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ALMOST HYPERSURFACE STRUCTURES

ROBERT H. BOWMAN & DONALD H. SINGLEY

1. Introduction

This paper is a continuation of the paper, Almost submanifold structures, [1].
A second-order connection on a C°° manifold M gives rise to a structure which
resembles an immersion of M into another Riemannian manifold. We call this
an almost submanifold (AS) structure, and call the structure an almost hyper-
surface (AH) structure if an additional condition analogous to the codimen-
sion of M being one is satisfied. As was noted in the previous paper, sometimes
this AH structure in fact satisfies the integrability conditions for an immession
of M into Rn+1. However, this realization as an immersion is not always pos-
sible in cases where the vector field analogous to a normal vector field vanishes
at certain singular points. In the first part of this paper, we prove a more
general integrability theorem, which considers isolated singular points, and
we also study curvature properties of AH structures at singular points. The
second part of this paper introduces the concept of a realizable structure,
which resembles a generalized immersion, and we obtain certain curvature con-
ditions necessary for such a structure to exist on M. Other curvature conditions
imply that an AS structure cannot be an AH structure, and two such theorems
are included in this section. The last section of this paper states an equivalence
principle between AS structures and immersions of M into another Rieman-
nian manifold, and the principle is used to give immediate proofs of two theo-
rems which simply translate theorems about hypersurfaces to theorems about
AH structures.

2. Preliminary remarks and definitions

In this section, we will outline the results of [1] used in this paper. A se-
cond-order connection on M, as defined originally in [2], determines a vector
bundle structure on 2M, such that 2M ~TM® TM. The first factor of TM
we call the horizontal bundle and identify with the tangent space of M the
second we call the vertical bundle. Henceforth, the letters W, X, Y, and Z
will always denote horizontal vector fields or horizontal vectors, A and B will
denote sections of 2M, and ξ will be a vertical vector field or vertical vector.
The second-order connection described above determines a covariant differ-
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entiation V of a section A of 2M. Now let < , > be a fiber metric on \π: 2M
—> M, such that the vertical and horizontal subbundles are orthogonal. We
may then define an operator Vf in terms of V by

j ^ y - ^ Y = F * Y + «(*, 10,

Γif t(X) Fxξ = -j*e(X) + Dxξ .

In the first equation of (1), the horizontal component V XY is the covariant
derivative of the first-order connection induced by F, and the vertical com-
ponent a(X, Y), which we call the second fundamental form, is bilinear. In
the second equation of (1), D is a connection in the vertical bundle, and the
horizontal vector field s/ξ(X) is defined by

( 2 ) « ( * ) , Y> = <a(X, Y), 0

for all Y. The operator V is called an almost submanifold or AS structure on
2M. We shall also assume that V is Riemannian (see [1] for definitions) this
implies that a(X, Y) = a(Y, X).

We now define the first vertical space Vλ(x) of an AS structure at x e M by

Vλ{x) = span {a(X, Y)\X,Y e Mx) .

If Vx(x) has maximum dimension / at any point X <ε M, we will call / the pseu-
docodimension of M. If I = 1, we call the AS structure an almost hypersurface
or AH structure. In this case, we define a normal vector ξx by orthonormalizing
a(X, Y) where a ^ 0, and by setting ξx = 0 where α = 0. Moreover, we de-
fine s/(X) — <^ξ(X) for this ξ. It is proved in [1] that Dxξ and ξ are ortho-
gonal hence considering only tangent vectors and vectors in the first vertical
space we redefine V by

Vf

xY = VXY + a(X, Y) ,

This si is very similar to a Weingarten map for an immersed hypersurface.

We also define h(X, Y) = \\a(X, Y)\\ and note that

( 4 ) a(X, Y) = KX, Y)ξ .

We define a singular point of an AH structure as a point x e M such that
ax(X, Y) = 0 for all horizontal vectors X and Y. At such a point, si may not
be C°°, since (2) defining si can be rewritten as

> - ||α(Z, 1011 - A(Z, 10 ,

and the length function is not C°° at zero. However, since the length function



ALMOST HYPERSURFACE STRUCTURES 515

is continuous at zero, J/(X) will at least be contiunous for any differentiable
vector field X.

The curvature tensor of an AS structure Vf is defined as

( 5 ) R'(X, Y)A = V'XV'YA - V'γΨ
f

xA - V[X^A .

By a standard calculation, (5) implies the equation analogous to the Gauss
equation,

(R'(X, Y)Z, W> = <#(*, Y)Z, W> + <a(X, Z), a(Y, W)>

< ( y Z

In the case of an AH structure, the curvature tensor JR' is not well-defined
on sections A of 2M, since the definition of R' given in (5) would involve taking
derivatives of <s/(X), which is not differentiable at singular points. In fact, we
cannot even define R' on vectors in T(M) at singular points, since at a singular
point we cannot write a(X, Y) as /•?, where / is a differentiable function.
However, the right-hand side of (6) does make sence at singular points, so
for an AH structure with singular points, we define (R'(X, Y)Z, Wy by the
right-hand side of (6). This makes <R'(X, Y)Z, W} a C°° operator on tangent
vectors X, Y, Z, and W for any AH structure.

By an equation analogous to the Codazzi equation, the vertical component
of R'(X, Y)Z, at a nonsingular point of an AH structure, is

( 7 ) (Fxλ)(Y, Z)ξ - (FyhXX, Z)ξ .

At a singular point, the expression in (7) is not defined. Finally, given two
linearly independent horizontal vectors X and Y, we define the sectional cur-
vature k'(X, Y) of an AS structure in the plane spanned by X and Y to be
<fl'(X, Y)Y,X>. By (6) we have

( 8 ) k'(X, Y) = k(X, Y) + <a(X, Y), a(X, Y)> - <a(X, X), α(

where k(X, Y) is the usual sectional curvature of M in the plane spanned by
X and Y. Again, for an AH structure with singular points we define k'(X, Y)
by the right-hand side of (8). This makes k'(X, Y) a C°° operator on tangent
vectors X and Y for any AH structure.

3. Singular points of almost hypersurface structures

Away from singular points, a theorem in [1] shows that an AH structure
on M is integrable—that is, can be identified with an immersion of M as a
hypersurface of Euclidean space—if and only if R' = 0. However, as noted
above, one of the integrability conditions, (7), breaks down at singular points.
The following theorem summarizes the situation for a manifold with isolated
singular points.
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Theorem 1. Suppose that M is a simply connected and connected C°° n-
dimensional manifold, which bears a Riemannian AH structure with R' = 0,
and whose associated tensor jrf is C°° except on a set A of isolated singularities,
which do not simply disconnect M. Then M is isometrically imbeddable as a
Cι submanifold of Rn+ι. Moreover, this submanifold admits a second funda-
mental form which agrees with srf.

Proof. The set M — A is a connected and simply connected C°° manifold
such that j / satisfies the Gauss-Codazzi equations. Hence by the fundamental
theorem for hypersurfaces there is an isometric imbedding of M — A into Rn+]

(which we also denote by M — A) such that J / is the second fundamental
form. We may fill in the holes in M — A introduced in this procedure by
taking limit points of M — A in Rn+1 (this is possible since the imbedding is
isometric and thus the holes must be single points) and denote the result by
M again.

If x e A, γ: [t0, *J —> M is a piecewise C°° curve through x (that is, C°° ex-
cept at x), and N is the normal vector field on M — A (which exists locally
at least), then set

(s/(T(t)) , tφt' ,
( 9 ) N'(t) =

[0 , t = tf ,

where T(t) is the tangent vector to γ except at γ(t') = x. If we take N(t0) —
Nr(to), then the right-hand side of (9) is continuous since <stf{T(t)) —> 0 as t —> f.
Thus there is a unique solution N(t) to (9) which must agree with the normal
vector field except at γ(t') = x, so that we may define a normal vector at x
by setting Nx = N(t'). That N(t') is independent of γ may be seen as follows :
Let δ: [s0, sλ] —> M be a second broken C°° curve parametrized such that s' = t'
and y(tf) = δ(s') = x. If the broken C°° curve ε : [t0, sλ] —> M is defined by

(10) .(0 ^
\δ(t) , i£f = s'<t<sι

by repeating the above argument, then N(t') = N(s') is the same for all of
these curves. The normal field thus obtained is clearly C1.

Choose a coordinate plane of Rn+1 (employing an isometry of Rn+1 if ne-
cessary) which contains Nx, such that the slope of the line containing Nx in
the coordinate plane exists and is not zero. Consider the coordinate curve on
M obtained by intersecting this coordinate plane with M. The orthogonal
projection of N along the coordinate curve into the coordinate plane is con-
tinuous and thus determines a continuous field of normal lines to the coordi-
nate curve in a neighborhood of x, whose slope exists and is not zero. If / is
the equation of the coordinate (planar) curve and s(u) is the slope of the normal
line through (u, f(u)), then
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(Π) /'(«) = -l/s(u) ,

and we see that the coordinate curve has a continuous derivative in a neigh-
borhood of x. Since the coordinate curves through x are C1 and x e A is arbi-
trary, we see that M is a C1 submanifold. The second fundamental form may
be globally defined by taking its value to be zero on A.

The next theorem leads to examples of manifolds with no integrable AH
structure:

Theorem 2. At any singular point of an AH structure on M, all sectional
curvatures of the AH structure are the sectional curvatures of M itself.

Proof. Since a = 0 at any singular point, the result follows immediately
from (8).

Corollary. On any even-dimensional ovaloίd N, there is no global inte-
grable AH structure whose first-order connection agrees with the Riemannian
connection of N.

Proof. Since the ovaloid N is homeomorphic to an even-dimensional
sphere, whose Euler characteristic is nonzero, every tangent vector field on
such an ovaloid must have a zero. So the vector ξ of the AH structure must
vanish at some singular point—that is, the set of singular points is nonempty.
Moreover, for any AH structure, the set of singular points is closed. By Theo-
rem 2, since all sectional curvatures of an ovaloid are positive, R' cannot be
equal to zero at any singular point and hence, by the continuity of R\ cannot
be equal to zero in a whole neighborhood of a singular point. If N consists
entirely of singular points, the AH structure is clearly not integrable. If N has
nonsigular points, by taking a point on the boundary of the singular set, we
see that R' is not zero at some nonsingular point, so that the AH structure is
again not integrable.

4. Realizable structures

Given an immersion of M into Rn+ι with second fundamental form h(X, Y)
and a nonvanishing C°° unit vector field ξ on M, there is an AH structure on
2M, obtained by taking a(X, Y) = h(X, Y)ξ. Moreover, by Theorems 1 and 2,
an AH structure comes from such an immersion, if and only if R' = 0 and
the AH structure has no singular points. We may now ask which AH structures
arise from an immersion plus a vector field ξ' which is not of unit length,
where again we define a(X, Y) = h(X, Y)ξ''. (In particular, ξ' might have a
zerh.) This leads to the following definition.

Definition. An AH structure on a Riemannian manifold M will be said to
be realizable if s/ = fs/', where srf' is the Weingarten map coming from an
isometric immersion of M into Rn + \ and / is a C°° function on M. (Note that
by defining a(X, Y) = h(X, Y)ξ', ξ' not of unit length, we obtain such an j/.)

Theorem 3. Let k'(X, Y) be the sectional curvature of a realizable AH



518 ROBERT H. BOWMAN & DONALD H. SINGLEY

structure in the plane spanned by X and Y, and k(X, Y) the sectional curvature
of the same plane in the underlying manifold. Then

( i ) k\X, Y) < k(X, Y) if k(X, Y) > 0, and k'{X, Y) > k(X, Y) if k(X, Y)
< 0, where the inequlity is strict unless either k(X, Y) = 0 for the vectors X
and Y, or f = 0 at the point,

(ii) at a point x, k'x(X, Y) is a constant multiple of kx(X, Y), independent
of the vectors X and Y,

(iii) wherever k(X, Y) is not equal to zero, the function f is determined up
to sign by the equation

(12) f = 1 - k'(X Γ )

k(X, Y)

Proof. By (2) and (8) together with the symmetry of Af and the Gauss
equation for A' we have

<R'(X,Y)Y9X>

, Y)Y, xy + <^(z)? rχ^(F), xy - < (̂F), γy^oo, xy

= (1 -fKR(X,Y)Y9X>,

which proves (i) and (ii) solving for f, we obtain (iii).
Partial converses to the above theorem, which show that the pseudocodi-

mension is usually large if kf > k, are the following.
Theorem 4. Suppose, at some point p of M, there is a q-dimensίonal sub-

space Q of TP(M) such that k'(X, Y) > k(X, Y) for all X, Y in Q. If the real
algebraic variety consisting of all X in Q such that a(X, X) = 0 has dimension
r, the pseudocodimension of M must be > q — r.

Proof. Restrict a to Q. Then a is a symmetric bilinear mapping of RQ X
Rq —> Rs, where Rs is the span of the image of a. We must show s > q — r.
By (8) we have

(13) k\X, Y) - KX, Y) = -«a(X, X), a(Y, Y)> - <α(Z, Y), a(X,

The following lemma completes the proof.
Lemma. Let a: Rq X Rq —> Rs be a symmetric bilinear mapping. If

(14) <a(X, X), a(Y, Y)> - <a(X, Y), a(X, Y)> < 0

for all X,Y € Rq, and the real algebraic variety V consisting of all X in Rq

such that a(X, X) — 0 has dimension r, then s > q — r.
Proof. Extend a to a symmetric complex bilinear map of Cq X Cq —> Cs.
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Consider the equation a(Z,Z) = 0, Z e Cq. This is equivalent to a set of s
quadratic equations

a\Z, Z) = 0, , as(Z, Z) = 0 .

The set S of solutions by the dimension theorem for complex algebraic varieties
has (complex) dimension d > p — s. lί s > q, we are done. If s < q, we
choose any regular point P <εS. This point P has a neighborhood U which is
a d-dimensional complex analytic submanifold of Cq. Thus there is a map /:
Cd —> £/ C C9 such that some d X d subdeterminant of the d X q (complex)
Jacobian is not zero in a neighborhood of P. So we may choose d of the
standard coordinates of Cq, which for convenience we relabel as Zλ through
Zd, over which U projects diffeomorphically onto an open subset U' of the
complex subspace V = {Z19 , Zd, 0, , 0}. We let Re: Cq -> Rq be the
map which takes {Z19 , Zq} into {X19 , Xq}9 where each Zj = Xά + ϊY y
Then clearly Re(U) projects diffeomorphically down to Re(U')9 so Re(U) has
(real) dimension d, as well. But Re(U) is a subset of V by the following argu-
ment : Let Z = X + zT be any point in tλ Then

0 = α(Z, Z) = α(JT, X) - α(f, f ) + 2ίa(X, Ϋ) .

So αr(Z, X) = α(f, f ) and α(X, f ) = 0. By (14), this implies that a(X, X)
= α(f, ?) = 0 i.e., X and Ϋ are both in F. So, Re(U) is a subset of V,
and hence r > d. Since d > q — s, wε have s > q — r. The second theorem
in this area is similar to a theorem of Otsuki [4] in the case of immersions in
Riemannian spaces.

Theorem 5. Let M be a manifold admitting an AS structure. If, for some
point p € M, k'(X, Y) > k(X, Y) for all pairs of linearly independent vectors
X and Y in a q-dimensional subspace Q of TP(M), then the pseudocodimen-
sion of the AS structure on M is > q — 1.

Proof. The hypothesis implies, as in the previous theorem, that

(15) <a(X, X), a(Y, Y)> - <μ(X, Y), a(X, Y> < 0 .

for X and Y linearly independent. Assume that the dimension of the image
of a is < q — 1. The lemma stated in the last proof shows that there is a
nonzero vector X € Q such that a(X,X) = 0. Consider the linear transfor-
mation given by Z —> a(X, Z). Since the dimension of the image of a is < q
— 1, and since dimension (null space) + dimension (image) = dimension
(domain), there is a vector Y, linearly independent from X, such that a(X, Y)
= 0. Substituting X and Y into (15) we obtain a contradiction.

Corollary. Let M be a Riemannian manifold. If the sectional curvatures
of a 3-dimensional subspace of TP(M) are all negative, for some point p € M,
then any realizable structure on M whose first-order connection agrees with
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the Rίemannian connection on M must have a singular point at p. In particular,
if the sectional curvatures of M are all negative, and the dimension of M is > 3,
then the only realizable structure on M is the trivial one, a(X, 7 ) Ξ O .

Proof. This follows immediately from part (i) of Theorem 3.
Remark. An example of a manifold with an AS structure whose pseudo-

codimension is > 1 is given by taking a manifold M admitting two metrics g
and g\ Let a be the difference tensor of the two metrics, and let the connec-
tions in the vertical and horizontal bundles be (say) the Riemannian connec-
tions coming from g and g' respectively. To obtain the example, let Mn be an
ovaloid, and g the first fundamental form of M. Since the second fundamental
form of an ovaloid is positive definite, we may let g' be the second funda-
mental form of M. We recall that the rank of the difference tensor is defined
as follows : Let {ea} be a local orthonormal frame for g, and let the components
of the difference tensor aa

bc be defined by the equation

(16) a(eb9ee) = Σ <cea .
a

Define a bilinear form B by setting

(17) B(es,et) = Σ <v<v

We define the rank of a to be the rank of B as a bilinear form. (See [5] for
a more intrinsic definition of B.)

Lemma. The rank of a at x < the dimension of Vλ(x).
Proof. Let q be the dimension of Vx{x), and let the frame [e^ have the

property that eq+1, , em span the complement to Vλ(x). By (16), a%c = 0
for a > q. Hence, by (17), B(eb, ec) = 0 for b or c > q, so the rank of B is

<q.
Using this lemma, we may restate a theorem in [5] as follows:
Theorem. For an ovaloid Nm, if the dimension of V(x) < q on x in an

open subset U of N, then U is at least (m — q)-umbίlical, and the principal
curvature associated to the (m — q)-umbilical directions is constant (q Φ m
or m — 1).

Now take an ovaloid Nn on which the principal curvatures are not equal on
any open set, such as an ellipsoid

where a[s are all unequal. Then, for almost all points x in Nn, the dimension
of Vλ(x) > n — 2, since otherwise Nn would be at least 2-umbilic on an open
set. So the pseudocodίmension of Nn is at least n — 1.
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5. AH structures as immersions

In many cases, we may simply regard R' as the curvature of an imaginary
immersing space for M and note that proofs for immersed submanifolds go
through almost verbatim to give proofs of similar theorems about AH or AS
structures. As examples of this technique we quote the following two theorems.

Theorem 6. Let M be a manifold admitting an AH structure, and jrf the
associated tensor of this structure. Let t(x) be the type number of stf at x—
that is, the rank of the linear transformation srf at x. Let R\X, Y) and R(X, Y)
be the curvature transformations arising from the curvature tensors Rf and R,
respectively. Then

(i) t(x) = 0 or 1 & R'(X, Y) = R(X, Y) for all plane sections at x,
(ii) t(x) > 2& t(x) = n — dim T*, where

T* = {X 6 TX(M): R(X, Y) = R\X, Y), yY e TX(M)} .

Theorem 7. Let fx and f2 be AH structures on 2M inducing the same metric
on M, and let R'fl(X, Y) = R'f2(X, Y) for all plane sections of M. If the type
number of <$/fl > 3, then s/fl = ± ^ / 2

The proofs of Theorems 6 and 7 can be easily deduced from the fact that
the relative curvature R(X, Y) — R'(X, Y) plays the same role as R(X, Y)
does for a hypersurface immersed in Euclidean space, where the counterpart
of the curvature R' of the immersing space is equal to zero. We then note
that the proofs of the analogous theorems in Euclidean space [3, Theorems
(6.1) and (6.2), pp. 42 and 43] make no use of the special properties (such
as homogeneity) of Euclidean space. Moreover, the proofs rely only on the
Gauss equation, which is formally identical to (6). So those proofs go through
to this case. Other theorems can be proved similarly.

This equivalence principle can also be reversed certain theorems about AS
structures can yield theorems about submanifolds of Euclidean space. As an
example, the reader may easily modify the proof of Theorem 4 to obtain the
following extension of [3, Theorem 4.7, p. 28].

Theorem 8. Let M be an n-dimensional Riemannίan manifold isometrically
immersed in Rn+P, and let a(X, Y) be the second fundamental form of M.
Then p > m — d, if there is a point x of M such that

(i) the tangent space TX(M) contains an m-dimensional subspace Tx such
that the sectional curvature for any plane in Tx is nonpositive, and

(ii) the set of vectors X eTx such that a(X, X) = 0 forms a real algebraic
variety of dimension d.
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