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Abstract

In this article we define intersection Floer homology for exact
Lagrangian cobordisms between Legendrian submanifolds in the
contactisation of a Liouville manifold, provided that the Chekanov-
Eliashberg algebras of the negative ends of the cobordisms admit
augmentations. From this theory we derive several long exact
sequences relating the Morse homology of an exact Lagrangian
cobordism with the bilinearised contact homologies of its ends.
These are then used to investigate the topological properties of
exact Lagrangian cobordisms.

1. Introduction

Lagrangian cobordism is a natural relation between Legendrian sub-
manifolds, and it is a crucial ingredient in the definition of the func-
torial properties of invariants of Legendrian submanifolds in the spirit
of symplectic field theory of Eliashberg, Givental and Hofer [39]. In
the present paper we study rigidity phenomena in the topology of exact
Lagrangian cobordisms in the symplectisation of the contactisation of a
Liouville manifold. In [41], Eliashberg and Murphy showed that exact
Lagrangian cobordisms are flexible when their negative ends are loose
(in the sense of Murphy [54]). On the contrary, we will show that they
become rigid if their negative ends admit augmentations (or more gen-
erally finite-dimensional representations) of their Chekanov-Eliashberg
algebras.

In order to study the topology of such cobordisms, we introduce a ver-
sion of Lagrangian Floer homology for pairs of exact Lagrangian cobor-
disms. This construction finds its inspiration in the work of Ekholm
in [32], which gives a symplectic field theory point of view on wrapped
Floer homology of Abouzaid and Seidel from [3].
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The definition of this new Floer theory requires the use of augmen-
tations of the Chekanov-Eliashberg algebras of the negative ends as
bounding cochains in order to algebraically cancel certain degenera-
tions of the holomorphic curves at the negative ends of the cobordisms.
Bounding cochains have been introduced, in the closed case, by Fukaya,
Oh, Ohta and Ono in [48], while augmentations, which play a similar
role in the context of Legendrian contact homology, have been intro-
duced by Chekanov in [19].

For a pair of exact Lagrangian cobordisms obtained by a suitable
small Hamiltonian push-off, our construction gives rise to various long
exact sequences relating the singular homology of the cobordism with
the Legendrian contact homology of its ends. We then use these long
exact sequences to give restrictions on the topology of exact Lagrangian
cobordisms under various hypotheses on the topology of the Legendrian
ends. Analogous long exact sequences have previously been found by
Sabloff and Traynor in [59] in the setting of generating family homology
under the additional assumption that the cobordism admits a compati-
ble generating family, and by the fourth author in [49] in the case when
the negative end of the cobordism admits an exact Lagrangian filling.
The latter results have been put in a much more general framework in
recent work by Cieliebak and Oancea [21].

We will assume that the reader is familiar with Legendrian contact
homology, defined in [19], [33] and [35]. See also Etnyre’s excellent
survey [44] for a quick and relatively painless introduction to the topic.

The notion of Lagrangian cobordism between Legendrian submani-
folds studied in this article is (in general) different from the notion of
Lagrangian cobordisms between Lagrangian submanifolds introduced
by Arnol’d in [6] and recently popularised by Biran and Cornea in [8],
[9]. Despite the differences, for Lagrangian cobordisms between Legen-
drian submanifolds with no Reeb chords, some of the results we obtain
resemble some of the results obtained by Biran and Cornea [8], [9] and
Suárez [63].

1.1. Main results. Let (P, θ) be a Liouville manifold and (Y, α) :=
(P × R, dz + θ) its contactisation. We consider a pair of exact La-
grangian embeddings Σ0,Σ1 ↪→ X, where (X,ω) = (R × Y, d(etα)) is
the symplectisation of (Y, α). We assume that the positive and negative
ends of Σi i = 0, 1 are cylindrical over Legendrian submanifolds Λ−i and

Λ+
i respectively, and thus Σi is a Lagrangian cobordisms from Λ−i to Λ+

i ;
see Figure 1 for a schematic representation. We assume that Σ0 and Σ1

intersect transversely and that their Legendrian ends are chord-generic
in the sense of [35].

We denote by R(Λ±i ) the set of Reeb chords of Λ±i for i = 0, 1, and

by R(Λ±1 ,Λ
±
0 ) the set of Reeb chords from Λ±1 to Λ±0 . Let R be a ring of

characteristic 2 or, if all Σi’s and Λ±i ’s are relatively Pin, any ring. (See
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Figure 1. Two Lagrangian cobordisms inside a sym-
plectisation R × Y , where the vertical axis corresponds
to the R-coordinate.

Section 1.1.1.) We denote by C(Λ±0 ,Λ
±
1 ) the free R-module generated

by R(Λ±1 ,Λ
±
0 ). Note that we are not assuming that R is commutative,

but we assume it is unital.
We assume that the Chekanov-Eliashberg algebra A(Λ−i ;R) of Λ−i

admits an augmentation ε−i over R for i = 0, 1. It follows from the

results of Ekholm, Honda and Kálmán in [37] that A(Λ+
i ;R) also

admits an augmentation ε+
i = ε−i ◦ ΦΣi , where ΦΣi : A(Λ+

i ;R) →
A(Λ−i ;R) is the unital differential graded algebra (DGA) morphism in-
duced by the cobordism Σi. Thus the bilinearised contact cohomologies
LCHε±0 ,ε

±
1

(Λ±0 ,Λ
±
1 ) are defined. See Chekanov [19] and Bourgeois and

Chantraine [10] for the notions of linearisation and bilinearisation of a
differential graded algebra.

We denote by CF (Σ0,Σ1) the free R-module spanned by the inter-
section points Σ0∩Σ1. Note that, in general, it is not possible to define
a Floer differential on CF (Σ0,Σ1) because of breakings at the negative
ends. We define a chain complex (Cth(Σ0,Σ1), dε−0 ,ε

−
1

) associated to a

pair of Lagrangian cobordisms which we call the Cthulhu complex (see
Section 4). Its underlying R-module is

Cth(Σ0,Σ1) = C(Λ+
0 ,Λ

+
1 )⊕CF+(Σ0,Σ1)⊕C(Λ−0 ,Λ

−
1 )⊕CF−(Σ0,Σ1).

The Cthulhu complex is acyclic because of its invariance properties with
respect to a large class of Hamiltonian deformations which, in the con-
tactisation of a Liouville manifold, allow us to displace any pair of La-
grangian cobordisms.

When the negative ends are empty, this complex recovers the wrapped
Floer cohomology complex in the form described by Ekholm in [32].
When the positive ends are empty and there are no homotopically trivial
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Reeb chords of both Λ−i ’s, this complex is similar to the Floer complex
sketched in the work of Akaho in [5, Section 8]. However, the later
condition cannot be satisfied in the symplectisation of a contactisation
of a Liouville manifold by Corollary 1.4; see also [23].

1.1.1. Remarks about grading and orientation. In order to define
a graded theory, we need that 2c1(P ) = 0 and that all Lagrangian cobor-
disms have vanishing Maslov class. This implies that all Lagrangian
cobordisms admit Maslov potentials; a particular choice of such a po-
tential leads to the notion of a graded Lagrangian cobordisms, for which
Cth(Σ0,Σ1) has a well-defined grading in Z. See [60] for the closed case,
which is similar. In general the grading must be taken in a (possibly
trivial) cyclic group. Most of the result here are stated for graded La-
grangian cobordisms, but our methods apply to the ungraded cases as
well. The only difference is that the long exact sequences in Section 1.2
become exact triangles.

For the results to hold when the coefficient ring R is of characteristic
different from two, which is crucial for several of the applications in Sec-
tion 1.3, we need to define coherent orientations for the relevant moduli
spaces of pseudoholomorphic curves. This can be done in the case when
the Lagrangian cobordisms are relatively Pin (following Ekholm, Et-
nyre and Sullivan in [34] and Seidel in [61, Section 11]). For a precise
treatment of signs, we refer to the recent work of Karlsson [52].

1.2. Long exact sequences for LCH induced by a Lagrangian
cobordism. If Σ1 is a Hamiltonian deformation of Σ0 for some suitable
and sufficiently small Hamiltonian, there is a well defined Floer differ-
ential on CF (Σ0,Σ1) and the Floer homology group HF (Σ0,Σ1) can
be identified with the Morse homology group of Σ0. Similarly, the bilin-
earised Legendrian contact homology groups LCHε±0 ,ε

±
1

(Λ±0 ,Λ
±
1 ) can be

identified with the bilinearised contact homology groups LCHε±0 ,ε
±
1

(Λ±0 )

(as defined in [10]) following [36]. Moreover, in the same situation, the
Cthulhu complex can be interpreted as a double cone, and thus provides
long exact sequences which can be reinterpreted, by the identifications
discussed above, as exact sequences relating the singular homology of
a Lagrangian cobordism and the Legendrian contact homology of its
ends. These results are proved in Section 7.2.

In the rest of this introduction, Λ+ and Λ− will always denote closed
Legendrian submanifolds of dimension n in the contactisation of a Liou-
ville manifold, and every Lagrangian cobordism between them, as well
as any Lagrangian filling of them, will always live in the corresponding
symplectisation. We will denote by Σ the natural compactification of Σ
obtained by adjoining its Legendrian ends Λ±. Note that Σ is diffeomor-
phic to Σ∩ [−T,+T ]×Y for some T � 0 sufficiently large. We will also
use the notation ∂±Σ := Λ± ⊂ Σ, which implies that ∂Σ = ∂+Σt ∂−Σ.
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1.2.1. A generalisation of the long exact sequence of a pair.
The first exact sequence we produce from a Lagrangian cobordism (see
Section 7.4) is given by the following:

Theorem 1.1. Let Σ be a graded exact Lagrangian cobordism from
Λ− to Λ+ and let ε−0 and ε−1 be two augmentations of A(Λ−) inducing
augmentations ε+

0 , ε+
1 of A(Λ+). There is a long exact sequence

(1)

· · · // LCHk−1

ε+0 ,ε
+
1

(Λ+)

��
Hn+1−k(Σ, ∂−Σ;R) // LCHk

ε−0 ,ε
−
1

(Λ−) // LCHk
ε+0 ,ε

+
1

(Λ+) // · · · ,

where the map Φ
ε−0 ,ε

−
1

Σ : LCHk
ε−0 ,ε

−
1

(Λ−)→ LCHk
ε+0 ,ε

+
1

(Λ+) is the adjoint

of the bilinearised DGA morphism ΦΣ induced by Σ (see [37]).

When the negative end Λ− = ∅ is empty, i.e. when Σ is an exact
Lagrangian filling of Λ+, and ε+

i , i = 0, 1 both are augmentations in-
duced by this filling, the resulting long exact sequence simply becomes
the isomorphism

LCHk−1

ε+0 ,ε
+
1

(Λ+)
∼=−→ Hn+1−k(Σ;R)

appearing in the work of Ekholm in [32]. This isomorphism was first
observed by Seidel, and is sometimes called Seidel’s isomorphism. (See

the map G
ε−0 ,ε

−
1

Σ in Section 7.5 for another incarnation.) Its proof was
completed by the second author in [25]; also see [16] for an analogous
isomorphism induced by a pair of fillings.

1.2.2. A generalisation of the duality long exact sequence and
fundamental class. A Legendrian submanifold Λ is horizontally dis-
placeable if there exists a Hamiltonian isotopy φt of (P, dθ) which dis-
places the Lagrangian projection ΠLag(Λ) ⊂ P from itself. In Section
7.4 we obtain the following:

Theorem 1.2. Let Σ be an exact graded Lagrangian cobordism from
Λ− to Λ+ and let ε−0 and ε−1 be two augmentations of A(Λ−) induc-
ing augmentations ε+

0 , ε+
1 of A(Λ+). Assume that Λ− is horizontally

displaceable; then there is a long exact sequence
(2)

· · · // LCHk
ε+0 ,ε

+
1

(Λ+) // LCH
ε−0 ,ε

−
1

n−k−1(Λ−) // Hn−k−1(Σ;R)

��
LCHk+1

ε+0 ,ε
+
1

(Λ+) // · · · ,
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where the map G
ε−0 ,ε

−
1

Σ : Hn−k−1(Σ;R) → LCHk+1

ε+0 ,ε
+
1

(Λ+) is defined in

Section 7.5.

If Σ = R× Λ, then H•(Σ) = H•(Λ), and hence the above long exact
sequence recovers the duality long exact sequence for Legendrian contact
homology, which was proved by Sabloff in [58] for Legendrian knots
and later generalised to arbitrary Legendrian submanifolds in [36] by
Ekholm, Etnyre and Sabloff. In the bilinearised setting, the duality
long exact sequence was introduced by Bourgeois and the first author
in [10]. In Section 8.4 we use Exact Sequence (2) to prove that the
fundamental class in LCH defined by Sabloff in [58] and Ekholm, Etnyre
and Sabloff in [36] is functorial with respect to the maps induced by
exact Lagrangian cobordisms.

1.2.3. A generalisation of the Mayer-Vietoris long exact se-
quence. The last exact sequence that we will extract from the Cthulhu
complex generalises the Mayer-Vietoris exact sequence (see Section 7.4).

Theorem 1.3. Let Σ be an exact graded Lagrangian cobordism from
Λ− to Λ+ and let ε−0 and ε−1 be two augmentations of A(Λ−) inducing
augmentations ε+

0 , ε+
1 of A(Λ+). Then there is a long exact sequence

(3)

· · · // LCHk−1

ε+0 ,ε
+
1

(Λ+)

tt
Hn−k(∂−Σ;R) // LCHk

ε−0 ,ε
−
1

(Λ−)⊕Hn−k(Σ;R) // LCHk
ε+0 ,ε

+
1

(Λ+)

ss· · ·
where the component

Hn−k(∂−Σ;R)→ Hn−k(Σ;R)

of the left map is induced by the topological inclusion of the negative end.
If ε−0 = ε−1 = ε, it moreover follows that the image of the funda-

mental class under the component Hn(∂−Σ;R) → LCH0
ε,ε(Λ

−) of the
above morphism vanishes. Moreover, under the additional assumption
that Λ− is horizontally displaceable, the image of a generator under
H0(∂−Σ;R)→ LCHn

ε,ε(Λ
−) is equal to the fundamental class in Legen-

drian contact homology.

In particular we get that the fundamental class in Hn(∂−Σ;R) either
is non-zero in Hn(Σ), or is the image of a class in LCH−1

ε+0 ,ε
+
1

(Λ+). In

both cases, Λ+ 6= ∅. Thus we obtain a new proof of the following result.

Corollary 1.4 ([23]). If Λ ⊂ P × R admits an augmentation, then
there is no exact Lagrangian cobordism from Λ to ∅, i.e. there is no
exact Lagrangian “cap” of Λ.
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Remark 1.5. Assume that Λ− admits an exact Lagrangian filling L
inside the symplectisation, and that ε− is the augmentation induced by
this filling. It follows that ε+ is the augmentation induced by the filling
L� Σ of Λ+ obtained as the concatenation of L and Σ. Using Seidel’s
isomorphisms

LCHk
ε−,ε−(Λ−) ∼= Hn−k(L;R), LCHk

ε+,ε+(Λ+) ∼= Hn−k(L� Σ;R)

to replace the relevant terms in the long exact sequences (1) and (3), we
obtain the long exact sequence for the pair (L � Σ, L) and the Mayer-
Vietoris long exact sequence for the decomposition L � Σ = L ∪ Σ,
respectively. This fact was already observed and used by the fourth
author in [49].

1.3. Topological restrictions on Lagrangian cobordisms. Using
the long exact sequences from the previous subsection and their refine-
ments to coefficients twisted by the fundamental group, as defined in
Section 8, we find strong topological restrictions on exact Lagrangian
cobordisms between certain classes of Legendrian submanifolds.

1.3.1. The homology of an exact Lagrangian cobordism from
a Legendrian submanifold to itself. One of the consequences of
Theorem 1.3 is the following theorem, proved in Section 9.1. A similar
statement has been proven by the second and the fourth author in [26,
Theorem 1.6] under the more restrictive assumption that Λ bounds an
exact Lagrangian filling.

Theorem 1.6. Let Σ be an exact Lagrangian cobordism from Λ to
Λ and F a field (of characteristic two if Λ is not relatively Pin). If the
Chekanov-Eliashberg algebra A(Λ;F) admits an augmentation, then:

(i) There is an equality dimFH•(Σ;F) = dimFH•(Λ;F);
(ii) The map (i−∗ , i

+
∗ ) : H•(Λ;F) → H•(Σ;F) ⊕ H•(Σ;F) is injective;

and
(iii) The map i+∗ ⊕ i−∗ : H•(Λ t Λ)→ H•(Σ) is surjective.

Here i+ is the inclusion of Λ as the positive end of Σ, while i− is the
inclusion of Λ as the negative end of Σ.

Remark 1.7. The above equalities hold for the Z-graded singular
homology groups without assuming that the cobordism Σ is graded.

An immediate corollary of Theorem 1.1 is the following result, which
had already appeared in [26, Theorem 1.7] under the stronger assump-
tion that the negative end is fillable.

Theorem 1.8. If Λ is a homology sphere which admits an augmen-
tation over Z, then any exact Lagrangian cobordism Σ from Λ to itself
is a homology cylinder (i.e. H•(Σ,Λ) = 0).

Inspired by the work of Capovilla-Searle and Traynor [13], in Section
9.2 we prove the following restriction on the characteristic classes of an
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exact Lagrangian cobordism from a Legendrian submanifold to itself.
Given a manifold M , we denote by wi(M) the i-th Stiefel-Whitney class
of TM .

Theorem 1.9. Let Σ be an exact Lagrangian cobordism from Λ to
itself, and F = Z/2Z. Assume that A(Λ;F) admits an augmentation.
If, for some i ∈ N, wi(Λ) = 0, then wi(Σ) = 0.

If Λ is relatively Pin, the same holds for the Pontryagin classes and
for the Maslov class.

In particular we partially answer Question 6.1 of the same article.

Corollary 1.10. If Λ is an orientable Legendrian submanifold ad-
mitting an augmentation, then any exact Lagrangian cobordism from Λ
to itself is orientable.

1.3.2. Restrictions on the fundamental group of certain exact
Lagrangian fillings and cobordisms. In order to incorporate the
fundamental group in our constructions, following ideas of Sullivan in
[64] and Damian in [22], we define a “twisted” version of the Cthulhu
complex Cth(Σ0,Σ1) with coefficients in the group ring R[π1(Σ0)] in
Section 8.

We also establish long exact sequences analogous to those in Section
1.2 involving homology groups over twisted coefficients in R[π1(Σ)]. In
the setting of Legendrian contact homology, these techniques were intro-
duced by Ekholm and Smith in [38] and further developed by Eriksson-

Östman in [43].
Using generalisations of the long exact sequence from Theorem 1.1

and the functoriality of the fundamental class from Proposition 8.7 (see
Section 9.3.1) we prove the following theorem:

Theorem 1.11. Let Σ be a graded exact Lagrangian cobordism from
Λ− to Λ+. Assume that A(Λ−;R) admits an augmentation and that
Λ+ has no Reeb chords in degree zero. If Λ− and Λ+ both are simply
connected, then Σ is simply connected as well.

Remark 1.12. The seemingly unnatural condition that Λ+ has no
Reeb chords in degree zero is used to ensure that the Chekanov-Eliash-
berg algebra A(Λ+;A) has at most one augmentation in A for every
unital R-algebra A. This condition is clearly not invariant under Leg-
endrian isotopy, but the conclusion of Theorem 1.11 can be extended
to every Legendrian submanifold which is Legendrian isotopic to Λ+

because Legendrian isotopies induce Lagrangian cylinders by [40, 4.2.5]
(also, see [14]).

We now present another result which imposes constraints on the fun-
damental group of an exact Lagrangian cobordism from a Legendrian
submanifold to itself (see Section 9.3.2). Its proof uses an L2-completion
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of the Floer homology groups with twisted coefficients and the L2-Betti
numbers of the universal cover (using results of Cheeger and Gromov in
[18]).

Theorem 1.13. Let Λ be a simply connected Legendrian submanifold
which is relatively Pin, and let Σ be an exact Lagrangian cobordism
from Λ to itself. If A(Λ;C) admits an augmentation, then Σ is simply
connected as well.

Combining Theorem 1.8 with Theorem 1.13, we get the following
result.

Corollary 1.14. Let Σ be an n-dimensional Legendrian homotopy
sphere and assume that A(Λ;Z) admits an augmentation. Then any
exact Lagrangian cobordism Σ from Λ to itself is an h-cobordism. In
particular:

1) If n 6= 3, 4, then Σ is diffeomorphic to a cylinder;
2) If n = 3, then Σ is homeomorphic to a cylinder; and
3) If n = 4 and Λ is diffeomorphic to S4, then Σ is diffeomorphic to

a cylinder.

When n = 1, a stronger result is known. Namely, in [16, Section 4] we
proved that any exact Lagrangian cobordism Σ from the standard Leg-
endrian unknot Λ0 to itself is compactly supported Hamiltonian isotopic
to the trace of a Legendrian isotopy of Λ0 which is induced by the com-
plexification of a rotation by kπ, k ∈ Z. This classification makes use of
the uniqueness of the exact Lagrangian filling of Λ0 up to compactly sup-
ported Hamiltonian isotopy, which was proved in [42] by Eliashberg and
Polterovich. In contrast, the methods we develop in this article give re-
strictions only on the smooth type of the cobordisms and little informa-
tion is known about their symplectic knottedness in higher dimension.

1.3.3. Obstructions to the existence of a Lagrangian concor-
dance. A Lagrangian concordance from Λ− to Λ+ is a symplectic cobor-
dism from Λ− to Λ+ which is diffeomorphic to a product R × Λ. In
particular this implies that Λ− and Λ+ are diffeomorphic as smooth
manifolds. Note that a Lagrangian concordance is automatically exact.

If Σ is a Lagrangian concordance, then H•(Σ, ∂−Σ;R) = 0, and thus
Theorem 1.1 implies the following corollary.

Corollary 1.15. Let Σ be an exact Lagrangian concordance from Λ−

to Λ+. If, for i = 0, 1, ε−i is an augmentation of A(Λ−;R) and ε+
i is the

pull-back of ε−i under the DGA morphism induced by Σ, then the map

Φ
ε−0 ,ε

−
1

Σ : LCH•
ε−0 ,ε

−
1

(Λ−)→ LCH•
ε+0 ,ε

+
1

(Λ+)

is an isomorphism. Consequently, there is an inclusion

{LCH•
ε−0 ,ε

−
1

(Λ−)}/isom. ↪→ {LCH•
ε+0 ,ε

+
1

(Λ+)}/isom.
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of the sets consisting of isomorphism classes of bilinearised Legendrian
contact cohomologies, for all possible pairs of augmentations.

This corollary can be used to obstruct the existence of Lagrangian
concordances. For example, it can be applied to the computation of
the linearised Legendrian contact homologies given by Chekanov in [19,
Theorem 5.8] to prove that there is no exact Lagrangian concordance
from either of the two Chekanov-Eliashberg knots to the other. We also
use Corollary 1.15 to deduce new examples of non-symmetric concor-
dances in the spirit of the example given by the first author in [15]. We
refer to Section 9.4.3 for a simply connected example in high dimensions.

We recall that a Legendrian isotopy induces a Lagrangian concor-
dance. Since Legendrian isotopies are invertible, two isotopic Legen-
drian submanifolds thus admit Lagrangian concordances going in either
direction. On the other hand, we have now many examples of non-
symmetric Lagrangian concordances, and hence the following natural
question can be asked.

Question 1.16. Assume that there exists Lagrangian concordances
from Λ0 to Λ1 as well as from Λ1 to Λ0. Does this imply that the
Legendrian submanifolds Λ0 and Λ1 are Legendrian isotopic? Are such
Lagrangian concordances moreover Hamiltonian isotopic to one induced
by a Legendrian isotopy (as constructed by [40, 4.2.5])?

In view of Corollary 1.15, this question will not be easily answered
by Legendrian contact homology.

1.4. Remarks about the hypotheses.

1.4.1. Restrictions on the ambient manifolds. The reasons for re-
stricting our attention to Lagrangian cobordisms in the symplectisation
of the contactisation of a Liouville manifold are two-fold. First, the an-
alytic framework to have a well defined complex (Cth(Σ0,Σ1), dε−0 ,ε

−
1

)

is vastly simplified from the fact that the Reeb flow has no periodic
Reeb orbits. However, using recent work of Pardon in [56] (or the
polyfold technology being developed by Hofer, Wysocki and Zehnder),
we expect that it should be possible to extend the construction of the
complex (Cth(Σ0,Σ1), dε−0 ,ε

−
1

) to more general symplectic cobordisms.

Second, our applications use exact sequences arising from the acyclicity
of the complex (Cth(Σ0,Σ1), dε−0 ,ε

−
1

), which is a consequence of the fact

that any Lagrangian cobordism can be displaced in the symplectisation
of a contactisation. Floer theory for Lagrangian cobordisms in more
general symplectic cobordisms will be investigated in a future article.

1.4.2. Restrictions on the Lagrangian submanifolds. Now we de-
scribe some examples showing that many of the hypotheses we made in
Section 1.3 are in fact essential, and not merely artefacts of the tech-
niques used. First, an exact Lagrangian cobordism having a negative
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end whose Chekanov-Eliashberg algebra admits no augmentation can
be a quite flexible object: in fact Eliashberg and Murphy proved in [41]
that exact Lagrangian cobordisms with a loose negative end satisfy an
h-principle, and therefore one cannot hope for a result in the spirit of
Theorem 1.8 to hold in complete generality. Indeed, we refer to the
work of the second and fourth authors in [26] for examples of exact
Lagrangian cobordisms from a loose Legendrian sphere to itself having
arbitrarily large Betti numbers.

Second, the condition that Λ is a homology sphere in the statement
of Theorem 1.8 was shown to be essential already in [26, Section 2.3].

Finally, the importance of the condition on the Reeb chords of the
positive end in Theorem 1.11 is emphasised by the following example,
which will be detailed in Section 9.4.

Proposition 1.17. There exists a non-simply connected exact La-
grangian cobordism from the two-dimensional standard Legendrian
sphere to a Legendrian sphere inside the symplectisation of standard
contact (R5, ξstd).

As a converse to Theorem 1.11, the existence of a non-simply con-
nected exact Lagrangian cobordism can be used to show the existence
of degree zero Reeb chords on the positive end of the cobordism.

Acknowledgments. While this research was conducted, the authors
benefited from the hospitality of various institutions in addition to their
own; in particular they are indebted to CIRGET and CRM in Montréal,
the Centro De Giorgi in Pisa, and the institute Mittag-Leffler in Stock-
holm. We warmly thank Stefan Friedl for suggesting that we should look
at L2-homology theory to gain information on fundamental groups.

2. Preliminary definitions

2.1. Exact Lagrangian cobordisms. Let (P, θ) be a Liouville man-
ifold. Its contactisation (Y, α) is Y = P × R with the contact form
α = dz + θ. We consider exact Lagrangian cobordisms in the contacti-
sation of a Liouville manifolds (P, θ). The following convention will be
used throughout the article: given a smooth manifold M , a submani-
fold N ⊂M and a differential form η on M , we will denote by η|N the
pull-back of η under the inclusion of N in M .

Definition 2.1. Let Λ− and Λ+ be two closed Legendrian subman-
ifolds of (Y, α). An exact Lagrangian cobordism from Λ− to Λ+ in
(R×Y, d(etα)) is a properly embedded submanifold Σ ⊂ R×Y without
boundary satisfying the following conditions:

1) for some T � 0,
(a) Σ ∩ ((−∞,−T )× Y ) = (−∞,−T )× Λ−,
(b) Σ ∩ ((T,+∞)× Y ) = (T,+∞)× Λ+, and
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(c) Σ ∩ ([−T, T ]× Y ) is compact;
2) There exists a smooth function fΣ : Σ→ R for which

(a) etα|Σ = dfΣ,
(b) fΣ|(−∞,−T )×Λ− is constant, and
(c) fΣ|(T,∞)×Λ+ is constant.

We will call (T,+∞) × Λ+ ⊂ Σ and (−∞,−T ) × Λ− ⊂ Σ the positive
end and the negative end of Σ, respectively. We will call a cobordism
from a submanifold to itself an endocobordism.

Condition (2b) is used to rule out certain bad breakings of pseudo-
holomorphic curves. Condition (2c) is used to ensure that the concate-
nation of two exact Lagrangian cobordisms (as in Definition 2.3) still is
an exact Lagrangian cobordism. If one does not care about concatena-
tions, then this condition can be dropped.

Example 2.2. If Λ is a closed Legendrian submanifold of (Y, ξ), then
R×Λ is an exact Lagrangian cobordism inside (R×Y, d(etα)) from Λ to
itself. Cobordisms of this type are called (trivial) Lagrangian cylinders.

In the case when there exists an exact Lagrangian cobordism from
Λ− to Λ+ we say that Λ− is exact Lagrangian cobordant to Λ+. If Σ is
an exact Lagrangian cobordism from the empty set to Λ, we call Σ an
exact Lagrangian filling of Λ. In the latter case we say that Λ is exactly
fillable.

Definition 2.3. Given exact Lagrangian cobordisms Σa from Λ− to
Λ and Σb from Λ to Λ+, their concatenation Σa�Σb is defined as follows.

First, translate Σa and Σb so that

Σa ∩ ((−1,+∞)× Y ) = (−1,+∞)× Λ,

Σb ∩ ((−∞, 1)× Y ) = (−∞, 1)× Λ.

Then we define

Σa � Σb := (Σa ∩ ((−∞, 0]× Y )) ∪ (Σb ∩ ([0,+∞)× Y )).

Conditions (2b) and (2c) of Definition 2.1 imply that Σa � Σb is an
exact Lagrangian cobordism from Λ− to Λ+.

The following Lemma follows from the fact that different choices of
translation lead to Hamiltonian isotopic exact cobordisms.

Lemma 2.4. The compactly supported Hamiltonian isotopy class of
Σa � Σb is independent of the above choices of translations.

2.2. Almost complex structures. In this subsection we describe the
almost complex structures that we will use to set up the theory.

2.2.1. Cylindrical almost complex structures. Let (Y, α) be a con-
tact manifold with the choice of a contact form. We denote by J cyl(Y )
the set of cylindrical almost complex structures on the symplectisation
(R×Y, d(etα)), i.e. almost complex structures J satisfying the following
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conditions:

• J is invariant under the natural action of R on R× Y ;
• J∂t = Rα;
• J(ξ) = ξ, where ξ := kerα ⊂ TY ; and
• J is compatible with dα|ξ, i.e. dαξ(·, J ·) is a metric on ξ.

2.2.2. Almost complex structures on Liouville manifolds. Let
(P, θ) be a Liouville manifold. Recall that there is a subset P∞ ⊂ P
that is exact symplectomorphic to half a symplectisation

([0,+∞)× V, d(eταV )),

and where P \P∞ ⊂ P is pre-compact. We say that an almost complex
structure JP compatible with dθ is admissible if the almost complex
structure JP on P coincides with a cylindrical almost complex structure
in J cyl(V ) outside of a compact subset of P∞. We denote by J adm(P )
the set of these almost complex structures.

2.2.3. Cylindrical lifts. Given an almost complex structure JP ∈
J adm(P ) there is a unique cylindrical almost complex structure J̃P on
(R× Y, d(etα)) which makes the projection

π : R× Y = R× P × R→ P

a (J̃P , JP )-holomorphic map. We will call this almost complex structure

the cylindrical lift of JP . We denote by J cyl
π (Y ) ⊂ J cyl(Y ) the set of

cylindrical lifts of almost complex structures in J adm(P ).

2.2.4. Compatible almost complex structures with cylindrical

ends. Let J+ and J− be almost complex structures in J cyl
π (Y ), and

let T ∈ R+. We require that J+ and J− are lifts of almost complex
structures in J adm(P ) which coincide outside of a compact subset of P .
We denote by J adm

J−,J+,T (X) the set of almost complex structures J on

X = R× Y that tame d(etα) and satisfy the following:

(a) J is equal to the cylindrical almost complex structures J− and J+

on subsets of the form

(−∞,−T ]× P × R, [T,+∞)× P × R,

respectively; and
(b) for some compact K ⊂ Y , the almost complex structure J coin-

cides, outside of R×K, with a cylindrical lift living in J cyl
π (Y ).

Condition (b) is needed in order to deal with compactness issues.
We will always assume that T > 0 is such that the cobordisms are

cylindrical outside [−T, T ]×Y , and simply write J adm
J−,J+(X). The union

of all J adm
J−,J+(X) over all J−, J+ ∈ J cyl

π (Y ) is denoted J adm(X); almost

complex structure in this set will be called admissible.
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3. A monster compendium of holomorphic discs

Through the paper we will consider various moduli spaces of holo-
morphic curves with boundary on a pair of Lagrangian cobordisms.
Asymptotics will be either intersection points or Reeb chords. Such
moduli spaces are similar to many already appearing in the literature
(see [31], [32], [11]) and compactness results for such moduli spaces
follows from the results in [12] and [2]. In this section we describe these
spaces and express their dimension in terms of the Conley-Zender indices
of their asymptotics (using the dimension formula from [61, Proposition
11.13]). We will follow the symplectic field theory (SFT) convention: in
all moduli spaces we take a quotient by reparametrisations of the source.

We fix two lifted almost complex structures J± ∈ J cyl
π (Y ) on R× Y

and a path J• = {Jt}t∈[0,1] of almost complex structures in J adm
J+,J−(X)

which is constant near t = 0, 1. We denote byR(Λ±i ,Λ
±
j ), {i, j} = {0, 1}

the set of Reeb chords from Λ±i to Λ±j . Those chords are called mixed,
while chords starting and ending on the same Legendrian are called pure.

3.1. Pure moduli spaces. Denote Σ = Σi, J = Ji and Λ± = Λ±i
for one of i = 0 or 1. Let γ+, δ+

i , . . . , δ
+
d be Reeb chords of Λ+ and

γ−, δ
−
1 , . . . , δ

−
d Reeb chords of Λ−. Throughout the paper we will write a

d-tuple of pure Reeb chords as a word; this notation is reminiscent of the
multiplicative structure of the Chekanov-Eliashberg algebra. Therefore,
we set δ± = δ±1 . . . δ

±
d .

We will consider three types of pure LCH moduli spaces:

M̃R×Λ+(γ+; δ+; J+), M̃R×Λ−(γ−; δ−; J−), and MΣ(γ+; δ−; J).

The first two moduli spaces will be called pure cylindrical LCH moduli
spaces, and are used to define the Legendrian contact homology differ-
ential of Λ±. The third moduli space will be called pure cobordism LCH
moduli space and is used in [37] to define maps between Legendrian con-
tact homology algebras. The pure cylindrical LCH moduli spaces are
moduli spaces of J±-holomorphic maps from a (d + 1)-punctured disc
(d ≥ 1) to R × Y with boundary on R × Λ±, one puncture positively
asymptotic to γ± and d punctures negatively asymptotic to δ±. The
pure cobordism LCH moduli spaces are moduli spaces of J-holomorphic
maps from a (d + 1)-punctured disc (d ≥ 1) to R × Y with boundary
on Σ, one positive puncture asymptotic to γ+ and d negative punctures
asymptotic to δ−. Finally in the cylindrical moduli spaces we take a
quotient by the natural R-action, while such an operation is not possible
(nor desirable) for the cobordism moduli space.

3.2. Mixed moduli spaces.

3.2.1. General definition. Let L = (L0, L1), where {L0, L1} denotes
one of the sets {R×Λ±0 ,R×Λ±1 } or {Σ0,Σ1}. In the former case define
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JL = J± and in the latter JL = J•. Let δ be a word in the Reeb cords
of the negative end of L0 and ζ a word in the Reeb cords of the negative
end of L1. Finally, compatibly with L, let x± be either an intersection
point or a mixed Reeb chord, requiring that, when x+ is a Reeb chord,
it should go from the positive ends of L1 to the positive end of L0.

We denote byML(x+; δ, x−, ζ; JL) the moduli space consisting of JL-
holomorphic maps from a boundary punctures strip (with coordinates
(t, s) ∈ [0, 1] × R) to R × Y with boundary on L0 for t = 0 and on
L1 for t = 1, asymptotic to γ+ for s → +∞ and to γ− for s → −∞,
and with boundary punctures negatively asymptotic to δ and ζ. If

{L0, L1} = {R × Λ±0 ,R × Λ±1 }, we denote by M̃L(x+; δ, x−, ζ; JL) the
quotient of ML(x+; δ, x−, ζ; JL) by the natural R-action.

Remark 3.1. When no confusion can arise, we will often drop the
almost complex structure, and sometimes also the boundary conditions,
from the notation of the moduli spaces. In the latter case, the boundary
conditions can be inferred from the asymptotics.

3.2.2. Mixed LCH moduli spaces. Let δ± := δ±1 . . . δ
±
i−1 be Reeb

chords of Λ±1 and ζ± = ζ±i+1 . . . ζ
±
d be Reeb chords of Λ±0 . We will

consider three types of mixed LCH moduli spaces:

M̃R×Λ±0 ,R×Λ±1
(γ+; δ±, γ−, ζ±; J±) and MΣ0,Σ1(γ+; δ−, γ−, ζ−; J•),

where

γ± ∈ R(Λ+
1 ,Λ

+
0 ) for M̃R×Λ+

0 ,R×Λ+
1

(γ+; δ+, γ−, ζ+; J+),

γ± ∈ R(Λ−1 ,Λ
−
0 ) for M̃R×Λ−0 ,R×Λ−1

(γ+; δ−, γ−, ζ−; J−), and

γ+ ∈ R(Λ+
1 ,Λ

+
0 ), γ− ∈ R(Λ−1 ,Λ

−
0 ) forMΣ0,Σ1(γ+; δ−, γ−, ζ−; J•).

The first two moduli spaces will be called mixed cylindrical LCH
moduli spaces and are used to define the bilinearised Legendrian contact
homology differential of (Λ±0 ,Λ

±
1 ) (see [10]). The third moduli space will

be called mixed cobordism LCH moduli space and is used to define maps
between bilinearised Legendrian contact homology groups.

An illustration of a curve in the mixed cobordism LCH moduli spaces
is shown in Figure 2.

3.2.3. Floer moduli space. Let p, q ∈ Σ0 ∩Σ1 be intersection points,
δ− = δ−1 . . . δ

−
i−1 a word of Reeb chords on Λ−0 , and ζ− = ζ−i+1 . . . ζ

−
d a

word of Reeb chords on Λ−1 . Elements of the moduli spaces

MΣ0,Σ1(p; δ−, q, ζ−; J•)

will be called (punctured) Floer strips. See Figure 3.

3.2.4. LCH to Floer moduli space. Let γ− ∈ R(Λ−1 ,Λ
−
0 ) be a mixed

chord, p ∈ Σ0 ∩ Σ1 an intersection point, δ− = δ−1 . . . δ
−
i−1 a word of
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γ+

δ1 δ2 γ− ζ1 ζ2

Σ0 Σ1

Figure 2. A mixed cobordism LCH curve.

p

δ1 δ2

q

ζ1 ζ2

Σ0 Σ1

Figure 3. A punctured Floer strip.

p

δ1 δ2 γ− ζ1 ζ2

Σ0 Σ1

Figure 4. A pseudoholomorphic Cthulhu.

Reeb chords on Λ−0 , and ζ− = ζ−i+1 . . . ζ
−
d a word of Reeb chords on Λ−1 .

Curves in the moduli space

MΣ0,Σ1(p; δ−, γ−, ζ−; J•)

will be called pseudoholomorphic Cthulhus. See Figure 4.
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3.2.5. Floer to LCH moduli space. Let γ+ ∈ R(Λ+
1 ,Λ

+
0 ) be a mixed

chord, p ∈ Σ0 ∩ Σ1 an intersection point, δ− = δ−1 . . . δ
−
i−1 Reeb chords

of Λ−0 and ζ− = ζ−i+1 . . . ζ
−
d Reeb chords of Λ−1 . Curves in the moduli

space

MΣ0,Σ1(γ+; δ−, p, ζ−; J•)

will be called pseudoholomorphic cultists. See Figure 5.

γ+

δ1 δ2

q

ζ1 ζ2

Σ0 Σ1

Figure 5. A pseudoholomorphic cultist.

3.2.6. Bananas moduli space. Let γ1,0 ∈ R(Λ−1 ,Λ
−
0 ) and γ0,1 ∈

R(Λ−0 ,Λ
−
1 ) be mixed Reeb chords (going in opposite directions), let

δ− = δ−1 . . . δ
−
i−1 be Reeb chords of Λ−0 and ζ− = ζ−i+1 . . . ζ

−
d Reeb chords

of Λ−1 . Curves in the moduli space

M̃R×Λ−0 ,R×Λ−1
(γ1,0; δ−, γ0,1, ζ

−; J−)

will be called pseudoholomorphic bananas. See Figure 6.
Note that we can also define bananas moduli spaces

M̃R×Λ+
0 ,R×Λ+

1
(γ1,0; δ+, γ0,1, ζ

+; J+), MΣ0,Σ1(γ1,0; δ−, γ0,1, ζ
−; J•).

γ1,0

δ1 δ2

γ0,1

ζ1 ζ2

R× Λ−0 R× Λ−1

Figure 6. A pseudoholomorphic banana.
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3.3. Structure of the moduli spaces. We recall that the cobordisms
Σi have dimension n + 1. If x is an intersection point or a Reeb chord
(either pure or mixed), we denote by gr(x) its Conley-Zehnder index as
defined in [35]. If the cobordisms are graded, then gr is well defined;
otherwise it depends on some (non-canonical) choice and only the di-
mension formulas for the moduli spaces will be well defined for maps in
the same relative homotopy class. The proof of the following proposi-
tion is a patchwork of results from the literature, see [28, Section 2.2],
[20, Theorem A.1], [36, Lemma 2.5].

Proposition 3.2. For generic almost complex structures J± and J•,
the moduli spaces described in Section 3 are transversely cut out and
therefore are smooth manifolds. Their dimensions are

dimM(γ+; δ−, γ−, ζ−) = gr(γ+)− gr(γ−)− gr(δ)− gr(ζ),

(4)

dimM(γ+; δ−, q, ζ−) = gr(γ+)− gr(q)− gr(δ)− gr(ζ) + 1,

(5)

dimM(p; δ−, q, ζ−) = gr(p)− gr(q)− gr(δ)− gr(ζ)− 1,(6)

dimM(p; δ−, γ−, ζ−) = gr(p)− gr(γ−)− gr(δ)− gr(ζ)− 2,

(7)

dimM(γ1,0; δ−, γ0,1, ζ
−) = gr(γ1,0) + gr(γ0,1)− gr(δ)− gr(ζ)− n+ 2.

(8)

When the natural R-action is well defined and free, the moduli spaces
after taking the quotient are still transversely cut out and their dimen-
sion is one less. Moreover the zero-dimensional moduli spaces (after
quotient, when possible) are compact, and the one-dimensional mod-
uli spaces can be compactified by adding two-levels pseudoholomorphic
buildings where each level belong to a zero-dimensional moduli space.
Finally, if both cobordisms are relatively Pin, the moduli spaces can be
coherently oriented.

3.4. Energy. In this section, we recall the notion of Hofer energy for
pseudoholomorphic curves in the symplectisation of a contact manifold
as introduced in [51] and [12]. See also [1] for the relative case.

3.4.1. Hofer energy. Assume that Σ0 and Σ1 are two exact Lagrang-
ian cobordisms in the symplectisation of (Y, α). Let fi : Σi → R be
primitives of etα|Σi which are constant at the cylindrical ends. With-
out loss of generality we will assume that both constants are 0 on the
negative ends, while the constants on the positive end of Σi will be
denoted by ci, i = 0, 1. Here we rely on Definition 2.1 of an exact
cobordism.
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Take any T > 0 and T > ε > 0 for which

Σi ∩ ((−∞,−T + ε)× Y ) = (−∞,−T + ε)× Λ−i

Σi ∩ ((T − ε,+∞)× Y ) = (T − ε,+∞)× Λ+
i ,

for i = 0, 1. Now, we let φ : R → [e−T , eT ] be a smooth function
satisfying:

• φ(±t) = e±T for t > T ;
• φ(t) = et for t ∈ [−T + ε, T − ε];
• φ′(t) ≥ 0.

In the case when both Σ0 and Σ1 are trivial cylinders over Legendrian
submanifolds, we will also allow the case T = ε = 0, and φ ≡ 1.

By construction we have φ ·α|Σi = etα|Σi for the reason that α|Σi = 0
in the subset where φ is not equal to et. A primitive of etα|Σi (which
exists by exactness) is hence also a primitive of φ · α|Σi .

Let C− be the set of compactly supported smooth functions

w− : (−∞,−T + ε)→ [0,+∞)

satisfying

∫ −T+ε

−∞
w−(s)ds = e−T , and let C+ be the set of compactly

supported smooth functions

w+ : (T − ε,+∞)→ [0,+∞)

satisfying

∫ +∞

T−ε
w+(s)ds = eT .

Definition 3.3. Let S be a punctured disc and let u = (a, v) : S →
R× Y be a smooth map.

• The d(φα)-energy of u is given by

Ed(φα)(u) =

∫
S
u∗(d(φα)).

• The α-energy of u is given by

Eα(u) = sup
(w−,w+)∈C−×C+

(∫
S

(w− ◦ a)da ∧ v∗α+

∫
S

(w+ ◦ a)da ∧ v∗α
)
.

• The total energy, or the Hofer energy, of u is given by

E(u) = Eα(u) + Ed(φα)(u).

If E(u) <∞, we say that u is a finite energy pseudoholomorphic disc.

Non-constant holomorphic curves have positive total energy, as stated
in the following simple lemma. We leave the proof to the reader.

Lemma 3.4. If u is non-constant punctured pseudoholomorphic disc
with boundary on a pair of exact Lagrangian cobordisms, and if the
almost complex structure is cylindrical outside of [−T + ε, T − ε] × Y ,
then E(u) > 0, Eα(u) ≥ 0, and Ed(φα)(u) ≥ 0. Moreover, Ed(φα)(u) = 0
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implies that the image of u is contained in a trivial cylinder over a Reeb
orbit.

3.4.2. Action and energy. Consider a pair of exact Lagrangian cobor-
disms Σi from Λ−i to Λ+

i with potential functions fi : Σi → R, i = 0, 1.

For a Reeb chord c of Λ±0 ∪ Λ±1 we define

`(c) :=

∫
c
α.

Recall that the definition of the Ed(φα)-energy depends on the choice of
a constant T ≥ 0, where equality is possible only when both cobordisms
are trivial cylinders. The action of a Reeb chord γ of Λ±1 ∪Λ±0 is defined
by

a(γ) := eT `(α) + (ci − cj) if γ is a chord of Λ+
0 ∪ Λ+

1 , and

a(γ) := e−T `(α) if γ is a chord of Λ−0 ∪ Λ−1 .

In particular, the action of a pure Reeb chord γ of Λ±i is a(γ) = e±T `(γ).

Given a word γ = γ1 . . . γd, we denote a(γ) =
d∑
i=1

a(γi).

The action of an intersection point p ∈ Σ0 ∩ Σ1 is defined by

a(p) := f1(p)− f0(p).

Stoke’s theorem gives the following proposition (see [24] for details),
whose proof heavily relies on the fact that each cobordism Σi, i = 0, 1,
is exact.

Proposition 3.5. Let γ± ∈ R(Λ±1 ,Λ
±
0 ) be mixed Reeb chords, δ− =

δ−1 . . . δ
−
i−1 and ζ− = ζi+1 . . . ζd words of pure Reeb chords on Λ−1 and

Λ−0 , respectively, and p, q ∈ Σ0 ∩ Σ1 intersection points.

• If u ∈M(γ+; δ−, γ−, ζ−), then

Ed(φα)(u) = a(γ+)− a(γ−)−
(
a(δ−) + a(ζ−)

)
,(9)

Eα(u) ≤ 2a(γ+).

• If u ∈M(γ+; δ−, p, ζ−), then

Ed(φα)(u) = a(γ+)− a(p)−
(
a(δ−) + a(ζ−)

)
,(10)

Eα(u) ≤ 2a(γ+).

• If u ∈M(p; δ−, γ−, ζ−), then

Ed(φα)(u) = a(p)− a(γ−)−
(
a(δ−) + a(ζ−)

)
,(11)

Eα(u) ≤ a(p).

• If u ∈M(p; δ−, q, ζ−), then

Ed(φα)(u) = a(p)− a(q)−
(
a(δ−) + a(ζ−)

)
,(12)

Eα(u) ≤ a(p).
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• If u ∈M(γ1,0; δ−, γ0,1, ζ
−), then

Ed(φα)(u) =
(
a(γ1,0) + a(γ0,1)

)
−
(
a(δ−) + a(ζ−)

)
,(13)

Eα(u) ≤ 2a(γ1,0) + 2a(γ0,1).

4. The Cthulhu complex

Let Σ0 and Σ1 be two exact Lagrangian cobordisms inside the sym-
plectisation (R× P × R, d(etα)) of a contactisation. We assume that:

• Σ0 and Σ1 intersect transversely (in particular Λ±0 ∩Λ±1 = ∅), and
• The links Λ±0 t Λ±1 are chord-generic.

The Cthulhu complex of the pair (Σ0,Σ1) is the complex whose un-
derlying graded R-module is

(14) Cth•(Σ0,Σ1) := C•(Λ+
0 ,Λ

+
1 )[2]⊕ C•(Σ0,Σ1)⊕ C•(Λ−0 ,Λ

−
1 )[1]

for a unital ring R. Here C•(Λ+
0 ,Λ

+
1 ) is the free graded module gen-

erated by the Reeb chords from Λ±1 to Λ±0 and C•(Σ0,Σ1) is the free
graded module generated by the intersection points Σ0 ∩ Σ1.

4.1. The Cthulhu differential. In this section we fix generic almost

complex structures J± ∈ J cylπ (Y ) and a generic path J• of admissible
almost complex structures in J admJ−,J+(X). We fix also two augmenta-

tions ε−0 and ε−1 of the Chekanov-Eliashberg algebras of Λ−0 and Λ−1
respectively.

We define the Cthulhu differential dε−0 ,ε
−
1

, which is a differential of

degree 1 on Cth•(Σ0,Σ1). With respect to the direct sum decomposition
in Equation (14), it has the form

(15) dε−0 ,ε
−
1

=

d++ d+0 d+−
0 d00 d0−
0 d−0 d−−

 .

Loosely speaking, every non-zero entry in this matrix is defined by
counting rigid punctured pseudoholomorphic strips in the moduli spaces
described in Section 3.2, where the counts are “weighted” by the aug-
mentations.

Below we give a careful description of each entry of the matrix (15),
where the mentioned degrees are the degrees as maps between the sum-
mands in (14) without the shifts in grading appearing in the definition of
Cth•(Σ0,Σ1). When we want to emphasise to which pair of Lagrangian

cobordisms the maps belong, we put them as superscript, e.g. dΣ0,Σ1

ε+0 ,ε
−
1

,

dΣ0,Σ1
+,− , etc. We will denote by # the count (either with sign or modulo

two, as appropriate) of the zero dimensional part of the corresponding
moduli space.
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4.1.1. The bilinearised LCH differential. We define ε+
i := ε−i ◦

ΦΣi,J , i = 0, 1, which are augmentations of the Chekanov-Eliashberg

algebras of Λ+
0 and Λ+

1 , respectively.
The map d±± is the bilinearised Legendrian cohomology differential

for (Λ±0 ,Λ
±
1 ) induced by the pair (ε±0 , ε

±
1 ) of augmentations as defined

in [10]. In other words, it is defined as

d±±(γ±2 ) := dε±0 ,ε
±
1

(γ±2 ) =

(16)

=
∑
γ±1

∑
δ±,ζ±

#M̃R×Λ±0 ,R×Λ±1
(γ±1 ; δ±, γ±2 , ζ

±; J±) · ε±0 (δ±)ε±1 (ζ±) · γ±1 .

It follows from Equation (4) that d±± has degree 1.

4.1.2. The Floer “differential”. The map d00 is a modification of
the differential in Lagrangian Floer homology. For an intersection point
q, it is defined as

d00(q) :=
∑
p

∑
δ−,ζ−

#MΣ0,Σ1(p; δ−, q, ζ−; J•) · ε−0 (δ−)ε−1 (ζ−) · p.(17)

From Equation (6) we deduce that this map is of degree 1.

4.1.3. The Cultist maps. The maps d+0 and d0− are defined as

d0−(γ−) :=
∑
p

∑
δ−,ζ−

#MΣ0,Σ1(p; δ−, γ−, ζ−; J•) · ε−0 (δ−)ε−1 (ζ−) · p,
(18)

d+0(q) :=
∑
γ+

∑
δ−,ζ−

#MΣ0,Σ1(γ+; δ−, q, ζ−; J•) · ε−0 (δ−)ε−1 (ζ−) · γ+.

(19)

Equations (5) implies that d0− has degree 2, while (7) implies that
d+0 has degree −1. A version of the map d+0 appears already in [32]
in the case when the negative ends of the cobordisms are empty.

4.1.4. The LCH map. The map d+− is analogous to the map in bilin-
earised Legendrian contact homology induced by an exact Lagrangian
cobordism. It is defined as:

d+−(γ−) :=
∑
γ+

∑
δ−,ζ−

#MΣ0,Σ1(γ+; δ−, γ−, ζ−; J•) · ε−0 (δ−)ε−1 (ζ−) · γ+.

(20)

It follows from Equation (4) that this map has degree 0.

4.1.5. The Nessie map. Let C•(Λ
±
1 ,Λ

±
0 ) be the dual of C•(Λ±1 ,Λ

±
0 )

and δ±± the adjoints of the differentials dΣ1,Σ0
±± .
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q

γ

Figure 7. A building contributing to 〈d−0q, γ〉.

The count of “banana” pseudoholomorphic strips gives rise to a map

b : Cn−1−•(Λ
±
1 ,Λ

±
0 )→ C•(Λ±0 ,Λ

±
1 )

which is defined as

(21) b(γ01) =
∑
γ10

∑
δ,ζ

#M̃R×Λ−0 ,R×Λ−1
(γ10; δ, γ01, ζ; J−)·ε0(δ)ε1(ζ)·γ10.

The degree of the map b follows from Equation (8).
Further, let CF•(Σ0,Σ1) be the dual of CF •(Σ0,Σ1). For a fixed

choice of Maslov potentials for the two cobordisms, there is a canonical
isomorphism

CF •(Σ0,Σ1) ∼= CFn+1−•(Σ1,Σ0).

Using δ−0 : CF•(Σ1,Σ0) → C•−2(Λ−1 ,Λ
−
0 ) to denote the adjoint of the

map dΣ1,Σ0
0− in the entry of dΣ1,Σ0

ε1,ε0 (defined using the opposite path J̌•
such that J̌t = J1−t), we define

d−0 := b ◦ δ−0 : CF •(Σ0,Σ1) = CFn+1−•(Σ1,Σ0)→ C•(Λ−0 ,Λ
−
1 ),

which has degree 0.
More explicitly, the map d−0 counts pseudoholomorphic buildings

with two levels, one of which is a punctured strip with one end at an in-
tersection point p ∈ Σ0∩Σ1 and another end at a chord γ01 ∈ R(Λ−0 ,Λ

−
1 )

(the neck of the nessie), and the other one is a banana with one end
at γ01 ∈ R(Λ−0 ,Λ

−
1 ) and another end at γ10 ∈ R(Λ−1 ,Λ

−
0 ) (the body of

the nessie). See Figure 7. Observe that, compared to the pseudoholo-
morphic Cthulhus used in the definition of the map d0−, the neck of a
nessie has reversed boundary conditions. The configurations above have
previously been considered by Akaho in [4]. (See also [5] from the same
author.)

4.2. The proof of dε−0 ,ε
−
1

2 = 0. We are now ready to present and prove

the following central result.

Theorem 4.1. Let Σi ⊂ R×Y , i = 0, 1, be a pair of exact Lagrangian
cobordisms from Λ−i to Λ+

i as above. If ε±i , i = 0, 1 is an augmentation

of the Chekanov-Eliashberg algebra of Λ−i , then
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• dε−0 ,ε
−
1

is well-defined over a ring of characteristic two, and

• dε−0 ,ε
−
1

2 = 0.

If Σi, i = 0, 1, are both endowed with relative Pin structures, the differ-
ential dε−0 ,ε

−
1

is defined for any ring.

In our setting pseudoholomorphic strips are punctured, and their
count is weighted by the augmentations. For this reason, we insist on
two important points that need to be taken into account when perform-
ing these counts:

(I) The punctured pseudoholomorphic strips used in the definition of
d++ have boundary on R×Λ+

i and are allowed to have punctures

which are negatively asymptotic to pure chords of Λ+
i . When

adjoining the rigid punctured strips in the definition of d++ and
d+∗, where ∗ = 0,−, i.e. the glued configurations corresponding to
the compositions d++d+∗, we do not necessarily obtain a broken
pseudoholomorphic strip. In order to obtain a broken strip, we
will adjoin the pseudoholomorphic punctured discs that appear in
the count defining the right-hand side of

ε+
i = ε−i ◦ ΦΣi , i = 0, 1.

From the latter equality it follows that the composition d++d+∗
indeed is obtained by counting buildings of this form.

(II) Not all broken punctured pseudoholomorphic strips correspond to
two glued pseudoholomorphic strips. Namely there are so-called
∂-breakings that consist of a punctured strip together with a punc-
tured disc with boundary on R×Λ±i , i = 0, 1. The count of these
discs defines the differentials ∂± of the Chekanov-Eliashberg alge-
bras of Λ±0 ∪ Λ±1 , and the equalities

ε±i ◦ ∂± = 0, i = 0, 1,

holds by definition. It thus follows that the total count of broken
strips of this kind vanishes if it is weighted by the augmentations.

Proof of Theorem 4.1. The theorem is a consequence of Proposition 3.2.
In order to verify dε−0 ,ε

−
1

2 = 0 we make a term-by-term analysis of the

matrix

dε−0 ,ε
−
1

2 =d++
2 d++d+0 + d+0d00 + d+−d−0 d++d+− + d+0d0− + d+−d−−

0 d00d00 + d0−d−0 d00d0− + d0−d−−
0 d−0d00 + d−−d−0 d−0d0− + d−−d−−


and show that all entries count boundary configurations of one-dimen-
sional moduli spaces.
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Λ+
0 ∪ Λ+

1

Σ0 ∪ Σ1

Λ−0 ∪ Λ−1

0

0

0

1

0

0

0

1

0

0

1

0

Figure 8. Breakings involved in d++d+0 + d+0d00 +
d+−d−0 = 0. The number on each component denotes
its Fredholm index.

• d2
++ = 0. The term d++ is the standard bilinearised Legendrian

contact cohomology differential [10] restricted to mixed chords
from Λ+

1 to Λ+
0 .

• d++d+0 + d+0d00 + d+−d−0 = 0. We must study the boundary of
the moduli spacesMΣ0,Σ1(γ; δ, p, ζ) of dimension 1. Their possible
breakings are schematically depicted in Figure 8.

We claim that, when counting these boundary points weighted
by the augmentations ε−i , i = 0, 1, we get the contribution

〈(d++d+0 + d+0d00 + d+−d−0)(p), γ〉.
Indeed, inspecting the boundary components of different types
we obtain the terms 〈d++d+0(p), γ〉 (here we use ε+

i = ε−i ◦ ΦΣi ;
see (I)), 〈d+0d00(p), γ〉, and 〈d+−d−0(p), γ〉, together with the ∂-
breakings which contribute to zero (here we use ε±i ◦ ∂± = 0; see
(II)).
• d++d+− + d+0d0− + d+−d−− = 0. This follows as above.
• d00d00 + d0−d−0 = 0. Again this follows as above.
• d00d0− + d0−d−− = 0. This also follows as above.
• d−0d00 + d−−d−0 = 0. Analysing the breakings of holomorphic

bananas, we get that the map b satisfies b ◦ δ−− = d−− ◦ b (see

Figure 9), where δ−− again denotes the adjoint of dΣ1,Σ0
−− . Hence,

we obtain

d−0d00 + d−−d−0 = bδ−0d00 + d−−bδ−0 = b
(
δ−0d00 + δ−−δ−0

)
,

where δ−0 is the adjoint of dΣ1,Σ0
0− . Since d00 is the adjoint of

dΣ1,Σ0
00 , the factor δ−0d00 + δ−−δ−0 is the adjoint of dΣ1,Σ0

00 dΣ1,Σ0
0− +

dΣ1,Σ0
0− dΣ1,Σ0

−− , which vanishes by the previous case.
• d−0d0−+d−−d−− = 0. For action reasons we must have d−0d0− =

0. Moreover d−−d−− = 0 for the same reason why d++d++ = 0.

q.e.d.
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Λ−0 ∪ Λ−1

Λ−0 ∪ Λ−1

1 0

1

1

1

0 1

0

Figure 9. Breakings involved in b ◦ δ−− = d−− ◦ b.

5. The transfer and co-transfer map for concatenations of
cobordisms

Recall that two exact Lagrangian cobordisms with matching ends
can be concatenated; see Section 2.1. In this section we will provide
formulas which relate the Floer homologies of the different pieces of
such a concatenation. This will be done by introducing a relative ver-
sion of Viterbo’s transfer map, originally defined in [66] for symplectic
(co)homology. (Recall that Viterbo’s transfer map concerns concate-
nations of symplectic cobordisms.) For the Hamiltonian formulation of
wrapped Floer homology, the transfer map was constructed and treated
in [3].

In the following we will consider exact Lagrangian cobordisms

V0, V1,W0,W1 ⊂ R× P × R,

where Vi is a cobordism from Λ−i to Λi and Wi is a cobordism from Λi
to Λ+

i for i = 0, 1. The concatenations

Vi �Wi ⊂ R× P × R, i = 0, 1,

are exact Lagrangian cobordisms from Λ−i to Λ+
i .

Under the further assumption that the negative ends of Vi, i = 0, 1,
are empty, a transfer map

ΦW0,W1 : Cth•(V0, V1)→ Cth•(V0 �W0, V1 �W1)

was constructed in [32, Section 4.2.2]; recall that the analytic set-up
of the latter article is the same as the one used here. Our construc-
tion of the transfer map will be a straight-forward generalisation of this
construction to the case when the negative ends are non-empty.

We will also construct a co-transfer map

ΦV0,V1 : Cth•(V0 �W0, V1 �W1)→ Cth•(W0,W1)

which should be thought of as a quotient projection associated to a
transfer map.
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5.1. Concatenations and stretching of the neck. Assume that Ja•
and Jb• are paths of admissible almost complex structures on R × Y
which are cylindrical in the subsets {t ≥ −1} and {t ≤ 1}, respectively,
and which moreover agree in the subset {−1 ≤ t ≤ 1}. We also assume
that Vi and Wi are cylindrical in the subsets {t ≥ −1} and {t ≤ 1},
respectively, where they coincide. For each N ≥ 0 let τN : R×Y → R×Y
be the translation τN (t, y) = (t+N, y). We define

V �N W := (V ∩ {t ≤ 0}) ∪ (τN (W ) ∩ {t ≥ 0}),

(Ja• �N Jb•)(t, p, z) :=

{
Ja• (t, p, z) t ≤ 0

Jb•(t−N, p, z) t ≥ 0,

where we recall that τT is the translation of the t-coordinate by T ∈ R.
We also write Ja• � Jb• := Ja• �0 J

b
• .

The Hamiltonian isotopy class of V �N W ⊂ R × Y is independent
of N ≥ 0 by Lemma 2.4. We have thus produced a family of boundary
value problems for (Ja• �N Jb•)-holomorphic curves in R × Y having
boundary on V �N W , N ≥ 0. This family of boundary value problems
is conformally equivalent to the family which “stretches the neck” along
the contact-type hypersurface {0}×Y ⊂ R×Y with boundary condition
V �W ; see [12, Section 3.4] as well as [39, Section 1.3] for more details.
This fact will be important below.

There is a compactness theorem in the case of a neck-stretching se-
quence of almost complex structure; see [12, Section 10] for the precise
formulation. The key fact is that a sequence of Ja• �N Jb•-holomorphic
punctured strips, with N → +∞, has a subsequence converging to
a building consisting of several levels whose components satisfy non-
cylindrical boundary conditions. In the case under consideration, the
limit buildings consist of:

• An upper level containing punctured Jb•-holomorphic strips (or
discs) with boundary on W0 ∪W1; and
• A lower level containing punctured Ja• -holomorphic strips (or discs)

with boundary on V0 ∪ V1.

A priori there could also be levels consisting of pseudoholomorphic discs
or strips for a cylindrical almost complex structure satisfying cylindri-
cal boundary conditions on R× Λ−i , R× Λi or R× Λ+

i . However, since
we are only interested in rigid configurations, and since the latter solu-
tions will have positive dimension (unless they are trivial strips), they
can be omitted from our breaking analysis (under the assumption that
transversality is achieved for every level).

There is a gluing result in this setting (see [30, Lemma 3.14]), giving
a bijection between buildings of the above type where all components
are of Fredholm index zero, and punctured Ja• �N Jb•-holomorphic strips
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for each N � 0 sufficiently large. Figure 10 schematically depicts two
such buildings.

W0 ∪W1

V0 ∪ V1

(1) (2)

Figure 10. A holomorphic buildings appearing after
stretching the neck along Λ.

5.2. The complex after a neck stretching procedure. The goal
of this section is to find a description of the complex

(Cth•(V0 �N W0, V1 �N W1), dV�W
ε−0 ε
−
1

)

when the almost complex structure is given by Ja• �N Jb• for N � 0
sufficiently large. We first consider the Cthulhu complex for (V0, V1)
defined using Ja• :

(Cth•(V0, V1) = C•−2(Λ0,Λ1)⊕ C•(V0, V1)⊕ C•−1(Λ−0 ,Λ
−
1 ), dV

ε−0 ε
−
1

),

dV
ε−0 ε
−
1

=

dV0,V1
++ dV0,V1

+0 dV0,V1
+−

0 dV0,V1
00 dV0,V1

0−
0 dV0,V1

−0 dV0,V1
−−

 .

Consider the entries dV1,V0
+0 , dV1,V0

+− , and dV1,V0
±± in the differential of the

complex Cth•(V1, V0) (i.e. with the inverse order for the cobordisms),
where the opposite path J̌a• is used. We will need their adjoints

δV0,V1
0+ := (dV1,V0

+0 )∗ : C•(Λ1,Λ0)→ C•−2(V1, V0),

δV0,V1
−+ := (dV1,V0

+− )∗ : C•(Λ1,Λ0)→ C•−1(Λ−1 ,Λ
−
0 ),

δV0,V1
++ := (dV1,V0

++ )∗ : C•(Λ1,Λ0)→ C•−1(Λ1,Λ0),

δV0,V1
−− := (dV1,V0

−− )∗ : C•(Λ
−
1 ,Λ

−
0 )→ C•−1(Λ−1 ,Λ

−
0 ),

δV0,V1
−+ := (dV1,V0

+− )∗ : C•(Λ1,Λ0)→ C•−1(Λ−1 ,Λ
−
0 ),

where the canonical basis of Reeb chords and double points has been
used in order to identify the modules and their duals. Observe that,

exploiting the same notation, we also get δV0,V1
00 = dV0,V1

00 .
We write

ε′i := εi ◦ ΦVi,Ja• , i = 0, 1,
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for the pull-backs of the augmentations under the DGA morphisms in-
duced by the respective cobordisms. These augmentations now give rise
to a complex

(Cth•(W0,W1) = C•−2(Λ+
0 ,Λ

+
1 )⊕ C•(W0,W1)⊕ C•−1(Λ0,Λ1), dWε′0ε′1

),

dWε′0ε′1
=

dW0,W1
++ dW0,W1

+0 dW0,W1
+−

0 dW0,W1
00 dW0,W1

0−
0 dW0,W1

−0 dW0,W1
−−

 ,

where the differential is defined using the almost complex structure Jb• .

Note that dW0,W1
−− = dV0,V1

++ .
In addition we will also need the map

bV0,V1 : C•(Λ1,Λ0)→ Cn−2−•(Λ0,Λ1)

which is defined similarly to

bΛ0,Λ1 : C•(Λ1,Λ0)→ Cn−1−•(Λ0,Λ1)

as defined in Section 4.1.5, but which instead counts rigid “bananas”
having boundary on V0 ∪ V1, and two punctures with positive asymp-
totics to Reeb chords.

Recall that the compactness theorem for a neck-stretching sequence
together with pseudoholomorphic gluing shows the following. For N �
0 sufficiently large, the rigid (Ja• �N Jb•)-holomorphic curves in R × Y
having boundary on (V0 �N W0) ∪ (V1 �N W1) are in bijective corre-
spondence with pseudoholomorphic buildings of the form described in
Section 5.1, in which every involved component is rigid.

Analysing the possible such pseudoholomorphic buildings, we obtain
the following. When N � 0 is sufficiently large, the differential of
the complex for the concatenated cobordisms, defined using the almost
complex structure Ja• �N Jb• as in the previous paragraph, is given by

(Cth•(V0 �N W0, V1 �N W1)

= C•−2(Λ+
0 ,Λ

+
1 )⊕ C•(W0,W1)⊕ C•(V0, V1)⊕ C•−1(Λ−0 ,Λ

−
1 ), dV�W

ε−0 ε
−
1

),

with differential

dV�W
ε−0 ε
−
1

=
dW0,W1

++ dW0,W1
+0 + dW0,W1

+− bV0,V1δW0,W1
−0 dW0,W1

+− dV0,V1
+0 dW0,W1

+− dV0,V1
+−

0 dW0,W1
00 + dW0,W1

0− bV0,V1δW0,W1
−0 dW0,W1

0− dV0,V1
+0 dW0,W1

0− dV0,V1
+−

0 dV0,V1
0+ δW0,W1

−0 dV0,V1
00 dV0,V1

0−
0 bΛ

−
0 ,Λ
−
1 δV0,V1
−+ δW0,W1

−0 bΛ
−
0 ,Λ
−
1 δV0,V1
−0 dV0,V1

−−

,
in terms of pseudoholomorphic strips on V0 ∪ V1 and W0 ∪W1 for each

N � 0 sufficiently large. (For instance the term dW0,W1
+− bV0,V1δW0,W1

−0
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corresponds to the breaking (1) in Figure 10 and the term dW0,W1
+− dV0,V1

+0

corresponds to the breaking (2) in the same figure.)
We have here relied on the exactness assumptions in Definition 2.1

and action considerations from Section 3.4.2 in order to rule out certain
configurations.

5.3. Definition of the transfer and co-transfer maps. The trans-
fer and co-transfer maps on the chain level are defined for a very
“stretched” almost complex structure on a concatenated cobordism
(i.e. when the parameter N � 0 in Section 5.1 is sufficiently large),
so that the complexes take the form as described in Section 5.2.

Definition 5.1. The transfer map is defined by

ΦW0,W1 : Cth•(V0, V1)→ Cth•(V0 �N W0, V1 �N W1),

ΦW0,W1 =


dW0,W1

+− 0 0

dW0,W1
0− 0 0

0 id 0
0 0 id

 ,

while the co-transfer map is defined by

ΦV0,V1 : Cth•(V0 �N W0, V1 �N W1)→ Cth•(W0,W1),

ΦV0,V1 =

id 0 0 0
0 id 0 0

0 bV0,V1δW0,W1
−0 dV0,V1

+0 dV0,V1
+−

 .

Lemma 5.2. If dV
ε−0 ε
−
1

, dWε′0ε′1
and dV�W

ε−0 ε
−
1

are defined using Ja• , Jb• and

Ja• �N Jb• (for N � 0 as before) respectively, the transfer and co-transfer
maps are chain maps.

Proof. This a standard but tedious study of the degenerations of 1-
parameter families of curves through the neck stretching procedure.
q.e.d.

Remark 5.3. When there are no Reeb chords from Λ1 to Λ0 (recall
that these are the Legendrian submanifolds along which the concatena-
tions are performed), the transfer and co-transfer maps take a partic-
ularly simple form. Since C(Λ0,Λ1) = 0, the transfer map ΦW0,W1 is

simply the inclusion of a subcomplex, while the co-transfer map ΦV0,V1

becomes the corresponding quotient projection. In fact, as it will be
shown below in Section 6.1, this situation can always be achieved after
the application of a Hamiltonian isotopy that “wraps” the positive and
negative ends of V1 and W1, respectively.

The following lemma is standard. It follows from the fact that, in the
cylindrical situation, regular 0-dimensional moduli spaces are trivial,
together with a stretching-the-neck argument.
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Lemma 5.4. The transfer and co-transfer maps satisfy the following
properties:

• If Wi = R × Λi, i = 0, 1, and Jb• = Jb is a cylindrical almost
complex structure, we have

ΦW0,W1 = id.

• If Vi = R × Λi, i = 0, 1, and Ja• = Ja is a cylindrical almost
complex structure, we have

ΦV0,V1 = id.

• If Wi = Ui �M U ′i , i = 0, 1, and Jb• = Jc• �M Jd• , we have

ΦW0,W1 = ΦU ′0,U
′
1
◦ ΦU0,U1

when M � 0 is sufficiently large.
• If Vi = Ui �M U ′i , i = 0, 1, and Ja• = Jc• �M Jd• we have

ΦV0,V1 = ΦU ′0,U
′
1 ◦ ΦU0,U1

when M � 0 is sufficiently large.

In the case when W1 = R×Λ, we write ΦW0 := ΦW0,W1 and, similarly,

when V1 = R× Λ ⊂ R× Y , we write ΦV0 := ΦV0,V1 .

6. Proof of acyclicity

In this section we establish the invariance result for our Floer theory.
In fact, in our context, the invariance is simply the fact the complex
Cth(Σ0,Σ1) is acyclic (actually null-homotopic). The naive reason for
this is that one can use the Reeb flow in order to displace any exact
Lagrangian cobordism from any other one.

6.1. Wrapping the ends. Let Σi, i = 0, 1, be exact Lagrangian cobor-
disms from Λ−i to Λ+

i , i = 0, 1. We assume without loss of generality
that Σi, i = 0, 1, are both cylindrical in the subset {|t| ≥ T} for some
T > 0.

Fix a smooth non-decreasing cut-off function ρ : R→ [0, 1] satisfying
ρ(t) = 0 for t ≤ 1 and ρ(t) = 1 for t ≥ 2 and, for N ≥ 0, consider the
functions

ρN,+(t) = ρ(t− T −N),

ρN,−(t) = ρ(−t− T −N),

ρN (t) = ρN,+(t) + ρN,−(t)

and the flows

φsN,+(t, p, z) = (t, p, z + sρN,+(t)),

φsN,−(t, p, z) = (t, p, z + sρN,−(t)),

φsN (t, p, z) = (t, p, z + sρN (t)),
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which are the Hamiltonian flows of the functions hN,±(t, p, z) = etσN,±(t)
and hN (t, p, z) = etσN (t) respectively where σN,± and σN are such that
σ′N,±+σN,± = ρN,± and σ′N +σN = ρN . Note that φsN = φsN,+ ◦φsN,− =
φsN,− ◦ φsN,+. We denote also φs± = φs0,±.

After applying the isotopy φ−SN to Σ0 for S � 0 sufficiently large, we

get additional double points φ−SN (Σ0) ∩Σ1, all which correspond to the
Reeb chords starting on the ends of Σ1 and ending on the corresponding
ends on Σ0. More precisely, the following is true (the proof is standard
and left to the reader):

Lemma 6.1. When

S ≥ S0 := 2 max
c∈R(Λ−1 ,Λ

−
0 )∪R(Λ+

1 ,Λ
+
0 )
`(c)

there are canonical bijections

w± : φ−SN,±(R× Λ±0 ) ∩ (R× Λ±1 )→ R(Λ±1 ,Λ
±
0 )

induced by the Lagrangian projection, i.e. by identifying elements on
both sides with a double point in ΠLag(Λ±0 ∪ Λ±1 ) ⊂ P . These bijections
moreover satisfy

gr(w−(p)) = gr(p) and gr(w+(p)) = gr(p)− 1.

In particular, there is a canonical identification

Cth•(Σ0,Σ1) ∼= Cth•(φ
−S
N (Σ0),Σ1)

on the level of graded modules. After taking N � 0 sufficiently large,
we may assume that the action of a generator in

w−(C(Λ−0 ,Λ
−
1 )) ⊂ Cth•(φ

−S
N (Σ0),Σ1),

is arbitrarily small, the action of a generator in

w+(C(Λ+
0 ,Λ

+
1 )) ⊂ Cth•(φ

−S
N (Σ0),Σ1)

is arbitrarily large, while the action of a generator in

C(Σ0,Σ1) ⊂ Cth•(φ
−S
N (Σ0),Σ1)

coincides with its original action.

Next we will show that the identification given by the above lemma,
in fact can be made to hold at the level of complexes as well.

Proposition 6.2. For each N � 0 sufficiently large and S ≥ S0 as
defined above, there is a canonical identification of complexes

(Cth•(Σ0,Σ1), dε−0 ε
−
1

) = (Cth•(φ
−S
N (Σ0),Σ1), dε−0 ε

−
1

).
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Remark 6.3. Recall that J• is a cylindrical lift outside of a compact
set of R× Y by assumption, so outside that compact set it is invariant
under the Reeb flow. Since the negative ends of Σ0 and φSN (Σ0) differ by
the time-S Reeb flow, it follows that these Legendrian submanifolds have
canonically isomorphic Chekanov-Eliashberg algebras and, in particular,
we can identify their augmentations.

For a general choice of almost complex structure with cylindrical
ends, there should again exist an analogous isomorphism, albeit non-
canonical.

Proof of Proposition 6.2. Consider the transfer and co-transfer maps

Φφ−S+ (R×Λ+
0 ) : Cth•(Σ0,Σ1)→ Cth•(φ

−S
N,+(Σ0),Σ1),

Φφ−S− (R×Λ−0 ) : Cth•(φ
−S
N (Σ0),Σ1)→ Cth•(φ

−S
N,+(Σ0),Σ1),

defined by counting J±-holomorphic strips having boundary on
φ−SN,+(R× Λ+

0 ) ∪ (R× Λ+
1 ) and φ−SN,−(R× Λ−0 ) ∪ (R× Λ−1 ), respectively.

In order to identify the domains and codomains of the above maps we
have used the fact that,

J• �N J+ = J− �N J• = J•, N ≥ 0,

which holds by the assumptions made on J•, as well as the facts that

φ−SN,+(Σ0) = Σ0 �N φ−S+ (R× Λ+
0 ),

φ−SN (Σ0) = φ−S− (R× Λ−0 )�N φ−SN,+(Σ0),

hold for every N ≥ 0 by construction.
Recall that the transfer and co-transfer maps are chain maps by

Lemma 5.2, assuming that N � 0 has been chosen sufficiently large.
The proposition will follow from the claim that the maps Φφ−S+ (R×Λ+

0 )

and Φφ−S− (R×Λ−0 ) both are isomorphisms which, moreover, induce the re-
spective canonical identifications of graded modules described in Lemma
6.1. The latter facts follows by the explicit disc count performed in
the proof of [16, Theorem 2.15]; also, see [25, Proposition 5.11] for a
similar argument. Roughly speaking, it is shown there that every J±-
holomorphic disc of index zero in the definition of the above (co-)transfer
map is a transversely cut-out strip having one positive puncture and one
negative puncture, and whose image under the canonical projection to
P is constant. Conversely, there is an explicitly defined such strip for
every double point in P corresponding to a Reeb chord. In particu-
lar, under an appropriate choice of basis, the matrices of both maps

Φφ−S+ (R×Λ+
0 ) and Φφ−S− (R×Λ−0 ) are equal to the identity matrices. q.e.d.

6.2. Invariance under compactly supported Hamiltonian iso-
topies. The following proposition is the core of the invariance result
that we need in order to deduce the acyclicity of the Cthulhu complex.
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Proposition 6.4. Let (Σs
0,Σ1), s ∈ [0, 1], be a compactly supported

one-parameter family of pairs of exact Lagrangian cobordisms from Λ−i
to Λ+

i , i = 0, 1. There is an induced homotopy equivalence

Ψ{Σs0} : (Cth•(Σ
0
0,Σ1), dε−0 ε

−
1

)→ (Cth•(Σ
1
0,Σ1), dε−0 ε

−
1

).

This map moreover restricts to give an isomorphism of the complex
(C•(Λ

+
0 ,Λ

+
1 ), d++), regarded as a subcomplex of (Cth•(Σ

∗
0,Σ1), dε−0 ε

−
1

),

for i = 0, 1.

Remark 6.5. Under the additional assumption that Λ−i = ∅, i = 0, 1,
this result was established in [32, Section 4.2.1].

Proof. The first part follows from standard bifurcation analysis.
In order to deduce the last claim of the proposition, it will be nec-

essary to use the following additional property of the identifications of
complexes described in the proof of Proposition 6.2. Consider the sub-
set C ⊂ φ−SN (Σs

0) ∩ Σ1 of intersection points corresponding to the Reeb

chords from Λ+
1 to Λ+

0 ; these intersection points are contained in a subset
of the form (N,+∞)×P ×R, which may be assumed to be fixed in the

one-parameter family φ−SN (Σs
0) of cobordisms. Even though these inter-

section points are fixed, their actions will in general vary with s ∈ [0, 1].
We use M to denote the minimum of the action of a intersection point
in C ⊂ φ−SN (Σs

0) ∩ Σ1 taken over all s ∈ [0, 1]. For N � 0 sufficiently

large, Lemma 6.1 shows that any intersection point (φ−SN (Σs
0)∩Σ1) \C

has action strictly less than M . In conclusion, we must have K(C) ⊂ C
for the map K defined above, thus implying the claim. q.e.d.

6.3. Displacing the cobordisms. We are finally ready to prove the
main result of this section. The idea is to displace the cobordisms so that
the Cthulhu complex vanishes, and to invoke the invariance properties
from Propositions 6.2 and 6.4.

Theorem 6.6. For any pair of exact Lagrangian cobordisms Σ0,Σ1 ⊂
R×Y from Λ−i to Λ+

i and choices ε−i of augmentations of the Chekanov-

Eliashberg algebras of Λ−i , i = 0, 1, the complex

(Cth•(Σ0,Σ1), dε−0 ε
−
1

)

is homotopic to the trivial complex,

Proof. For S � 0 sufficiently large, there is an exact Lagrangian
cobordism Σ′0 ⊂ R× Y , isotopic to φ−SN (Σ0) by a compactly supported
Hamiltonian isotopy, such that Cth(Σ′0,Σ1) = 0. To that end, observe

that Cth(φ−SN (Σ0),Σ1) has no Reeb chord generators for S � 0 suffi-
ciently large by Lemma 6.1. The Hamiltonian isotopy is constructed as
follows. Let φs be the Reeb flow φs(t, p, z) = (t, p, z+s). Then, denoting

Σ′0 = φ−s ◦ φ−(S−s)
N (Σ0), we have that Σ′0 is isotopic to φ−SN (Σ0) by a
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compactly supported Hamiltonian isotopy and Σ′0 ∩Σ1 = ∅. Therefore,
Cth(Σ′0,Σ1) = 0.

The invariance result for compactly supported Hamiltonian isotopies
that was established by Proposition 6.4 thus implies that the complex
Cth•(φ

−S
N (Σ0),Σ1) is null-homotopic. The fact that the same is true for

the complex Cth•(Σ0,Σ1) is now an immediate consequence of Propo-
sition 6.2, for N � 0 that have been chosen sufficiently large. q.e.d.

7. Long exact sequences from the Cthulhu complex

Under additional hypotheses, we deduce several exact sequences, in-
cluding those stated in Section 1.2, from the acyclicity of the Cthulhu
complex. They will be induced by Lemma 7.1 applied to a pair of ex-
act Lagrangian cobordisms (Σ,Σεh), where Σεh is obtained from Σ by
a Hamiltonian perturbation for a suitable cylindrical Hamiltonian h.

7.1. The general construction. As usual, we fix augmentations ε−i ,
i = 0, 1, for the negative ends of the Lagrangian cobordisms Σi and a
generic path J• of admissible almost complex structures. We denote by
CF−∞(Σ0,Σ1) the complex C(Σ0,Σ1)⊕ C(Λ−0 ,Λ

−
1 ) with differential

d
ε−0 ,ε

−
1

−∞ =

(
d00 d0−
d−0 d−−

)
.

Its homology is denoted by HF−∞(Σ0,Σ1). Note that, in general,
HF−∞(Σ0,Σ1) depends on the choice of augmentations.

The complex Cth(Σ0,Σ1) is the cone of the chain map

d+0 + d+− : CF−∞(Σ0,Σ1)→ C(Λ+
0 ,Λ

+
1 ).

Thus, the acyclicity of (Cth(Σ0,Σ1), dε−0 ε
−
1

) implies that this map is a

quasi-isomorphism, and hence that

(22) LCHk
ε+0 ,ε

+
1

(Λ+
0 ,Λ

+
1 ) ∼= HF k+1

−∞ (Σ0,Σ1).

Lemma 7.1. Let Σi, i = 0, 1, be a graded exact Lagrangian cobor-
disms from the Legendrian submanifold Λ−i to Λ+

i in R×Y and assume

that there are augmentations ε−i of A(Λ−i ) for i = 0, 1. If either d0− = 0
or d−0 = 0 then d2

00 = 0 and, denoting by HF (Σ0,Σ1) its homology, we
have the following exact sequences.

• If d0− = 0, then there exists a long exact sequence

(23) · · · // LCHk−1

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 )

uu
HF k(Σ0,Σ1)

d−0

// LCHk
ε−0 ,ε

−
1

(Λ−0 ,Λ
−
1 ) // LCHk

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 )

ss· · ·



428 B. CHANTRAINE ET AL.

• If d−0 = 0, then there exists a long exact sequence
(24)

· · · // HF k+1(Σ0,Σ1)

tt
LCHk

ε+0 ,ε
+
1

(Λ+
0 ,Λ

+
1 ) // LCHk

ε−0 ,ε
−
1

(Λ−0 ,Λ
−
1 )

d0−// HF k+2(Σ0,Σ1)

tt· · ·

Note that HF (Σ0,Σ1) depends on the augmentations ε−0 and ε−1 .

Proof. Since d2
00 + d0−d−0 = 0, the vanishing of either d0− or d−0

implies that d00 is a differential. Moreover d−∞ becomes a triangular
matrix, and therefore CF−∞(Σ0,Σ1) is a cone. Thus the exact sequences
of the lemma follow from the exact sequence of the cone and the iso-
morphism (22). q.e.d.

There are action conditions that imply d0− = 0 or d−0 = 0 without
the need of counting pseudoholomorphic maps.

Lemma 7.2. If a(p) ≤ γ− for every p ∈ Σ0 ∩ Σ1 and every Reeb
chord γ− ∈ R(Λ−1 ,Λ

−
0 ), then d0− = 0. If a(p) ≥ −a(γ−) for every

p ∈ Σ0 ∩ Σ1 and every Reeb chord γ− ∈ R(Λ−0 ,Λ
−
1 ), then d−0 = 0.

Proof. If d0− 6= 0, then there is a non-empty moduli space of the form
MΣ0,Σ1(p; δ−, γ−, ζ−) 6= ∅. Then Equation (12) implies a(p)− a(γ−) >
0. If d−0 6= 0, there is a moduli space MΣ1,Σ0(p; δ−, γ−, ζ−) 6= ∅, with

γ− ∈ R(Λ−0 ,Λ
−
1 ), forming the neck of a nessie. Then Equation (12)

implies −a(p)− a(γ−) > 0. q.e.d.

We introduce the following terminology. A point p ∈ Σ0 ∩ Σ1 is
positive (resp. negative) if a(p) = f1(p)− f0(p) is positive (resp. nega-
tive). Assuming the (generic) condition that a(p) 6= 0 for every intersec-
tion point, this leads to a decomposition CF (Σ0,Σ1) = CF+(Σ0,Σ1)⊕
CF−(Σ0,Σ1) where CF+(Σ0,Σ1) and CF−(Σ0,Σ1) are generated by the
positive and negative intersection points respectively. This motivates
the following definition for a pair (Σ0,Σ1) of cobordisms.

Definition 7.3. We say that (Σ0,Σ1) is directed if CF+(Σ0,Σ1) = 0,
and V -shaped if CF−(Σ0,Σ1) = 0.

When (Σ0,Σ1) is directed d0− = 0 and when (Σ0,Σ1) is V -shaped
d−0 = 0. This is a particular case of Lemma 7.2.

Remark 7.4. Both CF−(Σ0,Σ1) and CF+(Σ0,Σ1) can endowed with
a differential induced by d00: the first as a subspace, and the second
as a quotient. Their homologies are denoted by HF±(Σ0,Σ1). Note
that they depend on choices of augmentations and have extremely weak
invariance properties under Hamiltonian isotopies.
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7.2. Cylindrical Hamiltonians. In the following, we assume that
Σ ⊂ R × Y is an exact Lagrangian cobordism from Λ− to Λ+ inside
the symplectisation of a contactisation. We furthermore assume that Σ
is cylindrical outside of the set [A,B]×P ×R for some A < B. We shall
write

Σ := Σ ∩ {t ∈ [A,B]},
∂−Σ := Σ ∩ {t = A},
∂+Σ := Σ ∩ {t = B},

so that clearly ∂Σ = ∂−Σ ∪ ∂+Σ.
We will consider different push-offs constructed via suitable pertur-

bations of an autonomous Hamiltonians h̃ : R× P ×R→ R induced by
a function h̃(t) only depending on the symplectisation coordinate. We

write φs
h̃

for the Hamiltonian flow of h̃ and observe that it takes the

particularly simple form

φs
h̃
(t, p, z) = (t, p, se−th̃′(t) + z).

In particular, φs
h̃
(Σ) is an exact Lagrangian cobordism with cylindrical

ends if and only if e−th̃′(t) is constant. We will assume that e−th̃′(t) =
±1 for t 6∈ [A,B], but not necessarily with the same sign in the two
components. The ends of φs

h̃
(Σ) are modelled on positive or negative

Reeb posh-off of Λ±, depending on the sign of h̃.
In general Σ and φs

h̃
(Σ) will not intersect transversely and their Leg-

endrian links at infinity will not be chord generic. For this reason we
will replace h̃(t) with h(t, p, z) = h̃(t) +etg(t, p), where g : R×P → R is
a C2-small function and ∂tg = 0 for t 6∈ [A,B]. For ε > 0 we will denote

Σεh := φεh(Σ);

if the ends of Σ are modelled on the Legendrian submanifolds Λ±, then
the ends of Σεh are modelled on Legendrian submanifolds Λ±εh. We
will assume, from now on, that Σ and Σεh intersect transversely and
(Λ±,Λ±εh) are chord generic for every ε > 0 sufficiently small. In the
rest of this section, we will call such a Hamiltonian a generic cylindrical
Hamiltonian.

Let us denote h′ = ∂th. A straightforward computation yields

LXh(esα) = dh′ − dh.
So, if f : Σ→ R is a primitive of etα|Σ, then the primitive fεh : Σεh → R
of etα|Σεh is given by

(25) fεh ◦ φεh = f +

∫ ε

0
((h′ − h)|Σ ◦ φsh)ds.

We assume, without loss of generality, that f vanishes on the negative
end of Σ. Since h′ = h at the negative end, fεh also vanishes there.
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7.3. The Cthulhu complex of a Hamiltonian push-off. Let

φs± : P × R→ P × R

be the contact flow generated by the contact Hamiltonians g± 1, where
g : P → R is a generic C2-small function. Given a Legendrian subman-
ifold Λ ⊂ P ×R, we denote Λ±ε := φε±(Λ). Note that Λ±εh = Λ±±ε, where
the sign before ε is the sign of ∂th in the corresponding end.

Proposition 7.5. Let Λ ⊂ P ×R be a close Legendrian submanifold.

For the cylindrical lift J̃P of a regular almost complex structure JP on
P , we have a canonical isomorphism of complexes

LCC•ε0,ε1(Λ,Λ+ε) ∼= LCC•ε0,ε1(Λ)

for any sufficiently small ε > 0.
Under the additional assumption that Λ is horizontally displaceable,

we moreover have a quasi-isomorphism

LCC•ε0,ε1(Λ,Λ−ε) ' LCCε0,ε1n−1−•(Λ),

where n is the dimension of Λ.

Proof. The statement follows from [16, Proposition 2.7] and [36,
Proposition 4.1]. q.e.d.

Remark 7.6. The identifications of augmentations in Proposition
7.5, despite the fact that the DGAs are associated to geometrically dif-
ferent Legendrians, can be justified as follows. For Λ,Λ′′ ⊂ P ×R being
sufficiently C1-close together with a fixed choice of compatible almost
complex structure JP on P , the invariance theorem in [35] gives a canon-
ical isomorphism between the Chekanov-Eliashberg algebras (A(Λ), ∂Λ)
and (A(Λ′′), ∂Λ′′) induced by the canonical bijection identifying the Reeb
chords on Λ with the Reeb chords on Λ′′.

In the following theorem all maps will be defined, as usual, using a
generic path J• of admissible almost complex structures.

Theorem 7.7. Let Σ be an exact Lagrangian cobordisms from Λ− to
Λ+ and h a generic cylindrical Hamiltonian.

1) If ΦΣ : A(Λ+) → A(Λ−) and ΦΣεh : A(Λ+
εh) → A(Λ−εh) are the

DGA morphisms induced by Σ and Σεh respectively, then, for ε > 0
sufficiently small,

ΦΣ = ΦΣεh

after identifying A(Λ±) with A(Λ±εh) as in Remark 7.6.
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2) Let εi, i = 0, 1, be augmentations of A(Λ−). If ∂th > 0 for t� 0
and ε > 0 is small enough, there is a commutative diagram

LCC•ε0,ε1(Λ−,Λ−εh)
d+− //

∼=
��

LCC•ΦΣ◦ε0,ΦΣεh
◦ε1(Λ+,Λ+

εh)

∼=
��

LCC•ε0,ε1(Λ−)
Φ
ε0,ε1
Σ // LCC•ΦΣ◦ε0,ΦΣ◦ε1(Λ+)

where the vertical maps are the isomorphisms coming from Proposition
7.5 and (1) and Φε0,ε1

Σ is the adjoint of the bilinearised map induced by
the DGA morphism ΦΣ, as described in [37].

Proof. Both results follow from Proposition 7.5 and [16, Theorem
2.15], where the latter provides the necessary identifications of pseudo-
holomorphic strips with boundary on the cobordism Σ with those with
boundary on Σεh and on its two-copy Σ ∪ Σεh. To that end, an admis-
sible almost complex structure which coincides with cylindrical lifts in
the prescribed subsets must be used. q.e.d.

Lemma 7.8. Let Σ be an exact Lagrangian cobordism from Λ− to
Λ+ and h a cylindrical Hamiltonian function. For ε > 0 small enough:

1) If Λ−εh = Λ−+ε, then d0− = 0;

2) If Λ−εh = Λ−−ε, then d−0 = 0.

Proof. By Equation (25), the action of an intersection point q ∈ Σ ∩
Σεh is

(26) a(q) = ε(h′(q)− h(q)).

On the other hand, if Λ−εh = Λ−+ε there is lower bound independent of ε

on the action of the Reeb chords from Λ−εh to Λ−. Therefore, for ε > 0
small enough, a(p) < a(γ−) for every intersection point p ∈ Σ0∩Σ1 and
Reeb chord γ− ∈ R(Λ−εh,Λ

−). Then Lemma 7.2 implies that d0− = 0.

When Λ−εh = Λ−−ε there is lower bound independent of ε on the action

of the Reeb chords from Λ− to Λ−εh and again we can apply Lemma 7.2
to conclude that d−0 = 0. q.e.d.

Theorem 7.9. Let Σ be an exact Lagrangian cobordism, ε−0 and ε−1
augmentation of Λ−, and h a generic cylindrical Hamiltonian such that
f := h|Σ : Σ → R is a Morse function. Assume we defined the differ-
ential dε−0 ,ε

−
1

on Cth•(Σ,Σεh) using an almost complex structure which

induces a Riemannian metric g on Σ making (f, g) into a Morse-Smale
pair. Then, for an appropriately chosen Maslov potential on Σ and ε > 0
sufficiently small, there is an isomorphism of complexes

CF•(Σ,Σεh) = CMorse
n+1−•(f).
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Moreover, if Σ is relatively Pin, then the above identification holds with
coefficients in Z and if Σ is not graded, it holds on the level of ungraded
complexes.

Proof. First, we observe that d2
00 = 0. In fact d2

ε−0 ,ε
−
1

= 0 implies that

d2
00 = d0−d−0, and either d0− = 0 or d−0 = 0 for ε > 0 sufficiently

small by Lemma 7.8. Next, we argue that d00 counts only Floer strips
without boundary punctures asymptotic to pure Reeb chords. This is a
consequence of Equation (12) because the action of the pure chords of
Λ− and Λ−εh is bounded from below, while the action of the intersection
points can be made arbitrarily small by Equation (26).

At this point, since we have shown that we can work in a compact
region, the isomorphism of Morse and Floer complexes is standard, go-
ing back to the original work of Floer [47]. For the current setting, the
analogous computation made in [25, Theorem 6.2] is also relevant.
q.e.d.

Remark 7.10. Observe that the function f = h|Σ has no critical
points on Σ\ int(Σ). We denote by ∂hΣ the portion of ∂Σ on which ∇f
points inward; then

H(CMorse
n+1−•(f)) = Hn+1−•(Σ, ∂hΣ).

7.4. Proof of the exact sequences.

Proof of Theorem 1.1. Let h be a generic cylindrical Hamiltonian such
that ∂th = et for t 6= [A,B]. In this case Λ±εh = Λ±+ε and therefore,
by Lemma 7.8, d0− = 0. Then we use Proposition 7.5, Theorem 7.7,
Theorem 7.9 and Remark 7.10 to identify the exact sequence (23) of
Lemma 7.1 with the exact sequence of Theorem 1.1. q.e.d.

Proof of Theorem 1.2. Let h be a generic cylindrical Hamiltonian such
that ∂th = −et for t ≤ A and ∂th = et for t ≥ B. In this case Λ−εh = Λ−−ε
and Λ+

εh = Λ+
+ε, so, by Lemma 7.8, d−0 = 0. Then we use Proposition

7.5, Theorem 7.7, Theorem 7.9 and Remark 7.10 to identify the exact
sequence (24) of Lemma 7.1 with the exact sequence of Theorem 1.2.
q.e.d.

Proof of Theorem 1.3. We consider a generic cylindrical Hamiltonian h

obtained by perturbing the function h̃ as in Figure 11. Recall that

the perturbation h of h̃ is realised by adding a term etg(t, p) for a
C2-small function g : R × P → R as done earlier in this section; the
function g(t, p) for t ≤ A can in fact can be constructed near ΠLag(Λ−)
by a suitable Morse function on Λ− which can be extended to the im-
mersed Weinstein neighbourhood of the Lagrangian immersion (care
has to be taken near the double points). For simplicity, we assume
that the Morse function on Λ− has a unique local minimum and max-
imum.
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The pair (Σ,Σεh) is V-shaped, and therefore all intersection points
have positive action and d−0 = 0. We decompose

C•(Λ−,Λ−εh) = C•+(Λ−,Λ−εh)⊕ C•0 (Λ−,Λ−εh)

so that the “plus” summand is generated by those Reeb chords in
R(Λ−εh,Λ

−) corresponding to Reeb chords of Λ−, so that they have
length bounded from below in terms of the minimal length of a Reeb
chord on Λ−, while the “zero” summand is generated by those Reeb
chords in R(Λ−εh,Λ

−) corresponding to the critical points of a Morse
function on Λ−, which then have length roughly equal to ε > 0. See
[36, Section 3.1]. Thus the intersection points have action of order ε,
the “plus” chords have action of order eT and the “zero chords” have
action of order εe−T for some fixed T � 0; see Section 3.4.2.

By action reasons there is a short exact sequence of complexes
(27)
0→ C•0 (Λ−,Λ−εh)→ CF−∞(Σ,Σεh)→ C•+(Λ−,Λ−εh)⊕CF •(Σ,Σεh)→ 0.

If we take ε small enough we have a(p) < a(γ−) for every intersection
point p and “plus” chord γ−, and therefore, by Equation (12) there
can be no holomorphic map between an intersection point and a “plus”
chord. This shows that the direct sum C•+(Λ−,Λ−εh) ⊕ CF •(Σ,Σεh), a
priori only of modules, is in fact a direct sum of chain complexes. For
this reason

Hi(C
•
+(Λ−,Λ−εh)⊕CF •(Σ,Σεh)) = Hi(C

•
+(Λ−,Λ−εh))⊕Hi(CF

•(Σ,Σεh)).

We rely on [36, Theorem 3.6] together with Proposition 7.5 in order
to make identifications

H i(C•+(Λ−,Λ−εh)) ∼= LCH i
ε−0 ,ε

−
1

(Λ−),(28)

H i(C•0 (Λ−,Λ−εh)) ∼= Hn−1−i(Λ
−)(29)

and therefore, using also Equation (22) and Theorem 7.9 together with
Remark 7.10, we can identify the long exact sequence induced by the
short exact sequence (27) with the long exact sequence (3).

The technique in the proof of [25, Theorem 6.2(ii)] shows that the
restriction of d0− to C•0 (Λ−,Λ−εh) fits into a commutative diagram

H i(C•0 (Λ−,Λ−εh))
d0− //

∼=
��

HF i+2(Σ,Σεh)

∼=
��

Hn−1−i(Λ−)
i∗ // Hn−1−i(Σ)

where i∗ is the map induced by the inclusion i : ∂−Σ→ Σ and the ver-
tical maps come from (29) and Theorem 7.9 together with Remark 7.10
respectively.
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h̃(t)

a A B

1

−1

−1

t

t

e−th̃′(t)

a

A B

Figure 11. The function h̃. The corresponding Hamil-

tonian vector field is e−th̃′(t)∂z.

To see the commutativity of this diagram, note that the map

i∗ : H•(Λ
−)→ H•(Σ)

can be realised as the inclusion of the subcomplex of the Morse complex
of f = h|Σ generated by the critical points near {t = a} into the full
Morse complex of f . See Figure 11.

It then suffices to show that d0− identifies C0(Λ−,Λ−εh) to the said
subcomplex, as in the proof of Proposition 6.2 (in particular, see the
computation at the end of the proof). The reason why this technique
applies is that, in the subset {t ≤ a+ ε}, the push-off Σεh is obtained by
slightly ‘wrapping’ Σεet using the negative Reeb flow. See also Section
8.4.2 for a similar analysis.

Finally, the statements concerning the fundamental classes is a conse-
quence of [36, Theorem 5.5], a result which is only valid if we are working
with ε−0 = ε−1 = ε. Namely, the latter result shows that the shortest
chord in C0(Λ−,Λ−εh) defines a nontrivial class in LCH−1

ε,ε (Λ−,Λ−εh). Sim-

ilarly, under the additional assumption that Λ− is horizontally displace-
able, the differential of the longest chord in C0(Λ−,Λ−εh) is an element

of C•+(Λ−,Λ−εh) which defines a non-zero class in

Hn(C•+(Λ−,Λ−εh)) ∼= LCHn
ε,ε(Λ

−)

called the fundamental class in Legendrian contact cohomology (also see
Section 8.4).

With the above considerations, we have proved Theorem 1.3. q.e.d.

7.5. Seidel’s isomorphism. We end this section by reinterpreting the
definition of Seidel’s isomorphism, originally introduced in [32], in the
context of our theory. This isomorphism will be important when later
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considering the fundamental class in Legendrian contact homology in
relation to a filling; see Section 8.4.1.

Let Σ be an exact Lagrangian cobordism from Λ− to Λ+ and let
h : R×Y → R be a generic cylindrical Hamiltonian such that Λ+

εh = Λ+
+ε

and Λ−εh = Λ−−ε. Combining Theorem 7.9 and Proposition 7.5, for every

pair of augmentations ε−0 and ε−1 of Λ− we obtain a morphism

G
ε−0 ,ε

−
1

Σ : CMorse
n+1−•(f)→ LCC•−1

ε+0 ,ε
+
1

(Λ+;R),

induced by the term d+0 in the differential of (Cth(Σ,Σεh), dε−0 ,ε
−
1

). In

this case, by Remark 7.10, H(CMorse
n+1−•(f)) ∼= Hn+1−•(Σ). Observe that

d−0 = 0 by Lemma 7.8 and therefore d+0 is a chain map. Then we have
proved the following lemma.

Lemma 7.11. The map G
ε−0 ,ε

−
1

Σ is a chain map which, in the case
when the negative end of Σ is empty, is a quasi-isomorphism.

8. Twisted coefficients, L2-completions, and applications

In order to deduce information about the fundamental group of an
exact Lagrangian cobordism it is necessary to introduce a version of the
Cthulhu complex with coefficients twisted by the fundamental group,
analogous to that defined for Lagrangian Floer homology in [64] by
Sullivan and in [22] by Damian. Since it is not possible, in general,
to make sense of the rank of a module over a group ring, it will also
be necessary to introduce an L2-completion of this complex. So-called
L2-coefficients were first considered by Atiyah in [7]. We start by de-
scribing the version of the complex with twisted coefficients, and we also
introduce the fundamental class in this setting. The fundamental class
will be crucial for the proof of Theorems 1.11 (see Section 9.3.1). We
then continue by defining the L2-completion of this complex, for which
we recall some basic properties. The proof of Theorem 1.13 will use this
theory (see Section 9.3.2).

8.1. The Chekanov-Eliashberg algebra with twisted coefficients.
Legendrian contact homology with twisted coefficients has previously
been considered in [38], and a detailed account is currently under de-
velopment in [43]; see also [17]. Here we consider a version of the
Chekanov-Eliashberg algebra for a connected Legendrian submanifold
Λ ⊂ P × R with coefficients the group ring R[π1(Λ)], where R is a
commutative ring.

Fix a base point ∗ ∈ Λ and write π1(Λ) := π1(Λ, ∗) for short. Let A
be a unital, not necessarily commutative, ring for which:

• There is a ring homomorphism i : R[π1(Λ)]→ A. This induces an
R[π1(Λ)]−R[π1(Λ)]-bimodule structure on A;
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• There is an augmentation homomorphism E : A → R such that
Π := E ◦ i is the standard augmentation Π: R[π1(Λ)]→ R.

By abuse of notation we will see any element a in R[π1(Λ)] as an element
of A by identifying it with its image under the ring homomorphism i.

As an example, we can take A = R[G] the group ring of G over
R. Any group homomorphism π1(Λ) → G then induces a ring homo-
morphism R[π1(Λ)] → R[G] = A and the augmentation corresponds
to the canonical ring homomorphism A = R[G] → R. In case when
G = {1}, the construction we describe below will recover the standard
Chekanov-Eliashberg DGA.

We denote by AA(Λ) (or AG(Λ) if A = R[G]) the tensor algebra over
A of the free A − A-bimodule generated by the Reeb chords of Λ. If
A = R, we denoteA(Λ) = AR(Λ); this is the usual Chekanov-Eliashberg
algebra. Recall that AA(Λ) is generated, as an R-module, by elements
of the form

a1γ1 ⊗ a2γ2 ⊗ · · · ⊗ ajγjaj+1,

where γ1, . . . , γj are Reeb chords and a1, . . . , aj+1 ∈ A. (The case j = 0,
i.e. no chord) is also permitted.

For any Reeb chord γ of Λ, we fix connecting paths `eγ and `sγ on Λ
from the end point and the starting point of γ, respectively, to the base
point ∗. (Such paths exist because we assume that Λ is connected.)
A punctured pseudoholomorphic disc u ∈M(γ+; γ−1 , γ

−
2 , . . . , γ

−
k ) deter-

mines an element cu of AA(Λ) via the following procedure. Let S be the
domain of u and denote by ∂0S, . . . , ∂kS the connected components of
∂S ordered counterclockwise starting from the puncture corresponding
to γ+. We denote by p the canonical projection R× Y → Y .

• For j ∈ {1, . . . , k − 1}, we denote by aj the based loop (`s
γ−j

)−1 ∗
(p ◦ u|∂j ) ∗ `eγ−j+1

;

• For j = 0, we denote by aj the based loop (`eγ+)−1 ∗ (p◦u|∂0)∗`e
γ−1

;

and
• For j = k, we denote by aj the based loop (`s

γ−k
)−1 ∗(p◦u|∂k)∗`sγ+ .

From now on we assume A = R[π1(Λ)]; the general case is obtained by
the change of coefficients induced by i : R[π1(Λ)]→ A. The element cu
is then given by

cu = a0γ
−
1 a1 ⊗ γ−2 a2 ⊗ · · · ⊗ γ−k ak.

The Chekanov-Eliashberg differential on AA(Λ) is defined on generators
by the formula

∂(γ+) =
∑

γ1,...,γk

∑
u∈M(γ+;γ−1 ,γ

−
2 ,...,γ

−
k )

cu,
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where the sum is taken over the rigid components of the moduli spaces.
The differential is then extended to the whole algebra using the Leibniz
rule.

By an augmentation of the Chekanov-Eliashberg DGA we mean a
homomorphism of R[π1(Λ)]−R[π1(Λ)]-bimodules ε : AA(Λ)→ A which
is a unital ring homomorphism and ε ◦ ∂ = 0.

Remark 8.1. 1) An augmentation in this setting is still deter-
mined by its values on the Reeb chord generators.

2) Any homomorphism G → H of groups induces a unital DGA
morphism r : AG(Λ)→ AH(Λ). In particular, when H is the triv-
ial group, we get a canonical DGA homomorphism r : AG(Λ) →
A(Λ). The pre-composition ε̃ := ε ◦ r of an augmentation ε of
A(Λ) is clearly an augmentation of AG(Λ); this augmentation will
be called the lift of ε.

3) An exact Lagrangian cobordism Σ from Λ− to Λ+ induces a unital

DGA homomorphism Φ̃Σ : Aπ1(Σ)(Λ
+)→ Aπ1(Σ)(Λ

−) with twisted
coefficients. In particular, an exact Lagrangian filling induces an
augmentation in the group ring of its fundamental group.

For any pair of augmentations, the linearisation procedure gives rise
to a differential dε0,ε1 : LCCε0,ε1• (Λ;A) → LCCε0,ε1• (Λ;A) on the free
A−A-bimodule generated by the Reeb chords in the usual way. The map
dε0,ε1 is in this situation a bimodule homomorphism. We again denote
the resulting homology by LCHε0,ε1

• (Λ;A) and call it the bilinearised
Legendrian contact homology with twisted coefficients.

Moreover, when Λ = Λ0 t Λ1 and εi is an augmentation of Λi for
i = 0, 1, we can again define the complex LCC•ε0,ε1(Λ0,Λ1;A) which,
as a module, is the free right A-module generated by the Reeb chords
starting on Λ1 and ending on Λ0, as well as the corresponding cohomol-
ogy groups LCH•ε0,ε1(Λ0,Λ1;A). The result [16, Proposition 2.7] carries
over immediately to this setting, and thus the identification

LCH•ε0,ε1(Λ,Λ′;A) = LCH•ε0,ε1(Λ;A)

holds on the level of homology (again, for a suitable small push-off Λ′

of Λ, together with a suitable lifted almost complex structure).

Remark 8.2. If ε1 takes values in R, then LCC•ε0,ε1(Λ,Λ′;A) is a
complex of free right A-modules. In particular, the differential is a right
A-module morphism (it is defined by multiplication on the left). This
is relevant for the next section, where we will twist coefficients using
R[π1(Σ0)] in a way so that the augmentation ε1 still will take values
in R.

8.2. The Cthulhu complex with twisted coefficients. Let R be
a unital commutative ring. We are now ready to define the Cthulhu



438 B. CHANTRAINE ET AL.

complex with twisted coefficients for a pair of exact Lagrangian cobor-
disms (Σ0,Σ1). For Lagrangian intersection Floer homology, such a
construction has previously been carried out in [64] and [22]. This was
subsequently generalised to Wrapped Floer homology in [16, Section
4.2].

Let Σi ⊂ R×Y be exact Lagrangian cobordisms from Λ−i to Λ+
i , i =

0, 1, where both Σ0 and Λ−0 are connected. The ring homomorphisms
R[π1(Λ±0 )]→ R[π1(Σ0)] coming from the inclusion maps {±T}×Λ±0 →
Σ0 induce non-free R[π1(Λ+

0 )]−R[π1(Λ+
0 )] and R[π1(Λ−0 )]−R[π1(Λ−0 )]-

bimodule structures on R[π1(Σ0)]. (Of course all mixed structures are
also possible.)

Let u ∈ M(x; ζ, y, δ) be a pseudoholomorphic strip involved in the
Cthulhu differential dε−0 ,ε

−
1

as defined in Section 3.2. If S is the domain

of u and ∂0S, . . . , ∂kS are the connected components of ∂S which are
mapped to Σ0, we associate to each arcs ∂jS an element aj ∈ π1(Σ0) in
the same manner as in the definition of the differential of the Chekanov-
Eliashberg algebra with twisted coefficients described above. These
paths, together with augmentations ε−0 : Aπ1(Σ0)(Λ

−
0 ) → R[π1(Σ0)] and

ε1 : A(Λ−1 )→ R, now determine an element

c
ε−0 ,ε

−
1

u = a1ε
−
0 (ζ1)a2ε

−
0 (ζ2) · · · ak−1ε

−
0 (ζk−1)akε

−
1 (δ) ∈ R[π1(Σ0)].

This construction allows us to define the Cthulhu differential dε−0 ,ε
−
1

on

the non-free R[π1(Σ0)]–R[π1(Σ0)]-bimodule

Cth(Σ0,Σ1;R[π1(Σ0)]) := Cth(Σ0,Σ1)⊗R R[π1(Σ0)]

that is induced by the standard (non-free) bimodule structure on the
group ring R[π1(Σ0)] by ring multiplication from left and right. First,
when y is either a intersection point or a Reeb chord from Λ−0 to Λ−1 ,
we define

dε−0 ,ε
−
1

(y) =
∑
x

∑
u∈M(x;ζ,y,δ)

c
ε−0 ,ε

−
1

u x,

where the sum is taken over the rigid components of the moduli space.
The formula when y is a Reeb chord from Λ+

1 to Λ+
0 is similar, but in-

volves the pull-backs ε−0 ◦ Φ̃Σ0 and ε−1 ◦ΦΣ1 of the augmentations under
the DGA homomorphism induced by the cobordisms with and with-
out twisted coefficients, respectively. The differential is then extended
to all of Cth(Σ0,Σ1;R[π1(Σ0)]) as a right R[π1(Σ0)]-module homomor-
phism.

The techniques in Section 6 can be used to prove the following theo-
rem.

Theorem 8.3. The map

dε−0 ,ε
−
1

: Cth(Σ0,Σ1;R[π1(Σ0)])→ Cth(Σ0,Σ1;R[π1(Σ0)])
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satisfies d2
ε−0 ,ε

−
1

= 0, and moreover

H(Cth(Σ0,Σ1;R[π1(Σ0)]), dε−0 ,ε
−
1

) = 0.

Proof. The proof is similar to the ones in Sections 4.2 and 6.3. We
only need to observe the following: if u and v are holomorphic strips
with matching asymptotics, so that they can be glued to a strip u ∗ v,

then c
ε−0 ,ε

−
1

u∗v = c
ε−0 ,ε

−
1

u · cε
−
0 ,ε
−
1

v is satisfied in the group ring. q.e.d.

In view of the above theorem, the computations in Section 7 can
be carried over immediately to the case of twisted coefficients. We
proceed to explicitly describe the long exact sequence analogous to (1)
in Theorem 1.1. Let Σ be an exact Lagrangian cobordism from Λ− to
Λ+. Let ε−0 and ε−1 be two augmentations of Aπ(Σ)(Λ

−) and A(Λ−)
into R[π(Σ)] and R, respectively. Further, we consider the pull-back

ε+
0 := ε−0 ◦ Φ̃Σ and ε+

1 := ε−1 ◦ ΦΣ of these augmentations.

Remark 8.4. It is important to note that ε+
0 need not be the lift of

an augmentation into R in general, even in the case when ε−0 is.

Writing Σ̃ for the universal cover of the compactification Σ of Σ, there
is a long exact sequence:
(30)

· · · // LCHk−1

ε+0 ,ε
+
1

(Λ+;R[π1(Σ)])

��

Hn+1−k(Σ̃, ∂−Σ̃;R) // LCHk
ε−0 ,ε

−
1

(Λ−;R[π1(Σ)])

��
LCHk

ε+0 ,ε
+
1

(Λ+;R[π1(Σ)]) // · · ·

The identification of the topological term Hn+1−k(Σ̃, ∂−Σ̃;R) is proven
in the same manner as before (see Theorem 7.9), while making the
observation that the Morse homology of a manifold with coefficients
twisted by its fundamental group computes the homology of its universal
cover.

Finally, we point out that

LCHk
ε−0 ,ε

−
1

(Λ−;R[π1(Σ)]) = LCHk
ε−0 ,ε

−
1

(Λ−)⊗R[π1(Σ)]

is satisfied when Λ− is simply connected.

8.3. Augmentations in finite-dimensional non-commutative al-
gebras. In this subsection we describe how augmentations into non-
commutative unital algebras, as used by the second and fourth authors
in [27], fit into the framework of this article. Since we will be interested
in computing the ranks of linearised complexes, we will restrict ourselves
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to the case when the augmentations take values in algebras which are
finite-dimensional as vector spaces over a field F.

A finite-dimensional augmentation of the Chekanov-Eliashberg alge-
bra is a unital DGA homomorphism

ε : A(Λ)→ A,

where A is a not necessarily commutative unital algebra over the ground
field F, seen as a DGA with trivial differential and concentrated in
degree 0. Here F denotes the field that was used as coefficient ring for
A(Λ). Recall that the existence of such a (graded) augmentation is
equivalent to the existence of a finite-dimensional representation of the
so-called characteristic algebra, which is defined as the quotient algebra
A(Λ)/〈∂(A)〉 by the two-sided ideal generated by the boundaries (see
[55]).

Given two such augmentations

εi : A(Λ−i )→ Ai, i = 0, 1,

we can define the linearised and Floer complexes as free leftA0⊗F(A1)op-
modules or, put differently, as free A0 −A1 bimodules.

To construct the differentials in this setting one proceeds as in [27].
The differentials are of the form

d((a0 ⊗ a1)x) =
∑
y

∑
δ−,ζ−

#M(y; δ−, x, ζ−) · ε0(δ−)a0 ⊗ a1ε1(ζ−) · y,

where x and y denote either intersection points or Reeb chords, and
where ai ∈ Ai, i = 0, 1.

Remark 8.5. This convention tells us that the differential is defined
by multiplication of A0⊗F (A1)op from the left, and is hence a morphism
of right A0 ⊗F (A1)op-modules.

The long exact sequences in homology for these bimodules now follow
verbatim from the proofs in the case when the augmentation is taken
into F. It is important to notice that all the complexes above are finite
dimensional as vector spaces over F. More precisely,

dimF LCC
•(Λ±0 ,Λ

±
1 ) = |R(Λ±1 ,Λ

±
0 )| · dimFA0 · dimFA1,

while

dimFH•(X,Y ;A0 ⊗F (A1)op) = dimFH•(X,Y ;F) dimF(A0) dimF(A1)

holds by the universal coefficients theorem.

Example 8.6. There are examples of Legendrian submanifolds which
admit augmentations into finite-dimensional non-commutative unital al-
gebras, but which do not admit any augmentation into any commutative
unital algebra. We refer to Part (1) of Example 9.4 below for Legendrian
torus knots, found by Sivek in [62], which admit augmentations into the
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matrix algebra M2(Z2). The second and the fourth author later used
these examples in order to construct plenty of Legendrian submanifolds
inside contact spaces (R2n+1, ξstd) for arbitrary n ∈ N whose Chekanov-
Eliashberg algebras admit augmentations into M2(Z2), but not into any
commutative algebra.

8.4. The fundamental class and twisted coefficients. In this sec-
tion we will introduce the fundamental class in the setting of twisted
coefficients. We will prove that this class coincides with a twisted co-
efficient version of the fundamental class introduced in [36]. We will
also prove that it is functorial under exact Lagrangian cobordisms. In
Section 9.3.1 we will use this functoriality to prove Theorem 1.11. In
the following we let Σ be a connected exact Lagrangian cobordism from
Λ− to Λ+, where the latter Legendrian submanifolds are connected as
well.

8.4.1. The definition of the fundamental class. Recall that in Sec-
tion 7.5 we defined the map

G
ε−0 ,ε

−
1

Σ : H•(Σ;R)→ LCHn−•
ε+0 ,ε

+
1

(Λ+;R).

The underlying chain map of G
ε−0 ,ε

−
1

Σ lifts to the corresponding com-
plexes with twisted coefficients. Namely, we define the chain map by
the same count of pseudoholomorphic strips, but where the count takes
the homotopy class of the boundary of the strips into account in the
manner described in Section 8.2. The lifted map on homology will be
denoted by

G̃
ε−0 ,ε

−
1

Σ : H•(Σ;R[π1(Σ)])→ LCHn−•
ε+0 ,ε

+
1

(Λ+;R[π1(Σ)]).

Observe that this map is R[π1(Σ)]-linear from the left, and hence
can be interpreted as being π1(Σ)-equivariant in the appropriate sense.

Also, we recall that H•(Σ;R[π1(Σ)]) is isomorphic to H•(Σ̃, R) of the

universal cover Σ̃→ Σ (observe that Σ and Σ are homotopy equivalent).
Later we will be particularly interested in the case when Λ+ is simply

connected and when ε+
i , i = 0, 1 both are induced from augmentations

in the ground ring R. In this situation the universal coefficients theorem
gives us an identification

(31) LCH•
ε+0 ,ε

+
1

(Λ+;R[π1(Σ)]) = LCH•
ε+0 ,ε

+
1

(Λ+;R)⊗R R[π1(Σ)].

Choosing a generator m ∈ H0(Σ;R[π1(Σ)]), the fundamental class
induced by Σ is defined to be the image

c̃
ε−0 ,ε

−
1

Σ,m := G̃
ε−0 ,ε

−
1

Σ (m) ∈ LCHn
ε+0 ,ε

+
1

(Λ+;R[π1(Σ)]).

Let Λ+
+ε be a C1-small perturbations of positive push-off of Λ+ by the

Reeb flow as defined in Section 7.3. If we identify a standard contact
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neighbourhood of Λ+ with the jet space J1Λ+, we can identify Λ+
+ε with

the jet j1g+ ⊂ J1Λ+ of a Morse function g+ : Λ+ → R. We assume that
g+ has a unique local minimum m+ ∈ Λ+. We will denote by m+ also
the Reeb chord from Λ+ to Λ+

+ε induced by it.
There is a twisted “banana” chain map

b̃ : LCC
ε+1 ,ε

+
0• (Λ+

+ε,Λ
+;R[π1(Σ)])→ LCCn−1−•

ε+0 ,ε
+
1

(Λ+,Λ+
+ε;R[π1(Σ)])

defined as b̃(γ0,1) =
∑
u
c
ε+0 ,ε

+
1

u γ1,0, where

u ∈ M̃R×Λ+,R×Λ+
+ε

(γ1,0, δ, γ0,1, ζ).

The twisted coefficient version of the fundamental class of [36] is the
class

(32) c̃
ε+0 ,ε

+
1

Λ+,m+ ∈ LCHn
ε+0 ,ε

+
1

(Λ+;R[π(Σ)])

defined as the image of b̃(m+) by the identification

(33) LCH•
ε+0 ,ε

+
1

(Λ+,Λ+
+ε;R[π1(Σ)]) ∼= LCH•

ε+0 ,ε
+
1

(Λ+;R[π1(Σ)]),

which holds by [16, Proposition 2.7]. The following proposition shows
that the two definitions of the fundamental class given above in fact
coincide. Its proof is postponed until Section 8.4.3.

Proposition 8.7. Assume that the natural map

H0(Λ+;R[π1(Σ)])→ H0(Σ;R[π1(Σ)])

sends m+ ∈ H0(Λ+, R[π1(Σ)]) to m ∈ H0(Σ;R[π1(Σ)]). For appropriate
choices of almost complex structures and Hamiltonian perturbations in
the constructions, there is an identification

c̃
ε+0 ,ε

+
1

Λ+,m+ = c̃
ε−0 ,ε

−
1

Σ,m ∈ LCHn
ε+0 ,ε

+
1

(Λ+;R[π1(Σ)])

of fundamental classes.

In Section 9.3.1 we will see that Theorem 1.11 is a direct consequence
of the above proposition.

8.4.2. Slightly wrapping the end. The push-off Σεh of Σ as used
in the proof of Theorem 1.2 (cf. Section 7.5) will here be constructed
with additional care. Since Σεh is C1-close to Σ, it can be seen as
the graph of dF inside a Weinstein neighbourhood of Σ for a C2-small
Morse function F : Σ → R with appropriate behaviour outside of a
compact subset. The goal in this subsection is to choose this Morse
function to be of a particular form, so that the technique from the end
of the proof of Proposition 6.2 can be used to compute the relevant
part of the component d+0 of the Cthulhu differential. Recall that the
latter computation concerns the differential of a pair of trivial cylinders,
where one of them has been wrapped by applying the Reeb flow. These
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h̃(t)

−T T T + a

1

−1

−1

t

t

e−th̃′(t)

−T T T + a

Figure 12. The function h̃. The corresponding Hamil-

tonian vector field is e−th̃′(t)∂z.

techniques will be applicable here as well since we will achieve making
the (relevant part of the) push-off, which is the graph of dF , to be given
by a small ‘wrapping’ of the end.

Remark 8.8. Recall that a similar argument was used in Section 7.4.
The difference here is that the wrapping takes place near the positive
end instead of near the negative end, and that we want some additional
control of the Morse function F describing the push-off.

Here we suppose that Σ is cylindrical outside of the subset [−T, T ]×
P × R. We will take a Hamiltonian h(t, p, z) = h̃(t) + etg(t, p) as in

Section 7.2 such that h̃ is a function as shown in Figure 12 and g is a C2-
small function satisfying ∂tg = 0 for |t| ≥ T . The complex Cth(Σ,Σεh)
is of the type considered in the proof of Theorem 1.2 because Λ−εh = Λ−−ε
and Λ+

εh = Λ+
+ε, and can thus be used in order to define the Seidel

isomorphism.

Lemma 8.9. For a suitable function h as above and ε > 0 sufficiently
small, Σεh is given as a section dF in a Weinstein neighbourhood of Σ,
where F : Σ → R is a Morse function. Furthermore, we may assume
that

1) Λ+
εh is given as a section j1g+ ⊂ J1Λ+ for a standard Legendrian

neighbourhood of the positive end Λ+ of Σ with g+ : Λ+ → (0, ε] a
small Morse function with a unique minimum m+,

2) ∂tF > 0 and ∂tF < 0 holds for all t � 0 and t � 0, respectively,
and

3) there is a unique local minimum m of F which appears near the
slice {t = T + a}, and which corresponds to the unique minimum
m+ of the Morse function g+.
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The Morse functions F : Σ → R and g+ : Λ+ → R both have unique
local minima, denoted by m and m+, respectively. Now we will see
that it is also is possible to assume that there is a unique Floer strip
connecting the minimum of F with the chord at +∞ corresponding to
the minimum of g+. In fact, this Floer strip can be identified with a
gradient flow line from the critical point m+, seen as a saddle point at
+∞, to the global minimum m of F .

Lemma 8.10. Let Σεh be the Hamiltonian push-off of Σ described
in Lemma 8.9. There exists almost complex structures for which the
canonical projection

[T,+∞)× P × R→ P

is pseudoholomorphic (in particular, J is a cylindrical lift in the convex
end t� 0) and there is a unique and transversely cut out J-holomorphic
disc having boundary on Σ ∪Σεh and a single positive puncture asymp-
totic to γm+. This disc is moreover a rigid strip having precisely two
punctures, where the second puncture is mapped to the intersection point
m ∈ Σ ∩ Σεh corresponding to the unique minimum of the Morse func-
tion F .

Proof. This follows by the same technique used in the end of the proof
of Proposition 6.2. Also, see the explicit calculation made in [25, Lemma
8.2] as well as in the proof of [16, Theorem 2.15]. The key observation is
that the boundary of Σεh ∩{t ≤ T + a− δ} is a submanifold Λ′ which is
Legendrian in {T +a− δ}×P ×R (for some small δ > 0), and therefore
Σεh can be obtained from Σεh ∩ {t ≤ T + a − δ} by concatenation
with a small “wrapping” of R×Λ′ using a suitable t-dependent positive
rescaling of the Reeb flow. This is possible because ∂tg = 0 if t ≥ 0.
q.e.d.

8.4.3. The proof of Proposition 8.7 and functoriality.

Proof of Proposition 8.7. Let lγ denote the coefficient of the Reeb chord

γ in the fundamental class c
ε+0 ,ε

+
1

Λ+,m+ . Recall that lγ is given by the count

of rigid punctured holomorphic bananas in the moduli spaces of the

form M̃R×Λ+,R×Λ+
εh

(γ; δ,m+, ζ), where each strip is counted with the

weight ε+
0 (δ)ε+

1 (ζ).
Now we consider the moduli spacesMΣ,Σεh(γ; δ,m+, ζ) of punctured

holomorphic bananas with boundary on Σ ∪ Σεh having precisely two
positive punctures, one of which is asymptotic to the Reeb chord m+

from Λ+ to Λ+
εh corresponding to the minimum of the Morse function g+,

and the other one is asymptotic to the Reeb chord γ from Λ+
εh to Λ+. By

combining the properties of the non-negativity of the Fredholm index for
a generic path of admissible almost complex structures, together with
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the positivity of the energy, we can conclude the following: the com-
pactification of the index one moduli spaces MΣ,Σεh(γ; δ,m+, ζ; J•) a
priori consists of pseudoholomorphic buildings of the following different
kinds when the path of almost complex structures is generically chosen:

1) Pseudoholomorphic buildings with:
• a level consisting of a punctured banana of index one with

boundary on R × Λ+ ∪ R × Λ+
εh (which hence is rigid up to

translations), and
• a level consisting of punctured discs of index zero having bound-

ary on either Σ or Σεh.
2) Pseudoholomorphic buildings with:
• a level consisting of a punctured strip of index one having

boundary on R × Λ+ ∪ R × Λ+
εh (which hence is rigid up to

translation) together with a trivial strip over a Reeb chord,
and
• a level consisting of a single punctured banana of index zero

having boundary on Σ ∪ Σεh.
3) Pseudoholomorphic buildings with:
• a level consisting of two punctured strips of index zero having

boundary on Σ ∪ Σεh, and
• a level consisting of a punctured banana with boundary on
R×Λ− ∪R×Λ−εh which is of index one (and hence rigid up to
translation).

4) Pseudoholomorphic buildings with:
• a level consisting of a punctured banana of index zero having

boundary on Σ ∪ Σεh, and
• a level consisting of a punctured disc of index one with bound-

ary on either R× Λ− or R× Λ−εh (which hence are rigid up to
translation), together with additional trivial strips over Reeb
chords.

5) A broken punctured strip having boundary on Σ∪Σεh with match-
ing ends asymptotic to an intersection point between Σ and Σεh.

See Figure 13 for a schematic picture of the above pseudoholomorphic
buildings.

A gluing argument implies that the configurations in (1) are in bijec-
tion with the configurations contributing to the coefficient of γ in the

fundamental class c̃
ε+0 ,ε

+
0

Λ+,m+ . Similarly, the count of the configurations in

(5) gives the coefficient of γ in G̃
ε−0 ,ε

−
1

Σ (m) by Lemma 8.10. We proceed
to infer that the count of all buildings of type (2)-(4) is equal to the

coefficient of γ in the expression dε+0 ,ε
+
1
◦ b̃Σ1,Σ(m+), from which the

sought equality on the level of homology now follows. (As usual, all
counts above are weighted by the augmentations ε−i , i = 0, 1.)
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(1) (2) (3) (4) (5)

1 1

0

0 0 0

0 0

1

0

0

0

1

0

0

0

0

Λ+ ∪ Λ+
εh

Σ ∪ Σεh

Λ− ∪ Λ−εh

Figure 13. The pseudoholomorphic buildings (1)-(5)
described in the proof of Proposition 8.7. The number
on each component denotes its Fredholm index.

(2): There are two cases: either the non-trivial strip in the top level
has a positive puncture asymptotic to m+, or it has positive puncture
asymptotic to γ. The former case can be excluded by actions reasons,
while the count of the latter configurations corresponds exactly to the

coefficient in front of γ of the boundary dε+0 ,ε
+
1
◦ b̃Σ1,Σ(m+).

(3): There are no buildings of this type. Namely, by Lemma 8.10,
we may assume there are no punctured pseudoholomorphic strips with
boundary on Σ ∪ Σεh having positive asymptotic to the minimum m+

and a negative asymptotic to a Reeb chord from Λ−0 to Λ−εh.
(4): The sum of these contributions vanishes, as follows from the fact

that ε−i , i = 0, 1, vanishes on any boundary of the Chekanov-Eliashberg

algebras of Λ− and Λ−εh (see (II) in Section 4). q.e.d.

The argument above allows us to prove the fact (already pointed
out in [37]) that the fundamental class is functorial with respect to
exact Lagrangian cobordisms. Indeed, stretching the neck in the slice

{t = −T} decomposes the map G
ε−0 ,ε

−
1

Σ into Φ
ε−0 ,ε

−
1

Σ ◦Gε
−
0 ,ε
−
1

R×Λ− , where ΦΣ

is the DGA morphism induced by the cobordism. Alternatively, one
can also use the long exact sequence produced by Theorem 1.3 together
with Proposition 8.7 in order to deduce this. In either case, we have:

Theorem 8.11. [37, Theorem 7.7] Let Σ be a connected exact La-
grangian cobordism from Λ− to Λ+, and let ε−i , i = 0, 1, be augmenta-
tions of the Chekanov-Eliashberg algebra of Λ− which pull back to aug-
mentations ε+

i under the DGA morphism ΦΣ induced by Σ. It follows
that

Φ
ε−0 ,ε

−
1

Σ (c
ε−0 ,ε

−
1

Λ−,m−) = c
ε+0 ,ε

+
1

Λ+,m+ ,

i.e. the fundamental class is preserved under the bilinearised dual of the
DGA morphism induced by Σ, under the additional assumption that the
images of m± under the natural maps H0(Λ±,F)→ H0(Σ) agree.
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Remark 8.12. Recall that the fundamental class cε0,ε1Λ,m is guaranteed
to be nonvanishing in homology only when ε0 = ε1; we again refer to
[36, Theorem 5.5].

8.5. A brief introduction to homology with L2-coefficients. We
use the technology of L2-Betti numbers, introduced by Atiyah in [7],
as a tool to study rank properties of Legendrian contact cohomology
when the coefficient ring is a (countable) group ring C[π] for a group
π. This technique will be used later in the proof of Theorem 1.13,
see Section 9.3.2. The main idea is to replace C[π], which is not a
priori a Noetherian ring, with a more manageable module. Namely, we
consider its L2-completion `2(π) defined by the set of functions f : π →
C satisfying

∑
g∈π |f(g)|2 <∞, endowed with its natural structure of a

Hilbert space.
We do not intend to give a comprehensive introduction to the sub-

ject of L2-homology and L2-dimension, but we still try to give an un-
derstandable overview of the techniques we use. For more details we
refer the reader to the book of Lück [53] and the introductory paper of
Eckmann [29] as the main references for the results used.

A Hilbert π-module V is a Hilbert space over C on which π acts by
isometries. It is said to be finitely generated if it admits a π-equivariant
isometric embedding i : V → `2(π) ⊗C Cm for a some m ∈ N. When
this is the case, there is also a π-equivariant orthogonal projection
p : `2(π)⊗C Cm → V such that p ◦ i = IdV .

Morphisms of Hilbert π-modules are π-equivariant bounded linear
maps. Given an endomorphism f : V → V of a finitely generated
Hilbert module, we define its von Neumann trace by

(34) tr`2(f) :=
m∑
i=1

〈f(1⊗ ei), 1⊗ ei〉,

where f := i ◦ f ◦ p and {ei} is the standard basis of Cm. A simple
computation shows that this trace only depends on f and not on the
particular choice of the embedding.

The von Neumann dimension of V is dim`2(V ) = tr`2 IdV , which is a
non-negative number bounded from above by m, under the assumption
that V can be embedded in `2(π)⊗C Cm. Note that the von Neumann
dimension can take non-integer values.

A sequence of morphisms of Hilbert π-modules

U
f−→ V

g−→W

is weakly exact (at V ) if im f = ker g. The following basic properties
will be crucial:

Lemma 8.13 (Theorem 1.12 in [53]). 1) V = 0 holds if and only
if dim`2(V ) = 0;
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2) If

0→ U
i−→ V

p−→W → 0

is a short weakly exact sequence, then dim`2(V ) = dim`2(U) +
dim`2(W ).

If (C•, ∂) is a complex of finitely generated free C[π]-modules, we
can consider its `2-completion (C•, ∂); where C• = C• ⊗C[π] `

2(G) and

∂ = ∂ ⊗C[π] Id`2(π). Then (C•, ∂) is a complex of finitely generated

Hilbert π-modules. Its L2-homology, denoted by H
(2)
• (C•, ∂), is defined

as

H
(2)
• (C•, ∂) = ker ∂

/
im ∂ ;

i.e. as the quotient of the subspace of cycles by the closure of the

subspace of boundaries. It follows from the definition that H
(2)
• (C•, ∂)

is also a finitely generated Hilbert π-module.

Lemma 8.14. If (C•, ∂) is a complex of finitely generated free C[π]-
modules, then

dim`2H
(2)
i (C•, ∂) ≤ dimCCi ⊗C[π] C.

Furthermore, for a finite-dimensional complex (C ′•, ∂
′) over C, we have

H
(2)
i (C ′• ⊗ C[π], ∂′ ⊗ IdC[π]) = Hi(C

′
•, ∂
′)⊗C `

2(π),

and thus, in particular,

dim`2H
(2)
i (C ′• ⊗ C[π], ∂′ ⊗ IdC[π]) = dimCHi(C

′
•, ∂
′).

Proof. The first statement follows from Lemma 8.13 together with
the Hodge decomposition in [53, Lemma 1.18]. The second statement
follows by a direct computation. q.e.d.

For a pair of finite CW complexes (X,Y ), Y ⊂ X and a group homo-

morphism ϕ : π1(X)→ π, there is an induced covering (X̃, Ỹ )→ (X,Y )
with a natural free π-action. (We do not assume that the total space
of a covering is connected.) When (C•, ∂) is the π-equivariant cellular
complex associated to such a covering, we will write the correspond-

ing L2-homology groups by H
(2)
• (X,Y ;ϕ) or, by abuse of notation,

H
(2)
• (X,Y ;π).
L2-homology for finite1 CW-complexes satisfies a version of the exact

sequence for the pair and of Mayer-Vietoris sequence.

Proposition 8.15. Let X be a finite CW-complex and ϕ : π1(X)→
π a group homomorphism.

1The finiteness condition can be relaxed, but not completely removed.
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1) If Y ⊂ X is a sub-CW complex and ∗ ∈ Y , then there is a long
weakly exact sequence

→ H
(2)
i+1(X,Y ;π)→ H

(2)
i (Y ;π)→ H

(2)
i (X;π)→ H

(2)
i (X,Y ;π)→ .

2) If X0, X1 ⊂ X are sub-CW-complexes and ∗ ∈ X0∩X1, then there
is a long weakly exact sequence

→ H
(2)
i+1(X;π)→

→ H
(2)
i (X0 ∩X1;π)→ H

(2)
i (X0;π)⊕H(2)

i (Xi;π)→ H
(2)
i (X;π)→ .

Sketch of proof. Let X̃ → X be the cover induced by ϕ and let Ỹ , X̃0, X̃1

be the preimages of Y,X0, X1 respectively. There are π-equivariant
short exact sequences of cellular homology complexes

0→ C•(Ỹ )→ C•(X̃)→ C•(X̃, Ỹ )→ 0

and

0→ C•(X̃0 ∩ X̃1)→ C•(X̃0)⊕ C•(X̃1)→ C•(X̃)→ 0.

If we complete the C[π]-modules appearing in the above exact sequences,
we obtain short exact sequences of complexes of finitely generated
Hilbert π-modules. Since complexes of finitely generated Hilbert π-
modules are automatically Fredholm in the sense of [53, Definition 1.20],
we can apply the snake lemma for L2-homology due to Cheeger and
Gromov [18] (see also [53, Theorem 1.21]), from which the long weakly
exact sequences follow. q.e.d.

Let Σ̃0 → Σ0 be the covering associated to a group homomorphism
ϕ : π1(Σ0) → π and let ε−i , i = 0, 1 be augmentations of the nega-

tive ends Λ−i with values in C[π]. Then we can complete the bilin-

earised Legendrian contact homology complexes LCC•
ε±0 ,ε

±
1

(Λ±0 ,Λ
±
1 ;π)

and the Cthulhu complex Cth(Σ0,Σ1;π) of Section 8.2. This con-
struction yields L2 bilinearised Legendrian contact homology groups

LCH
(2)•
ε±0 ,ε

±
1

(Λ±0 ,Λ
±
1 ;π) and LCH

(2)•
ε0,ε1(Λ;π).

The proof of acyclicity goes through for the completed Cthulhu com-
plex and, since it is a complex of finitely generated Hilbert π-modules,
when either d0− = 0 or d−0 = 0 (e.g. if Lemma 7.2 holds) the L2 Snake
Lemma of Cheeger and Gromov yields an L2 version of the exact se-
quences (23) and (24). Finally, the same arguments of Section 7.3 go
through in the L2 setting, and therefore we have the following proposi-
tion.

Proposition 8.16. Let Σ be a relative Pin exact Lagrangian cobor-
dism with ends Λ+ and Λ−. If ϕ : π1(Σ)→ π is a group homomorphism,
ε−0 , ε−1 are augmentations of Λ− with values in C[π] and C respectively,
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and ε+
0 := Φ̃Σ ◦ ε−0 , ε+

1 := ΦΣ ◦ ε−1 are their pull-back, then there is a
weakly exact sequence

LCH
(2)•
ε−0 ,ε

−
1

(Λ−;π) // LCH
(2)•
ε+0 ,ε

+
1

(Λ+;π)

vv

H
(2)
• (Σ, ∂−Σ;π)

hh

9. Applications and examples

In this section we deduce all applications mentioned in the intro-
duction of the paper. In addition, we provide explicit examples of La-
grangian cobordisms: both examples to which our results apply, but
also examples showing the importance of the different hypotheses used.
We will use H(X) to denote the total homology of X, and a similar
convention will be used for the Legendrian contact homology.

9.1. The homology of an endocobordism. The following proofs of
Theorems 1.6 and 1.8 are similar to the proofs given in [26].

Proof of Theorem 1.6. We begin by showing the result in the case when
F = Z2. (i): First, recall the elementary fact from algebraic topology
that

dimFH(Σ;F) ≥ dimFH(Λ;F)(35)

is satisfied, which follows by studying the long exact sequence of the
pair (Σ, ∂Σ) together with Poincaré duality (see [26, Lemma 2.1]).

We proceed to prove the opposite inequality

dimFH(Σ;F) ≤ dimF(Λ;F).

Linearised Legendrian contact cohomology satisfies the bound

dimF LCHε′(Λ) ≤ |R(Λ)|
for any ε′. Thus we can fix an augmentation ε of A(Λ;F) satisfying

dimF LCHε(Λ;F) = max
ε′
{dimF LCHε′(Λ;F)}.(36)

The exact triangle in Theorem 1.3 gives us

dimF LCHε+(Λ;F) ≥
≥ dimF LCHε(Λ;F) + dimFH(Σ;F)− dimFH(Λ;F),

where ε+ is the augmentation of A(Λ;F) obtained as the pull-back ε+ :=
ε ◦ ΦΣ. Formula (36) implies that dimFH(Σ;F) − dimFH(Λ;F) ≤ 0.
Together with inequality (35), we obtain

dimFH(Σ;F) = dimFH(Λ;F).(37)
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In order to show that dimFHi(Σ;F) = dimFHi(Λ;F) for all i, we
argue by contradiction, assuming that

di0(Σ) := dimFHi0(Σ;F)− dimFHi0(Λ;F) > 0

for some i0. By the Mayer-Vietoris sequence we conclude that the in-
equality

dimFHi0(Σ� Σ;F) ≥ 2 dimFHi0(Σ;F)− dimFHi0(Λ;F)

holds. In particular,

di0(Σ� Σ) := dimFHi0(Σ� Σ;F)− dimFHi0(Λ;F) ≥ 2di0(Σ),

which by induction then leads to a contradiction with equality (37). In-
deed, after the k-th iteration of this argument, we obtain the inequality

dimFHi0(Σ�2k;F) ≥ 2kdi0(Σ),

where the right hand side is positive by assumption.
(ii): The argument is the same as the one in the proof of [26, Theorem

1.6 (ii)], and follows from Part (i) applied to the concatenation Σ� Σ.
Namely the Mayer-Vietoris sequence for the concatenation Σ � Σ seen
as two copies of Σ glued along the boundary component Λ shows that

dimFH(Σ� Σ;F) ≥ 2 dimFH(Σ;F)− dimF im(i−∗ , i
+
∗ )

and by the above result, we conclude that

dimF im(i−∗ , i
+
∗ ) = dimFH(Σ;F) = dimFH(Λ;F),

from which the claim follows.
(iii): By contradiction, we assume that i+∗ ⊕ i−∗ : H(ΛtΛ)→ H(Σ) is

not a surjection. Considering a representative V ⊂ H(Σ) of the cokernel
of this map, which hence is of dimension dimF V > 0, the Mayer-Vietoris
long exact sequence implies that the image of V ⊕ V under the map

H(Σ)⊕H(Σ)→ H(Σ� Σ)

has image of dimension 2 dimF V > 0. Moreover, V ⊕V is not contained
in the image of

i+∗ ⊕−i−∗ : H(Λ t Λ)→ H(Σ� Σ).

Namely, the above inclusion factorises through the canonical maps as

i+∗ ⊕−i−∗ : H(Λ t Λ)→ H(Σ t Σ)→ H(Σ� Σ),

where the latter morphism is the one from the above Mayer-Vietoris
long exact sequence. In conclusion, the cokernel of

i+∗ ⊕ i−∗ : H(Λ t Λ)→ H(Σ� Σ)

is of dimension at least 2 dimF V . Arguing by induction, now we arrive
at a contradiction with Part (i).

The proof is now complete for Z2. Under the additional assumption
that Λ is Pin, and admitting an augmentation in an arbitrary field F,
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Corollary 9.3 of Theorem 1.9 will imply that any endocobordism of Λ
is Pin as well. This allows us to repeat the previous argument with
coefficients in the field F. Note that Theorem 1.9 relies on Theorem 1.6
in the particular case F = Z2, which can be established without orienting
the moduli spaces, and therefore is independent of any assumption on
the Stiefel-Whitney classes of Σ. q.e.d.

We now prove the following theorem, of which Theorem 1.8 is an im-
mediate corollary. Observe that it can be proved also by using Theorem
1.6.

Theorem 9.1. Let Λ be an n-dimensional Legendrian homology
sphere inside a contactisation, Σ an exact Lagrangian cobordism from Λ
to itself inside the symplectisation, and F a field. If A(Λ;F) admits an
augmentation, then H•(Σ,Λ;F) = 0, i.e. Σ is a F-homology cylinder.

Proof. Let Σ�k, k ≥ 1, be the k-fold concatenation of Σ with itself,
which again is an exact Lagrangian cobordism from Λ to Λ. Since Λ
is a homology sphere it is Pin and, hence, Σ�k is Pin for all k ≥ 1 by
Corollary 9.3.

We fix an augmentation ε ofA(Λ;F) and let εk be the augmentation of
A(Λ;F) obtained by the pull-back of ε under the unital DGA morphism
induced by Σ�k.

The (ungraded version of the) long exact sequence in Theorem 1.1
becomes

(38) LCHε(Λ) // LCHεk(Λ)

vv

H(Σ
�k
, ∂−Σ

�k
;F)

hh

Observe that

dimHi(Σ
�k
, ∂−Σ

�k
;F) =

{
0, i = 0, n+ 1,

k dimHi(Σ, ∂−Σ;F), 0 < i < n+ 1,

as follows from the Mayer-Vietoris long exact sequence together with
the assumption that Λ is a F-homology sphere.

Since the linearised contact cohomology satisfies the bound

dimF LCHε′(Λ) ≤ |R(Λ)|
for any augmentation ε′, we get the inequality

k dimHi(Σ, ∂−Σ;F) = dimHi(Σ
�k
, ∂−Σ

�k
;F) ≤ 2|R(Λ)|, 0 < i < n+1,

for each k, where the exactness of the above triangle has been used to
show the last inequality. In conclusion, we have established

dimHi(Σ, ∂−Σ;F) = 0, 0 < i < n+ 1,

which finishes the proof. q.e.d.
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Proof of Theorem 1.8. Since Λ is assumed to have an augmentation over
Z it admits an augmentation over Q as well. And thus it follows from
Theorem 9.1 that H•(Σ,Λ;Q) = 0 and thus that H•(Σ,Λ;Z) is torsion.
The augmentation over Z also induces an augmentation over any finite
field, and thus Theorem 9.1 implies that H•(Σ,Λ;Z) has no p-torsion
for any prime p. Thus H•(Σ,Λ;Z) = 0. q.e.d.

Remark 9.2. Following the discussion in Section 8.3 we get that
Theorem 1.6 holds under the weaker assumption that the Chekanov-
Eliashberg algebra admits a non-commutative augmentation in a finite-
dimensional F-algebra. (The proof is a verbatim reproduction of the
precedent.) In the same manner, Theorem 1.8 thus holds under the
weaker assumption that the Chekanov-Eliashberg algebra admits a non-
commutative augmentation in a finite-rank Z-algebra of characteristic
zero.

9.2. Characteristic classes of endocobordisms.

Proof of Theorem 1.9. Recall from Section 1.1.1 that Theorem 1.6 still
applies when the cobordism Σ is not orientable and has Maslov number
one i.e. when the Cthulhu complexes involving Σ necessarily are un-
graded. In this case, however, we obtain exact triangles instead of long
exact sequences.

The dual statement of Part (iii) of Theorem 1.6 reads as follows:
let Σ be an exact Lagrangian endocobordism of Λ, the map (i∗+, i

∗
−) :

H∗(Σ,Z2) → H∗(Λ t Λ,Z2) is injective. Theorem 1.9 is then an im-
mediate corollary of this and of the naturality of characteristic classes.
Theorem 1.9 for the Maslov class and the Pontryagin classes follows
similarly, assuming that Λ is relatively Pin. q.e.d.

Theorem 1.9 implies the following.

Corollary 9.3. If Λ is orientable (respectively, Pin) and admits an
augmentation into a finite-dimensional Z2-algebra, then any exact en-
docobordism Σ of Λ is orientable (respectively, Pin) as well.

This result can be seen as a generalisation of the result of Capovilla-
Searle and Traynor, see [13, Theorem 1.2].

Example 9.4. Recall that a Legendrian knot in the standard contact
R3 for which the Kauffman bound on tb is not sharp does not admit an
augmentation in a commutative ring [57].

1) Consider the family of the Legendrian representatives of torus
(p,−q)-knots Λ(p,−q) ⊂ R3 with q > p ≥ 3 and p odd described
by Sivek in [62, Figure 3]. Following Sivek [62], we observe that
tb(Λ(p,−q)) = −pq and, hence, from the classification result of
Etnyre and Honda [45] it follows that Λ(p,−q) is tb-maximising.
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Recall that Sivek [62] proved that the Chekanov-Eliashberg alge-
bra of Λ(p,−q) admits a 2-dimensional representation over Z2, but
for which the Kauffman bound on tb is not sharp. Therefore, these
Legendrian knots do not admit non-orientable exact Lagrangian
endocobordisms.

2) Consider Λ(p,−q)#Λ, where p is odd, q > p ≥ 3, and let Λ be a tb-

maximising Legendrian knot of R3 whose Chekanov-Eliashberg al-
gebra admits an augmentation (or, more generally, m-dimensional
linear representation) over Z2. Then, following the discussion in
[27, Lemma 4.3], we see that the Kauffman bound for Λ(p,−q)#Λ is
not sharp and that the Chekanov-Eliashberg algebra of Λ(p,−q)#Λ
admits a finite-dimensional linear representation over Z2. In addi-
tion, from the fact that Λ(p,−q) and Λ are tb-maximising, together
with [46, Corollary 3.5] (or [65, Theorem 1.1]), it follows that
Λ(p,−q)#Λ also is tb-maximising. This leads us to many other ex-
amples, besides Λ(p,−q), which do not admit non-orientable exact
Lagrangian endocobordisms.

Remark 9.5. The above examples provide a negative answer to a
question of Capovilla-Searle and Traynor, see [13, Question 6.1]: it is
not necessarily the case that a Legendrian knot admits a non-orientable
endocobordism in the case when its Kauffman bound on tb is not sharp.

There is also an example due to Sivek, see [62, Sections 2.2 and
3], of a tb-maximising knot with non-sharp Kauffman bound on tb,
whose Chekanov-Eliashberg algebra does not admit a finite-dimensional
linear representation over Z2, but which does admit a representation in a
infinite-dimensional algebra. Unfortunately, in this case our methods do
not provide an obstruction to the existence of a topologically non-trivial
endocobordism.

9.3. Restrictions on the fundamental group of an endocobor-
dism between simply connected Legendrians. We now prove the
results concerning the fundamental groups of endocobordisms between
simply connected Legendrian submanifolds.

9.3.1. Proof of Theorem 1.11.

Proof of Theorem 1.11. Recall the construction of the fundamental class
in the setting of twisted coefficients carried out in Section 8.4. The proof
will be a straightforward consequence of Proposition 8.7 therein.

From the assumptions of the theorem, the Legendrian submanifold
Λ+ has a unique augmentation ε+. It follows that [36, Theorem 5.5] can

be applied, and hence the fundamental class c̃ε
+,ε+

Λ+,m+ is non-vanishing.

By Proposition 8.7 we, moreover, conclude that this fundamental class

is the image of a generator m of H0(Σ;R[π1(Σ)]) under the map G̃ε
−,ε−

Σ .
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Since Λ+ is simply connected by assumption, it follows from (31) above
that this image is not torsion. In particular,

g · c̃ε
+,ε+

Λ+,m+ 6= c̃ε
+,ε+

Λ+,m+ , ∀g ∈ π1(Σ).

Thus, m is not torsion either, and since it generates H0(Σ;R[π1(Σ)])

we conclude that H0(Σ;R[π1(Σ)]) = R[π1(Σ)]. However, since Σ̃ is

connected, we know that H0(Σ;R[π1(Σ)]) = H0(Σ̃) = R. In other
words, π1(Σ) is the trivial group, as sought. q.e.d.

9.3.2. Proof of Theorem 1.13.

Proof of Theorem 1.13. Here it will be crucial to use the machinery of
L2-coefficients as described in Section 8.5. We will denote π = π1(Σ).
Since Λ is Pin by assumption, it follows from Corollary 9.3 that the
k-fold concatenated cobordisms Σ�k are Pin for all k ≥ 1.

Let Σ
�k

be the quotient of tki=1Σi, Σi
∼= Σ, which identifies ∂+(Σ) ⊂

Σi with ∂−(Σ) ⊂ Σi+1. We will write ∂Σ
�k

= ∂−Σ
�k t ∂+Σ

�k
, where

∂−Σ
�k

= ∂−Σ1, ∂+Σ
�k

= ∂+Σk.

Further, consider the covering space Σ̃�k → Σ
�k

obtained by gluing

the boundary of the universal cover tki=1Σ̃i → tki=1Σi in a π-equivariant
way via the identification of the induced cover

Σ̃i ⊃
⊔
g∈π

∂+(Σ)→ ∂+(Σ) ⊂ Σi

with the induced cover

Σ̃i+1 ⊃
⊔
g∈π

∂−(Σ)→ ∂−(Σ) ⊂ Σi+1.

Observe that the covering Σ̃�k → Σ
�k

obtained is induced by a group
epimorphism

π1(Σ
�k

)∼=π ∗ . . . ∗ π︸ ︷︷ ︸
k

→ π = π1(Σ)

given by multiplying all elements in a word.
First, we will consider the case |π1(Σ)| <∞. Under this assumption,

the version of the long exact sequence in Theorem 1.1 applied to the

system of local coefficients induced by the covering Σ̃�k → Σ
�k

(see
Section 8.2) becomes
(39)

LCH•ε,ε(Λ;C[π]) // LCH•ε̃k,εk(Λ;C[π])

uu

H•(Σ̃
�k, ∂−Σ̃�k;C)

ii
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Here the augmentation εk is the pull-back of the augmentation ε under
the unital DGA morphism induced by Σ�k and ε̃k is the twisted pull-
back of ε.

For k � 0 sufficiently large, unless |π1(Σ)| = 1 the equality

dimC(H1(Σ̃�k, ∂−Σ̃�k;C)) = (|π1(Σ)| − 1)k, k ≥ 1,

proved using the Mayer-Vietoris exact sequence, together with the uni-
versal bound

dimC LCH
•
ε0,ε1(Λ;C[π1(Σ)]) ≤ |π1(Σ)||R(Λ)|

gives a contradiction.
It remains to show that |π1(Σ)| is finite. Assuming the contrary,

we apply the long weakly exact sequence from Proposition 8.16 to the
cobordisms Σ�k to obtain the following weakly exact triangle:

LCH
(2)•
ε,ε (Λ;π) // LCH

(2)•
ε̃k,εk

(Λ;π)

uu

H
(2)
• (Σ

�k
, ∂−Σ

�k
;π)

ii

The inequality

dim`2(H
(2)
1 (Σ

�k
, ∂−Σ

�k
;π1(Σ))) ≥ k,

shown in Lemma 9.6 below, together with the universal bound

dim`2LCH
(2)•
ε′ (Λ) ≤ |R(Λ)|,

which follows by Lemma 8.14, finally gives a contradiction. It thus fol-
lows that π1(Σ) is finite, and therefore trivial by the previous argument.

q.e.d.

9.3.3. Estimating the first L2-Betti number of a tower. We finish
the proof of Theorem 1.13.

Lemma 9.6. If the fundamental group π is infinite, then the L2-

homology group H
(2)
1 (Σ

�k
, ∂−Σ

�k
;π) satisfies

dim`2(H
(2)
1 (Σ

�k
, ∂−Σ

�k
;π)) ≥ k.

Proof. Lemma 8.14 implies that

H
(2)
0 (∂±Σ;π) = `2(π) and H

(2)
1 (∂±Σ;π) = 0,

since ∂±Σ are connected and simply connected. Observe that we also
have

H
(2)
0 (Σ

�k
;π) = 0, k ≥ 1,
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as follows from [53, Theorem 1.35(8)], using the fact that π is infinite.
The long weakly exact sequence of a pair (Proposition 8.15(1)) imme-
diately implies the base case

dim`2H
(2)
1 (Σ

�1
, ∂−Σ

�1
;π) = dim`2H

(2)
1 (Σ, ∂−Σ;π) ≥ 1

as well as the vanishing

H
(2)
0 (Σ

�k
, ∂−Σ

�k
;π) = 0.

The Mayer-Vietoris long weakly exact sequence (Proposition 8.15(2))

. . .→ H
(2)
1 (∂−Σ;π)→

→ H
(2)
1 (Σ;π)⊕H(2)

1 (Σ
�(k−1)

, ∂−Σ
�(k−1)

;π)→

→ H
(2)
1 (Σ

�k
, ∂−Σ

�k
;π)

→ H
(2)
0 (∂−Σ;π)→ 0→ . . . ,

together with H
(2)
1 (∂−Σ; `2(π)) = 0 and [53, Theorem 1.12(2)] gives

that

dim`2H
(2)
1 (Σ

�k
, ∂−Σ

�k
;π) ≥

≥ dim`2H
(2)
1 (Σ

�(k−1)
, ∂−Σ

�(k−1)
;π) + dim`2H

(2)
0 (∂−Σ;π).

Since dim`2H
(2)
0 (∂−Σ;π) = 1, the claim now follows by induction. q.e.d.

9.4. Explicit examples of Lagrangian cobordisms. In this sub-
section we discuss some examples to illustrate the applications of this
section. We start by recalling a few general constructions of Legendrian
submanifolds and exact Lagrangian cobordisms.

9.4.1. A Legendrian ambient surgery on the front-spin. The
front Sm-spinning construction described in [50] by the fourth author

constructs a Legendrian embedding ΣSmΛ ⊂ (R2(m+n)+1, ξstd) of Sm ×
Λ, given a Legendrian embedding Λ ⊂ (R2n+1, ξstd). In the same ar-
ticle, it was also shown that the same construction can be applied
to an exact Lagrangian cobordism Σ ⊂ R × R2n+1 from Λ− to Λ+

inside the symplectisation, producing an exact Lagrangian cobordism
ΣSmΣ ⊂ R × R2(n+m)+1 from ΣSmΛ− to ΣSmΛ+ that is diffeomorphic
to Sm × Σ.

Consider a Legendrian knot Λ ⊂ (R3, ξstd). Its left-most cusp edge
in the front projection for a generic representative corresponds to a
cusp edge diffeomorphic to Sm in the front projection of the front spin
ΣSmΛ ⊂ (R2m+3, ξstd). Moreover, this cusp edge bounds an obvious

embedding of an isotropic (m + 1)-disc D ⊂ (R2(m+n)+1, ξstd) whose
interior is disjoint from ΣSmΛ, while its boundary coincides with this
cusp edge; see Figure 14.

A Legendrian ambient m-surgery, described in [24] by the second au-
thor, can be performed on the sphere Sm ↪→ ΣSmΛ corresponding to the
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z

x1

x2 D

ΣS1Λ

Λ

Figure 14. The front projection of the front spin
ΣS1Λ ⊂ (R5, ξstd) near the left-most cusp of Λ ⊂
(R3, ξstd). The corresponding cusp-edge for the front
projection of the front spin bounds an obvious embedded
Legendrian disc D intersecting ΣS1Λ cleanly along this
cusp edge.

z

x1

x2

Λ+

Λ

Figure 15. The front projection of the Legendrian sub-
manifold Λ+ ⊂ (R5, ξstd) obtained after a Legendrian
ambient surgery on the front spin ΣS1Λ ⊂ (R5, ξstd),
utilising the Legendrian disc D as shown in Figure 14.

cusp edge ∂D, utilising the bounding Legendrian disc D. The Legen-
drian submanifold Λ+ ⊂ (R2(m+n)+1, ξstd) resulting from the surgery has
the front projection shown in Figure 15 in the case of m = 1 = dim Λ.
Recall that there also is a corresponding elementary Lagrangian (m+1)-
handle attachment, which is an exact Lagrangian cobordism from ΣSmΛ
to the Legendrian submanifold Λ+ obtained after the surgery. Topolog-
ically, this cobordism is simply the handle attachment corresponding to
the surgery.

9.4.2. Non-simply connected exact Lagrangian fillings of Leg-
endrian spheres (the proof of Proposition 1.17). Using the con-
structions in Section 9.4.1, the sought examples will not be difficult to
produce. We start with a Legendrian knot Λ ⊂ (R3, ξstd) which ad-
mits a non-simply connected Lagrangian filling Σ. For instance, we can
take the Legendrian right handed trefoil knot and one of its exact La-
grangian filling diffeomorphic to a punctured torus; see [37]. It follows
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that ΣSmΛ ⊂ (R2(m+1)+1, ξstd) is a Legendrian Sm × S1 which admits
an exact Lagrangian filling ΣSmΣ diffeomorphic to Sm × Σ; this filling
is of course also not simply connected.

The Legendrian ambient surgery along a cusp-edge in the class Sm×
{p} for p ∈ Λ corresponding to the left-most cusp edge of Λ ⊂ (R3, ξstd)
as described above produces a Legendrian sphere Λ′, and concatenating
ΣSmΣ with the corresponding elementary Lagrangian (m + 1)-handle
provides a non-simply connected filling Σ′ of Λ′.

Remark 9.7. Theorem 1.13 rules out non-simply connected endo-
cobordisms of Λ′. However, the existence of the non-simply connected
filling implies that Theorem 1.11 does not apply to Σ′. By using Re-
mark 1.12, one thus sees that this Legendrian sphere necessarily has
Reeb chords in degree zero, and that it moreover admits at least two
distinct augmentations.

9.4.3. Non-invertible Lagrangian concordances. Here we will
prove the statement that

Proposition 9.8. In all contact spaces (R2n+1, ξstd) with n ≥ 1 there

exists a Legendrian n-sphere Λ of tb = (−1)(n−1)(n−2)/2+n which is fill-
able by a Lagrangian disc, but which admits no Lagrangian concordance
to the standard Legendrian sphere Λ0 of tb = (−1)(n−1)(n−2)/2+n. (Re-
call that the filling induces a Lagrangian concordance from Λ0 to Λ.)

In [15] the first author proved that the relation of Lagrangian con-
cordance is not symmetric by establishing the above proposition in the
case n = 1. More precisely, it was shown there that the Legendrian
representative Λ946 ⊂ (R3, ξstd) of the knot 946 as depicted in Figure
16 (satisfying tb = −1; this is maximal for this smooth knot class),
which is fillable by a Lagrangian disc, is not concordant to the standard
Legendrian unknot Λ0 of tb = −1.

Recall that an exact Lagrangian filling by a disc can be used to con-
struct a concordance C from Λ0 to Λ946 , which was explicitly described
in the same article. One such concordance is described in Figure 17
below. Note that along the entire concordance the leftmost cusp-edge
p is fixed, and so we can assume that the cylinder C coincides with the

Figure 16. Front (left) and Lagrangian (right) projec-
tions of the maximal TB m(946) knot.
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Figure 17. A Lagrangian concordance from Λ0 to Λ946 .

trivial cylinder R× l for a small arc p ∈ l ⊂ Λ946 inside a neighbourhood
of this cusp. This fact will be important below.

Using the results in the current article, the non-existence of a con-
cordance from Λ946 to Λ0 can be reproved by applying Corollary 1.15
together with the calculations in [15]. Namely, in the latter article it
is shown that, for an appropriate pair ε0, ε1 of augmentations of the
Chekanov-Eliashberg algebra of Λ0, we have

LCHε0,ε1
−1 (Λ946) 6= 0,

and no concordance going the other way can thus exist by Corollary
1.15.

The front spinning construction produces exact Lagrangian concor-
dances ΣSmC ⊂ R × R3+2m, obtained as the front spin of C, from
ΣSmΛ0 ⊂ (R3+2m, ξstd) to ΣSmΛ946 ⊂ (R3+2m, ξstd). Here, the latter
Legendrian submanifolds are the front spins of Λ0 and Λ946 , respec-
tively. In [16, Section 5] the authors proved using the Künneth formula
in Floer homology that again

LCH ε̃0,ε̃1
−1 (ΣSmΛ946) 6= 0

holds for a suitable pair of augmentations, which together with Corollary
1.15 implies that there is no Lagrangian concordance from ΣSmΛ946 to
ΣSmΛ0.

Recall that ΣSmΛ0
∼=ΣSmΛ946

∼=Sm × S1, while ΣSmC∼=R× Sm × S1.
We will now perform an explicit modification of the above example
to produce an example of Legendrian spheres in all dimensions which
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admit a concordance from the standard sphere, but which do not ad-
mit a concordance to the standard sphere; this establishes Proposi-
tion 9.8.

Proof of Proposition 9.8. The Legendrian ambient surgery can be per-
formed to the cusp-edge of the front projection of ΣSmΛ946 correspond-
ing to the left-most cusp edge p ∈ Λ946 . In this way, a Legendrian

sphere Λ+ ⊂ (R2(m+1)+1, ξstd) is produced. Since the concordance C
moreover may be assumed to be a trivial cylinder over a neighbourhood
of p ∈ Λ and, hence, so is ΣSmC, we obtain a Lagrangian concordance
from Λ− to Λ+, where Λ− is the Legendrian sphere obtained by per-
forming the corresponding Legendrian ambient surgery on ΣSmΛ0. In
fact, the latter sphere is the standard Legendrian (m + 1)-sphere of

tb = (−1)(m(m−1)/2+m+1.
Recall that the Legendrian ambient surgery also produces an exact

Lagrangian handle attachment cobordism from ΣSmΛ946 to Λ+. Inspect-
ing the long exact sequence induced by Theorem 1.1, we immediately
conclude that there are augmentations ε+

i , i = 0, 1 for the Chekanov-
Eliashberg algebra of the Legendrian sphere Λ+ satisfying

LCH
ε+0 ,ε

+
1

−1 (Λ+)∼=LCH ε̃0,ε̃1
−1 (ΣSmΛ946) 6= 0.

Once again, Corollary 1.15 shows that there exists no concordance from
Λ+ to Λ−. q.e.d.
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