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KAEHLER MANIFOLDS ISOMETRICALLY
IMMERSED IN EUCLIDEAN SPACE

CHIH-CHY FWU

0. Introduction
In this article we investigate the properties of Kaehler manifolds which can

be isometrically immersed in Euclidean space with low codimension. For
such manifolds, the curvature tensor together with the complex structure
gives certain restrictions on the topology. Using Morse theory we obtain the
following theorem (compare [2, Theorem 1] or [4, Theorem 7.2]).

Theorem 1. Suppose that a complete Kaehler manifold M of real dimension

2n is properly isometrically immersed in a Euclidean space E2n*d (n > d). Then

M has the homotopy type of a CW-complex with cells of dimension at most

n + d, and hence Hk(M; Z) = Ofor k > n + d.

A compact Kaehler manifold is orientable and its top dimensional homol-
ogy group is nonzero, and every immersion of a compact manifold is proper.
Thus we have an immediate consequence:

Corollary. A compact Kaehler manifold of real dimension In cannot be

isometrically immersed in E2n+d (n > d).

Furthermore, if we suppose that M is of nonnegative sectional curvature,
then we can say more about the geometric structure of M (compare [1]).

Theorem 2. Let M be a complete Kaehler manifold of real dimension 2n

with nonnegative sectional curvature. Ifφ:M-> E2n+d (n > d) is an isometric

immersion, then M = C X K, the Riemannian product of C 1 (m > n — d)

and a Kaehler manifold K of real dimension In — 2m. Moreover, φ = 1 X ψ,

the product of the identity map of Cm onto E2m and an isometric immersion of K

into E2n~2m+d.

Throughout this article, we suppose all the manifolds and maps are smooth.
For general notation and definitions we refer to [3].

The author wishes to thank Professor J. D. Moore for his generous help.

1. Preliminaries

Let M be a Kaehler manifold. For each point p e Λf, TpM denotes the
tangent space at/?. An almost complex structure is a linear map / : TpM'-+
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TpM with J2 = — identity. Let < , > be the Riemannian metric on Aί, and V

the Levi-Civita connection. For tangent vector fields X, Y we have (JX,

jyy = (χ9 y> and VXJY = JVXY. The Riemann-Christoffel curvature

tensor R satisfies JR(x,y)z = R(x,y)Jz, and as a consequence,

(1) (R(x,y)Jw, Jz) = <Λ(x, y)w, z>.

Suppose φ: Λf -» E2n+d is an isometric immersion with second fundamen-

tal form α: 7̂ ,M X TpM^>NpM, where ΛΓ,M is the normal space at p

induced by φ. Without danger of confusion, we may denote the metric on

NpM by < , ) also. By the Gauss equation we have

(2) (R(x,y)w, z> = <α(;c, z), α(j>, w)> - <α(x, w), α(^, z)>,

(3) <Jl(x,^)/w, Λ> = <α(x, /z), α(>>, /w)> - <α(x, /w), α(>>, Λ)>,

for all x,y, z and w in TpM. (1), (2), and (3) lead to the following definition:

Let Wp = NpM θ NpM be the direct sum of two copies of NpM. An

indefinite inner product on Wp is defined by « | θ η , ί θ λ » = <ί, ζ) —

<η, λ>. We define a bilinear map β: TpM X 7 ^ M - > f ^ a s follows: )8(x,7)

= a(x, y) θ α(jc, Jy). In view of (1), (2) and (3) we have

(4) « β(χ, z), β(y, w)» - « β(x, w), β(y, z)» = 0.

More generally, a bilinear map β: V X F-» W from a vector space V into

another W with an inner product « , » is called a flat bilinear form if it

satisfies (4). This definition was first given by J. D. Moore in [6], where flat

bilinear forms were used to determine the topology of confoπnally flat

submanifolds.

For each fixed vector x G TpM the expression β(x)(y) = β(x,y) defines a

linear map β(x): TpM -> Wp. A vector x 0 E TpM is said to be left regular if

rank β(x0) = max{rank β(x): x G TpM) = q. Define N(β; x) = {n G
T Λ̂f: )8(x, w) = 0 for all x G T^Af} to be the null space of β(jc). A vector

e G Wp is null if « e , e}} = 0. Part (i) of the following lemma can be found

in [6].

Lemma. Suppose x0 is a left regular vector and N = N( β, x0). Then clearly

N is invariant under J and dim N > In - Id. For all (x, ή) G TpM X N, we

have

(ϊ)β(x9n)ZΞβ(x0)(TpM),

(ii) there is an orthogonal transformation J: NpM -> NpM such that a(x, Jri)

= Ja(x, n),

(in) J2a(x, ή) = -a(x, n).

Proof (i) There exist {>,.: 1 < i < q) in TpM such that {β(x0, v§): 1 < i

< q) is a basis of β(xo)(TpM). For any (x, AI) G 7],M XiVand small ί φ 0,

continuity of β implies that { β(x0 + tx, v(): I < i < q) is a family of q
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linearly independent vectors of β(x0 + tx)(TpM), and hence a basis of
β(x0 + tx)(TpM\ since dim β(y)(TpM) < q for any;; e TpM. Now β(x0 +
tx, ή) = tβ(x, ή) is in β(x0 + tx)(TpM), so for all small t φ 0

β(x, ή) Λ β(x0 + ta, t^) Λ * Λβ(x0 + '*> *>,) = 0.

By continuity of β again we have

β(x, n) A β(xo> «i) Λ Λ0(*o> t>,) = 0,

which implies β(x, ή) E jβ(xo)(7^M).

(ii) Let Wx be the subspace generated by β(TpM, N) in J^,. Suppose that
(>>,., n,) E 7],Λf X iV for i = 1, 2. By (i) there is υx in TpM such that (̂JCQ, υx)

/Zj). Since β is flat,

= 0.

So for each £ Θ i), J Θ λ e H^, we have « { Θ η, f Θ λ>> = 0. That is, Wx

consists entirely of null vectors. We choose a basis { ξ , θ η σ : l < σ < ^ }
(s = dim Wx) of ^ . Here {£,: 1 < σ < s) must be a family of linearly
independent vectors in NpM. Otherwise, Wx would contain a nontrivial linear
combination Σ aa^ θ ησ = 0 θ η (η Φ 0), which is not a null vector. By the
Gram-Schmidt process, we can suppose {£,: 1 < σ < s) is a family of
orthonoπnal vectors. Then it follows that

and hence {ησ: 1 < σ < s] is a family of orthonormal vectors. There is an
orthogonal transformation / : NpM —> iV̂ M such that /ξ,, = ησ. For (x, Λ) E
7],Λf X ΛΓ, α(x, n) θ α(x, Jn) E Wx so Ja(x, n) = «(A:, Jn).

(iii) It suffices to prove (J2a(x, n), ξ> = -<α(x, n), O for all ξ E iV^M.
Let β be the transpose of J. Define 5 = {^E NpM: (Q2 + 7)ξ = 0}, and let
B± be the orthogonal complement of BmNpM. Since Q is orthogonal, 2? and
B1- are invariant under β, and clearly Q2 + /: B1- -+ B^~ is nonsingular. If
ξ E 5 X , then there is an η E B± such that ξ = (Q 2 + 7)η, and thus
<α(x, Λ), η) = <α(*, -/2w), τ?> = <-α(^, n), β 2 ^ ) , so <α(x, Λ), {> =
<α(jcf Λ), ( β 2 + /)η> - 0. Similarly (J2a(x, n), {> - <α(*, / H {> = 0.
On the other hand, if ξ G 5, then <α(jc, AZ), ( β 2 + /)O = 0. So
<72«(Λ:, n), £> + <«(JC, π), 0 = 0. This completes the proof.

2. Proof of Theorem 1
Let φ: M -» β2n+d be an isometric immersion. By Sard's Theorem, there is

a point # E E2n+d such that L^O) = ^HφCp) ~ q\\2 is a smooth function with



102 CfflH-CHY FWU

nondegenerate critical points, where || || is the standard distance in E2n+d.
Suppose φ is a proper map; then Ma = {p E M: Lq(p) < a) = ψ~x{ψ{pY
\\\φ(p) ~ i\\2 < a) is compact for each a E R, and Morse theory can be
applied. Up is a critical point of Lq9 then for each x E TpM,

dLq(x) = (φ(p) -q,x) = 0.

Hence φ(p) - q = ξ is normal to TpM at p. The Hessian of Lq at the critical
point/? is given by

d2Lq(x, x) = <£, α(x, x)) + (x, x)9

where α is the second fundamental form of the immersion. By the lemma,
there is a /-invariant subspace N c TpM with dim N > In — 2rf, such that if
n E N, then

<fc α(/*, /*)> = <fc J2«{n, n)) = -<fe α(n, Λ)>.
This shows there is a subspace Nι d N of dimension \ dim N > n — d, on
which the bilinear form <ξ, α( , )> is positive semidefinite. Thus d2Lq is
positive definite on Nl9 so the index at the critical point p will be at most
2/Ϊ - (n - d) = n + rf. By Morse theory [4, Theorem 3.5] M has the homo-
topy type of a CW-complex with cells of dimensions at most n + d. The
Morse inequalities imply that for k > n + d9 Hk(m\ Z) = 0.

3. Proof of Theorem 2

Let φ: M -»E 2 n + d be an isometric immersion with second fundamental
form α. The relative nullity space RNp at a point p E M is defined by
ΛΛ̂  = {AZ E 7],Λ/: α(jc, Λ) = 0 for all x E 7 ,̂M}. The dimension vp =
dim RNp is called the index of relative nullity. By the lemma, there is a
/-invariant subspace Np c TpM at each point /? E M with dim Np > 2n —
Id such that for a unit vector n E TVp,

ΛΓ(π, Jή) - <α(π, n), α(/n, /«)> - <α(ιi, /π), α(n, Jn)) = -2||α(n, n)||2,

where K(x,y) is the sectional curvature of the 2-ρlane spanned by x,y. Since

the sectional curvature is assumed to be nonnegative, α(n, ri) = 0. For any

unit vector x E TpM such that <x, n) = 0, we have

K(x, ή) = (α(x, x\ α(n, Λ)> - <α(x, π), α(x, π)> - -| |α(x, n)| | 2 > 0,

hence α(;c, /z) = 0. We have proved that Np c RNp and so vp > dim Np > 2n

— 2*/. Define p0 = min{^: q E M}, and G = {q EL M: vq = v0) is an open

subset of M. The relative nullity space RNp(p E G) defines an involutive

distribution on G whose leaves are complete po-ρlanes. Let p E G be con-

tained in a leaf L. Since RNp contains a /-invariant subspace of dimension
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2m > 2n — 2d, L contains Cm which is immersed by φ identically onto E2m

in E2n+d. M is of nonnegative sectional curvature, so the Toponogov splitting
theorem [7] implies that M is a Riemannian product of Cm and K, where K is
a Reimannian manifold of dimension 2n — 2m. Since VJ = 0 on M, the
almost complex structure / leaves the direct sum decomposition TpM = TpC"
θ TpK invariant. Hence K actually is a Kaehler submanifold with the
induced complex structure. Furthermore, since the second fundamental form
of the immersion φ is of the form: α(jc, y) = 0 for x tangent to C 1 and y
tangent to K, [5] implies that ψ splits into a product of the identity map of C 1

onto E2m and an isometric immersion of K into E2n~2m+d.
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