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MARK A. MOSTOW

In this paper we develop a simple and very general concept, called a

differentiable space, by means of which one can define smooth functions,

differential forms, and de Rham cohomology on a wide variety of topological

spaces without making use of any concept of tangent vectors. Our notion of

differentiable space is related to those of J. W. Smith [30] and K. T. Chen [8],

[9] but differs in some important respects. We prove some theorems which

give sufficient conditions for the de Rham cohomology defined in this way to

equal the real singular cohomology of a space. In particular, we show that

simplicial complexes, Milnor classifying spaces BG of Lie groups G, and

geometric realizations of semi-simplicial manifolds have natural differentiable

space structures which yield their correct real cohomology. Unlike J.

Dupont's [14] and C. Watkiss' [37] definitions of differential forms on

geometric realizations based on their "piecewise smooth" structure, the dif-

ferentiable space approach permits one to define smooth morphisms from a

manifold M to a non-manifold like Milnor's BG. For example, the classifying

map /: M -+ BG of a G-bundle on M with smooth transition functions is a

(smooth) morphism of differentiable spaces, provided that / is constructed

using a smooth partition of unity on M. Thus not only can one construct

explicit characteristic forms on BG (by using a universal connection form on

EG), but one can also pull them back at the form level to the de Rham

complex of M via/1': A*(BG) ->Λ*(M). In this way one gets a somewhat

different perspective on the Chern-Weil homomorphism which combines

topology (classifying spaces) and geometry (connections and curvatures).

A differentiable space is defined to be simply a topological space X together

with a sheaf C^X of germs of continuous real-valued functions on X, called

smooth functions, satisfying the closure condition

If fv " * ' '//i a r e smooth functions on X, and g is a smooth

function on Rπ, then g(fv ,/„) is a smooth function on

X.
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In other words, one simply takes some collection of functions on X and

decrees them to be smooth. For example, on a simplicial complex it is natural

to take the barycentric coordinate functions, as well as functions which

locally are smooth functions of finitely many barycentric coordinates, to be

the smooth functions.

Differential forms on a differentiable space X are defined to be abstract

symbols η = ΣfiQdfit Λ * * Λ^Kn (locally finite sum), where the^ are smooth

functions on X, modulo the equivalence relation defined by calling two such

symbols ηι and η2 equivalent if each smooth map φ: E -> X (E open in some

Rk) pulls back Ί\X and η2 to identical forms on E.

The contents of this paper are as follows.

§ 1 defines differentiable spaces and their morphisms and presents a num-

ber of examples, including smooth manifolds, classifying spaces of Lie

groupoids, and simplicial complexes.

§2 defines the de Rham complex of a differentiable space and proves some

of its elementary properties, such as the Chain Rule. De Rham cohomology is

defined, as usual, as the cohomology of the de Rham complex.

§3 defines smooth homotopies and shows that de Rham cohomology is

invariant under smooth homotopies in the category of differentiable spaces.

§4 compares our definition of differentiable space with those of J. W.

Smith and K. T. Chen, which are related to ours but not equivalent. The

approach of Whitney, Sullivan, Thorn, et al., who defined differential forms

on simplicial complexes to be compatible collections of forms on the sim-

plices, is discussed, as is the similar approach used by C. Watkiss and J.

Dupont to define differential forms on geometric realizations of semi-simpli-

cial manifolds. We also discuss the de Rham double complex of a semi-sim-

plicial space, as defined by Bott, Shulman, and Stasheff, the Weil algebra,

and other related ideas.

In §5 we prove two theorems which give sufficient conditions for de Rham

cohomology to equal real singular cohomology. The first of these (Theorem

5.2) says that if X is paracompact, admits smooth partitions of unity sub-

ordinate to any open cover, and is locally smoothly contractible, then
HDR(X) = Hϊing(

x> R ) After discussing the Cech-singular and Cech-de

Rham double complexes of a differentiable space we prove (Theorem 5.5)

that if a de Rham isomorphism holds on every finite intersection of some

open cover of X which admits a smooth partition of unity, then H%R(X) =

§6 discusses the problem of when an open cover of a differentiable space

admits a smooth partition of unity. This question is important if we want to

apply the de Rham theorems mentioned above. The results of this section
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follow from a recent theorem of H. Toruήczyk, who in the course of studying

smooth partitions of unity on Banach spaces gave what amount to necessary

and sufficient conditions for a differentiable space whose underlying topo-

logical space is metrizable to admit smooth partitions of unity (subordinate to

any open cover). An easy consequence of his theorem is that any simplicial

complex in the metric topology admits smooth partitions of unity.

In §7 we prove that H£R(X) = ifs*ing(Ar) for any simplicial complex X in

either the weak or the metric (strong) topology. We show that our de Rham

complexes A*(XW) and A*(XS) (arising from the weak and strong topologies

on X) can be regarded as subcomplexes of the complex A*{X) of compatible

forms on the simplices of X. (We shall call A*(X) "Whitney's complex",

though it differs from Whitney's construction [40] in using smooth forms

instead of flat cochains.) When X is a finite or locally finite simplicial

complex, all three complexes coincide, but otherwise they differ. Thus one

can think of A*(X) as providing an alternate description of Whitney's

complex when X is locally finite.

In §8 we discuss the differentiable space structures and de Rham cohomol-

ogies of classifying spaces, and more generally of geometric realizations of a

semi-simplicial manifold or differentiable space. This is most easily done if

we choose the Milnor-Buffet-Lor classifying space functor BG and the

unwound geometric realization μ(X), because on these spaces there are

defined global barycentric coordinates tθ9 tl9 and other functions gy oτja

(defined on open subsets of BG or μ(X)) which can be chosen to be our

smooth functions. We show that if X is a semi-simplicial differentiable space

and if H*R(Xn) = H^XJ for each π, then H*R(μ(X)) - H^μiX)).
§9 gives a detailed comparison of six different de Rham complexes defined

on geometric realizations, including the double complex of Bott-Shulman-

Stasheff, the Dupont-Watkiss complex ^4*(||Λr||) of compatible forms, the

unwound versions of these two complexes, and our complexes A *( μ^iX)) and

A*(μs(X)) defined using the weak or the strong topology on the unwound

geometric realization μ(X). It is shown that all six complexes are chain

homotopy equivalent but not isomorphic. The problem of pulling back forms

from geometric realizations to manifolds is discussed.

§10 presents applications of differentiable spaces. One application, men-

tioned already, is the presentation of characteristic differential forms for

G-bundles by explicit universal formulas involving only the transition func-

tions and a smooth partition of unity. Another application is the extension of

smooth and Ck cohomology theories for spaces with two topologies (studied

by the author in [23] and [24]) to non-manifolds like (BTq-*BJq)9 the

Haefliger classifying space for foliations in its sheaf and jet topologies [2], The
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Ck cohomology of (BTq -> BJq) gives rise to characteristic classes of foli-
ations which vary in a Ck manner when the foliation is varied smoothly. The
latter application was outlined in [24], modulo certain details about differen-
tiable spaces which appear in this paper.

The differentiable space approach is very general and can potentially be
applied to many spaces other than those discussed in this paper. In future
papers the author plans to present some of these other applications.

Remarks on notation. Smooth always means C0 0. Manifolds are locally
C°°-diffeomorphic to Rn (n < oo) but need not be Hausdorff or second
countable. The symbol N denotes the set of nonnegative integers. If X is a
semi-simplicial space, then its nth space is denoted either Xn or X\n\

1. Definition and examples of differentiable spaces

Definition. A differentiable space is a topological space X together with,
for each open U in X, a collection C°°(U) of continuous real-valued func-
tions on U, satisfying the closure conditions:

(i) The rule U -» C °°( U) defines a sheaf on X (denoted C°°X).
(ii) For any n, if /„ ,/„ G C°°(U) and g G C°°(Rn) (with the usual

meaning), thengC/Ί, - - Jn) G C "(£/).
The elements of C°°(X) are called smooth functions on X.
Remark. If one allows g G C°°(F) (V open in RΛ), one gets an equivalent

definition.
A basic way to define a differentiable space structure is the following. Let

X be a topological space, and let {fa: Ua -» Ma) be a collection of continuous
functions from open subsets Ua covering X to manifolds Ma. A function /:
U-+R(U open in X) is said to be locally a smooth function of finitely many of
the fa if for each x G U there exist a neighborhood W of x in U, a finite set of
indices al9 , an, and a smooth map g: K—»R (where V is open in
Λfβi X Ma2 X X A/̂ ) such that for each i = 1, , AZ,

Ί is defined on all of W (i.e., U^ D W\

Let C°°(t/) be the set of all such/. Then {X, {C°°(U)}} defines a differentia-
ble space structure on X, which we say is generated by {fa}.

Examples.
1. A smooth manifold M with its usual collection of (l°caUy defined)

smooth functions is a differentiable space.
2. A topological space X becomes a differentiable space in a trivial way if

we decree every continuous function on X to be smooth, i.e., C°°(U) =
(def.)C(ί/).
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3. Let Γ be a Lie groupoid = smooth category with inverses [1] (for

example, Γ a Lie group G, Γ = Haefliger's Γ^). Then Γ is a differentiable

space, and so is its Milnor-Buffet-Lor geometric realization BT [5], as we now

show. Recall that a point of BT is specified by a collection {*,., g0} satisfying

(a) tt > 0, i G N, and tt = 0 for all but a finite number of /.

( b ) Σ , / , - l .

(c) gv G Γ, but is defined only on {ty ψ 0}(def.) = Uy c BT. One endows

BT with either a weak or a strong topology (see §8 below). In either topology,

we can define a differentiable space structure on BT by defining, for each

open U in BT,

C°°(U) = {/; £/->R|/ is locally (in the chosen topology) a

smooth function of finitely many of the functions gtJ: Uy -» G

and /,.: £Γ^>R}.

4. The constructions of Example 3 work even for infinite-dimensional Lie

groupoids like Jq = {oo-jets of local diffeomorphisms of R7, with the C°°

topology}. We decree the functions x' (coordinates of source),>>' (coordinates

of target), and j> (̂α = (α1? , α j , yι

a = α-th partial derivative of yι) to be

smooth functions on Jq; also, any function which is locally a smooth function

of finitely many of these is called smooth. A function on an open set of BJq is

smooth if it is locally a smooth function of finitely many functions of the

form ti or/ ° giJ9 where/is a smooth function on Jq, and gy: Uy -» Jq is as in

Example 3.

5. A simplicial complex X with either the weak or the strong topology (see

§7 below) becomes a differentiable space if every function on X which is

locally a smooth function of finitely many barycentric coordinates is called

smooth.

Definition. A morphism (also called a smooth map) of differentiable spaces

is a continuous map which pulls back smooth functions to smooth functions.

That is, h: X -* Y is smooth if

1. A is continuous,

2. For all open U c Y and/ e C°°(U)J ° h G C^{h~xU).

Remark. Condition 1 is superfluous if Y happens to have the topology

generated by sets of the form/"^ V) ( V open in R, / G C °°( Y)).

The category of differentiable spaces will be denoted Φ.

Example 6. If M and Λf are smooth manifolds, then /: M —»Λf is a

morphism of differentiable spaces if and only if it is a smooth map in the

usual sense.

Example 7. Let M be a smooth manifold, let Γ be a Lie groupoid, let

{£/,}(/ e N) be an open cover of M, and let {yy: Ut Π Uj-+ T} be a cocycle
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on M with values in Γ having smooth transition functions γ^ . (This is the case,
for example, if Γ = Γ̂  and {y&} is the Haefliger cocycle defined by a smooth
codimension q foliation on M). Let {t/,} be a smooth partition of unity
subordinate to { Lf}. The cocycle can be classified by the map

f.M^BT,

Λ*)-{H(*), γ,(*)}
(see [5]). Since / pulls back /,. to «, and gi} to yij9 it is a morphism of
differentiate spaces.

Definition. Let X be a differentiable space, and Y a topological subspace
of X. One makes Y a differentiable subspace of X by defining

if V is open in Y and/: F-> R, then/ E C°°(F) if and only
if for each>> E K there exist a neighborhood U of >> in X and
an element g G C°°(ί/) such that g\ U Π K = / | ί/ n V.

We can give a global description of C°°(Y) if certain smooth partitions of
unity exist.

Definition. Let X be a differentiable space, and { Ua] an open cover of X.
Then a smooth partition of unity subordinate to {Ua} is (as usual) a collection
{/αEC°°(X)} satisfying

( i ) / α > 0 a n d Σ / α = l,
(ii) supp (/β) - (def.)α(/- !(0, oo)) c ί/α,
(iii) the collection {supp/α} is locally finite.
Theorem 1.1. (i) Let X be a differentiable space, and let Y c X. Suppose

that every open neighborhood W of Y admits smooth partitions of unity
subordinate to any open cover (of W). Then f E C°°(Y) if and only iff extends
to a smooth function on some open neighborhood U of Y.

(ii) If X admits smooth partitions of unity, and Y c X is closed, then Y
admits smooth partitions of unity, and every f E C°°(Y) extends (non-uniquely,
in general) to some fx E C°°(X).

Proof, (i) For each y E Y choose a neighborhood Uy of y in X and an
fy E C ° ° ( φ such thatjgU yn Y = f\Uyn Y. Let U = U y Uy, and let {uy}
be a smooth partition of unity on U subordinate to {Uy}. Then ΣyUyfy is a
smooth extension of/to U.

(ii) For the second assertion, proceed as in the proof of (i), but add the
open set X - Y to the collection {Uy} to get a cover of X. Choosing a
partition of unity, we extend / to Σuyfy as before. A similar construction
shows that Y admits smooth partitions of unity.

Example 8. If K c Rπ, then/: K -> R is smooth if and only if /extends to
some neighborhood of K in Rπ. It is easy to see that if K has an affine or
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convex structure (e.g., K=Δk, the Euclidean Λ>simρlex), then C°°(^) is
independent of n and of the affine embedding of K in RΛ.

Example 9. If X is any dif f erentiable space and U an open subspace, then

c°°u= c°°x\u.

2. The de Rham complex of a dif f erentiable space

Rather than defining a notion of tangent vector for differentiate spaces
(see [25], [29]), we shall define differential forms as abstract symbols Σfadfaχ

Λ Adf^ Ua, E C°°(£7), £/ c X\ and compare forms by pulling them
back to open subsets of Euclidean space.

Definition. Let X be a differentiable space. Then a plot of X is a smooth
morphism φ: E -» X, where E is an open subspace of Rn for some (finite) n.
(The terminology is adapted from Chen's [8]).

Note. For convenience, we will sometimes drop the requirement that E be
open, and allow plots of the form φ: / -> X, φ: E X / -» X, etc. This will not
change any results.

Definition. Let U be a differentiable space, and let f0 G C°°(ί/), i =
1> ,Pl j = 0, ,q. Let η denote the symbol Σf_JiOdfn Λ
and let φ: E -+ U be a plot. Then φ*η will denote the differential form

Σ U o ° Φ)rf(/π ° Φ ) Λ Λ ^ ( 4 - Φ)

Let Bq(U) be the real vector space of symbols of this form (p is arbitrary)
modulo the equivalence relation:

ηι^- η2iϊ and only if φ*Hx = φ*τj2 for all plots φ: E —* ί/

If X is a differentiable space, then the rule U-* Bq(U) (U open in * )
defines a presheaf of real vector spaces on X. Let A^f be the sheaf generated
by this presheaf, and let A \U) = T(AqX\ U) = TAqU (Γ = sections).

Remark. Bq(X) contains finite sums of symbols fodfx Λ # * * Λ4^» but
A q(X) also contains locally finite sums of such symbols.

Lemma 2.1. 7%e canonical homomorphism s: Bq{U) -> Aq(U) is infective.

Proof. Let η G ker s. By sheaf theory we can find an open cover { Ua) of
ί/ such that each restriction ηa e Bq(Ua) of η equals 0. Let φ: £ ^ U be a
plot. It suffices to show that φ*η = 0. Let La = Φ'^ί/J. Then φ\La is a plot
of ί/α, and φ*η|Lα = (φ|Lα)*η = (φ|Lα)*ηα = 0. It follows that φ*η = 0.

Corollary 2.2. If φ: E-+X is a plot and η G A q(X), then there is a
well-defined form φ*η G Aq(E). Also, ηx = η2 if and only if φ*ηx - φ*η2for
all plots φ.
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Lemma 23. (i) B°(U) = A°(U) = C°°(U).
(ii) B q( U) and A q( U) are modules over C °°( U) via
(iii) /. (fodfx Λ Adfg) = (//0)rf/i Λ Λ4fr

(iv) AqX is a module over the sheaf C°°X.
(v) The exterior derivatives d: Bq -> Bq+ι and d: Aq -+Aq+ι are well-de-

fined by

<KMi Λ Λdfg) - ldf0Λ • • Λdfq,

and satisfy d2 = 0.
(vi) The wedge products Bp /\Bq^>Bp+q and Ap f\Aq^>Ap+q are

well-defined by

Λ Λ4fP) Λ (godgι Λ /\dgp) = (fog^4fl A Λ ^ ,

graded-commutative.

Proof. To see that each operation is well-defined, pull back the forms in

question to A*(E) via plots φ: E -* X and use Corollary 2.2.
Definition. The commutative differential graded R-algebra A*(X) =

θ ^ A q(X) is called the de Rham complex of the differentiate space X. The de
Rham cohomology of X is defined by

Example 10. If X is a smooth manifold, then A*(X) and //£*(*) turn out
to have their usual meaning.

Morphisms. Let h: X -> Y be a morphism of differentiate spaces. Then the
rule

Λ Λ^Λ) = (/o

induces algebra homomorphisms

Lemma 2.4 (The chain rule). Let X be a differentiable space, let /,, ,/„
G C^iX), and let g e C°°(F), F o/>e« in R", w/ίΛ F D image(fv • • • ,/„):

(/., ./»)) = Σ [(A*) (/„ ,/.)] dfi G

/. Pull back both sides of the asserted identity via plots φ: E —» X.
Since the Chain Rule is valid on manifolds, the pullbacks of both sides are
equal. Corollary 2.2 now completes the proof.
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3. Smooth homotopy invariance

Products. Let X and Y be differentiable spaces. Then X X Y is the
differentiable space defined by giving X X Y the usual Cartesian product
topology and defining

for U open in X X Y, C°°(U) = {/: U^>R\f is locally of
the form g ° (fv ,/„), where g G C°°(RΛ) O arbitrary)
and each/ belongs to C°°(F) (for some open F c X) or to
C°°(H^)(^ c Y)}.

Example. Let / be the unit interval, regarded as a differentiable subspace
of R with coordinate t. Then/ G C°°(X X /) if and only if/is locally of the
formg o (tJv . . . ,/,), whereg G C°°(Rn+ι) and/ G C°°(ί/)(ί/ c * ) .

Definition. A smooth homotopy is a morphism of differentiable spaces
F = {/}: A" X /—» y; one says that/0 and/j are smoothly homotopic.

By mimicking the proof of smooth homotopy invariance of de Rham
cohomology on manifolds [38], we now prove that H%R is smooth homotopy
invariant on the larger category fy of differentiable spaces. We start with two
technical lemmas which in the manifold case are proved by choosing coordi-
nates.

Lemma 3.1. Let η G A q(X X I) (X a differentiable space). Then every
x EL X has a neighborhood U in X such that η\U X / can be written as a finite
sum of terms of the form a(x, t)dt A4f\ A' ' ' Adfq-X and b(x, t) dfx

A Adfq {a, b G C°°(ί/ X / ) , / G C°°(ί/)).
Proof. By the definition of C 0 0 ^ X /) and the Chain Rule, η is locally

(on X X /) a finite sum of terms of the desired form. Cover {JC} X / by a
finite number of product opens Ua X Ja c X X / on each of which η has
such a representation ηa. Let U = Π Ua, and let {/α} be a smooth partition
of unity subordinate to the cover {/α} of /. Then ΣJaηa is the desired
representation of η on U X /.

Lemma 3.2. Let f G C°°(I X I) (X a differentiable space). Define F:
X X I -+ R by

F(x,u)= Γf(x,t)dt.
Jo

Then F GC°°(X X I), and hence fι

of(x, t) dt G C°°(X).
Proof. Choose x G X. By an argument like that used to prove Lemma 3.1,

we can find a neighborhood U of x in X such that f\U X I -
g ° C,/i, * >/„)> where g G C 0 0 ^ 1 ) and/ G C°°(ί/). Define G: RΛ + 1 ->
Rby

G(«, xl9 - - , *„) = I g(ί, xp , *„) A.
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Then G e C°°(Rn+ι), and F(x, ύ) = G(uJx(x), ,/„(*)), so that F =
G o ( t t , / 1 , . . . , / Λ ) e C β 0 ( * X / ) . q.e.d.

We can now construct a homotopy operator

L:Aq(X X /)-»^^-1(X)

between tf and If: A*(X X /)-»i4*(Λr) (where iy. X-+X X {j} c X X /,
y = 0, 1) by the usual formula [38, p. 124]

L(a(x, t)ΛΛ4fiΛ- Λ # « - i ) - ( / ' a(x, t) dή dfxΛ

L(b(x, t)dfxΛ Λ4fi) = 0

(JJ E C°°(£/)) To see that this definition of L is independent of choices, it
suffices to pull back via plots of the form φ X id: E X / -»X X /, and to
observe that the operator L'\ A\E X I)-*Aq~ι(E) defined by the same
formula as L is known to be well-defined [38]. The same argument shows that
dL + Ld = if — iξ. Hence we have proved

Theorem 3 3 . The functor H£R (on differentiable spaces) is invariant under

smooth homotopies.

4. Comparison with other theories

The idea of studying differential forms on non-manifolds by looking at
their pullbacks to manifolds goes back to the calculus of variations. A
number of authors have exploited this idea to define various notions of
differentiable spaces and de Rham complexes, with the goal of computing the
real cohomology of a space. In this section we will compare some of these
theories briefly with emphasis on their utility as cochain theories on various
spaces. We should mention that the term "differentiable space" has also been
used in a number of quite different senses (including as a synonym for
smooth manifold), which we shall not discuss in this section.

Closest to our theory are those of J. W. Smith [30] and K. T. Chen [9].
Smith defined a differentiable space to be a topological space X together with
a collection C°°(X) of continuous R-valued functions on X satisfying the
closure condition:

If /: X -> R is continuous and if / ° φ G C°°(U) for all plots
φ: U^> X (U open in some Rn, plot defined as in §2), then
/ G C*(X).

This closure condition is stronger than ours. For example, if we regard Q (the
rationals) as a differentiable subspace of R, then Smith's C°°(Q) consists of
all continuous functions on Q, while our C°°(Q) contains only those func-
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tions which locally are the restrictions of smooth functions on R. Smith, like

us, defines differential forms as symbols which are locally of the form

Σfodfx Λ > > Λdfq, but he interprets them as singular cochains by integrat-

ing them over cubical simplices. Our two approaches to forms are equivalent,

however, since a differential form on RΛ is nonzero if and only if its integral

over some smooth simplex of RΛ is nonzero. Smith distinguishes two notions

of homotopy, roughly corresponding to using the two different closure

conditions in defining C°°(X X /). His H%R is proved invariant only with

respect to what he calls proper homotopies, corresponding to the weaker

closer condition. It is partially for this reason that we prefer to use the weaker

closure condition in the definition of differentiable space.

K. T. Chen focuses his attention on the plots of X rather than on C°°(X).

He defines [9] a differentiable space to be a topological space X (the topology

is not essential for the construction) together with a collection of (continuous)

maps φ: £/-» X (U a convex region = (def.) closed convex set c RΛ, some n)

called plots, satisfying the closure conditions:

(i) If U' is a convex region, g: U' -> U is C00, and φ: U-* X is a plot, then

φg is a plot.

(ii) Every constant map U -> X is a plot.

(iii) Let { gif: Ui; -» U) be a family of maps (£/, and U being convex regions)

such that a function/: U-+R is C°° if and only if fgi is C 0 0 for all /. If φ:

U -> X is a continuous map and each φ ° gi is a plot, then φ is a plot.

A #-form η on X is then defined to be a collection of forms {ηφ G

Aq(U)\φ: U-^X a plot} which are compatible with respect to pulling back

via smooth maps g: V -» U. For example,

C°°(Q) - A°(Q) = {set maps/: Q->R}.

We have seen that C °°(Q) is different in all three theories discussed so far.

In fact, one can show that H^R{Q) = C°°(Q) in all three theories, so that the

theories are inequivalent at the cohomology as well as the cochain level. Only

in Chen's theory does H%R(Q) agree with H^(Q; R), essentially because his

theory ignores the topology of Q.

In all three theories, a differential form is defined by its pullbacks to finite

dimensional Euclidean spaces. Since such pullbacks are compatible, we see

that Chen's de Rham complex contains Smith's and ours provided that one

chooses for the plots in Chen's definition those continuous maps φ: U —» X

(U a convex region) which pull back each C 0 0 function on X (as chosen in

Smith's theory) to a C 0 0 function on U. In specific applications one often

wants to use a de Rham complex smaller than the full Chen complex so that

one can give explicit formulas for differential forms. Using Smith's or our
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construction is one way to do this, or one can use special constructions for
particular spaces, such as Chen's iterated integrals on path spaces [8], [9].

The choice of a differentiate space theory depends on the use to be made
of it. Chen's theory is well-suited to studying path spaces P( Y), since a plot φ:
K -^> P{ Y) is just a smooth map K X / -> Y. Smith used his theory to study
quotients of manifolds. On a space that comes equipped with a distinguished
set of functions, for example a simplicial complex with its barycentric
coordinates, or BG with the functions t. and gtJ (see §1), it is natural to apply
Smith's or our theory. In practice, Smith's closure condition can be difficult
to verify on an explicit collection of functions, and therefore we prefer our
own definition for studying simplicial complexes, classifying spaces, and
geometric realizations.

The definition which we have given of differentiable space appeared in the
work of R. Sikorski [29], but he did not define differential forms in the way
we did. Rather, he defined tangent vector fields on X as derivations of the
ring C °°(X), and did not define a de Rham theory. (A de Rham theory based
on the same definition of vector field was worked out by R. Palais [25].) Thus
the individual elements of our definition have appeared elsewhere. Nonethe-
less, we believe that their combination is new, and that the idea of treating
simplicial complexes, Milnor's BG, and geometric realizations of semi-simpli-
cial spaces as differentiable spaces, using a category of differentiable spaces
so general that it includes morphisms like /: M -> BG (M an ordinary
manifold,/the classifying map of a G-bundle on Λf), is new.

A different way of putting differential forms on simplicial complexes is to
take compatible collections of forms on the simplices. This was done by
Whitney [40, p. 226] and Thorn [34] (in the special case of a triangulated
manifold, the zero-forms obtained are the piecewise smooth (semi-smooth)
functions [19, p. 5]), and the idea has been refined by Sullivan [33] and others
to compute not only the real cohomology but also the rational homotopy type
of a simplicial complex. In a similar vein, J. Dupont [14] and C. Watkiss [37]
defined differential forms on classifying spaces BG and geometric realizations
I\X\I of semi-simplical manifolds as collections of differential forms on
G " x A " (resp. Xn X Δπ) compatible under the face maps. The major dif-
ference between these theories and ours is that compatible collection theories
require working in simplicial or semi-simplicial categories which do not
include morphisms like /: M -* BG, while our theory mixes simplicial and
non-simplicial constructions easily. For example, in our theory the homomor-
phism/*: A*BG —> A*M is defined at the cochain level of differential forms,
while in the compatible collection approach f* is defined only at the
cohomology level or as a map of Cech-de Rham double complexes.
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A more detailed comparison of our de Rham complex with those of
Whitney, Dupont, and Watkiss will be given in §§7 and 9.

So far we have discussed only those de Rham theories based on objects
which look like differential forms on the actual spaces in question. For
example, in Dupont's, Watkiss', and our theories, a form on BG involves the
barycentric coordinates tt as well as the G-coordinates gy. If one's purpose is
to compute the cohomology of a space, a smaller complex may suffice. For
example, Bott, Shulman, and Stasheff [3] showed that the cohomology of the
double complex ®pqA

q(Xp) equals #2ng(||AΊ|; R) if a de Rham isomorphism
holds on each Xp. To compute H*(BG) in the case when G is compact it
suffices to study the Weil algebra [6] or the semi-simplicial Weil algebra of
Kamber and Tondeur [17].

While these theories are probably easier to use than differentiable spaces to
compute the cohomology of specific spaces like BG, differentiable spaces are
useful for studying how this cohomology maps into the cohomology of
manifolds at the cochain level, especially when a G-bundle on M is specified
by transition functions. Furthermore, the differentiable space approach, being
very general, is applicable to other spaces as well.

There have been a number of other generalizations of differential forms to
non-manifolds. For example, C. D. Marshall [20] defined a de Rham theory
for subcartesian spaces, which are Hausdorff spaces locally homeomorphic to
(not necessarily open) subspaces of Rπ (n varying). In a different direction,
there is a de Rham theory for infinite dimensional manifolds. These theories
do not apply to Milnor classifying spaces BG or to non-locally finite simpli-
cial complexes, however, since these spaces are not locally homeomorphic to
any set in Rrt or to any open set in R00.

5. Conditions guaranteeing a de Rham isomorphism

Because the concept of differentiable space is so general, it is clear that a
de Rham isomorphism H%R{X) = H^^J^X', R) will hold only if we place
some restrictions on X and C°°X. In this section we present two such sets of
restrictions. The first criterion is a local property (smooth local contractibil-
ity) together with requirements of paracompactness and existence of smooth
partitions of unity, and is proved using sheaf theory; a virtually identical
theorem was proved by Smith for his theory [30]. The second criterion is
"semi-local": if a de Rham isomorphism holds on all finite intersections of an
open cover of X which admits a smooth partition of unity, then it holds on X.
This is proved by adapting A. Weil's Cech-de Rham double complex [38]. In
the next section we shall prove the existence of smooth partitions of unity on
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simplicial complexes. This will allow us to apply the second criterion to
simplicial complexes, classifying spaces, and geometric realizations in §§7 and
8.

To compare de Rham and singular cohomology, we map both of them to
the smooth singular cohomology Hsm, which is defined as follows.

Definition. A smooth singular q-simplex of a differentiate space X is a
morphism σ: Δ* -»X of differentiate spaces. The real-valued cochains on
these simplices form a vector space denoted S*m(X); we set H£m(X) =

Remark. The cochains of H*m are not sheafified.
A map from A*(X) to S*m(X) is defined, as usual, by integration of

(pulled-back) forms over smooth simplices. This induces a map H%R(X)-+

Lemma 5.1. H*m is invariant under smooth homotopies of differentiable

spaces.

Proof. The proof of homotopy invariance of ordinary singular cohomol-
ogy [14, p. 45] can be used without change once one observes that the prism
operator P: Sq(X)^> Sq+ι(X X /) maps each smooth simplex to a sum of
smooth simplices.

Definition. A differentiable space X is locally smoothly contractible if for
each open U c X and each point x G U there are a neighborhood V of x in
U and a smooth homotopy F = {ft}: V X I -+ U satisfying

/ 0 - id: V c U,

/i : V-* {y} C U (for some pointy G U).

Theorem 5.2. Let X be a differentiable space which is paracompact and

locally smoothly contractible, and which admits smooth partitions of unity

subordinate to any open cover. Then the natural homomorphisms

H*DR(X) _> H*m(X) «_ HZjίX; R)

are isomorphisms.

Proof. Let S* (resp. S*J be the sheaf on X generated by ί/-> S%^U\ R)
(resp. ί/-» S*m(U)). Let A* denote the sheaf k*X of differential forms (see
§2). Now since X is paracompact, the sheafified and unsheafified singular
cohomology theories HTS* and #S s * n g = H*(X) are isomorphic [4, p. 19];
similarly, HTSfm = H?m(X). By definition, H*R(X) = i/ΓA*.

Now since X admits smooth partitions of unity, the sheaf C°°X is fine.
Since A*, S*m, and S* are modules over C^X, they, too, are fine [4, p. 50],
Now the constant sheaf R injects into A*, S*m, and S*. We claim that all
three complexes are resolutions of R. Indeed, since X is locally smoothly
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contractible and all three cohomology theories are smooth homotopy in-
variant, it follows that the stalk of the homology (derived) sheaf [4, p. 25] of
all three cochain complexes of sheaves reduces to H*(point) = R (in di-
mension 0) at any point x 6 l . But the cohomology of global sections of a
resolution of a sheaf F on a paracompact space X by fine sheaves equals the
sheaf cohomology H*(X; F) [4, pp. 34, 49-50]. It follows that all these
cohomologies agree, i.e.,

H*DR{X) = H*m(X) = HTSfm = #* ing(X) = HTS* = H^X; R). q.e.d.

Our next criterion for a singular-de Rham isomorphism is based upon
computing the cohomology (de Rham, singular, or smooth singular) of a
space X from the cohomology of each finite intersection of some open cover
of X. In the de Rham case this entails looking at the Cech-de Rham double
complex of A. Weil [38]. In the singular and smooth singular cases we use a
Cech-singular double complex and an extended Mayer-Vietoris theorem.

Definition. Let I be a topological space, and U = {Ua}aGJ an open
cover of X, indexed by a totally ordered set /. Then ^ ( / J G N ) will denote
the space IIσ ί/σ, where σ = (α0, α l 9 , otp) runs over all strictly ordered
(p + l)-tuples of/, and Uσ = l/^...^ = UUQ n U^. Maps

are defined by

9/1 Uσ = inclusion: Uσ c ί/8σ,

where θ,σ = (α0, , ά,, , o^).
If X is a differentiable space, and % an open cover of X, then the Cech-de

Rham complex of X, denoted Λ*^*, is the double complex ®PtqwmQAgGHp

together with the Cech coboundary map

p + l

«- Σ (-1)U^:Λ*%-+Λ*%+1
i = 0

and the exterior differential d: Aq% ->Aq+lGllp. As usual, we make A*^^
a cochain complex by defining a total differential D = d + (-l)^δ and a total
grading n = p + q.

The Cech-singular complex £*%* and Cech-smooth singular complex
SfJ^ll^ are defined analogously.

Remark. The relation of this definition of Cech-de Rham complex to
Weil's is that a form η G AqGίlp can be identified with the alternating Cech
/7-cochain, with values in Aq, defined by η ^ . . . ^ + ± *?|̂ «0 ..<$, where the
sign is the signature of the permutation needed to put α0, , otp into order.



270 MARK A. MOSTOW

Theorem 5 3 {Extended Mayer- Vietoris Theorem).

(i) For any topological space X and any open cover 6ίl, H^S*6^^) =

H*^g{X', R); the isomorphism is induced at the cochain level by the restriction

map from S*(X) to S*% c £ * % * .

(ii) For any differentiable space X and any open cover %, H^S^^^) -

H*m(X) induced by Ss*mX -* S*%*.

Proof. Part (i) is more or less well-known; see [3] or [23, p. 16] for a proof.

Since the proof is combinatorial in nature, it goes through for the smooth case

as well; all we need to check is that the barycentric subdivision of a smooth

singular simplex is a sum of smooth simplices, and this is obvious, q.e.d.

The analog of this theorem for the Cech-de Rham complex requires an

additional hypothesis.

Theorem 5.4. Let X be a differentiable space, and let % be an open cover of

X admitting a subordinate smooth partition of unity. Then

HD(A*%J = H*R(X),

induced by the restriction map r: A*X -^A*6^ c A*^^.

Proof. Let {ua} be a smooth partition of unity subordinate to 6ίi. One

first shows, as Weil did [38] (in the case where X is a manifold), that the

complex

0

is exact, by using N. Hamilton's homotopy operator

(here ^ j = X) which makes sense in our context since A *(X) is a module

over C °°(X) and is closed under locally finite sums. The rest of the proof is

exactly the same as Weil's.

Our second main theorem is now easy to prove.

Theorem 5.5. Let X be a differentiable space, and let % be an open cover of

X admitting a subordinate smooth partition of unity. Suppose that for every finite

intersection Uσ of opens in GH, the maps

> H*,(Ua) «- H^(Uσ; R)

are isomorphisms. Then the maps

H*R(X) _ H*,(X) «- Ht^X; R)

are isomorphisms.
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Proof. Consider the maps of double complexes

Filtering by/? we get spectral sequences which map at the Ex level by

HJ(A*%) = H«R(%) -> HsqΛ%) <- H

By hypothesis these maps are isomorphisms, so

by the usual spectral sequence arguments. Theorems 5.3 and 5.4 now yield
the desired conclusion.

6. Smooth partitions of unity

In order to apply Theorems 5.2 and 5.5 we need to known when an open
cover of a differentiable space admits a subordinate smooth partition of
unity. In this section we find some convenient sufficient conditions for
smooth partitions of unity to exist.

The existence of partitions of unity on Banach spaces has been studied
extensively, and some of the results obtained for Banach spaces are general
enough to apply to differentiable spaces. In a recent paper [36], H. Toruήczyk
gave what amount to necessary and sufficient conditions for a differentiable
space whose topology is metrizable to admit smooth partitions of unity. First
we need the following definitions.

Definition. Let X be a differentiable space. Then fylx will denote the
collection of open subsets of X of the fonn/~ !(a, b) where/ G C°°(X\ a,
i G R .

Definition. A family of subsets is σ- locally finite if it is the union of a
countable number of locally finite subfamilies.

Definition. Given a set A, cQ(A) is the linear space of all x = (xa) G R^
with {a G A: \xa\ > \/ή) finite for any integer n > 1; co(A) is regarded as a
Banach space under the norm ||(xa)|| = supflxj: a G A). We make co(A) a
differentiable space by defining/ G C°°(U) (U open in co(A)) if and only if/
is locally a smooth function of finitely many coordinate functions
Y . . . y

al9 ' °n'

Theorem 6.1 {H. Toruήczyk [36]). The following conditions are equivalent

for a differentiable space X whose underlying topological space is metrizable.

(a) X admits smooth partitions of unity {subordinate to any open cover).

(b) Gllx contains a σ- locally finite base of the topology ofX.

(c) There are a set A and a homeomorphic embedding u: X ^> co(A) with

xa o u G C°°(X)for any a G A.
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Remarks. 1. Condition (b), together with the stipulation that C°°{X)

separate the points of X (so that X is Γ3), implies that X is metrizable [13, p.

194]. Condition (c) also implies that X is metrizable since co(A) is a metric

space.

2. The map u in part (c) is a morphism of differentiable spaces.

An important special case of this theorem is the following.

Theorem 6.2. Let X be a differentiable space. Suppose that C°°(X) contains

a countable collection f0, fl9 f2 * which separates the points of X and

generates the topology of X {in the sense that the sets fr\a, b) are a sub-basis of

the topology of X). Then X admits smooth partitions of unity subordinate to any

open cover.

Proof. The collection {fi~ι{a, b): i G N, α, b rational} is a countable

sub-basis for X. The collection %^ of opens is closed under finite intersec-

tions [36], hence includes the countable subcollection consisting of all finite

intersections of the ff\a9 b). Thus GΆΊC contains a countable (hence σ-locally

finite) basis of X. Now apply Theorem 6.1 and Remark 1.

Applications of Theorems 6.1 and 6.2

Theorem 63. Let X be a simplicial complex in the strong {metric) topology,

regarded as a differentiable space {see §1, Example 5). Then X admits smooth

partitions of unity subordinate to any open cover.

Proof. Let A be the set of vertices of X, and let {ta}{a G A) be the

barycentric coordinates. Define u: X -*co{A) by u{x) = {ta{x)). One verifies

easily (see Remark) that u is a homeomorphic embedding, and it is trivial that

xa o u = ta G CCO{X). Now apply Theorem 6.1.

Remark. The strong topology on a simplicial complex X with vertex set A

is defined in any of the following three equivalent ways:

(1) {t~x{c, d)} {a G A,c,d G R) is a sub-basis for the topology of X.

(2) X is a metric space with metricpλ{x,y) = (Σa{ta{x) - ta{y))2)*.

(3) X is a metric space with metricp2{x,y) = supj/α(;c) - ta{y)\.

The equivalence 1 <=> 2 is well-known and easily proved; the equivalence

2 <=> 3 can be proved easily using the identity Σta{x) = 1.

Theorem 6.4. The infinite-dimensional Lie groupoid Jq {see §1, Example 4)

admits smooth partitions of unity.

Proof. The coordinates x', y\ yι

a {a = (ax, , απ)) (ibid.) are a count-

able collection of smooth functions on Jq which separate the points of Jq and

generate its topology. Now apply Theorem 6.2.

Theorem 6.5. Let X be a differentiable space admitting smooth partitions of

unity and having a metrizable topology. Then any topological subspace Y c X

with its induced structure of differentiable subspace {see §1) admits smooth

partitions of unity.
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Proof. By Theorem 6.1, X admits a smooth embedding u:X -> co(A) for
some A. Then u\ Y is a smooth embedding of Y into co(A), so that Y admits
smooth partitions of unity, again by Theorem 6.1.

Remark. For Y closed this result is obvious (see Theorem 1.1), but
Theorem 6.5 applies to any subspace Y.

Although we have already shown that every simplicial complex (in the
strong topology) admits smooth partitions of unity, it is of interest to exhibit
one explicitly in a special case. In particular, consider the infinite Euclidean
simplex Δ00 in the strong topology with vertices 0, 1, 2, and barycentric
coordinates t0, tv f2, . Let l^ = {ί, > 0}; then {Uj) is an open cover of
Δ00. Now {/,} is a point-finite (but not locally finite) partition of unity, with
{', > 0} C Ur

Following [10], we can construct a locally finite (but only continuous)
partition of unity {wf} with {«, > 0} c Ug by setting

u[ - max 0, t, - 2 tj),

ui / Σ
0

uj (foe sum is locally finite).

If we replace max(0, s) by any smooth function g(s) which is zero for s < 0
and positive for s > 0, then we get a smooth partition of unity {ϋ,} instead of
{w,}, but still only with {v( > 0} c Ut. To construct a smooth partition of
unity {wj subordinate to { L }̂, we must have the stronger condition Cl{{wt >
0}) c Ur To obtain this, let g be as before, and set

j-0

This is defined since if W/(JC) = 0 for all i, then u,(x) < (l/2)'+ 2, so that

l- Σ,v,(x)< Σ ( l / 2 ) ί + 2 = i
1 = 0

contradiction. We see that
suppί^ ) = C/({t% > (l/2) / + 2}) C {Vj > 0} c Uj,

so that {Wj} is subordinate to {ί^}, and {suppOv,)}, is locally finite. Hence

{Wj} is a smooth partition of unity on Δ00 subordinate to { ί^}.

7. De Rham cohomology of simplicial complexes

In this section we show that the differentiable space de Rham complex of
any simplicial complex X, using either the weak or the strong topology on X,
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computes the real cohomology of X. We compare these cochain complexes

with Whitney's complex of compatible forms.

We start by recalling some topological facts about simplicial complexes.

Let X be a simplicial complex, and B its set of vertices. As we have remarked,

there are two topologies on X, weak and strong; we shall designate these by

Xw and X5 respectively. Recall that U c Xw is open if and only if U Π S is

(relatively) open in S for every (finite) simplex S of X. On the other hand, the

strong topology on X is defined as the coarsest topology (fewest open sets)

making all the barycentric coordinate functions tb (b G B) continuous; equiv-

alently, it is defined by the metric p(x, y) = (Σb(tb(x) - tb(y)γjp. X is para-

compact in either topology. It is clear that id: Xw —> Xs is continuous. Dowker

[12] showed that Xw and Xs are homotopy equivalent. We recall the explicit

homotopy inverse u: XS^>XW constructed by Milnor [22]. Let {ub} be a

(continuous) partition of unity subordinate to the star open cover { Ub}b(EB of

Xs(Ub = {tb>0}).

Define u: Xs -> Xw by

u(x) = (ub(x))b(ΞB

Then u is continuous and maps some open neighborhood of each x E. Xs into

some finite subcomplex of X; it also maps each simplex of X into itself. Let

h = {ht} (0 < t < 1) be the linear homotopy with h0 = id^ and Λ, = u. Then

h: Xw X / -» Xw and h: Xs X / -> Xs are continuous [22], which shows that u

is indeed a homotopy inverse to id.

The preceding discussion can be adapted as follows to show that id: Xw -+

Xs is a smooth homotopy equivalence of differentiate spaces. In light of

Theorem 6.3, we can choose {ub} to be a smooth partition of unity. Defining u

as before, we see that tb ° u = ub, so that u is a smooth morphism of

differentiate spaces. Also, tb ° h = (1 — t) tb + t ub, which is a smooth

function on both Xw X I and Xs X /. Hence A is smooth with respect to

either topology. Thus we have proved

Theorem 7.1. Let X be a simplicial complex. Then id: Xw -> Xs is a smooth

homotopy equivalence of differentiable spaces.

With the aid of the results of §5, we can now prove the de Rham theorem

for simplicial complexes.

Theorem 7.2. Let X be a simplicial complex, in either the weak or the strong

topology. Then the maps

are isomorphisms.

Proof. By Theorem 7.1 and the smooth homotopy invariance of all three
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cohomology theories, it suffices to consider the case X = Xs. Now let Ub =
{A > °} (= s t a r 0>)) a s before, and for each abstract simplex σ =
(b0, , bn) of X denote Γ\bξΞσ Ub by Uo. Then ί/σ = star(σ), and there is a
linear deformation retraction h of Ua onto the barycenter xσ of Sσ (the
geometric simplex corresponding to σ) defined by

h:UσXl->Uσ,

(1 -/)/,(*) + //(n + 1) iffceσ,

Furthermore, the explicit formulas show that A is smooth. It follows by
smooth homotopy invariance that H*(Uσ) = H*(pt.) = R for H = /fM, //,m,
and i/s ing. If we now apply Theorem 5.5, using the open cover { Ub] with
subordinate smooth partition of unity {ub}, the theorem follows immediately,
q.e.d.

Theorem 7.2 shows that A*(XS) and A*(XW) are commutative cochain
models for the real cohomology of any simplicial complex X. We now ask
how these cochain complexes are related to each other and to the Whitney
model A *(X) of compatible forms on the simplices of X. Recall [39, p. 226]
that a cochain ω E A*{X) is defined to be a collection {ωσ G A*(Sσ)}, where
σ runs over the abstract simplices of X, Sσ is the geometric simplex corre-
sponding to σ, and {ωσ} satisfies the compatibility condition ωσ|ιSτ = ωr if
T c σ. Actually, Whitney worked with "flat cochains" rather than smooth
differential forms, but HA*(X) = H*(X; R) in both cases (see [40] and [7] for
proofs).

There are canonical homomorphisms

here a = id*, where id: Xw —» Xs, while β is defined by

Although a and β induce isomorphisms in cohomology (as can be seen by
integrating r̂-forms over r̂-simplices to map all three theories to the simplicial
cohomology of X), they are not in general isomorphisms at the cochain level.
The precise relationship between the three cochain complexes is given by the
following theorem.

Theorem 73. (i) For any simplicial complex X, the maps a:
A*(XW) andβ.A*(XW) -* A*(X) are injections.

(ii) IfX is locally finite, then a and β are isomorphisms.
(iii) IfX is not locally finite, then a and β are both strict inclusions.
The proof of this theorem is divided into Lemmas 7.4 through 7.8.
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Lemma 7.4. The map a: A*(XS) -> A*(XW) is injective for any simplicial

complex X.

Proof. Observe first that the weak and strong topologies agree on finite
subcomplexes of X, and that every plot φ: E -> Xw factors locally through a
finite subcomplex (since E is locally compact and every compact subset of Xw

is contained in a finite subcomplex [39]).

Let ω G ker α, and suppose that ω φ 0. Let φ: E -» Xs be a plot such that
φ*ω is nowhere zero. (We can find such a plot by starting with a plot φ:
L-*XS with φ*ω T^ 0 and restricting suitably.) Let X(n) be the Λ-skeleton of X
(a closed subspace of A",) and let Cn = φ~ιX(n\ Then {Cn} is a countable
closed cover of is, so by the Baire category theorem [13, p. 250] (using the
local compactness of E) some Cm has a nonempty interior U. Then φ\U:
£/ -• Z ( m ) -> X is a plot of Xw9 so that 0 = (φ| £/)*ω = Φ*ω| U. This contradic-
tion shows that ker a = 0.

Lemma 7.5. Γλe / n ^ /?: A*(XW) -> A?(X) is injective for any simplicial

complex X.

Proof. Let ω G ker β, and suppose that ω =£ 0. Let φ: is -» A^ be a plot
for which φ*ω is nowhere zero. By restricting E to some open subset we may
assume that φ factors through a finite subcomplex Y (Z X. Assume that Y has
been chosen to be minimal (for the fixed restricted E), and let S be a
top-dimensional simplex of Y. Then L = (def.^'^int S) C E is open and
nonempty. But φ|L factors through S, which implies that 0 = (φ|L)*ω =
φ*ω\L. This contradiction shows that ker β = 0. q.e.d.

It follows from Lemmas 7.4 and 7.5 that we can regard A*(XS) and A*(XW)
as subcomplexes of A *C{X).

Lemma 7.6. If X is a finite simplicial complex, then A*(XS) = A*(XW) =

Proof. The first equality follows from the fact that the strong and weak
topologies agree on finite complexes; we will denote A*(XS) and A*(XW) by
A*(X). For the second equality, it suffices (by Lemma 7.5) to show that β:
A*(X) -» A*(X) is onto. We use induction on the total number/? of simplices
of X. For/? = 1 we have X = {0} and the result is obvious. Suppose the result
has been proven for/? — 1, and that X has/? simplices. Let S be a top-dimen-
sional simplex of X, and assume that the vertices of S are labelled 0,
1, , n. Now y = (def.)* - int S has p - 1 simplices, so that A*(Y) =
A*{Y). Let U = {Σ?β0 h > °) C X\ then U is a neighborhood of S. A
smooth retraction r: U ̂ > S is defined by /,(r(.x)) = ^ ( ^ / Σ .o '/(*)> ' = °>
1, , n. Observe that r maps U - S to the boundary of S since S is
top-dimensional.

Let ω e i4 (Λr). Then ω\Y G ̂ c*(^) = Λ*(y). By Theorems 1.1 and 6.3,



DIFFERENTIATE SPACE STRUCTURES 277

every / 6 C ° ° ( r ) extends to some / ' e C°°(X). It follows easily (using a
smooth partition of unity and the compactness of Y) that A*(X) -* A*(Y) is
onto. In particular, ω\ Y extends to some ωι G A*(X). Then ω2 = ω — ωγ G
A*(X) satisfies ω2\Y = 0, and to show that ω G A*{X) it suffices to show
that ω2 G A*(X). But ω2\U = r*(co|5) G Λ*ί/, while ω2|int Y = 0, so that
ω2 G Λ *(Ar) as claimed.

Lemma 7.7. If X is a locally finite simplicial complex, then A*(XS) =
A*{XW) = Λ C W

Proo/. The question is a local one, so we can just apply Lemma 7.6 to the
closures of the star opens, which are finite complexes.

Lemma 7.8. If X is a simplicial complex which is not locally finite, then

A*{XS) § A*{XW) £ Λ*(X).

Proof. Let 0 be a vertex contained in infinitely many 1-simplices, includ-
ing, say, (01), (02), . Define/: X -> R by

/(*) - Σ ntn(x).
/ι = l

Then/is well-defined and smooth on each simplex, so that/ G A%X). But/
is not a smooth function of finitely many /, in any neighborhood of 0 in Xw,
so that/ <2 C°°(XW) = A°(XW). Now pick g G C°°(R) with g~\0) = (-oo, 0).
Define A: X->Rby

Kx) = Σ g(tn ~ l/n).

Then h G C 0 0 ^ ) = ^^A^), since Λ is a locally finite sum on Xw. On the
other hand, h & C°°(XS) = Λ 0 ^ ) since A is not a smooth function of finitely
many /, on any strong neighborhood of 0.

8. Classifying spaces and geometric realizations

If C is a topological groupoid (= topological category with inverses), then
its Milnor- Buffet- Lor classifying space [5] BC is defined to be the space whose
points are collections <{*,}, {%}> (i,j G N) satisfying

(1) {tg} is a point of the infinite Euclidean simplex Δ00 (i.e., tt > 0, all but
finitely many tt are zero, and Σ/, = 1),

(2) cϋ G C is well-defined only when tttj φ 0,
Q)cycjk = cik when W^O.
Remark. This is not the same as Milnor's and Buffet-Lor's original

definition of BC as EC/C, but is equivalent to it; see [32].
The strong topology BSC on BC is defined to be the coarsest topology
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making the functions /,.: BC -»R and cy: {titJ=£θ}-*C continuous. The

weak topology BWC on BC is defined as follows. Let NC be the nerve [26] of

C; this is a semi-simplicial space with

NC[0] = {objects of C},

NC[n] = (composable n-tuples (cv , cΛ) of moφhisms in C}

(i.e., cλ ° c2 ° ° cn is defined),

and with face maps

9,: NC[n] -* NC[n - 1], i = 0, , w,

defined by omitting or composing morphisms (see [26], [1]). Now if S(σ) is the

geometric Λ-simplex of Δ00 with vertices i0 < iι < ' ' ' < in £ σ, then S(σ) X

iVC[/i] maps to BC by

where

[ 0 if i' φ /0, - - , /„,

C * + l ° C * + 2 ° ' # * ° Cm ^ '' = W = 'm ^ h k < VH,

cjy if i = ιΛ,y = /m with k > m,

left identity of q if i = j = /0,

right identity of ck\f i = j = ik with Λ = 1, , Λ.

These maps induce an isomorphism of sets

Π S(σ) X NCΪn]/ > BC,

where ~ is identification via the face maps:

(t, c) EL S(σ) X NC[n] ~ (t, djc) e S(9,σ) X NC[n - 1].

Here / G 5(^σ) c S(σ) c Δ00, c G NC[n], and 9yσ means σ with /} omitted.

The weak topology BWC is defined by putting the quotient topology on BC

with respect to this map.

More generally, if X is any semi-simplicial space, its unwound geometric

realization μ(X) (called the Milnor geometric realization by torn Dieck [35];

see also [23, Appendix A]), is defined by

μ(X) = Π S(σ) X X\n]/~ ,

where

(f, x) ~ (t, d,x), (t e S(d,o) C 5(σ), x e X[nλ).
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The weak topology μ»{X) on μ(X) is defined to be the quotient topology
under the identification map, which we denote by π. For example, μ^ζNC) —
BWC. It is also possible to define a strong topology μs(X) on μ(X) in such a
way that μs(NC) = BSC. This works as follows. Observe first that the bary-
centric coordinates tt of Δ00 pull back to global functions (also denoted *,.) on
μ(X). Let Ui = tr\0, 1] C μ(X); the collection { Ug) is called the canonical
open cover of μ(X). For each n and each abstract ^-simplex σ of Δ00, let
Uσ = Π, e σ ί̂  , and let a map

be defined by

jσ\S(τ)XX[p]:π(tfx)^fστ(x),

where/? > n, τ is an abstract/7-simplex of Δ°° containing σ, t G 5(τ), a n d ^ :
A"[/7] —» X[w] is the map corresponding to the inclusion σ c T of ordered sets
in the semi-simplicial structure of X. We define the strong topology μs(X) on
JU^A") to be the coarsest topology making all the maps tn andyσ continuous.

Example. If X = NC and σ = (ι0, , iΛ), then

Λ({',}. {«(,}) - ( c V , c w •••, ciii) e

Clearly the topologies μs(NC) and BSC are the same.
We now discuss the de Rham cohomology of μ(X), and note that BC is

included as a special case.
Definition. Let I b e a semi-simplicial object in the category of differen-

tiable spaces. Then μw{X) (resp. μs(X)) is given the smallest differentiate
space structure which makes the maps t : X ->R andyσ: Uσ -^X[n] smooth.
(Note that these maps are continuous on both μ^iX) and μs(X) ) Explicitly,
the smooth functions on μ(X) are ti9 g ° j σ (where g E C°°(ί/), U open in
^[n]), and all functions which locally (on μ^Λ"), resp. μs(X)) are smooth
functions of these.

The de Rham cohomology of μ(X) can now be studied by techniques
similar to those used on simplicial complexes in the preceding section.

Theorem 8.1. Let X be a semi-sinφlicial object in the category of differ en-
tiable spaces. Then id: μ^iX) —> μs(X) is a smooth homotopy equivalence.

Proof. Let {«,} be a smooth partition of unity subordinate to the canoni-
cal open cover of Δ00 = μ(0) (see §6). Define

u(π(t, x)) = ίr((

where / e S(σ) c Δ00, σ is an Λ-simplex, («,(/)) G S(σ), and x G X[n], The
function u is continuous as a map from μs(X) to μ^iX), for if t G int(S(σ)),
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then in a neighborhood W of π(t, x) E μs(X) we have Uj = 0 for all j £ σ

(here we use the fact that {wj is actually subordinate to the canonical open

cover) and tt > 0 for all i G σ, so that u\ W factors through S(o) X X[n] via

the map [(wίo, , uin), jσ], where (/0, , /„) = σ. Furthermore, u is

smooth, since tt ° u = wf, while yσ ° u =jσ. The linear homotopy A: μ(A') X /

-* μ(X) from the identity to u defines smooth morphisms A: μs(X) X /-»

ft(J!f) and A: μ J X ) x / -> ^ ( X ) analogous to those of Theorem 7.1.

Lemma 8.2. The maps j σ : Uσ -» Λ^Λ] (t/σ c ^ ( X ) ) are smooth homotopy

equivalences.

Proof. The fact thatyσ is a continuous homotopy equivalence was proved

in [23, p. 125] (using the weak topology, but the maps there are continuous in

the strong topology, too). The homotopy inverse is the inclusion

iσ:X[n]^{bσ] XX[n] c S(σ) X X[n]

where bσ is the barycenter of S(σ), and we use the linear homotopy Ho:

Uσ X / -> Uσ from id to ija where the map jσiσ is the identity. Now as in the

proof of Theorem 7.2 Hσ pulls back tt to a smooth function, while for any

simplex p, the mapyp ° Ha equals^ wherever it is defined. It follows that Hσ

is smooth.

Theorem 83. For any semi-simplicial differentiable space X9 the de Rham

cohomology of μ(X) (in either topology) can be computed by

HDR(μ(X)) = HD(A*X,),

where A*X% is the double complex ®pqA
qXp with de Rham coboundary d:

A q —» A q + 1 , semi-simplicial coboundary

8 = 2(-l)

and total coboundary D = d + (-l)*δ. This isomorphism is induced by cochain

homomorphisms

where % is the canonical open cover of μ(X).

Proof. Since % admits a subordinate smooth partition of unity (pulled

back from Δ00), Theorem 5.4 implies that

Now the mapsyσ: Uσ -^> Xp (σ = σp, a/?-simρlex) commute with the face maps

9,: Uσ c %9σ and 9,: Xp -+Xp_v and therefore induce a homomorphism of

double complexes
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Filtering byp and computing spectral sequences, we get

J HSR(Xβ)->HtΛ%)- Π HtΛ{U.)- Π H*R(Xp)

at the Eλ level. But the last term is just the semi-simplicial unwinding of the
co-semi-simplicial module p -» H%R(Xp) (see [23, Appendix A] and also §9
below). Since unwinding does not change δ-homology [23, p. 118], it follows
that j * induces an isomorphism of E2 terms. Since j * was induced by a
cochain homomorphism, it follows that it induces isomorphism in total (D-)
cohomology.

Corollary 8.4. Let X be a semi-simplicial differentiable space. If the de
Rham isomorphism HDR = Hsm = Hsing holds on each Xp, then it holds on
μs(X)andonμw(X).

Proof. It is known [23], [3] that HsiΆg(μ(X)) = HD(S*(Xj); in fact, this
follows from Theorem 5.3 using an argument similar to that of Theorem 8.3.
A similar proof shows that Hsm( μ(X)) = HpζS^XXJ). Inspection shows that

-> Hsm(μ(X)) <- Hά

commutes. Filtration of the three double complexes leads to isomorphic Ex

terms, by hypothesis, hence the maps in the diagram are all isomorphisms,
q.e.d.

We observe that in proving Theorem 8.3 we used the Cech-de Rham
complex of the canonical open cover of μ{X\ which always admits a smooth
partition of unity no matter what X is. For some applications, however, we
will need to know when the sheaf C°°μ(X) is fine. The following theorem
gives a convenient sufficient condition.

Theorem 8.5. Let X be a semi-simplicial differentiable space such that each
Xn has a metrizable topology and admits smooth partitions of unity {subordinate
to any open cover). Then μs(X) is metrizable and admits smooth partitions of
unity, and the same holds for any subspace of μs(X). In particular, the sheaf
C°°μs(X) is fine, as is its restriction to any subspace of μs(X).

Proof By Theorem 6.1, for each n there exist a set An and a smooth
embedding /„: Xn -> co(An) c R Λ . Let {ί/,.} be the canonical open cover of
μ(X). For each Λ-simplex σ = (/0, ••' ,/„) letyσ: Uσ -> Xn be as before, and
let to = /, // f, : μ(X) -» R For each k E N define a smooth function gk:
R -?[0, 1] with & f(0, 1] = (2-<*+ 1 ), 2"<*-1)). For each k, n G N and /ι-simplex
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σ, define

fknσ

/*».(*)-ί* ('σ (*
Each fknσ is a smooth morphism, and for each x G μ(X) only finitely many

fknσ(x) are nonzero. Now let A = N u U k^tO An. Define a map

by taking the direct product of the maps (/0, tv ):μ(X) -»Δ°° c co(N) c
RN and the maρs/rtΛσ. One sees easily that F factors through co(A) and that F
is smooth. Furthermore, F is an embedding; this follows from the fact that
locally we can always recover the map j a as f^ι(fknσ/gk ° O by choosing k
suitably. A second application of Theorem 6.1 (together with Remark 1 after
it) now shows that μs(X) is metrizable and admits smooth partitions of unity.
Theorem 6.5 shows that subspaces of μs(X) have the same properties.

Examples. BSG and BsJq admit smooth partitions of unity subordinate to
any open cover, but BYq does not. However, Theorem 8.3 is valid for all three
spaces.

9. Comparison of different de Rham theories on geometric realizations

Let X be a semi-simplicial manifold. There are four cochain complexes
which we can use to compute H%R(μ(X)) (which equals H*iΏg(μ(X)) if each
X[n] satisfies a de Rham isomorphism):

1. The total complex of the double complex A*X+ studied by Bott,
Shulman and Stasheff [3] (see above, §4).

2. The complex A*(\\X||) of J. Dupont [14] and C. Watkiss [37], in which an
Λ-form φ is defined as a sequence of Λ-forms φ(/>) E A n(Δp X X) satisfying
the compatibility conditions

(3, X i d ) V ° = (id X 9,) V " 0

on Δp~ι X Xp for all / = 0, ,p and all/? = 1, 2, , where 3,.: Δp~ι -*
Ap and 3,:: Xp -> Xp_ λ are face maps.

3. The complex A*(μw(x)) defined in §8.
4. The complex A*(μs(X)) of §8.
In this section we shall compare these four complexes, as well as two more

complexes obtained by "unwinding" complexes 1 and 2. We will see that the
six complexes are chain homotopy equivalent (c.h.e.), but are not isomorphic.

We first recall the definition of semi-simplicial unwinding [23, Appendix A].
Let Zn be the set of strictly increasing (n + l)-tuples σ = (;0, , /„) of
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nonnegative integers. One defines face maps 3y: Z n -» Zn_x by
9y('o>β " * > *j>' ' ' > O = (*o> •••»'}»•••> «„)>./ = 0, , Λ. If M is a semi-
simplicial module, then the unwinding M X Z of M is Xht facial module (like a
semi-simplicial module but with only face maps defined) ΛH» Θ σ e Z h Λ/π

with the obvious face maps. Dually, if M is a co-semi-simplicial module, then
its unwinding M X Z is the co-facial module n ι-» Π σ € Ξ Z ; Mn.

Theorem 9.1. [23, p. 118]. Unwinding does not change the homology of a
semi-simplicial or co-semi-simplicial module under the boundary map 8 =
Σί-iyfy. More exactly, if M is a semi-simplicial (resp. co-semi-simplicial)
module, then the surjection M X Z -+ M {resp. injection M —» M X Z) is a
chain homotopy equivalence.

(Remark. C. Watkiss [37] proved this independently for co-semi-simplicial
modules. He uses "simplicial" to mean simplicial or semi-simplicial in our
terminology, while he reserves "semi-simplicial" for what we call "facial".)

Similarly, if X is a semi-simplicial space, then its unwinding X X Z is the
facial space « B I Π X Z Λ . If \\X\\ is the usual unnoπnalized geometric
realization of X, defined by

- ΠΔ" X XJ~ , where (/, θ,, x) ~ (3,7, x), t G A""1, x G Xn,
n

then HA" X Z\\ = ̂ (X). (This makes sense even though X X Z is not a
semi-simplicial space, the degeneracy maps not being defined).

Now the Dupont-Watkiss construction makes sense on X X Z (see Watkiss
[37]), so we can speak of ̂ 4*(||Ar X Z||), which we can think of as compatible
collections of forms on the S(σ) X Xp, where S(σ) is a (nondegenerate)
geometric /^-simplex of Δ00.

Finally, we let A*X+ X Z be the algebraic unwinding of the co-semi-sim-
plicial algebra A *X+ of Bott, Shulman, and Stasheff.

In [14], Dupont showed that integration of forms over Δp (which lowers the
degree of a form by/?) defines a chain homotopy equivalence (c.h.e.).

The same procedure defines a map

f2:A*(\\X X Z\\)->A*Xm X Z.

Dupont's proof for/! also shows that/2 is a c.h.e. (see also Watkiss [37]). On

the other hand, the injection

^>A*X,L X Z

is a ch.e. by Theorem 9.1. It follows that the projection \\X X Z\\ -> ||AΊ|

induces a c.h.e.
UA*(\\X\\)^A*(\\XXZ\\).
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Now Theorem 8.3 and its proof show that A*(^(X)) and A*(μs(X)) are
chain homotopy equivalent to A*X+. Thus we see that all six complexes
which we are discussing are chain homotopy equivalent.

We now focus our attention on the exact relationship between our com-
plexes A*(^(x)) and A*(μ£X)) and the unwound version A*(\\X X Z||) of
Dupont and Watkiss' complex. The quotient map

regarded as a morphism of differentiable spaces, pulls back a form on
to a compatible collection of forms on ||X X Z\\, and hence defines a map

The identity map

id: ι^(X) -> μs(X) induces a map g: A*(μs(X))

whose chain homotopy inverse is induced by the smooth map u: μJ(A
Γ)—»

μ»(X) which was defined in the proof of Theorem 8.1 using a smooth
partition of unity. The sequence

) ( \ \ X

is superficially analogous to the sequence

A*(Y,)-+A*(YW)^>A*Y

studied in §7, where Y is a simplicial complex in the strong or weak topology,
and A *( Y) is the (Whitney) complex of compatible collections of forms on its
simplices. We shall imitate our comparison of the terms in the latter sequence
to study the former sequence. A major difference between the two cases is
that while the strong and weak topologies on a simplicial complex agree when
restricted to finite subcomplexes, this is in general not the case for geometric
realizations μ(X), where by a finite subcomplex of μ(X) we mean that part of
μ(X) lying over a finite subcomplex of Δ00. Nonetheless, we have

Theorem 9.2. The maps A*(μs(x))Λ Λ *(/^(X))Λ A*(||X X Z||) are strict
inclusions. In general, the three cochain complexes disagree even when restricted
to a finite subcomplex of μ(X). They are, however, chain homotopy equivalences,
with chain homotopy inverses induced by the map u: μs(X) -» μJ^X) of Theorem
8.1.

The proof will be broken up into a sequence of lemmas and discussions.
Lemma 93. The map g: A*(μs(X)) -> A*(μw(X)) is infective for any

semi-simplicial differentiable space X.
Proof Let η G ker g and suppose η φ 0. As in the proof of Lemma 7.4

we can construct a plot φ: E —» μs(X) such that φ*η is nowhere 0, and by
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applying the Baire category theorem we can restrict E so that φ(E) lies over a

finite subcomplex of Δ00. This in itself does not guarantee that <f> factors

through μ^iX), but if we restrict E further so that φ(E) lies over the interior

of some simplex of Δ00, then φ does factor through ^(X), so that φ*η = 0.

This contradiction completes the proof.

Lemma 9.4. The map h: A*(μw(X))-^ A*(\\X X Z\\) is injectiυe for any

semi-simplicial differentiable space X.

Proof, Imitate the proofs of Lemma 9.3 and Lemma 7.5.

Lemma 9.5. The inclusions A*(μ£X)) c A*{μw{X)) c A*{\\X X Z | | ) are

always strict inclusions.

Proof. If we replace X by the trivial semi-simplicial space P with Pn a

single point for each w, then μ(P) = Δ00, and our inclusions reduce to

A*(A?) c A*(A%) c Λ*(Δ°°), which are strict inclusions by Theorem 7.3

since Δ00 is not locally finite. The functions exhibited in the proof of Lemma

7.8 to prove this fact pull back to μ(X) and provide examples to prove the

present lemma, q.e.d.

Actually, a stronger statement is true. If we restrict the three cochain

complexes to a finite subcomplex of μ(X), they are still not isomorphic, in

general (unlike the case of simplicial complexes). This phenomenon can be

illustrated by considering the semi-simplicial space X = NR, where R is the

real line regarded as a topological group under addition. The portion of

μ{X) = BR lying over Δ1 c Δ00 is then the suspension of R, namely

SR - / X R/[(0, r) ~ (0, s); (1, r) ~ (1, s), for all r, s G R],

where / = [0, 1], toplogized in either the weak topology SR^, as a quotient of

/ X R or the strong topology SRS, which is the coarsest topology in which the

coordinate projections

t: SR -> /,
r: SR - O* - 1* -H> R

are continuous, where 0* = image of (0, r) (any r £ i ) , l * = image of (1, r).

Any smooth function /: / X R —» R which is constant on {0} X R and on

{1} X R defines a Dupont-Watkiss-smooth function f0 on SR. In order for/0

to lie in C 00(S'ΛH;), however, / must be a (smooth) function of t alone in some

neighborhood of {0} X R and {1} X R c I X R, while for f0 to lie in

C ^(SR^, f must be a function of / alone on some such neighborhood of the

special form { ί < ε o r / > l - ε } . For example, the function tr restricted to

{t <\) a SR is Dupont-Watkiss smooth but not weak-smooth, while if

g G C°°(R) has support = [0, oo) then the function/: SR - 1* -> R defined
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by

*">-{?' - l//), / > o,

is weak-smooth but not strong-smooth.

This example can also be used to illustrate the problem with trying to pull

back Watkiss-Dupont forms on ||ΛΊ| or \\X X Z\\ to a manifold M via a

smooth map/: M —»||AΊ| (using some reasonable definition of what it means

for/ to be smooth) or/: λf-*\\X X Z\\ = μ(X) (using our previous defini-

tion that / be a smooth morphism). If such a map happens to factor locally

through Ππ Δ
n X Xn (resp. ΪIn Δ" X Xn X Zrt), then any Watkiss-Dupont

form η G Λ*(||AΊI) or A*(\\X X Z||) can be pulled back locally by /. The

local pullbacks will agree because they are pulled back from a compatible

collection of forms. Therefore a global pull-back/"(η) on M is defined in this

case. In the general case, however, one can have a smooth morphism /:

M -» μ^{X) which does not factor locally in this way, and then one may not

be able to pull back Watkiss-Dupont forms. For example, consider the map

/: (-0.5, 0.5)

x>0,

x = 0,

Now / is continuous, and it is also smooth because t <> f(x) = x2 G

C°°(-0.5, 0.5), while r °/is smooth on (-0.5, 0.5) - {0}. (Recall that r is not

defined on 0* e SR). The function tr is Watkiss-Dupont-smooth on {t <

1/2} c SR, but its pullback (tr) °/ equals 4x2 when x > 0 and 3x2 when

x < 0, and is therefore not smooth.

The same map u: μs(X) -> μ^,(X) which is a smooth homotopy inverse of

id: μ^{X) -> μs{X) (see Theorem 8.1) can be used to construct an explicit

chain homotopy inverse

k:A*(\\XxZ\\)^A*(μί(X))

to the map

hg:A*(μs(X))^A*(\\XxZ\\).

To do this, we observe, following the proof of Theorem 8.1, that u factors

locally through ^(σ) X Xn, where S(σ) is an ̂ -simplex of Δ00, so that a form

in >ί*(||Ar X Z||) can be pulled back locally (and hence globally) via u to a

form in A *( μs(X)). This defines the map k. The linear homotopy E: μs(X) X

I -+ μs(X), called h in Theorem 8.1, from the identity to u is built from a
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collection of smooth homotopies

Eσ: S(σ) X Xn X I ^ S(σ) X Xn,

Eσ(t, x, s) = [ ( ( 1 - s)tio(t) + suio(t), • • • , ( ! - s)tin(ή + suin(ή), x],

(where t E S(σ) c Δ00, σ = (i0, , /„)), which are compatible under identi-
fications via face maps. A chain homotopy from the identity map on
A *( μs(X)) to k ° hg is obtained by composing

X I)±>A*

where L is the usual homotopy operator (see §3). Similarly, a chain homotopy
from id to hg ° k is given by L ° {Eσ}*. To summarize we have

Lemma 9.6. The inclusions

C Λ*(ft,W) C A*(\\X X Z\\)
are chain homotopy equivalences. A chain homotopy inverse for any of the three
inclusions is induced by the smooth map u: μ(X) -> μ(X) defined in the proof of
Theorem 8.1.

Intuitive Explanation. The example of the space SR discussed above
shows that when restricted to finite subcomplexes of μ(X), the three de Rham
theories A*(μs(X)), v4*(iuw(Λ

r)), and A*(\\X X Z\\) differ in their behavior
near the boundary of each simplex. The first two theories are more controlled
near boundaries, and therefore forms in those theories can always be pulled
back via smooth morphisms/: M —> /x,^). The smooth map u: μ(X) -» μ(X)
used in Lemma 9.6 pushes a neighborhood of the boundary of each simplex
into the boundary, and therefore "tames" forms near the boundary when it
pulls them back.

10. Applications

In this section we shall discuss some applications of differentiable spaces.
We believe that the potential applications are much more numerous than
those presented here, because the differentiable space construction is very
general. Indeed, the de Rham theorems of §5 can be thought of as giving
criteria for selecting a distinguished class of functions on a space X which
yields the correct real cohomology of X when plugged into the differentiable
space construction.

The applications which we have discovered so far are in the realm of
characteristic classes of bundles and of foliations. One such use involves
extending smooth and Ck cohomology theories on spaces with two topologies
to the classifying space for foliations in its germ (BTq) and jet (BJq) topolo-
gies. Most of the details of this application have already appeared in [24], so
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we will only sketch the results and fill in the gaps in that account. The history

of this problem begins with Bott and Haefliger [2], who defined a singular

cohomology theory H*(X' -* X) on spaces X' which possess a coarser

topology X, based on singular real-valued cochains on X' whose values vary

continuously when simplices (of X') are moved continuously through X. They

conjectured that H*(BTg^BJq) equals H*(WOq); the latter was already

known (by the work of Bott, Haefliger, Kamber, Tondeur, Godbillon, Vey, et

al.) as the algebra of potential characteristic classes for foliations which can

be constructed from curvatures and connections by exploiting the Bott

vanishing phenomenon. In [23] and [24] we studied the properties of Hc and

of other continuous, smooth, and Ck cohomology theories on the category of

morphisms of manifolds. In particular, we defined the Ck cohomology theory

Tkmn(x' -> x) = HTS*mn(x' -> x)> w h e r e Γ = global sections and S ^ * '

-» X) is the sheaf on X generated by real-valued cochains on the Cn singular

ςr-simplices of X' which vary in a Ck manner when simplices (of X') are

moved through X in a Cm manner. In order to extend this theory to

(BTg -» BJq) we observed that its definition makes sense in any category of

topological spaces on which some notion of Cn functions exists for each

n = 1, 2, , oo. The category of differentiable spaces is ideally suited for

this purpose-one defines a function /: X —> R to be Cn if it is locally a Cn

function of finitely many smooth functions.

The theory Tkmn9 when restricted to morphisms (X' —> X) of paracompact

manifolds, is invariant under smooth homotopies and satisfies an extended

Mayer-Vietoris theorem (analogous to Theorems 5.3 and 5.4) relative to open

covers of X. Does Tknm have the same properties on the category of mor-

phisms (X' -» X) of differentiate spaces? To answer this, we first observe

that the sheaf S^^X' -> X) is a module over C°°X. If X is paracompact and

admits smooth partitions of unity, then C°°X is fine, implying that SZ^X' —•

X) is fine. The proof of smooth homotopy invariance goes through if
s*mn(χf x / ~ > x x I) i s f i n e a n d x x I paracompact. It follows that Tknm

is smooth homotopy invariant on the category of morphisms (X' -» X) of

differentiable spaces such that X (and hence X X /) is paracompact and

admits smooth partitions of unity. It satisfies the Extended Mayer-Vietoris

Theorem on the same category (imitate the proof of Theorem 5.4). If

{X' -» X) is a semi-simplicial object in the category of differentiable spaces,

and each Xn is metrizable and admits smooth partitions of unity, then μs(X),

all its subspaces, and all its subspaces crossed with / are metrizable and admit

smooth partitions of unity (by Theorems 8.5 and 6.1) so that we can imitate

the proof of Theorem 8.3 to obtain the isomorphism

HB(TS*kmn(X'# -» X,)).
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In particular,

Ίlm{BTq - BJq) = HD{TStmn{NTq[*} - NJg[*])).

Although this last isomorphism shows, a posteriori, that one could have

defined 1^(3^ -* BJq) without using differentiable spaces, the differentia-

ble space definition makes it easier to pull back classes to manifolds. For

example a codimension q foliation on a manifold hi gives rise to a smooth

cocycle on M with values in Γ^ which is classified by a smooth morphism /:

M ^> BTq (see §1, Example 7). A smooth one-parameter family of foliations

on M is classified by a commutative diagram

M X Id -> M X I

1 i
BTq -> BJq,

where / is the unit interval, and Id is / with the discrete topology. Such a
diagram induces a homomorphism

= HomR(/ί#(Λ/),

In other words, the elements of T£mn(BTq -» BJq) can be regarded as char-

acteristic classes of foliations which vary in a Ck manner as a foliation is

varied smoothly, but the author does not know if all Ck characteristic classes

of foliations can be obtained in this way.

Another cohomology theory on morphisms of manifolds is the smooth

theory

T -> A*X')),

(see [23]). The exact same definition works on the category fy2 °f morphisms

of differentiable spaces. The theory TDR is smooth homotopy invariant on the

whole category fy2; this is proved exactly like Theorem 3.3, using the fact that

the homotopy operator L: A*(X X I) -» A*~1(Ar) is natural in X. TDR satis-

fies an extended Mayer-Vietoris theorem on ^Dj, but only relative to open

covers of X which admit smooth partitions of unity. (The proof of Theorem

5.4 can be adapted to ^ 2

 s i n c e i m a £ e {A*X->A*X') is a module over

C°°(X).) These two properties are sufficient as in the proof of Theorem 8.3 to

prove that

for any morphism (X' -^> X) of semi-simplicial differentiable spaces; here

μ(X') and μ(X) may be given the weak or the strong topology. In case
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(A" _> x) = (Nτq .+ NJqi W e get

T*DR(BTq^BJq) - HD(imzge(A*NJq[*] -*A

which equals H*(WOq) by an unpublished result of Bott and Haefliger.

Another use of differentiate spaces is to yield universal formulas for

differential forms representing characteristic classes of G-bundles, where G is

a Lie group. We remark that Dupont [15] and Watkiss [37] have made similar

constructions in their de Rham theories, and that Shulman [27] constructed

characteristic forms in the double complex A*NG. Since H%R(BG) =

H^^BG) (by Corollary 8.4; BG can have the weak or the strong topology

here), every real characteristic class for G-bundles is represented by differen-

tial forms in A*(BG). Furthermore, since a G-bundle with smooth transition

functions on a manifold M is classified by a smooth morphism /: M —» BG

(§1, Ex. 7), these characteristic forms on BG can be pulled back to differential

forms (not just cohomology classes) on M. Since any form η on BG can be

expressed in terms of the functions tt and gtj and their differentials, it follows

that/*!] will be expressed in terms of the transition functions and a smooth

partition of unity subordinate to a trivializing open cover of M.

To construct explicit characteristic forms on BG, we mimic the Chern-Weil

approach using connections and curvatures (see [6]). Let EG be the total

space of the universal G-bundle over Milnor's BG; it is defined by

EG = (collections <ί, (g,)> such that

t = (*,.) e Δ°° and gz e G is defined when tt φ 0}

in the strong topology, the coarsest topology making all tt and gi continuous,

[21]. (EG = μ(PG), where PG is the semi-simplicial manifold

G £ z G X G

defined by the homogeneous complex of G.) The bundle projection p:

EG -> BG is defined as usual by

We make EG = μ(PG) into a differentiate space in the usual way; this

amounts to saying that/: EG —> R is smooth it is is locally a smooth function

of finitely many of the /,. and gr Let θ be the canonical g-valued 1-form on G

[18, p. 41]. Then g?θ = (defOω,. is a g-valued 1-form on {tt φ 0} c EG, and

ω = (defJΣ tyω; (where {«,} is a smooth partition of unity on EG (pulled up

from Δ°°) subordinate to the canonical open cover) belongs to A \EG; g) and

acts like a connection form for the bundle/?: EG —> BG, even though EG and
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BG do not have tangent spaces. For example, any smooth g-bundle map

E -* EG

i i
B -+ BG

pulls back ω to an honest connection form. We can define the curvature
Ω G A\EG\ g) of ω by using the structure equation [18, p. 78]

Ω = (def.) dω + \[ω, ω] = Σ <*<*' ® *, + 5 Σ ^ Λ ^ ) ® eif
i k

where {«•,.} is a basis of g, ω = Σ ω' ® ei9 and Cjk are the structure constants
of g. If φ is a g-invariant polynomial of degree k on g, then we define
Φ(Ω) e A2k(EG) as usual, following Chern-Weil [6].

Theorem 10.1 The form φ(Ω) is horzontal, i.e., there exists a form ψ G
A2k(BG) withp*\l> = φ(Ω). The form ψ w finiςue αnJ closed (dψ = 0).

Proof. Since we do not have tangent vectors on BG and EG, we must
resort to an indirect proof. We construct a form ψ explicitly and then show
that/?*ψ = φ(Ω). On {tn φ 0} c 5G, define a local section snolp: EG-^> BG
by

V < ^ ( ^ ) > ^ < ^ (ft-&,)>•

Define

where {un} is again a smooth partition of unity pulled up from Δ00. We claim
that/7*ψ = φ(Ω). To show this it suffices to show that any plot h: K-> EG
pulls back/?*ψ and φ(Ω) to identical forms in A*(K). But this follows fairly
easily from the fact that Λ*φ(Ω) = φ(Λ*Ω) and that φ of the curvature form of
any G-bundle over a manifold is a horizontal form. The other assertions are
proved similarly.

Remarks. Theorem 10.1 exhibits a factorization of the usual Chern-Weil
homomorphism (at the differential form level) through A*{BG). The proof of
Theorem 10.1 not only shows that ψ exists but also gives an explicit formula
for it in terms of the functions ui9 gy and their differentials.

The preceding applications should illustrate the usefulness of differentiable
spaces in studying real cohomology at the cochain level with differential
forms. In future papers we hope to use the differentiable space concept to
study other spaces which admit suitable classes of distinguished functions.
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