered the &-sectionally pinched case.

In the present paper the similar problem for /c-Ricci pinched Kahler
manifold is considered, and a generalization of Donnelly's inequalities is
obtained (Theorem 1).

On the other hand R. Bishop and S. I. Goldberg [2] proved that a
4-dimensional Kahler manifold with holomorphic sectional curvature every-
where of the same sign has nonnegative Euler number. This result is im-
proved in Theorem 2 of this paper.

Thus the main results are the following two theorems.
Theorem 1. Let M be a compact oriented A-dimensional Kahler manifold

with Euler number χ and Pontrjagin number p. If λf is k-Ricci pinched with

k > λ/2 /2, then the inequalities

3 - 5k1

0) x + L^P>0-
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(2) X + \p > 0

are valid. Furthermore, if the equality in (1) occurs, then M must be in one of

the following three cases:

(i) M has constant holomorphic curvature,

(ϋ) the universal covering manifold of M is a K3 surface,

(iii) M is flat.

If the equality in (2) occurs, then M must be in one of cases (if) and (iii) above.

Theorem 2. Let M be a compact oriented 4-dimensional Kdhler manifold

with Euler number χ and Pontrjagin number p. If M is λ-holomorphically

pinched with λ > 0, then

X + \p > 0, x + m i n ( l ~ ^ Γ 5 λ 2 ' χΓΓϊ)p > 0 \

and, otherwise

We should point out that A. Polombo [7] has obtained similar results,
which however do not cover the above theorems.

2. Preliminary notation

First of all, we construct a special Hermitian basis at any point p in a
4-dimensional Kahler manifold M. Let ex and e2 be unit eigenvectors of the
Ricci curvature such that it reaches its maximum and minimum respectively.
It is clear that e1 and e2 are mutually perpendicular. Therefore using the
canonical almost complex structure / we obtain a Hermitian basis
{el9Jel9 e2,Je2} which diagonalizes the Ricci curvature tensor. In this case
Ru = R22 and R33 = ^44.

From the author's previous paper [10], we have the Euler number χ and the
Pontrjagin number/? for any 4-dimensional Kahler manifold:

where W is the antiself dual part of the conformal curvature tensor, R +~ is
the part of the Riemannian curvature tensor which is self dual on the first two
indices as well as antiself dual on the last two [10], S is the scalar curvature,
and Ω is the volume form of the manifold.
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Equivalently, (4) and (5) can be expressed in another form:

where R is the part of the Riemannian curvature tensor and is antiself
dual on both pairs of indices.

By directly computing, we have

(6) l * + 1 2 = ^(Λ,212-*3434)2>

(6') | * + f = -1(Λ Π + R22 - R33 - RMf = I ( Λ Π - R33f

under the special Hermitian basis {ex, Jev e2, Je2).
Let X and Y be perpendicular unit tangent vectors of M at any point p,

such that (X, JY} = 0. Then we have the formula [2]

K(X, Y) + K(X, JY) = \[H{X + JY) + H(X - JY) + H(X + Y)

+H(X - Y) - H(X) -

where K(X, Y) is the sectional curvature of the plane spanned by X, Y, and
H(X) = K(X, JX). By (7) we obtain the components of the Ricci curvature
tensor:

Rn = K(elt Jex) + K(ex, e2) + K(ex, Je2)

= H(ex) + -[H(ex + Je2) + H(ex - Je2) + H(ex + e2)

+ H(ex - e2) - H(ex) - H(e2)],

R33 - H(e2) +\[H(ex + Je2) + H(ex - Je2) + H(ex + e2)

+ H(ex - e2) - H(ex) + H(e2)],

from which it follows that

S = H(ex + Je2) + H(ex - Je2) + H(ex + e2)

and (6) can be written in the following form:

(9) \R+A2 =
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By definition a fc-Ricci pinched manifold is one in which there is a number
k > 0 such that

(10) \\S\>k\Rii\

for all i. It is easy to see k < 1. If the equality in (10) occurs, then either
k = 1 or S = 0. Both conditions imply that the manifold is an Einstein
manifold; furthermore in the second case it must be Ricci flat.

3. Proof of Theorem 1

From the pinching condition (10), we have

Substituting the above inequality into (6') yields the following:

s

^ 16K2 16 16AΓ2

If the equality holds above, then the equality also holds in (10) for &-Ricci

pinched manifolds. Thus the equality in (11) occurs iff k = 1 or S = 0.

From (4), (5) and (11), we have

for any real b. Taking b = | (3 — 5 k2)/k2, we reduce (12) to

which gives (1) when K > λίϊ /2. The equality in (1) occurs only if one of the
following conditions holds:

(ϊ)K= l,\W~\ =0andS=7*0;

(ή) S = 0, k2 =± tmd\W-\ ¥= 0;

(iii) S = 0, I W'\ = 0.
Under the first condition M has constant holomorphic curvature [10]. The
second condition means that the universal covering of M is a K3 surface [6].
When S = 0 and | W~\2 = 0, then χ = 0, which forces M to be flat [1]. Taking
b = \y from (12) we have (2) provided k > V2 /2. If the equality holds in (2),
then M satisfies either (ii) or (iii) above. The same discussion as above would
not be repeated.
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4. Proof of Theorem 2.

If M is a λ-holomorphically pinched Kahler manifold with λ > 0, then
there is a constant A > 0 such that

(13) λA <H(X) <A,

for any X e Tp(M).

The pinching condition (13) and (8) give the inequality

(14) 6λA <S < 6A.

From (9) and (13) we have

(15) \R+-\2<\(l-λfA2.

For any b > - 1 , (4), (5) and (15) give

(16) x + bp > ^

Taking b = \ in (16), we have

Thus

(17) χ + I/> > 0, for I < λ < 1.

Taking b = | (1 - 2λ - 5λ2)/λ2 in (16), we have

oλ

when ^ < λ < 1.

If we denote

«2 = e\ Λ 2̂ - ^ 2 Λ Je\>

«3 = e l Λ ^ 2 ~ Je\ Λ 2̂»

then

^eά Jex) - (R^(e2), Je2)

e2ίe2(e2)9 Je2)
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from which it follows that

(19) \R-f = (//(*,) + H(e2) - f )* + L2,( f )
where L2 is the sum of the squares of all the other entries of the matrix

( Λ ~ ) .
For any b from (9) we have

(1 - 2b)[H(ex) + H(e2) - \ s j + λjJ^S2 - 2\R+~\2

= (1 - 2Z>)(/ί(e1) + H(e2) -^sj + ^ ^ S 2 - \{H(eλ) - H(e2)f

= (I - 2b)\H(ei) + H(e2) -\sΐ + j[S- H{ex) - H(e2)]2

L 2 j 2
(I b)\H(ei) + H(e2) \sΐ + j

(20) L 2 j 2

- | [ / / ( e : ) + H(e2)]2 + 2H(ex)H(e2).

For 0 < b < \ it follows from (13), (14) and (20) that

{ex) + H(e2) -^sj + }jj^-S2 - 2\R+~\2

> (Sλ2b -2b + 2λ2)A2 - 2((4λ2 - \)b + 2λ2)A2.

For 0 < b < \, (4'), (5'), (19) and (21) give

(22) χ + bp > - L f {(1 - 2b)L2 + 2[(4λ2 - \)b + λ2]^l2}Ω.

Taking b = λ2/(l - 4λ2) in (22) yields

. λ 2 ^ 1 f l - 6 λ 2

Note that 0 < b < 1/4. Thus if λ < V2 /4, then

(23) X + λ
 P > 0.

1 - 4λ2

We consider again the case b < 0 in (20). In this case

(1 - 2b)(H(ex) + H(e2) -\sf + ^ ^ - S 2 - 2\R+~\2

> {U - 2bλ2 + 2λ2)A2 =[(8 - 2λ2)Z> + 2λ2]

from which for any λ > 0 we obtain the inequality

(24) x +
U>

λ2 - 4 $π

Therefore inequalities (3) follow from (17), (18), (23) and (24).
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Remarks. 1. A result similar to Theorem 2 holds also in the case of
nonpositive holomorphic curvature, but the pinching condition -A < H(X)
< XA with λ < 0 must be substituted for XA < H(X) < A with λ > 0. It is
easy to see that the proof is similar.

2. From (40, (19) and (20) it follows

(25) x = ̂ j / J ^ 2 + \{H{ex) + H(e2) - ±s)2 + 2H(ex)H(e2)]Q9

which is nonnegative when holomorphic curvature has the same sign every-
where. This is the theorem of R. Bishop and S. I. Goldberg, which is a special
case of Theorem 2 in this paper. It is easy to see that χ = 0 forces M to be
flat.
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