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THE MORSE INDEX THEOREM IN THE
CASE OF TWO VARIABLE END-POINTS

JOHN BOLTON

1. Introduction

Let W be a C= complete positive-definite Riemannian manifold, and let P,
Q be submanifolds of W. If y: [0, b] — W is a geodesic of W intersecting P
and Q orthogonally at 7(0) and y(b) respectively, then y may be thought of as
a ‘“‘stationary point” of the length function L acting on the space of paths from
P to Q. If 2, is the space of continuous piecewise-smooth vector fields along
v, which are orthogonal to y and have initial vector tangential to P and final
vector tangential to Q, then the Morse index form I: 2, X £, — R is a sym-
metric bilinear map which is interpreted as the hessian of L. The index of [
is the dimension of a maximal subspace of £, on which I is negative definite,
so this is a measure of the number of essentially different directions in which
y can be deformed to obtain shorter paths from P to Q lying arbitrarily close
tor.

If Q is a point, the Morse index theorem says that the index of I is equal
to the sum of the orders of the focal points of P along 7. (See e.g., [2, Chapter
11].)

In this paper we prove a Morse-type index theorem in the general case by
defining the notion of a (P, Q)-focal point of signed order, and then obtaining
an expression for the index of I as the sum of an initial term together with the
signed orders of the (P, Q)-focal points. This is obtained in Theorem A in § 4.

Ambrose [1] and Morse [3] also have extensions to the general case. How-
ever the author feels that the present approach has advantages for two reasons.
First, the initial term is easily computed because it depends only on the second
fundamental forms S, T of P, Q respectively with respect to 7'(0), y'(b) res-
pectively. Secondly, the definition of (P, Q)-focal point is very natural and
rather easier than, for instance, Ambrose’s corresponding notion of a “con-
jugate point of P and Q.

The method of proof of Theorem A follows [1] and [2] in that an index
function i is defind on [0, b] and the discontinuities of i are analysed. Unlike
[1] and [2] however the index function in our case is not necessarily nonde-
creasing. This makes it unlikely that the ad-hoc subdivisions of [0, b] used in

Received October 27, 1975.



568 JOHN BOLTON

this paper can be avoided by using methods similar to those employed by
Osborn in [4].

The simple nature of the initial term in Theorem A makes it interesting to
obtain upperbounds on ¢ € R* in order that there be no (P, Q)-focal points on
[0, c]. This is the motivation behind Theorem B, which is stated and proved
in § 5. This theorem is similar to some of the comparison theorems proved
by Warner in [5], although the proof is rather different.

2. The index form

Notation will be as in § 1, with the additional assumptions that y is para-
meterized by arc length and prolonged so that its domain of definition is R. If
B is a C~-manifold and if b ¢ B, then B, will be the tangent space of B at b.

For each t ¢ R, let /(¢) be the tangent vector of y at y(¢), and let

W, ={XeW,y: X,/ (1)) =0} .

For each ¢t ¢ R, R(?) will be the Ricci transformation of W, into itself given
by

R(OX = RG'®, X)r'(®) ,

where R is the curvature tensor of W.

Let V be the vector space of parallel vector fields along 7, which are ortho-
gonal to y. Then the evaluation map V' — W, which sends X to X () is a li-
near isomorphism which will be used to identify W, with V. For ¢t > 0, Q!
will be the vector space of continuous piecewise-smooth maps X : [0,¢] — V
with X(0) € P, and X(?) € Q,,,, and X will be the derivative of X. Then
I': 2¢ X 2! — R will be given by

FXGY) = [RX = X,Y) + T CX() — XG0, Y (1)

0 A

+ X @) — TX(®), Y(®)) — <X(0) — 5X(0), Y(0)) ,

where the sum is over the jumps ¢, of X in 10, t[.

I' is a symmetric bilinear map and is the Morse index form arising from the
variational problem with end conditions S at O, T at ¢ as described below.

Suppose 2 is a submanifold of W intersecting y orthogonally at y(z,), and
suppose that the second fundamental form of 2 with respect to 7(¢,) is equal
to T (so, in particular 2,,, = Q,,). Consider a 1-parameter family of curves
740 < s < ¢) from P to 2 converging to y = 7, as s — 0. Let X be the as-
sociated transverse vector field, i.e., X(#) is tangential to the curve s — 7,(?)
at s = 0. If L(s) is the length of y,, then

a. L _ px, x) .
ds

b
5=0 ds? |s=o
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It is in this manner that I has the interpretation of the hessian of L as men-
tioned in the introduction.

If i(?), a(?), n(z) are the index, augmented index and nullity of I¢, it is well
known [1, p. 65] that a(z), n(¢) and i(?) are finite, so that a(r) = n(?) + i(?).

To prove Theorem A we study the way in which i(¢) changes as ¢ goes from
0 to b. In § 3 it is shown that a(?) is upper semi-continuous, and i(?) is lower
semi-continuous. Thus a(¢) and i(¢) are continuous (and hence locally constant)
at all points where n(z) = 0. The jump discontinuities of i(¢) and a(z) at a
point with n(¢) # O are evaluated in Propositions 1 and 2, and the proof of
Theorem A is completed in § 4, where an expression for i(0*) is obtained.

3. Jumps of i and a on ]0, b]

We use i(L), a(L), n(L) to denote the index, augmented index and nullity
of a symmetric bilinear map L. If X is a scalar or vector valued function (resp.
a vector field along y), then X will be its derivative (resp. covariant derivative).

The following lemma is the tool used in the analysis of the discontinuities
of i(#) and a(z).

Lemma 1. Let U be a finite-dimensional vector space, and let SB(U) be
the vector space of real-valued symmetric bilinear maps on U. Let K : ]c, d[
— SB(U) be continuously differentiable at t, e ]c,d[, and let N be the null
space of K(t,). Then 3¢ > 0 such that vy € 10, ¢[

(1) K + p) > (K@) + i(K(tf,)IN X N),

(i) UK — p) = (K@) + i(— K@) |N X N).

Proof. (i) Equip U with a scalar product, and if Z is a subspace of U
let (Z), be the unit sphere of Z. Let C be a subspace of U of dimension i(K(%,))
on which K(#,) is negative definite, and let D be a subspace of N of dimension
i(K(t,)|N x N) on which K(,) is negative definite. Since K is continuously
differentiable at #;, 3¢, > 0 and an open neighborhood B of (D), in (D @ C),
on which K(z, + )(X,X) <0 vXeB, v0 <y <e¢. Now (D@ C),\B is
compact, so 3¢, > 0 such that K(z, + p)(Y,Y) <0vY e (DD C),\B, v0 <
# <. If e = min {e,, ¢,}, it is clear that K(¢, + ©)(X, X) <0, vX ¢ (D P CO),,
veelo,el.

(i) Apply (i) to L, where L(t, + ) = K(#, — ) for all suitably small o

Let ¢, € ]0, b]. Following standard practice we construct a finite dimensional
subspace B of 2/ such that i(I°|B X B) = i(t,) and a(I*|B X B) = a(t,).

If X is a smooth vector field along y with X = RX then X is called a Jacobi
field. The set # of Jacobi fields which are everywhere orthogonal to 7 is a
vector space. If X ¢ # has X(0) ¢ P, and X(0) — SX(0) | P, then X is
called a P-Jacobi field. These arise as the transverse vector fields associated
with variations of y through geodesics intersecting P orthogonally (see [2, p.
222]).

A finite sequence {u;} with 0 < u, < ... < u, < ¢ is strongly normal in
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[0, #,] under the following conditions :

(i) Each nontrivial P-Jacobi field has no zeros in ]O, u,].

(ii) Each nontrivial Jacobi field X with X(z) € Q,, and X)) — TX(,)
| O, has no zeros in [u,, ,[.

(iii) For i =2,.-.,n — 1, each nontrivial Jacobi field has at most one
zero in [u;_y, Uy,4].

It follows from the Rauch comparison theorem and the extension due to
Warner [5, Cor. 4.2] that strongly normal sequences exist, and moreover
there are a finite sequence {u;} and ¢ > 0 such that {u;} is strongly normal in
[0, 7] for all £ e [t, — ¢, 2, + ¢]. For all such ¢ we set

B! = {X e 2!: X is smooth with ¥ = RX except possibly at
Uy, -y Uy 3 SX(0) — X(O) iR P,(O), TX(@®) — X(t) 1 Q,(b)} .

Theorem (For proof see [1, p. 68]). Assume n > 1. For each t e [t, — e,
ty + el,i(d) = i(I*|B* X B') and a(t) = a(I*|B* X BY).
LetH=W, ® --- ®W,,. The evaluation map ev,: B — H given by

evt(X) = (X(ul), R} X(un))
is a linear isomorphism, so the map J: 1¢, — ¢, t, + ¢[ — SB(H) given by
J@D(x,y) = I'(ev;*(x), ev; ()

is well-defined. Moreover, by the above theorem, i(¢) = i(J(¥)) and n(f) =
n(J(®)). In the following lemma we do the computation necessary to apply
Lemma 1.

Lemma. J is smooth, and the derivative J(t,) of I at t, is given by

J@)x,y) = (RX(@), Y(t)) — <X(1), Y1) ,

where X = ev;'(x) and Y = ev;;'(y).
Proof. For helt,— e, t, + ¢l and for z € H, let Z, be the unique Jacobi
field along y such that Z, and ev;'(z) agree on [u,, h]. Then the function Z:
1t, —e,ty + e[ X R — V given by Z(h, 1) = Z,(¢) is smooth. It follows that

J is smooth and
0 X

(1) ey =(-2-2.Y)

Lo, Uy) -
oh ot (G, u4n)

Now

2[( 23X y)_ (3K oL)]
otLl\oh ot~ oh’ ot
S (2 00X yy, (0 X 9T

“\at on ot oh ot at
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o 0X Y\ /oX 8 aY

ot on’ ot oh’ 3t ot
0X
= <——R X, ~> < RY> = 0 by symmetry of R .

Also, (80X /oh)(ty, u,) = 0, so from (1)

(2) Jt)(z,y) = [<_i aX,-> <aX oY ]

5 1
oh ot oh’ ot (o, o) -

Writing C(h) = (6X /0t)(h, h) and D(h) = X(h, h), we see thatif U ¢ Q,,, then
(C(h),U) = <TDMh), U, .

Differentiating this with respect to %, and then putting Y (h, h) = U we get

X o oX ‘ _ [aX 6)!] ‘
9 %2 YN (hh) =({T|%= s Y ) (h,h) .
at2+ah ot ~>( ) < ah+at >( )

This together with (2) gives
(3) Jt)(x,y) = [0X |oh,3Y [ot — TY> — (oX /o1, TY)
+ RX, YD1 (o, 1) -
Now if N | Q,,, then (X, N> |(h, h) = 0O so that
{@X/oh + X /ot, N>|(h,h) =0 .
However, (3Y /ot — T(Y))|(%,, t,) is orthogonal to Q,,,, so from (3)
Jt)(x,y) = KRX, Y) — <aX [ot,0Y [a0)] | (¢, 1)

and this gives the answer needed to prove the lemma.

From the definition of I, it is clear that X e 2! is in the null space #* of
I' if and only if each of the following two conditions holds.

(i) X is a P-Jacobi field.

(i) X — TX® | Q-

If dim #¢ = 0, then we call # a (P, Q)-focal point of order n(f) = dim _#*.
Notice that if Q is a point then a (P, Q)-focal point is usually called a focal
point of P along 7, while if both P and Q are points then a (P, Q)-focal point
is just a conjugate point of y(0) along y.

If te]0,b] and X, Y ¢ #¢, then

J(O(ev,(X), ev(Y)) = (RX(), Y()) — (X0, Y(®)) ,

and this is independent of the choice of strongly normal sequence used to de-
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fine H. Let n,(¢) (resp. n_(?)) be the dimension of a maximal subspace of _¢*
on which the symmetric bilinear map

X, Y) — (RX(®, Y®)) — <X®,Y(®)

is positive (resp. negative) definite. If ¢ is a (P, Q)-focal point, we call n,(2)
(resp. n_(?)) the positive (resp. negative) order of t. Notice that if W has po-
sitive sectional curvatures at ¢, or if Q is a point, then n,(f) = 0 and n_(¢) =
n(t).

We now apply Lemma 1 to the above. Statements (i) and (ii) of the follow-
ing proposition are immediate, while (iii) and (iv) use the fact that a(¢) 4+
i(—J@®) = dimH.

Proposition 1. Let t € 10, b]. Then 3¢ > 0 such that vy € 10, e[

(1) i+ p) > i) + n_),

(i) it — ) > i) + n,0),

(i) aCt + p) < a®) — n, (),

@(iv) a(t — p) < a@® — n_(v.

It follows that i and a are locally constant at any ¢ with n(f) = 0. We call
t a nondegenerate (P, Q)-focal point if n_(9) + n,.(t) = n(®) > 0. Clearly, if
W has positive sectional curvatures at the (P, Q)-focal point ¢, then ¢ is non-
degenerate, while if Q is a point then all (P, Q)-focal points are nondegenerate.

Proposition 2. If t is a nondegenerate (P, Q)-focal point, then the inequali-
ties of Proposition 1 are equalities, and t is an isolated (P, Q)-focal point.

Proof. Let ¢ be as in Proposition 1 and let y ¢ ]J0, ¢[. From Proposition 1
we have

a(®) —n, () >alt + p) > it + p > i@ + n_@ ,
at) — n_() > alt — p) > it — @) > it) + n, () .
Since a(f) = i(Y) + n(z), the hypothesis of Proposition 2 implies that all the
above inequalities are equalities. The result now follows.
4. Calculation of i(0")

If ¢ is sufficiently small and positive, then i(z) (resp. a(?)) is equal to
i) 7, x #,) (tesp. all*| #, X #,)) where

Fio={XeF:X0)eP, X0 e0,y) -

For a proof of this see [1, p. 64].
If X,Y ¢ #,, then

(4) I(X,Y) = (X(@) — TX(@®,Y(®)> — <X(0) — $X(0), Y(0)> .
If P and Q were both hypersurfaces, each #, = # and the right hand side



THE MORSE INDEX THEOREM 573

of (4) would be defined on # for all e R. This would make it possible to

compute i(0*) by using Lemma 1, so we begin this section by considering
this case.

Let P, Q be hypersurfaces of W, which intersect y orthogonally at 7(0), y(b)
respectively. Let S, T be the second fundamental forms of P, Q with respect
to y/(0), y/(b), respectively, and let HO) (resp. a(t)) be the index (resp. aug-
mented index) of the corresponding index form I?. We compute 7(0*) in terms
of §, 7" and R(0), and later use this to compute I(O+) in the general case.

Lemma 3. Let N be the null space of § — T'. Then 3¢ > 0 such that vy

€ 10, e[

1) i > t(S — T) + z(L|N X N)

() a(w <iS —T) + alL|N x N),
where L ¢ SB(V) is given by

L(X,Y) = (RX — TTX,Y) .
Proof. LetJ: R — SB(#) be given by
JIOX,Y) =<X@® — TX®, Y®) — {X(0) — §X(0), Y(0))> .

As already remarked, 3¢ > O such that for 0 <t <e¢, i(J(?)) = i(?) and
a(J(®)) = a).
Clearly

JO)X,Y) = (RX(0) — TX(0), Y(0)> + <X(0) — TX(0),Y(0)) ,
and the null space N of J(0) is given by
=Xes:SX)=TWX)}.
We now show that . .
@ JO)IN x N) =i(L|N x N),

() a(©)|N X N) = a(L|N x N).
Let

={Xe7: X0 = SX©0)},
and
={Xe 7:X0)=0}.
Then £ =U®N,, 2~1nd [: U— V given by I(X) = X(0) is a linear isomor-
phism. Let N, = ["'(N). Then N = N, ® N,. Also J(0) is positive definite on
N,, and
JO)X,Y) = LUX), (Y)) for X, Y eN, .
Further, if X e N,, Y ¢ N,, then
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JOX,Y) = —<TX(0),Y(0)> + <X(0),TY©0)> =0

The proof of (a) and (b) is now clear, and the lemma follows from Lemma 1.
We now return to the general case in which the end manifolds P, Q are
not necessarily hypersurfaces.
For any subspace B C V, py: V — B will be the orthogonal projection onto
B, and B* will be ker py. Let U = P, N Q,,, and write S — T as an ab-
breviation for the map

proS|U—-T|IU): U—-U.

We will construct symmetric linear maps S, T on V such that

(1) Pp, ° S|P,q = S and D, © T~| O =T,

(ii) index (resp. null space) of S — 7' = index (resp. null space) of S — T,

(iii) 7'|U depends only on S and 7.

P, Q will then be chosen to have S, 7° as second fundamental forms with
respect to 7'(0), y'(b) respectively.

It is clear that (i) implies that 1(f) > i(¢) and a(?) > a(?) for all t > 0. We
later show that for sufficiently small positive ¢, 1(t) < i(¢). This will yield the
desired expression for i(0*) which, by Lemma 3, depends only on S, T and
R(0).

Construction of S and 7. Let C (resp. D) be the orthogonal complementa-
ry subspace of P, (resp. Q,,) in P, + Q,,- Then

PT(O) + Qr(b) =UDC®D,

and C @ D is orthogonal to U.
Define S,, T,: V — V by the requirements that
(@ ImT,CDandImS, CC,

(®) Peop°Sopp,,, — ToPg,,) =Ti — S
Let S¥, TF be the adjoints of S;, T, and let 2 € R. Put

S=3S8 + 8+ szf’TO) + SOPP,(o; >
T =T, + TF — apgL + Topg,, -

7
It is clear that § and T are symmetric and that (i) and (iii) are satisfied.
Also, if N is the null space of S — T, then vX e N
S —DX =, —T)X + ¥ —THX + SX — TX
= —Poep(SX — TX) + SX — TX + (S¥ — THX
= ppSX — pyTX + (§Ff — THX
=0, since XeNC U.

It is a consequence of (i) that i(S — T) > i(S — T), so the following lemma,
together with a countup of dimensions, shows that (ii) is also true.
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Lemma . Let S — T be positive definite on G C U. Then, for suitably
large 2, S — T is positive definite on G @® UL. (We henceforth assume that
S /T are defined using such a 2.)

Proof. Recall that (B), denotes the unit sphere of a normed vector space
B. If Z ¢ (G),, then by (i)

(S —DX,X> =4S —DX,X>>0.

Thus there is an open neighborhood D of (G), in (G @ U*), such that
§ —TX,X>0, vXeD.IfY e (G® UL, then there are Y, ¢ G, Y, ¢ C,
Y,eD,Y,e (P, + Q,p))-suchthatY =Y, + Y, + Y, + Y,. Thus

S =T, Yy = Y, Yoy + Y3, Y) + 2(¥,, YD) + K(Y) ,

where K is a continuous function on (G @ UY),. If H = (G ® U*%),\D, then
H is compact so we may choose ¢, € R* such that

e = I}ng (Y Yy + Y3, Yy + 2{Y,, Y3} >0,
€
# = sup {{K(M)]} .
YeH
Choose 2 > u/e. Then

S —Tx,X>>0, vXe(COUY,,

and the lemma is established.

So far, i, n, n,, n_ have been integer-valued functions defined on the posi-
tive real numbers. We now extend their domains of definition to the nonne-
gative reals as follows.

Let i(0) = i(S — T) and n(0) = n(S — T). Let n,(0) (resp. n_(0)) be the
dimension of a maximal subspace of N on which p, o (R — T'T | N) is positive
(resp. negative) definite, where N is the null space of S — T. If n(0) # 0,
then we say that O is a (P, Q)-focal point of order n(0), while O is a nonde-
generate (P, Q)-focal point if n_(0) + r,(0) = n(0) > 0. Notice that these de-
finitions are independent of the choice of 1 used in the definition of S and 7.
Also, if W has positive sectional curvatures at y(0), then #,(0) = 0 and n_(0)
= n(0), while if P, N O, = {0}, then i(0) = n(0) = 0.

Proposition 3. If n(0) = O or if O is a nondegenerate (P, Q)-focal point,
then 3e > O such that there are no (P, Q)-focal points on 10, e[ and vu € 10, e[,
() = i(0) + n_(0).

Proof. Lete >0 be as in Lemma 3. Then that lemma, together with pro-
perty (ii) of S and T, shows that veelo, el

i(0) + n_(0) > a(y) > i(w) > i(0) + n_(0) .
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Thus the above inequalities are equalities, so there are no (P, Q)-focal points
on ]0,¢[. We already know that a(y) < @(u), so it remains to show that for
sufficiently small positive p, i(z) > i(0) + r_(0).

Let V,, V, be subspaces of P,,, Q,., respectively, such that ¥, N V, = {0}
and V, @V, = P,y + Q,,. Define L: U — V as follows. For each X ¢ U,
there are unique elements v, ¢ V,, v, ¢ V, such that

SX+TX=wv,—w,.
Set

ILX =v», +SX =v,—TX.

It follows from the Rauch comparison theorem for submanifolds [5, p, 351]
that 3¢, > 0 such that for all # € ]—e¢,, ¢,[\{0} and all X ¢ U there are unique
Jacobi fields X,, 2, along y such that

(a) X,isa P—Jacob} field with X,(34) = X + 1ALX,
® Zwh) e Quy Znlh) — TE (W) | O,y T1(3h) = X + $hLX.
Now define J: | —e¢,, &,[ — SB(U) by

JWX,Y) = <X,(3h) — FGh), YRy forh 0,
JO(X,Y) =4S —DX,Y) .

Notice that for he]O,¢[, JW)(X,Y) = I*(%X,,9,) where %,|[0,31A] =
X, 110, $h], X,|[3h, h] = &, |[$h, k], and similarly for §),. In the following
lemma we do the calculation necessary for applying Lemma 1.

Lemma. J is smooth, and

JOXX,Y) = (R - TT)X,Y),

for X, Y in the null space N of S — T.
Proof of Lemma. Let m be the dimension of P, and d the dimension of
V. The following ranges of indices will be used:

1<A,B,---,<d, 1<ij--,<m, m+1<aB -, <d.

We shall also employ the summation convention whereby repeated indices are
summed over their respective ranges.

Let X,Y e U, and pick an orthonormal basis e,, - - -, e, for V such that
X = xe, for some xR, and {e,, - - -, e,} spans P,,. Let u; and v, be the
Jacobi fields with u;(0) = e;, #,(0) = Se;, and v,(0) = 0, 7,(0) = e,. Since
v,(0) = 0, the vector fields w, given by

w, () = v, 0/t fort=+0, w(0) =10 =e

are smooth, and {u,(?), - - -, U, (1), Wy .1(D), - - -, wa(#)} are linearly independent
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for t € ]—e, &,[. Thus we can uniquely define smooth functions a,: ]—e¢,, ¢l
— R by the requirement that

a;(Wu(zh) + a,(Ww,(3h) = X + 3hLX .

Clearly a,(0) = 0, so the functions b,: ]—e,;, &,[ — R given by

b(h) =ah)/h  for h =+ 0, b,(0) = a,0)
are smooth. Also
(5) aMuGh) + 2b,(Wv,(Eh) = X + thLX , for he]—e,el .
However, by definition of ¢, we have that vi e ] —e,, ¢[\{0}, VI ¢ R,
(6) X0 = a,(Wu, (1) + 2b,(Wv. () .
So, if we define X(t) = a;(Q)u;(®) + 2b,(0)v(8), then X(h,t) = X,(?) is a
smooth vector-valued function of two variables.

Differentiating (5) with respect to 4 at 2 = 0 we have

(7)  a0u,0) + $a,(0)i,(0) + 2b,(0)v,(0) + b,(0),(0) = ILX .

Putting 2 = 0 in (5) we get that

(8) @0) =x,a(0) =0 fori=2,.--,m,
so from (7)
(9) a:(0)e; + 38X + b,(0)e, = $LX .

Thus, if K(t) = <(@X /o0, {t), Y(, 31)), then K is smooth, and from (6)

K(0) = <a,(0)t,(0) + $a,(0)iix(0) + b,(0)3,(0) + 2b,(0)1,(0), Y
+ <a;(0)u,0) + 2b,(0)0,(0), ILY> ,

which becomes, in consequence of (8) and (9),

(10) K©0) = {(LX — SX, S’Y>~+ (RX,Y> + (SX,LY)
+ <b,)e,, LY — SY> .
However, b,(0)e, is orthogonal to P,,, so
(b (0)e,, LY = (b,(0)e,,S,Y> = <{b,(0e,, SY> .
Thus from (10)

(1) K@) = }J(LX — $X,8Y> + (RX,Y)> + (SX,LY)) .
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Using similar techniques it can be shown that if
H(h) = <Z,Gh),%,Gh)> forh=+0,
H©O0) = <TX,Y>,
then H is smooth and
(12) HQO) = $(LX + TX,TY) — (RX,Y) + <TX,LY) .
Since J(h)(X,Y) = K(h) — H(h) we see that J is smooth and
JO(X,Y) = (RX,Y) + 38X — TX,LY) + <LX — §x,8Y>
— (X + TX,TY)) .
Thus, if X,Y e N then
JOX,Y) = (RX,Y) — (TX,TY),

as was required to prove the lemma.
Returning to the proof of Proposition 3, we see that the above lemma, to-
gether with Lemma 1, shows that 3¢, > 0 such that vu e ]0, ¢,[

() = iJ©0) + n_0) .

However, as already remarked, J(¢)(X, Y) = I“(X,, 9,), so that i(J(x)) < i(x).
Thus

i0) + n_(0) <i(J(w) < i < alp) < a(p) < i0) + n_0),

and the proof of the proposition is complete.
Propositions 1, 2 and 3 are combined to give the main result of the paper:
Theorem A. Let P, Q be submanifolds of W, and let y be a geodesic of
W intersecting P and Q orthogonally at y(0) and y(b) respectively. If P, Q
have only nondegenerate (P, Q)-focal points on [0, b], then these (P, Q)-focal
points are finite in number. Further, the index i(b) and the augmented index
a(b) of the index form of this configuration are given by

ib)=iS—-1T) + 0§<b n_(t) — 0§<b n, (1),
alb) =iS — T) + oZan_(t) + 0<t2<b n. (0,

<t<
where S, T are the second fundamental forms of P, Q with respect to y'(0),
7' (b), respectively.
5. A comparison theorem

In view of Theorem A it is desirable to obtain an estimate of the distance
from P to the first (P, Q)-focal point. If S — T is positive definite (e.g., if
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P.oy N Q,s = {0}), then methods similar to those employed by Warner [5,
Proof of Theorem 3.2] may be used to yield such information. However, these
methods depend on /¢ being positive definite for small ¢, and as we have seen,
this is not the case for general S, T.

In this section we illustrate a method of finding such estimates using the
idea of translates of S as employed by Ambrose in [1]. The principal drawback
in our use of this construction is that we must assume that P is a hypersurface
of W.

Let ¢, be the first focal point of P along 7, and let ¢ € [0, ¢,[. For each X e V,
there is a unique P-Jacobi field 2 such that 2(f) = X. Let S,(X) = Z().
This defines a map S,: V — V which may be shown to be an element of the
space SL(V) of symmetric linear maps from V to V (See [1, p. 54]). Notice
that if P is not a hypersurface, then the above breaks down at ¢t = 0.

Lemma 4. The map S: [0, t,[ — SL(V) given by S(t) = S, is smooth and
satisfies the Riccati equation

S = R(t) — $¥0) .

Proof. The smoothness of S follows from the theory of solutions of ordi-
nary differential equations. Let 2 be a P-Jacobi field. Then (S2)(8) = % (¢),
so by differentiating we get

SO + S = Z @),

which gives

X)) = RZ)@) — (SSZ)(@) .

Hence the lemma is proved.

If L e SL(V), let L* e SL(Q,,,) be given by LX) = P, LX.

Theorem B. Assume that P is a hypersurface of W and that

(i) each eigenvalue of S has modulus < A,

(ii) each eigenvalue of S* — T has modulus > Q > 0,

(iii) for each positive t, each eigenvalue of R(t) has modulus < 6.
Then the first (P, Q)-focal point occurs at or after t,, where t, is the smallest
positive solution of the equation

cot 0t = Q70O + A + AQ) ifo >0,
t= 0474+ D! ife@=0.

Proof. For § > 0, let 7, be the smallest positive solution of
cot %t = A97*

and let 7, = A7'. It follows from the Rauch comparison theorem for submani-
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folds [5, Corollary 4.2(a)] that the first focal point of P occurs at or after z,
and this occurs after ¢,. Thus § is defined on [0, ¢,]. Let

D={0,0cR(>0) X R(>0):1t< 7o} s
and define g: D — R by
80, = 6 cot (6t + K) ,  where K = cot™" (— 4077 .

Then g is continuous and negative on D, and 9g/ot = —6 — g°.
Lemma. If X, Y are unit vectors in V and if t < ¢4, then

(d/d){S.X, Y) < [(08/30(0, 1| -

Proof of Lemma. Let | || be the norm on V associated with < , >, and for
L e SL(V) let

IL|| =sup{|LZ||: Ze V and || Z| = 1} .

Then
45X, = [ROX — SSX, V)| <6+ S,
To establish the lemma it is enough to show that ||S,|| < [g(4, #)| for 6 >
B, t < r,. Since ||S,|| < |g(d,0)| it suffices to show that if § > O, ¢, ¢ [0, z,[,

Z e V are such that | Z|| =1, 0 <||S,,|| =84, t,)|, then (d/dY) ||S,Z]| < |og/dt|
at (6, t,). However, this is clear because in this case

%nstzu — (ROZ — S,S,2,8.2> IS, ZI"*  att=t,

<6 + IS <og/ot| at (0,1,) .

Returning to the proof of Theorem B, we note that if ¢, € [0, ¢,[ is a (P, Q)-
focal point, then 3X e Q,, such that || X| =1 and S}, X = TX. However,
from the lemma it is clear that if Y ¢ Q,,,, then

<SOX - Sth’ Y> S Ig(@70) - g(@’ tz)l < Ig(@, 0) - g(@> tl)l = ‘Q .

Since S, = S, we now have a contradiction of hypothesis (ii). This completes
the proof of Theorem B.
Similar theorems may be proved using the above methods.
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