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THE Lp-ALEKSANDROV PROBLEM FOR
Lp-INTEGRAL CURVATURE

Yong Huang, Erwin Lutwak, Deane Yang & Gaoyong Zhang

Abstract

It is shown that within the Lp-Brunn–Minkowski theory that
Aleksandrov’s integral curvature has a natural Lp extension, for all
real p. This raises the question of finding necessary and sufficient
conditions on a given measure in order for it to be the Lp-integral
curvature of a convex body. This problem is solved for positive p
and is answered for negative p provided the given measure is even.

1. Introduction

Fundamental in convex geometric analysis are both curvature mea-
sures and area measures of convex bodies. They play key roles in the
Brunn–Minkowski theory of convex bodies. The most studied of the
area measures is the surface area measure defined by Aleksandrov [2]
and Fenchel & Jessen [13], while the best known curvature measure is
Aleksandrov’s integral curvature (also called integral Gauss curvature)
which was defined and studied by Aleksandrov [3].

The support function, hQ : Sn−1 → R, of a compact convex subset
Q of Euclidean n-space, Rn, determines Q uniquely and is defined by
hQ(u) = max{u · x : x ∈ Q}, for u ∈ Sn−1, where u · x is the standard
inner product of u and x in Rn.

Oliker [43] (see also [44]) showed that there is a PDE associated with
the “Minkowski problem” for Aleksandrov’s integral curvature. Specif-
ically, the “Minkowski problem” for Aleksandrov’s integral curvature
asks: Given a (data) function g : Sn−1 → [0,∞) is there a support func-
tion h : Sn−1 → (0,∞) that satisfies the Monge–Ampère type equation
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on Sn−1:

(1.1)
h

(|∇h|2 + h2)n/2
det(∇2h+ Ih) = g,

where ∇h is the gradient of the (unknown) function h, while ∇2h is the
Hessian matrix of h, and I is the identity matrix, with respect to an
orthonormal frame on Sn−1.

The main aim of this work is to demonstrate that for each real p,
there is a geometrically natural Lp extension of Aleksandrov’s integral
curvature. As will be shown, it turns out that the PDE associated with
the “Minkowski problem” for Lp-Aleksandrov integral curvature asks:
Given a (data) function g : Sn−1 → [0,∞), is there a support function
h : Sn−1 → (0,∞) satisfying the Monge–Ampère type equation on Sn−1:

(1.2)
h1−p

(|∇h|2 + h2)n/2
det(∇2h+ Ih) = g.

Unfortunately, for applications, this PDE must be solved for the case
where the “data” may well be a measure and not just a function. And
the techniques required in this more general situation turn out to be far
more delicate.

The “Minkowski problem” for Aleksandrov’s integral curvature was
originally solved by Aleksandrov himself [3]. As will be seen, to demon-
strate existence for the “Minkowski problem” for Lp-integral curvature
requires an approach to the Aleksandrov problem radically different
from that taken by either Aleksandrov [3] or Oliker [45].

The surface area measure can be viewed as a differential of the vol-
ume functional (Lebesgue measure) of convex bodies via Aleksandrov’s
variational formula for volume. We provide some details.

Let Kn
o denote the class of convex bodies (compact convex subsets)

in Euclidean n-space Rn that contain the origin in their interiors. For
K,L ∈ Kn

o and t ≥ 0, the Minkowski linear combination K + tL ∈ Kn
o

is defined by

hK+tL = hK + thL.

As will be explained in Section 2, the body K+ tL ∈ Kn
o can be defined

for negative t of sufficiently small absolute value. Aleksandrov’s varia-
tional formula for volume, V , defines a Borel measure on Sn−1, called
the surface area measure S(K, ·) of the convex body K ∈ Kn

o via the
integral representation

d

dt
V (K + tQ)

∣∣∣
t=0

=

∫
Sn−1

hQ(u) dS(K,u),

which holds for each Q ∈ Kn
o .

The classical Minkowski problem asks: Given a Borel measure µ on
Sn−1 (called the data) what are necessary and sufficient conditions on



Lp-ALEKSANDROV PROBLEM 3

the measure µ to guarantee the existence of a body K ∈ Kn
o such that

µ = S(K, ·), and if such a body exists to what extent is it unique?
Minkowski [40, 41] himself solved the polytope case using a vari-

ational argument. Aleksandrov [1, 2] and Fenchel & Jessen [13], in-
dependently gave a complete solution by using a variational method
similar to that used by Minkowski. The variational approach is based
on the fact, as presented above, that the surface area measure is a
differential of volume, and, thus, the solution to the Euler–Lagrange
equation of a volume-maximization problem will provide the solution to
the Minkowski problem. From the point of view of partial differential
equations, the solution of the Minkowski problem amounts to solving
a degenerate fully nonlinear partial differential equation. The study of
the regularity of the solutions to the Minkowski problem has a long
history and strong influence on both the Brunn–Minkowski theory and
the theory of fully nonlinear partial differential equations. See, e.g.,
[9, 7, 42, 46, 52].

The Lp-Brunn–Minkowski theory is an extension of the classical
Brunn–Minkowski theory. The roots of the Lp-Brunn–Minkowski the-
ory date back to the middle of the twentieth century, but its active
development had to await the emergence of the concept of Lp-surface
area measure in [34] in the early 1990’s. For each real p ≥ 1, Firey (see,
e.g., [47]) defined what has become known as the Minkowski–Firey Lp-
combination K +p t·L ∈ Kn

o for K,L ∈ Kn
o and t ≥ 0 by letting

hpK+pt·L = hpK + thpL.

Note that “ ·” is written without its subscript p. In the early 1990’s (as
will be explained in Section 2) it was shown that these Minkowski–Firey
Lp combinations can be fruitfully defined for negative t of sufficiently
small absolute value. This led to the notion of the Lp-surface area
measure, Sp(K, ·), for each body K ∈ Kn

o , via the variational formula:

d

dt
V (K +p t·Q)

∣∣∣
t=0

=
1

p

∫
Sn−1

hQ(u)p dSp(K,u),

which holds for each Q ∈ Kn
o . It was also shown in [34] that for each

K ∈ Kn
o ,

dSp(K, ·) = h1−p
K dS(K, ·),

which shows that Lp-surface area measure may be extended to all p ∈ R
in a completely obvious manner.

The associated Lp-Minkowski problem in the Lp-Brunn–Minkowski
theory (first studied in [34]) asks: For fixed p ∈ R, given a Borel measure
µ on Sn−1 (the data) what are necessary and sufficient conditions on
the measure µ to guarantee the existence of a body K ∈ Kn

o such that
µ = Sp(K, ·), and if such a body K exists to what extent is K unique?
The classical Minkowski problem (p = 1) becomes a special case of
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the Lp-Minkowski problem, while the logarithmic Minkowski problem
(p = 0) and the centro-affine Minkowski problem (p = −n) are two
special unsolved cases which are major open problems; see, e.g., [6] and
Chow & Wang [10]. A number of works contributed to solving various
cases of the Lp-Minkowski problem; see, e.g., [8, 10, 22, 23, 25, 26,
27, 31, 30, 35, 38, 51, 49, 50, 55, 56, 57, 58]. In [11, 21, 37, 39, 54]
affine Sobolev inequalities were obtained by using the solution of the
Minkowski problem and the Lp-Minkowski problem (together with Lp-
affine isoperimetric inequalities from [36, 20]). Connections between
the Lp-Minkowski problem and curvature flows can be found in, e.g.,
[4, 5].

If the measure µ has a density function g : Sn−1 → [0,∞), then the
partial differential equation that is associated with the Lp-Minkowski
problem (with data g) is the Monge–Ampère type equation on Sn−1:

(1.3) h1−p det(∇2h+ Ih) = g,

where ∇2h is the Hessian matrix of the (unknown) function h and I is
the identity matrix with respect to an orthonormal frame on Sn−1.

The centro-affine Minkowski problem corresponds to the case p = −n.
Its partial differential equation is:

(1.4) hn+1 det(∇2h+ Ih) = g.

Solving this PDE is a longstanding open problem, even when g is as-
sumed to be an even function. For special cases, see the recent paper
[27].

To state the Aleksandrov problem and its new proposed Lp analogue,
in full generality, we shall investigate the entropy functional, defined for
Q ∈ Kn

o by

(1.5) E(Q) = −
∫
Sn−1

log hQ(v) dv,

where the integration is with respect to spherical Lebesgue measure.
Recall that the polar, Q∗, of the convex body Q ∈ Kn

o is the body in
Kn
o defined by

Q∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ Q}.

By combining the notion of polarity with that of Lp-combinations we
arrive at another important (in both convex geometric and functional
analysis) way of combining bodies in Kn

o : harmonic Lp-combinations.
For each real p ≥ 1, the harmonic Lp-combination K +̂p t · L ∈ Kn

o of
K,L ∈ Kn

o and t ≥ 0, is defined by

K +̂p t·L = (K∗ +p t·L∗)∗.

Note that, by abuse of notation, “ · ” is written on the left without sub
or superscripts. As will be shown in Section 2, the body K +̂p t·L ∈ Kn

o



Lp-ALEKSANDROV PROBLEM 5

can be defined for all p ∈ R and even for negative t of sufficiently small
absolute value.

The Aleksandrov integral curvature, J(K, ·), of a body K ∈ Kn
o is a

Borel measure on Sn−1 that (as will be shown) can be defined by the
variational formula

d

dt
E(K +̂0 t·Q)

∣∣∣
t=0

(1.6)

= −
∫
Sn−1

log ρQ(u) dJ(K,u),

for each Q ∈ Kn
o . It should be emphasized that (1.6) is not Aleksan-

drov’s definition of this classical and fundamental concept.
The Aleksandrov problem is a “Minkowski problem” for Aleksan-

drov’s integral curvature: What are necessary and sufficient conditions
on a given Borel measure (the data) on the unit sphere so that the
measure is the integral curvature of a convex body? And to what ex-
tent is the body (the solution) uniquely determined by the given data
measure? Aleksandrov [3] gave a complete solution to the problem.
He settled the polytope case using his “mapping lemma” and then the
general case using an approximation argument.

The problem (posed by Aleksadrov) of finding a direct variational
proof demonstrating existence of solutions to the Aleksandrov
problem—a proof similar to the variational approach used to demon-
strate the existence of solutions to the Minkowski problem—was first
studied by Oliker [45]. Oliker also considered the polytope case first,
but used a variational and mass transport approach to replace the map-
ping lemma, and then applied Aleksandrov’s approximation argument
to the general case.

One of the aims of this work is to provide a new direct variational
proof demonstrating the existence of a solution of the classical Aleksan-
drov problem. Unfortunately, the proof presented in this paper (The-
orem 7.2) only establishes necessary and sufficient conditions for the
existence of solutions in the origin-symmetric case.

Regularity of solutions to the Aleksandrov problem was investigated
by Guan–Li [17] and Oliker [43] (see also [44]). For regularity regarding
more general problems, see the recent paper Li–Sheng–Wang [29] and
its references.

General area measures of convex bodies were introduced by Alek-
sandrov and Fenchel & Jessen. General curvature measures for sets
of positive reach were discovered by Federer [12], and their restriction
to convex bodies were treated directly by Schneider [48]. Aleksandrov–
Minkowski-type problems for other curvature measures were studied by,
e.g., Guan–Lin–Ma [18] and Guan–Li–Li [19].

In this work, for each p ∈ R, we define an Lp-integral curvature,
Jp(K, ·), of a convex body K ∈ Kn

o , as a Borel measure on Sn−1, such
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that:
d

dt
E(K +̂p t ·Q)

∣∣∣
t=0

=
1

p

∫
Sn−1

ρQ(u)−p dJp(K,u),

for each Q ∈ Kn
o . The existence of the limit and of Lp-integral curvature

will be demonstrated. It turns out (as will be shown) that for each
K ∈ Kn

o ,

(1.7) dJp(K, ·) = ρpKdJ(K, ·).

Note that given the classical definition of Aleksandrov integral curva-
ture, (1.7) could be used to define Lp-integral curvature for all p ∈ R,
although this could rightly be viewed as artificial and unmotivated.

The Lp-Aleksandrov problem we pose asks: For fixed p ∈ R, given
a Borel measure µ on Sn−1 what are necessary and sufficient conditions
on the measure µ to guarantee the existence of a body K ∈ Kn

o such that
µ = Jp(K, ·)? And if such a body exists, to what extent is it unique?
If the measure µ has a density function g : Sn−1 → R, then the Lp-
Aleksandrov problem (with data g) becomes the PDE (1.2). The aim of
this paper is not only to introduce the concept of Lp-integral curvature
but to establish existence results for various cases of the associated
Lp-Aleksandrov problem (i.e., the “Minkowski problem” for Lp-integral
curvature) in the Lp-Brunn–Minkowski theory.

We shall investigate entropy maximization problems for convex bod-
ies. The solutions to the Euler–Lagrange equations for the entropy
maximization problems will provide our solutions to the Lp-Aleksandrov
problem. A solution to the case where p > 0 will be presented (The-
orem 7.1). Sufficient conditions will be given in the symmetric case
when p < 0 (Theorem 7.3). These conditions are also necessary if the
given measure has a density. In particular, our results imply that the
PDE,

(1.8)
hn+1

(|∇h|2 + h2)n/2
det(∇2h+ Ih) = g

has a strictly positive solution whenever g : Sn−1 → [0,∞) is an inte-
grable even function whose integral over Sn−1 is positive. In view of
similarities between the PDEs (1.4) and (1.8), this may shed new light
on the unsolved centro-affine Minkowski problem. As noted above, for
the case of p = 0, the classical Aleksandrov problem, we give a new di-
rect variational proof of Aleksandrov’s result (Theorem 7.2)—but also
here only for even measures where the solutions turn out to be origin
symmetric. Unfortunately, uniqueness is not established for the main
theorems to be presented.

Acknowledgment. The authors thank Rolf Schneider, Guangxian Zhu,
and Yiming Zhao for their comments on various drafts of this work. The
authors thank the referees for the detailed reading and suggestions.
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2. Preliminaries

In this section, we list some basic facts for quick later reference.
Schneider’s book [47] is the standard reference regarding convex bodies.
The books [14, 15] are also good references.

For x ∈ Rn, let |x| =
√
x · x be the Euclidean norm of x. For x ∈

Rn \ {0}, define x ∈ Sn−1 by x = x/|x|. For a subset E in Rn \ {0},
let Ē = {x̄ : x ∈ E}. The origin-centered unit ball {x ∈ Rn : |x| ≤ 1}
is always denoted by B, and its boundary by Sn−1. Write ωn for the
volume of B and on for the surface area of Sn−1. Recall that on = nωn.

For the set of continuous functions defined on the unit sphere Sn−1

write C(Sn−1), and for f ∈ C(Sn−1) write ‖f‖ = maxv∈Sn−1 |f(v)|. We
shall view C(Sn−1) as endowed with the topology induced by this max-
norm. We write C+(Sn−1) for the set of strictly positive functions in
C(Sn−1), and C+

e (Sn−1) for the set of functions in C+(Sn−1) that are
even.

If µ is a fixed non-zero finite Borel measure on Sn−1, for f ∈C+(Sn−1),
define

‖f :µ‖p =

(
1

|µ|

∫
Sn−1

fp dµ

)1/p

, p 6= 0,

and

‖f :µ‖0 = ‖f‖0 = exp

(
1

|µ|

∫
Sn−1

log f dµ

)
.

If µ is spherical Lebsgue measure, we will write ‖f‖p instead of ‖f :µ‖p.
If K ⊂ Rn is compact and convex, the support function hK : Rn → R

of K is defined by hK(x) = max{x · y : y ∈ K}, for x ∈ Rn. The
support function is convex and homogeneous of degree 1. A compact
convex subset of Rn is uniquely determined by its support function.

Denote by Kn the space of compact convex sets in Rn endowed with
the Hausdorff metric; i.e., the distance between K,L ∈ Kn is ‖hK−hL‖.
By a convex body in Rn we will always mean a compact convex set with
nonempty interior. Denote by Kn

o the class of convex bodies in Rn
that contain the origin in their interiors, and denote by Kn

e the class of
origin-symmetric convex bodies in Rn.

Let K ⊂ Rn be compact and star-shaped with respect to the origin.
The radial function ρK : Rn \ {0} → R is defined by

ρK(x) = max{λ : λx ∈ K},

for x 6= 0. A compact star-shaped (about the origin) set is uniquely
determined by its radial function on Sn−1. Denote by Sn the set of
compact star-shaped sets. A star body is a compact star-shaped set with
respect to the origin whose radial function is continuous and positive.
If K is a star body, then obviously

∂K = {ρK(u)u : u ∈ Sn−1}.
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Denote by Sno the space of star bodies in Rn endowed with the radial
metric; i.e., the distance between K,L ∈ Sno , is ‖ρK − ρL‖. Note that
Kn
o ⊂ Sno and that on the space Kn

o the Hausdorff metric and radial
metric are equivalent, and, thus, Kn

o is a subspace of Sno .
If K ∈ Kn

o , then it is easily seen that the radial function and the
support function of K are related by,

hK(v) = max
u∈Sn−1

(u · v) ρK(u), v ∈ Sn−1,(2.1)

1/ρK(u) = max
v∈Sn−1

(u · v)/hK(v), u ∈ Sn−1.(2.2)

From the definition of the polar body, we see that on Rn \ {0},

(2.3) ρK = 1/hK∗ and hK = 1/ρK∗ .

From this, it’s trivial to see that,

(2.4) K∗∗ = K.

In this paper, a convex cone γ ⊂ Rn is a convex set such that for all
t ≥ 0 and for each x ∈ γ, we have tx ∈ γ. The polar cone γ∗ is defined
by

γ∗ = {y ∈ Rn : x · y ≤ 0 for all x ∈ γ}.
As noted above, the intersection of a convex cone γ with the unit sphere
Sn−1 is denoted by γ; i.e.,

γ = Sn−1 ∩ γ.

A set ω ⊂ Sn−1 is called convex if there exists a convex cone γ contained
in an open half-space of Rn so that

ω = γ = Sn−1 ∩ γ.

The polar ω∗ of ω is defined by

ω∗ = γ∗ = Sn−1 ∩ γ∗,

that is,

ω∗ = {v ∈ Sn−1 : v · u ≤ 0 for all u ∈ ω}.
Denote by Ω ⊂ Sn−1 a closed set that always will be assumed not to

be contained in any closed hemisphere of Sn−1, and suppose that the
function h : Ω → (0,∞) is continuous. The Wulff shape [h] ∈ Kn

o , also
known as the Aleksandrov body, determined by h is the convex body
defined by

[h] = {x ∈ Rn : x · v ≤ h(v) for all v ∈ Ω}.

Note that when hK : Sn−1 → (0,∞) is the support function of a body
K ∈ Kn

o , we have

[hK ] = K.
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Suppose ρ : Ω→ (0,∞) is continuous. Since Ω ⊂ Sn−1 is closed, and
ρ is continuous, {ρ(u)u : u ∈ Ω} ⊂ Rn is compact. Hence, the convex
hull 〈ρ〉 generated by ρ,

〈ρ〉 = conv{ρ(u)u : u ∈ Ω}

is compact as well (see Schneider [47], Theorem 1.1.11). Since Ω is not
contained in any closed hemisphere of Sn−1, the compact convex set
〈ρ〉 ∈ Kn

o . Obviously, if K ∈ Kn
o , and we consider ρK : Sn−1 → (0,∞),

we have

(2.5) 〈ρK〉 = K.

The support function of the convex hull 〈ρ〉 is given by

(2.6) h〈ρ〉(v) = max
u∈Ω

(v · u)ρ(u), v ∈ Sn−1.

The Wulff shape [h] of a continuous function h : Ω → (0,∞) and
the convex hull 〈1/h〉 generated by its reciprocal are polar reciprocals of
each other; i.e.,

[h]∗ = 〈1/h〉.

See [24] for the easy proof of this.
The Lp Minkowski combination is the basic concept in the Lp-Brunn–

Minkowski theory. Fix a real p. For K,L ∈ Kn
o , and a, b ≥ 0, define the

Lp Minkowski combination, a·K +p b·L ∈ Kn
o , via the Wulff shape:

(2.7) a·K +p b·L = [(ahpK(v) + bhpL(v))1/p],

when p 6= 0. Note that the notion of Wulff shape allows us to consider
an Lp-combination where either a or b may be negative, as long the
function ahpK + bhpL is strictly positive on Sn−1. When p = 0, define
a·K +0 b·L via the Wulff shape

(2.8) a·K +0 b·L = [haKh
b
L
].

Define the Lp-harmonic combination a·K +̂p b·L by

(2.9) a·K +̂p b·L = (a·K∗ +p b·L∗)∗.

Note that “ · ” is written without either a sub or superscript. Note, as
an aside, that when a+ b = 1,

lim
p→0

a·K +p b·L = a·K +0 b·L.

If a, b ∈ [0,∞), not both 0, and p = 1, then a·K +p b·L is just written
as aK + bL. Note that for a > 0,

(2.10) haK = ahK and ρaK = aρK .
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3. Lp-integral curvature and the Lp-Aleksandrov problem

For a convex body K in Rn, and for v ∈ Sn−1, the hyperplane

HK(v) = {x ∈ Rn : x · v = hK(v)}
is called the supporting hyperplane to K with unit normal v.

For σ ⊂ ∂K, the spherical image, νK(σ), of σ is defined by

νK(σ) = {v ∈ Sn−1 : x ∈ HK(v) for some x ∈ σ} ⊂ Sn−1.

For η ⊂ Sn−1, the reverse spherical image, xK(η), of η is defined by

xK(η) = {x ∈ ∂K : x ∈ HK(v) for some v ∈ η} ⊂ ∂K.
Let σK ⊂ ∂K be the set consisting of all x ∈ ∂K, for which the set

νK({x}), abbreviated as νK(x), contains more than a single element. It
is well known that Hn−1(σK), the (n−1)-dimensional Hausdorff measure
of σK , is 0 (see p. 84 of Schneider [47]). The function

(3.1) νK : ∂K \ σK → Sn−1,

defined by letting νK(x) be the unique element in νK(x), for each x ∈
∂K \σK , is called the spherical image map of K and is well known to be
continuous (see Lemma 2.2.12 of Schneider [47]). The set ηK ⊂ Sn−1

consisting of all v ∈ Sn−1, for which the set xK(v) contains more than
a single element, is well known to be of Hn−1-measure 0 (see Theorem
2.2.11 of Schneider [47]). The function

(3.2) xK : Sn−1 \ ηK → ∂K,

defined, for each v ∈ Sn−1 \ ηK , by letting xK(v) be the unique element
in xK(v), is called the reverse spherical image map. The vectors in
Sn−1 \ ηK are called the regular normal vectors of K. Thus, v ∈ Sn−1

is a regular normal vector of K if and only if ∂K ∩ HK(v) consists of
a single point. The function xK is well known to be continuous (see
Lemma 2.2.12 of Schneider [47]).

For K ∈ Kn
o , define the radial map of K,

rK : Sn−1 → ∂K by rK(u) = ρK(u)u ∈ ∂K,

for u ∈ Sn−1. Note that r−1
K : ∂K → Sn−1 is just the restriction of the

map · : Rn \ {0} → Sn−1 to ∂K. The radial map is a homeomorphism.
For ω ⊂ Sn−1, define the radial Gauss image of ω by

αK(ω) = νK(rK(ω)) ⊂ Sn−1.

Thus, for u ∈ Sn−1,

(3.3) αK(u) = {v ∈ Sn−1 : rK(u) ∈ HK(v)}.
Observe, that from the definition we immediately see that for all

λ > 0, for the homothet λK we have

(3.4) αλK = αK .
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Define the radial Gauss map of the convex body K ∈ Kn
o

αK : Sn−1 \ ωK → Sn−1 by αK = νK ◦ rK ,

where ωK = σK = r−1
K (σK). Since r−1

K = · is a bi-Lipschitz map be-
tween the spaces ∂K and Sn−1 it follows that ωK has spherical Lebesgue
measure 0. Observe that if u ∈ Sn−1 \ ωK , then αK(u) contains only
the element αK(u). Note that since both νK and rK are continuous,
αK is continuous.

For η ⊂ Sn−1, define the reverse radial Gauss image of η by

(3.5) α∗K(η) = r−1
K (xK(η)) = xK(η).

Thus,

α∗K(η) = {x : x ∈ ∂K where x ∈ HK(v) for some v ∈ η}.
Observe, that from the definition we immediately see that for all λ > 0,
for the homothet λK we have

(3.6) α∗λK = α∗K .

Define the reverse radial Gauss map of the convex body K ∈ Kn
o ,

(3.7) α∗K : Sn−1 \ ηK → Sn−1, by α∗K = r−1
K ◦ xK .

Note that since both r−1
K and xK are continuous, α∗K is continuous.

If η ⊂ Sn−1 is a Borel set, then α∗K(η) = xK(η) ⊂ Sn−1 is spherical
Lebesgue measurable. This fact is Lemma 2.2.14 of Schneider [47], an
alternate proof of which was given in [24].

It was shown in [24] that on subsets of Sn−1 the reverse radial Gauss
image, α∗K , of a convex body, K, and the radial Gauss image, αK∗ , of
its polar body, K∗, agree; i.e., for each K ∈ Kn

o and each η ⊂ Sn−1,

(3.8) α∗K(η) = αK∗(η).

It follows thatαK∗(η) is spherical Lebesgue measurable for eachK ∈ Kn
o

and for each Borel set η ⊂ Sn−1. Since ∗ : Kn
o → Kn

o is a bijection, we
conclude that αK(ω) is spherical Lebesgue measurable for each K ∈ Kn

o

and for each Borel set ω ⊂ Sn−1.
The integral curvature, J(K, ·), of K ∈ Kn

o is a Borel measure on
Sn−1 defined by

(3.9) J(K,ω) = Hn−1(αK(ω)),

for each Borel set ω ⊂ Sn−1; i.e., J(K,ω) is the spherical Lebesgue
measure ofαK(ω). The total integral curvature, J(K,Sn−1), of a convex
body K is the surface area, on, of the unit sphere Sn−1 in Rn. The
concept of integral curvature was introduced by Aleksandrov.

Note that from (3.4) and definition (3.9) it follows immediately that
for all λ > 0, for the homothet λK we have

(3.10) J(λK, ·) = J(K, ·).
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We note, as an aside that, if the convex body K is C2 smooth with
positive Gauss curvature, then the integral curvature has a continuous
density,

(3.11)
h

(|∇h|2 + h2)
n
2

det(∇2h+ Ih),

where h = 1/ρK , while ∇h is the gradient of h on Sn−1, ∇2h is the
Hessian matrix of h on Sn−1, and I is the identity matrix, with respect
to an orthonormal frame on Sn−1.

For each p ∈ R, define the Lp-integral curvature Jp(K, ·) of K ∈ Kn
o

as a Borel measure such that

(3.12)

∫
Sn−1

f(u) dJp(K,u) =

∫
Sn−1

f(α∗K(u))ρpK(α∗K(u)) du,

for each continuous f : Sn−1 → R, and the integration is with respect
to spherical Lebesgue measure. From (3.12) we see that for each Borel
set ω ⊂ Sn−1,
(3.13)

Jp(K,ω) =

∫
Sn−1

1ω(α∗K(u))ρpK(α∗K(u)) du =

∫
αK(ω)

ρpK(α∗K(u)) du,

where the last identity comes from the fact (see (2.21) in [24]) that
α∗K(u) ∈ ω if and only if u ∈ αK(ω), for almost all u with respect to
spherical Lebesgue measure.

From (3.9), we see that for each Borel set ω ⊂ Sn−1,
(3.14)∫

Sn−1

1ω(u) dJ(K,u) =

∫
Sn−1

1αK(ω)(u) du =

∫
Sn−1

1ω(α∗K(u)) du,

where again the last identity comes from the fact that u ∈ αK(ω), if and
only if α∗K(u) ∈ ω, for almost all u with respect to spherical Lebesgue
measure. But from (3.14), it follows that∫

Sn−1

f(u) dJ(K,u) =

∫
Sn−1

f(α∗K(u)) du,

or equivalently, that

(3.15)

∫
Sn−1

f(u)ρpK(u) dJ(K,u) =

∫
Sn−1

f(α∗K(u))ρpK(α∗K(u)) du,

for each continuous f : Sn−1 → R. When (3.15) is combined with (3.12)
we have

(3.16) dJp(K, ·) = ρpK dJ(K, ·).

Thus, J0(K, ·) = J(K, ·) for each K ∈ Kn
o ; i.e., Aleksandrov’s integral

curvature is the special case p = 0 of Lp-integral curvature. Observe
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that from (2.10), (3.16) and (3.10), it follows that for K ∈ Kn
o and

λ > 0,

(3.17) Jp(λK, ·) = λpJp(K, ·).

Note, as an aside, that if the convex body K is C2 smooth with
positive Gauss curvature, then it follows from (3.16) and (3.11) that the
Lp-integral curvature has a continuous density, given by

(3.18)
h1−p

(|∇h|2 + h2)
n
2

det(∇2h+ Ih),

where h = 1/ρK .
It will be seen in the next section (Proposition 4.2) that Lp-integral

curvature arises naturally in the Lp-Brunn–Minkowski theory.
It is easy to show that the integral curvature of a convex body is not

concentrated in any closed hemisphere, and it was shown that the total
measure of the integral curvature of a convex body is the surface area of
the unit sphere. It is natural to try to find a complete set of properties
that characterize integral curvature.

The Aleksandrov problem. For a given finite Borel measure µ on
Sn−1, what are the necessary and sufficient conditions so that µ is the
integral curvature J(K, ·) of a convex body K ∈ Kn

o?

This problem was solved by Aleksandrov – completely. His solution
(of which we will make no use) is:

Theorem 3.1. If µ is a finite Borel measure on Sn−1, then µ is
the integral curvature of a convex body in Kn

o if and only if µ satisfies
|µ| = on and

µ(Sn−1 \ ω∗) > Hn−1(ω),

for each convex ω ⊂ Sn−1.

We formulate the following problem for the Lp-integral curvature.

The Lp-Aleksandrov problem. For a fixed p ∈ R, and a given Borel
measure µ on Sn−1, what are the necessary and sufficient conditions so
that µ is the Lp-integral curvature Jp(K, ·) of a convex body K ∈ Kn

o?
And if such a body K exists, to what extent is it unique?

We note, as an aside, that from (3.18) it follows that a particular
case of the Lp-Aleksandrov problem asks: Under what conditions on
a given (data) function g : Sn−1 → [0,∞) does there exist a solution
h : Sn−1 → (0,∞), that is the support function of a convex body, to
the Monge–Ampère equation on Sn−1

h1−p

(|∇h|2 + h2)
n
2

det(∇2h+ Ih) = g.
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4. Variational formulas for entropy of convex bodies

Let Ω ⊂ Sn−1 be a closed set that is not contained in any closed
hemisphere of Sn−1. Let f : Ω → R be continuous, and δ > 0. Let
ht : Ω→ (0,∞) be a continuous function defined for each t ∈ (−δ, δ) by

(4.1) log ht(v) = log h(v) + tf(v) + o(t, v),

where o : (−δ, δ) × Sn−1 → R is such that o(t, ·) : Sn−1 → R is con-
tinuous, for each t, and limt→0 o(t, ·)/t = 0, uniformly on Ω. Denote
by

[ht] = {x ∈ Rn : x · v ≤ ht(v) for all v ∈ Ω},
the Wulff shape determined ht. We shall call [ht] a logarithmic family
of Wulff shapes formed by (h, f, o). On occasion, we shall write [ht] as
[h, f, t], and if h happens to be the support function of a convex body
K perhaps as [K, f, t]. We call [K, f, t] a logarithmic family of Wulff
shapes formed by (K, f, o).

Let g : Ω → R be continuous and δ > 0. Let ρt : Ω → (0,∞) be a
continuous function defined for each t ∈ (−δ, δ) by

(4.2) log ρt(u) = log ρ(u) + tg(u) + o(t, u),

where again the function o : (−δ, δ) × Sn−1 → R is such that o(t, ·) :
Sn−1 → R is continuous, for each t, and limt→0 o(t, ·)/t = 0, uniformly
on Ω. Denote by

〈ρt〉 = conv{ρt(u)u : u ∈ Ω},
the convex hull generated by ρt. We will call 〈ρt〉 a logarithmic family
of convex hulls generated by (ρ, g, o). On occasion, we shall write 〈ρt〉 as
〈ρ, g, t〉, and if ρ happens to be the radial function of a convex body K as
〈K, g, t〉. We call 〈K, g, t〉 a logarithmic family of convex hulls generated
by (K, g, o).

The dual entropy E(K) of a convex body K ∈ Kn
o is defined by

(4.3) E(K) =

∫
Sn−1

log ρK(u) du.

From (2.3) we see that the dual entropy of K ∈ Kn
o and the entropy of

the polar of K are the same; i.e.,

(4.4) E(K) = E(K∗).

The following variational formulas for the entropy and dual entropy
of convex bodies were established in Lemmas 4.6 and 4.7 of [24].

Lemma 4.1. Suppose Ω ⊂ Sn−1 is a closed set that is not con-
tained in any closed hemisphere of Sn−1. Suppose also that o : (−δ, δ)×
Sn−1 → R is such that o(t, ·) : Sn−1 → R is continuous, for each t, and
limt→0 o(t, ·)/t = 0, uniformly on Ω. Further, suppose also that K ∈ Kn

o
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and f, g : Ω→ R are continuous. Then if 〈K, g, t〉 is a logarithmic family
of convex hulls generated by (K, g, o), then

(4.5)
d

dt
E(〈K, g, t〉)

∣∣∣
t=0

= −
∫

Ω
g(u) dJ(K,u),

and if [K, f, t] is a logarithmic family of Wulff shapes formed by (K, f, o),
then

(4.6)
d

dt
E([K, f, t])

∣∣∣
t=0

=

∫
Ω
f(v) dJ(K∗, v).

The variational formulas above can be employed to obtain the varia-
tional formulas for the entropy of harmonic Lp-Minkowski combinations:

Proposition 4.2. Let K,L ∈ Kn
o . Then, for p 6= 0,

(4.7)
d

dt
E(K +̂p t·L)

∣∣∣
t=0

=
1

p

∫
Sn−1

ρL(v)−p dJp(K, v),

while for p = 0,

(4.8)
d

dt
E(K +̂0 t·L)

∣∣∣
t=0

= −
∫
Sn−1

log ρL(v) dJ(K, v).

Proof. For p 6= 0, let

ht = (hpK + thpL)1/p,

and choose a positive δ such that

δ <

{
[minv∈Sn−1 hK(v)/maxv∈Sn−1 hL(v)]p for p > 0,

[minv∈Sn−1 hL(v)/maxv∈Sn−1 hK(v)]−p for p < 0.

Then

log ht = log hK +
1

p

( hL
hK

)p
t+ op(t, ·),

where op : (−δ, δ) × Sn−1 → R is such that each op(t, ·) : Sn−1 → R is
continuous and limt→0 op(t, ·)/t = 0, uniformly on Sn−1. Choose

f =
1

p

( hL
hK

)p
,

and note that

K +p t·L = [ht] = [K, f, t].

This, (2.3), (3.16), and (4.6) give

d

dt
E(K +p t·L)

∣∣∣
t=0

=
1

p

∫
Sn−1

hpL(v) dJp(K
∗, v),

when p 6= 0. In the above display replace K,L by K∗, L∗; use (4.4),
(2.3) and (2.4), and we obtain the desired result (4.7).

For the case of p = 0, let

ht = hKh
t
L.
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Then

log ht = log hK + t log hL.

Let

f = log hL.

Then

K +0 t·L = [K, f, t].

This and (4.6) give

d

dt
E(K +0 t·L)

∣∣∣
t=0

=

∫
Sn−1

log hL(v) dJ(K∗, v).

In the above display replace K,L by K∗, L∗; use (2.3), (2.4), (4.4) and
we obtain the desired result (4.8). q.e.d.

The variational formulas in Proposition 4.2 show how Lp-integral cur-
vature arises naturally in the Lp-Brunn–Minkowski theory.

5. Maximizing the entropy of convex bodies

Fix p ∈ R. We show that the Lp-Aleksandrov problem can be reduced
to the Euler–Lagrange equation of a maximization problem. For a given
Borel measure µ, the maximization problem is:

(5.1) sup{E(〈f 〉)/on + log ‖f :µ‖−p : f ∈ C+(Sn−1)}.

On C+(Sn−1), the class of strictly positive continuous functions on
Sn−1, define the functional Φ : C+(Sn−1)→ R, by letting

(5.2) Φ(f) = E(〈f 〉)/on + log ‖f :µ‖−p,

for each f ∈ C+(Sn−1). The convex hull,

〈f 〉 = conv{f(u)u : u ∈ Sn−1}

is in Kn
o since f is strictly positive. We first observe that Φ is homoge-

neous of degree 0, in that for all λ > 0, and all f ∈ C+(Sn−1),

Φ(λf) = Φ(f).

To see this, note that f 7→ ‖f : µ‖−p is obviously homogeneous of de-
gree 1. Clearly 〈λf 〉 = λ〈f 〉 and, thus, h〈λf〉 = λh〈f〉. The homogeneity

of degree 0 of Φ now follows immediately from definitions (1.5) and
(5.2).

We observe that Φ : C+(Sn−1) → R is continuous. To see this,
recall that if f0, f1, . . . ∈ C+(Sn−1), are such that limk→∞ fk = f0,
uniformly on Sn−1, then 〈fk〉 → 〈f0〉, in Kn

o . The continuity of Φ now
follows immediately from the continuity of E : Kn

o → R and that of
‖· :µ‖−p : C+(Sn−1)→ (0,∞).
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Lemma 5.1. Suppose p ∈ R. A convex body K ∈ Kn
o is a solution

of the maximization problem,

sup{E(Q)/on + log ‖ρQ :µ‖−p : Q ∈ Kn
o},

if and only if ρK is a solution of the maximization problem,

sup{E(〈f 〉)/on + log ‖f :µ‖−p : f ∈ C+(Sn−1)}.

Proof. Consider the maximization problem

(5.3) sup{Φ(f) : f ∈ C+(Sn−1)}.
For the convex hull 〈f 〉 = conv{f(u)u : u ∈ Sn−1}, of f ∈ C+(Sn−1),

we clearly have ρ〈f〉 ≥ f and, thus, ‖ρ〈f〉 :µ‖−p ≥ ‖f :µ‖−p. Also, since
from (2.5), we have 〈ρ〈f〉〉 = 〈f 〉, we see that E(〈ρ〈f〉〉) = E(〈f 〉). Thus,
directly from (5.2), we have

Φ(f) ≤ Φ(ρ〈f〉).

This tells us that in searching for the supremum in (5.3) we can restrict
our attention to the radial functions of bodies in Kn

o ; i.e.,

sup{Φ(f) : f ∈ C+(Sn−1)} = sup{Φ(ρQ) : Q ∈ Kn
o}.

Therefore, a convex body K ∈ Kn
o is a solution of the maximization

problem,

sup{E(Q)/on + log ‖ρQ :µ‖−p : Q ∈ Kn
o},

if and only if

Φ(ρK) = sup{Φ(f) : f ∈ C+(Sn−1)}. q.e.d.

Lemma 5.2. Suppose p ∈ R. Let µ be a finite Borel measure on
Sn−1 and K ∈ Kn

o satisfying

(5.4)

∫
Sn−1

ρ−pK dµ = on.

If K is a solution of the maximization problem

(5.5) sup{E(Q)/on + log ‖ρQ :µ‖−p : Q ∈ Kn
o},

then

µ = Jp(K, ·).

Proof. Since 〈ρQ〉 = Q, for each Q ∈ Kn
o , the fact that K is a solution

of the maximization problem (5.5) can be rewritten, in light of (5.2),
as:

(5.6) Φ(ρK) = sup{Φ(ρQ) : Q ∈ Kn
o}.

Lemma 5.1, and the fact that K is a solution of the maximization prob-
lem (5.6), tells us that

Φ(ρK) = sup{Φ(f) : f ∈ C+(Sn−1)}.
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Suppose g ∈ C+(Sn−1) is fixed. Define

ρt = ρ(t, ·) = ρKe
tg,

that is,

(5.7) log ρt = log ρK + tg.

From Lemma 4.1 we have

(5.8)
d

dt
E(〈ρt〉)

∣∣∣
t=0

= −
∫
Sn−1

g(u) dJ(K,u).

We now show that for each p ∈ R,

(5.9)
d

dt
log ‖ρt :µ‖−p

∣∣∣
t=0

=
1

on

∫
Sn−1

ρ−pK (u)g(u) dµ(u).

To see this, first suppose p 6= 0. Since |es−1−s| ≤ es2, for all s ∈ (−1, 1),
we see that ∣∣∣e−tpg(u) − 1

t
+ pg(u)

∣∣∣ ≤ ep2g(u)2|t|,

for all u ∈ Sn−1, and all t such that |t| < 1/(|p|maxu∈Sn−1 g(u)). Since
g is continuous on Sn−1 we conclude that, as t→ 0

ρ−pt − ρ
−p
0

t
=
e−tpg − 1

t
ρ−pK −→ −pg ρ

−p
K , uniformly on Sn−1.

From this, by recalling (5.4), we immediately get the desired (5.9). The
case p = 0 is simpler: From (5.7) we see that

log ‖ρt :µ‖0 =
1

|µ|

∫
Sn−1

log ρt dµ =
1

|µ|

∫
Sn−1

(tg + log ρK) dµ,

which quickly gives (5.9) for the case p = 0, by recalling that here (5.4)
is |µ| = on.

The Euler–Lagrange equation,

d

dt
Φ(ρt)

∣∣∣
t=0

=
d

dt
(E(〈ρt〉)/on + log ‖ρt :µ‖−p)

∣∣∣
t=0

= 0,

together with (5.8) and (5.9) gives

−
∫
Sn−1

g(u) dJ(K,u) +

∫
Sn−1

ρ−pK (u)g(u) dµ(u) = 0.

Since g was arbitrary, we conclude that ρ−pK dµ = dJ(K, ·). When this is
combined with (3.16) we obtain the desired conclusion that µ = Jp(K, ·).

q.e.d.

Recall that a Borel measure on Sn−1 is called even if it assumes the
same values on antipodal Borel subsets of Sn−1. For origin-symmetric
convex bodies in Rn and even measures on Sn−1, we have the following
similar lemma.
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Lemma 5.3. Suppose p ∈ R. Let µ be a finite, even, Borel measure
on Sn−1 and K ∈ Kn

e a body satisfying∫
Sn−1

ρ−pK dµ = on.

If K is a solution of the maximization problem

sup{E(Q)/on + log ‖ρQ :µ‖−p : Q ∈ Kn
e },

then

µ = Jp(K, ·).

The proof is the same (mutatis mutandis) as that of Lemma 5.2.

6. Existence of solutions to maximization problems for
entropy

In this section, we shall establish results regarding the existence of
solutions to maximization problems for entropy of convex bodies. These
results will yield existence of solutions to Lp-Aleksandrov problems.

For v0 ∈ Sn−1 and 0 < r < 1, define ωr(v0) and ω′r(v0) by:

ωr(v0) = {u ∈ Sn−1 : u · v0 ≥ r},(6.1)

ω′r(v0) = {u ∈ Sn−1 : |u · v0| ≥ r}.(6.2)

We shall make use of the fact that if µ is a positive (non-zero) Borel
measure on Sn−1 that’s not concentrated on any closed hemisphere of
Sn−1, then for each v0 ∈ Sn−1, we must have µ(ωδ(v0)) > 0, for all
sufficiently small δ. Otherwise, we would have

µ({u ∈ Sn−1 : u · v0 > 0}) = lim
n→∞

µ(ω 1
n

(v0)) = 0,

which would imply that the measure µ is concentrated in the closed
hemisphere {u ∈ Sn−1 : u · v0 ≤ 0}. Observe that

(6.3) ω′r(v0) = ωr(v0) ∪ ωr(−v0).

Lemma 6.1. Suppose 0 < r < 1 and v0 ∈ Sn−1. If Ki is a sequence
of convex bodies in Kn

o , then

lim
i→∞

hKi(v0) = 0 implies ρKi → 0, uniformly on ωr(v0).

Proof. Note that (2.1) tells us that (u · v0)ρKi(u) ≤ hKi(v0), for all
u ∈ Sn−1. But by definition, u ∈ ωr(v0) means that u · v0 ≥ r. Hence,
ρKi(u) ≤ hKi(v0)/r, for all u ∈ ωr(v0), which allows us to conclude the
desired result that limi→∞ hKi(v0) = 0, implies ρKi → 0, uniformly on
ωr(v0). q.e.d.

From (6.3) and Lemma 6.1 we immediately have:
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Lemma 6.2. Suppose 0 < r < 1 and v0 ∈ Sn−1. If Ki is a sequence
of convex bodies in Kn

e , then

lim
i→∞

hKi(v0) = 0, implies ρKi → 0, uniformly on ω′r(v0).

For p ∈ R, define Fp : Kn
o → R, by letting

(6.4) Fp(Q) = E(Q)/on + log ‖ρQ :µ‖−p,
for each Q ∈ Kn

o . Obviously, Fp is homogeneous of degree 0; i.e., for
each Q ∈ Kn

o , we have Fp(λQ) = Fp(Q), for each λ > 0.

Lemma 6.3. Suppose p > 0 and µ is a finite Borel measure that is
not concentrated on any closed hemisphere of Sn−1. Then there exists
a body K0 ∈ Kn

o such that

(6.5) sup{E(Q)/on + log ‖ρQ :µ‖−p : Q ∈ Kn
o} = Fp(K0).

Proof. Let,

(6.6) K = {Q ∈ Kn
o :

∫
Sn−1

hpQ dµ = on}.

Note that each K ∈ Kn
o has a dilate that belongs to K. In particular,

the ball rnpµB of radius rnpµ = (on/|µ|)1/p belongs to K.
Consider the continuous function v 7→

∫
Sn−1(v · u)p+ dµ(u). The func-

tion is strictly positive since µ is not concentrated on a closed hemisphere
of Sn−1. Let vµ ∈ Sn−1 be such that,

(6.7)

∫
Sn−1

(v · u)p+ dµ(u) ≥
∫
Sn−1

(vµ · u)p+ dµ(u) > 0,

for all v ∈ Sn−1.
We show that K is bounded. Suppose Q ∈ K and let

(6.8) max
v∈Sn−1

ρQ(v) = ρQ(vQ),

for some vQ ∈ Sn−1. Since ρQ(vQ)vQ ∈ Q,

ρQ(vQ)(vQ · u)+ ≤ hQ(u), for all u ∈ Sn−1.

Since Q ∈ K, we have

(6.9) ρQ(vQ)p
∫
Sn−1

(vQ · u)p+ dµ(u) ≤
∫
Sn−1

hpQ(u) dµ(u) = on.

Combining (6.8), (6.9) with (6.7) yields

max
v∈Sn−1

ρQ(v) = ρQ(vQ) ≤ o1/p
n

(∫
Sn−1

(vµ · u)p+ dµ(u)
)−1/p

= cnpµ.

This shows that all bodies in K are contained in the ball cnpµB.
From definitions (6.4) and (6.6), by using (2.3), we see that

(6.10) Fp(Q) = E(Q)/on −
1

p
log

on
|µ|
, whenever Q∗ ∈ K.
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Since Fp is homogeneous of degree 0, we may choose a maximizing
sequence Ki for Fp with each Ki having been dilated so that K∗i ∈ K.

Let Li = K∗i . Since rnpµB ∈ K, where rnpµ = (on/|µ|)1/p, it follows
that for all sufficiently large i,

(6.11) Fp(Ki) > Fp(rnpµB) = Fp(B) = 0,

unless a ball is our desired solution.
Since K is bounded and the Li ∈ K, the sequence Li has a convergent

subsequence, denoted again by Li, such that

Li −→ L0,

for some compact convex L0. To see that L0 has non-empty interior,
and that the origin is not a point on its boundary, we shall argue by
contradiction. If the origin o ∈ ∂L0, then L0 is contained in a closed
half-space {x ∈ Rn : x ·u0 ≤ 0}, for some u0 ∈ Sn−1. Then hL0(u0) = 0.
Thus, hLi(u0) → 0. Consider ωδ(u0), defined in (6.1), for some fixed
small δ > 0. It follows from Lemma 6.1, that ρLi → 0 uniformly on
ωδ(u0). Thus, since the K∗i = Li ∈ K, and all bodies in K are contained
in cnpµB, we have from definition (1.5), and (2.3),

E(Ki) = E(L∗i )

=

∫
Sn−1

log ρLi(u) du

≤
∫
ωδ(u0)

log ρLi(u) du +

∫
Sn−1\ωδ(u0)

log cnpµ du

≤
∫
ωδ(u0)

log ρLi(u) du + Hn−1(Sn−1 \ ωδ(u0)) log cnpµ.

Since ρLi → 0, uniformly on ωδ(u0), we conclude that∫
ωδ(u0)

log ρLi du→ −∞,

forcing E(Ki)→ −∞, and, thus, since K∗i ∈ K, from (6.10) we conclude
that Fp(Ki)→ −∞, in contradiction to (6.11), and, thus, L0 must be a
convex body that contains the origin in its interior.

Since L0 contains the origin in its interior, from Li → L0 we conclude
L∗i → L∗0 or equivalently Ki → L∗0 ∈ Kn

o , which shows that L∗0 is the
desired limit of the maximizing sequence for Fp. q.e.d.

Define G : Kn
o → R, by

(6.12) G(Q) = E(Q) +

∫
Sn−1

log ρQ(u) dµ(u),

for Q ∈ Kn
o . Note that G is homogeneous of degree 0 when |µ| = on;

i.e., G(λQ) = G(Q), for each λ > 0.
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Lemma 6.4. Suppose µ is a finite even Borel measure that is not
concentrated on any great sub-sphere of Sn−1 and that has total mass
|µ| = on. Then there exists an L ∈ Kn

e , such that

(6.13) sup{E(Q) +

∫
Sn−1

log ρQ dµ : Q ∈ Kn
e } = G(L).

Proof. Let

K = {Q ∈ Kn
e : E(Q) = 0}.

Since G is homogeneous of degree 0, the maximization problem for G is
equivalent to

sup{
∫
Sn−1

log ρQ dµ : Q ∈ K},

and, thus, in searching for a maximum for G we shall restrict our at-
tention to bodies from K exclusively. We observe that the unit ball B
belongs to K.

For K ∈ Kn
e , let

(6.14) RK = max
u∈Sn−1

ρK(u) = ρK(uK),

where uK is one of the unit vectors at which the maximum occurs.
Then, since K is origin-symmetric and {λuK : −RK ≤ λ ≤ RK} ⊂ K,
we have

RK |uK · v| ≤ hK(v), for all v ∈ Sn−1.

Integrating this (over Sn−1) we see that if K ∈ K, by using definition
(1.5) and the definition of K,
(6.15)

on logRK +

∫
Sn−1

log |uK · v| dv ≤
∫
Sn−1

log hK(v) dv = −E(K) = 0.

Since the integral on the left is independent of uK , (6.15) implies that
RK is bounded and, thus, there exists an m ∈ (0,∞) such that every
set in K is contained in the ball mB.

Let Ki ∈ K be a maximizing sequence for G. Since obviously B ∈ K,
for all sufficiently large i,

(6.16) G(Ki) > G(B) = 0,

unless a ball is our desired solution. Since K is bounded, Ki has a
convergent subsequence, denoted again by Ki, which converges to an
origin-symmetric compact convex set L.

We show that L has non-empty interior arguing by contradiction;
specifically by assuming that L is contained in a co-dimension 1 sub-
space, say v⊥0 . For small δ > 0, let ω′δ(v0) be defined by (6.2). Since
hL(v0) = 0 andKi → L, it follows that limi→∞ hKi(v0) = 0. Lemma 6.2,
now tells us that ρKi → 0, uniformly on ω′δ(v0). Since µ is not concen-
trated on a great sub-sphere of Sn−1, we conclude that µ(ω′r0(v0)) > 0,
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for a sufficiently small r0 > 0. Thus, using the fact that all Ki ⊂ mB∫
Sn−1

log ρKidµ ≤
∫
ω′r0 (v0)

log ρKidµ+

∫
Sn−1\ω′r0 (v0)

logmdµ

≤
∫
ω′r0 (v0)

log ρKidµ+ µ(Sn−1 \ ω′r0(v0)) logm.

(6.17)

Since ρKi → 0, uniformly on ω′r0(v0), we conclude that∫
ω′r0 (v0)

log ρKi dµ→ −∞,

which forces G(Ki) → −∞, producing the desired contradiction with
(6.16). Therefore, L is a solution of the maximization problem (6.13)
in Kn

e . q.e.d.

For negative p, we have:

Lemma 6.5. Suppose p ∈ (−∞, 0). If µ is a finite, non-zero, even
Borel measure on Sn−1 that vanishes on all great sub-spheres of Sn−1,
then there exists an L ∈ Kn

e , such that

(6.18) sup{E(K)/on + log ‖ρK :µ‖−p : K ∈ Kn
e } = Fp(L).

Proof. Let

K = {K ∈ Kn
e : E(K) = 0}.

Using the same argument used in the proof of Lemma 6.4, we conclude
the existence of an m ∈ (0,∞) such that all bodies in K are contained
in the ball mB.

Since Fp is homogeneous of degree 0, we may choose a maximizing
sequence Ki ∈ Kn

e for Fp each Ki having been dilated precisely so that
Ki ∈ K. Thus,

lim
i→∞

Fp(Ki) = sup{log ‖ρQ :µ‖−p : Q ∈ K}.

Since B ∈ K, and Fp(B) = 0, it follows that for all sufficiently large i,

(6.19) Fp(Ki) > Fp(B) = 0,

unless a ball is our desired solution.
Since K is bounded, the maximizing sequence Ki ∈ Kn

e has a conver-
gent subsequence, denoted again by Ki, which converges to an origin
symmetric compact convex set L. We shall show that L has non-empty
interior by contradiction. Assume not; i.e., L is contained in the (n−1)-
dimensional subspace v⊥0 , for some v0 ∈ Sn−1.

Then since hL(v0) = 0, from Ki → L, we have hKi(v0)→ 0. It follows
from Lemma 6.2, that

(6.20) ρKi → 0 uniformly on ω′δ(v0),

whenever 0 < δ < 1.
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Since Ki ⊂ mB, and p < 0, we have

∫
Sn−1

ρ−pKi (u) dµ(u) =

∫
ω′δ(v0)

ρ−pKi (u) dµ(u) +

∫
Sn−1\ω′δ(v0)

ρ−pKi (u) dµ(u)

≤
∫
ω′δ(v0)

ρ−pKi (u) dµ(u) +m−pµ(Sn−1 \ ω′δ(v0)).

(6.21)

Since by hypothesis µ vanishes on all great sub-spheres of Sn−1, we
know that µ(Sn−1 ∩ v⊥0 ) = 0. Choose a sequence 1 > δ1 > δ2 > · · · >
δj → 0. Observe, that

Sn−1 \ ω′δ1(v0) ⊃ Sn−1 \ ω′δ2(v0) ⊃ · · · ,
with

∞⋂
j=1

(Sn−1 \ ω′δj (v0)) = Sn−1 ∩ v⊥0 .

Thus, since µ is a finite measure,

lim
j→∞

µ(Sn−1 \ ω′δj (v0)) = µ(Sn−1 ∩ v⊥0 ) = 0.

For ε > 0, choose j0 so that

(6.22) m−pµ(Sn−1 \ ω′δj0 (v0)) < ε/2.

From (6.20), we know that ρ−pKi → 0 uniformly on ω′δj0
(v0). Therefore,

we can find an i0, so that for all i ≥ i0

(6.23)

∫
ω′δj0

(v0)
ρ−pKi (u) dµ(u) < ε/2.

Combining (6.21) with (6.22) and (6.23) shows that∫
Sn−1

ρ−pKi (u) dµ(u) −→ 0,

as i→∞. We conclude that ‖ρKi :µ‖−p → 0, and, thus,

Fp(Ki) = log ‖ρKi :µ‖−p → −∞,
as i→∞, in contradiction to (6.19). q.e.d.

7. Existence of solutions to the Lp-Aleksandrov problem

The following theorem gives a complete solution to the existence part
of the Lp-Aleksandrov problem for the case where p > 0.

Theorem 7.1. Suppose p ∈ (0,∞). If µ is a finite Borel measure
on Sn−1, then there exists a convex body K ∈ Kn

o such that µ is the
Lp-integral curvature of K if and only if µ is not concentrated in any
closed hemisphere of Sn−1.
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Proof. The necessity is obvious, and the sufficiency follows from com-
bining Lemmas 5.2 and 6.3. q.e.d.

The following theorem gives the complete solution to the existence
part of the classical Aleksandrov problem for even measures. We give a
direct variational proof. Finding a similar proof of the classical Aleksan-
drov problem is an open and interesting problem. Our proof here gives
an answer for the symmetric case. The authors believe that the ideas
developed here might well be helpful for the general case, but technical
obstacles will need to be overcome.

Theorem 7.2. If µ is a finite even Borel measure on Sn−1, then
there exists an origin symmetric convex body K in Rn so that µ is the
integral curvature of K if and only if µ is not concentrated on a great
sub-sphere of Sn−1 and |µ| = on.

Proof. The necessity is obvious, and the sufficiency follows from com-
bining Lemmas 5.3 and 6.4. q.e.d.

Note that the conditions for the existence of a solution to the classical
Aleksandrov problem: µ(Sn−1 \ ω∗) > Hn−1(ω) for each convex set ω
in Sn−1, holds trivially whenever µ is an even measure. Note also that
the necessary and sufficient conditions for the Aleksandrov problem in
the symmetric case are greatly simplified.

The following theorem provides a sufficient condition for the existence
of solutions to the Lp-Aleksandrov problem for the case where p < 0
and where the measure is even.

Theorem 7.3. Suppose p ∈ (−∞, 0). If µ is a finite, even, non-zero
Borel measure that vanishes on great sub-spheres of Sn−1, then there
exists a convex body K in Rn so that µ is the Lp-integral curvature
of K.

Proof. Combine Lemmas 5.3 and 6.5. q.e.d.

Finally, we state implications of our results above for the existence of
strictly positive weak solutions to the PDE (1.2) on Sn−1,

h1−p

(|∇h|2 + h2)n/2
det(∇2h+ Ih) = g,

where p ∈ (−∞,∞) and g : Sn−1 → [0,∞) is integrable.

1) When p > 0, the PDE (1.2) has a strictly positive solution h if
and only if ∫

Θ
g(u) du > 0,

for each hemisphere Θ ⊂ Sn−1.
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2) When p < 0 and g is even, the PDE (1.2) has a strictly positive
even solution h if and only if∫

Sn−1

g(u) du > 0.

3) When p = 0, necessary and sufficient conditions on g for the exis-
tence of solutions to the PDE (1.2) can be derived from Aleksan-
drov’s solution to the Aleksandrov problem.
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[6] K.J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, The Logarithmic Minkowski
Problem, J. Amer. Math. Soc. (JAMS) 26 (2013), 831–852, MR 3037788, Zbl
1272.52012.

[7] L. Caffarelli, Interior W 2,p-estimates for solutions of the Monge–Ampère equa-
tion, Ann. of Math. 131 (1990), 135–150, MR 1038360, Zbl 0704.35044.

[8] W. Chen, Lp Minkowski problem with not necessarily positive data, Adv. Math.
201 (2006), 77–89, MR 2204749, Zbl 1102.34023.

[9] S.-Y. Cheng and S.-T. Yau, On the regularity of the solution of the n-dimensional
Minkowski problem, Comm. Pure Appl. Math. 29 (1976) 495–516, MR 0423267,
Zbl 0363.53030.

[10] K.-S. Chou and X.-J. Wang, The Lp-Minkowski problem and the Minkowski
problem in centroaffine geometry, Adv. Math. 205 (2006), 33–83, MR 2254308,
Zbl 1245.52001.

[11] A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, Affine Moser–Trudinger and
Morrey–Sobolev inequalities, Calc. Var. Partial Differential Equations 36 (2009),
419–436, MR 2551138, Zbl 1202.26029.

[12] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959) 418–491,
MR 0110078, Zbl 0089.38402.

[13] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid.
Selskab. Mat.-fys. Medd. 16 (1938), 1–31, Zbl 0018.42401.

[14] R.J. Gardner, Geometric Tomography, Second edition, Encyclopedia of Mathe-
matics and its Applications, Cambridge University Press, Cambridge, 2006, MR
2251886, Zbl 1102.52002.

[15] P.M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen
Wissenschaften, 336, Springer, Berlin, 2007, MR 2335496, Zbl 1139.52001.



Lp-ALEKSANDROV PROBLEM 27

[16] B. Guan and P. Guan, Convex hypersurfaces of prescribed curvatures, Ann.
Math. 156 (2002), 655–673, MR 1933079, Zbl 1025.53028.

[17] P. Guan and Y. Li, C1,1 estimates for solutions of a problem of Alexandrov,
Comm. Pure and Appl. Math. 50 (1997), 189–811, MR 1454174, Zbl 0879.53047.

[18] P. Guan, C.S. Lin, and X. Ma, The existence of convex body with prescribed
curvature measures, Int. Math. Res. Not. (2009) 1947–1975, MR 2507106, Zbl
1178.53010.

[19] P. Guan, J. Li, and Y.Y. Li Hypersurfaces of prescribed curvature measure, Duke
Math. J. 161 (2012), 1927–1942, MR 2954620, Zbl 1254.53073.

[20] C. Haberl and F. Schuster, General Lp affine isoperimetric inequalities, J. Dif-
ferential Geom. 83 (2009), 1–26, MR 2545028, Zbl 1185.52005.

[21] C. Haberl and F. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct.
Anal. 257 (2009), 641–658, MR 2530600, Zbl 1180.46023.

[22] Y. He, Q.-R. Li, and X.-J. Wang, Multiple solutions of the Lp-Minkowski prob-
lem. Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 117, 13 pp.,
MR 3551297, Zbl 1356.52004.

[23] Y. Huang, J. Liu, and L. Xu, On the uniqueness of Lp-Minkowski problems: the
constant p-curvature case in R3, Adv. Math. 281 (2015), 906–927, MR 3366857,
Zbl 1329.52003.

[24] Y. Huang, E. Lutwak, D. Yang, and G. Zhang, Geometric measures in the dual
Brunn–Minkowski theory and their associated Minkowski problems. Acta Math.
216 (2016), 325–388, MR 3573332, Zbl 06668372.

[25] D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem
for polytopes, Discrete Comput. Geom. 33 (2005), 699–715, MR 2132298, Zbl
1078.52008.

[26] H. Jian, J. Lu, and X.-J. Wang, Nonuniqueness of solutions to the Lp-Minkowski
problem Adv. Math. 281 (2015), 845–856, MR 3366854, Zbl 1326.35009.

[27] H. Jian, J. Lu, and G. Zhu, Mirror symmetric solutions to the centro-affine
Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016), no. 2,
Art. 41, 22 pp., MR 3479715, Zbl 1356.52002.

[28] A. Koldobsky, Fourier Analysis in Convex Geometry, Amer. Math. Soc., (2005),
MR 2132704, Zbl 1082.52002.

[29] Q. Li, W. Sheng, and X.-J. Wang Flow by Gauss curvature to the Aleksandrov
and dual Minkowski problems, J. Eur. Math. Soc. (JEMS), in press.

[30] J. Lu and H. Jian Topological degree method for the rotationally symmetric
Lp-Minkowski problem, Discrete Contin. Dyn. Syst. 36 (2016), 971–980, MR
3392914, Zbl 1326.35169.

[31] J. Lu and X.-J. Wang Rotationally symmetric solutions to the Lp-Minkowski
problem, J. Differential Equations 254 (2013), 983–1005, MR 2997361, Zbl
1273.52006.

[32] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003),
159–188, MR 1991649, Zbl 1033.52012.

[33] M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Ann.
of Math. 172 (2010), 1219–1267, MR 2680490, Zbl 1223.52007.

[34] E. Lutwak, The Brunn–Minkowski–Firey theory. I. Mixed volumes and the
Minkowski problem, J. Differential Geom. 38 (1993), 131–150, MR 1231704, Zbl
0788.52007.



28 Y. HUANG, E. LUTWAK, D. YANG & G. ZHANG

[35] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of
the Minkowski problem, J. Differential Geom. 41 (1995), 227–246, MR 1316557,
Zbl 0867.52003.

[36] E. Lutwak, D. Yang, and G. Zhang, Lp affine isoperimetric inequalities, J. Dif-
ferential Geom. 56 (2000), 111–132, MR 1863023, Zbl 1034.52009.

[37] E. Lutwak, D. Yang, and G. Zhang, Sharp affine Lp Sobolev inequalities, J.
Differential Geom. 62 (2002), 17–38, MR 1987375, Zbl 1073.46027.

[38] E. Lutwak, D. Yang, and G. Zhang, On the Lp-Minkowski problem, Trans. Amer.
Math. Soc. 356 (2004), no. 11, 4359–4370, MR 2067123, Zbl 1069.52010.

[39] E. Lutwak, D. Yang, and G. Zhang, Optimal Sobolev norms and the Lp

Minkowski problem, Int. Math. Res. Not. 2006, Art. ID 62987, 21 pp., MR
2211138, Zbl 1110.46023.

[40] H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges.
Wiss. Göttingen (1897), 198–219.

[41] H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447–495.
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