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MINIMAL SURFACES IN THE ROUND
THREE-SPHERE BY DOUBLING THE EQUATORIAL
TWO-SPHERE, 1

NIKOLAOS KAPOULEAS

Abstract

We construct closed embedded minimal surfaces in the round
three-sphere S3(1), resembling two parallel copies of the equato-
rial two-sphere qu, joined by small catenoidal bridges symmetri-
cally arranged either along two parallel circles of qu, or along the
equatorial circle and the poles. To carry out these constructions
we refine and reorganize the doubling methodology in ways which
we expect to apply also to further constructions. In particular, we
introduce what we call “linearized doubling”, which is an inter-
mediate step where singular solutions to the linearized equation
are constructed subject to appropriate linear and nonlinear con-
ditions. Linearized doubling provides a systematic approach for
dealing with the obstructions involved and also understanding in
detail the regions further away from the catenoidal bridges.

1. Introduction

The general framework. This article is an important step in the au-
thor’s program to develop doubling constructions for minimal surfaces
by singular perturbation methods. It is also the first article in a series
in which we discuss gluing constructions for closed embedded minimal
surfaces in the round three-sphere S?(1) by doubling the equatorial two-
sphere qu. Doublings of the equatorial two-sphere qu are important
because their area is close to 87 (the area of two equatorial two-spheres),
a feature they share with the celebrated surfaces constructed by Law-
son in 1970 [21]. The classification of the low area closed embedded
minimal surfaces in the round three-sphere S3(1), especially of those of
area close to 8w or less, is a natural open question. This is further mo-
tivated by the recent resolutions of the Lawson conjecture by Brendle
[1] and the Willmore conjecture by Marques and Neves [23] where they
also characterize the Clifford torus and the equatorial sphere as the only
examples of area < 272. We refer to [2] for a survey of existence and
uniqueness results for minimal surfaces in the round three-sphere.
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The general idea of doubling constructions by gluing methods was
proposed and discussed in [17, 20, 18]. Gluing methods have been
applied extensively and with great success in Gauge Theories by Don-
aldson, Taubes, and others. The particular kind of gluing methods used
relates most closely to the methods developed in [24] and [10], espe-
cially as they evolved and were systematized in [13, 14, 15]. We refer
to [17] for a general discussion of this gluing methodology and to [18]
for a detailed general discussion of doubling by gluing methods.

Roughly speaking, in such doubling constructions one starts with an
approximately minimal surface consisting of two approximately parallel
copies of a given minimal surface ¥ with a number of discs removed
and replaced by approximately catenoidal bridges. The initial surface is
then perturbed to minimality by Partial Differential Equations methods.
Understanding such constructions in full generality seems beyond the
immediate horizon at the moment. In the first such construction [20],
there is so much symmetry imposed that the position of the catenoidal
bridges is completely fixed and all bridges are identical modulo the sym-
metries. Moreover, the bridges are uniformly distributed, that is when
their number is large enough, there are bridges located inside any pre-
assigned domain of X. Wiygul [26, 25] has extended that construction
to situations where the symmetries do not determine the vertical (that
is perpendicular to X) position of the bridges.

In this article for the first time we deal with situations where the hori-
zontal position of the bridges is not determined by the symmetries, that
is the bridges can slide along X, or there are more than one bridge mod-
ulo the symmetries. Equally importantly the bridges are not uniformly
distributed on X, that is they stay away from certain fixed domains of X
even when the number of the bridges tends to infinity. To realize such
constructions we introduce what we call “linearized doubling”, which
is an intermediate step in the construction, where singular solutions to
the linearized equation are constructed, subject to appropriate linear
and nonlinear conditions. Linearized doubling provides a systematic
approach for dealing with the obstructions involved and also provides a
detailed understanding of the regions further away from the catenoidal
bridges.

We expect that linearized doubling will be indispensable in develop-
ing further constructions except in the (rare) cases of exceptionally high
symmetry. Since there is an abundance of such potential constructions,
linearized doubling will have many further profound applications. Note,
for example, the potential doubling constructions of free boundary min-
imal surfaces, or of self-shrinkers of the mean curvature flow, which we
will discuss elsewhere.
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Unlike the case of desingularization constructions, doubling construc-
tions generalize to higher dimensions: In another article under prepa-
ration [8], we generalize the current results to doubling the equatorial
S"1(1) in the round S™(1) for any n > 3. Although the existence
of infinitely many closed embedded smooth minimal hypersurfaces of
some simple topological types in the round sphere of dimension n > 3
was established by Hsiang [6, 7] and of unknown topological type for
3 < n < 7 by Marques—Neves [22], our construction in [8] provides
for the first time infinitely many topological types of closed embedded
smooth minimal hypersurfaces in the round sphere of any dimension
n > 3. Note that the constructions in [8] like the ones in this arti-
cle are fairly explicit with the volume of the hypersurfaces constructed
uniformly bounded (depending on the dimension).

We return now to the doublings of the equatorial two-sphere qu con-
structed in this article and the rest of the series. All these doublings are
symmetric under a group Gss ,,,- g3 ,, is defined (see 2.14) as the group
of isometries of S3(1) which map L., to itself, where L., (see 2.13)
is the union of My, meridians arranged with maximal symmetry. The
centers of the catenoidal bridges we employ in the construction form a
set L which we call the configuration of the construction. L is invariant
under Sgs ,,, and, therefore, we can write L = Ly,er N Lpgr Where Ly, is
the union of m,,,, parallel circles symmetrically arranged with respect
to the equator. The number of bridges used is, therefore, m,e,mpar, or
when the poles (as degenerate circles) are included, mper (Mpar —2) +2.
The latitude of the circles in Ly, (except for the equator and poles if
included) has to be appropriately chosen for the construction to work.
We call this “horizontal balancing”. As discussed in [18] and later in
6.31 the construction fails when L lies on an equatorial circle. We need,
therefore, mpe, > 3 and mpq, > 2.

The perturbation methods we employ require that the catenoidal
bridges are small so that they do not interact with each other too much.
To ensure this we need the number of catenoidal bridges to be large.
Moreover, our current approach relies on a comparison with and careful
analysis of certain rotationally invariant solutions which are controlled
by ODEs, and this imposes the extra requirement that m,,., is large.
We only present the two simplest possible cases in this article in order
to emphasize the fundamental ideas and minimize technical issues: In
the first case (see theorem 7.1, also announced and discussed in [18])
Mpar = 2 and, therefore, we have two parallel circles and the number
of catenoidal bridges is 2my,,; in the second case (see theorem 7.3)
Mpar = 3 with parallel circles the two poles (which we count as degen-
erate parallel circles) and the equator circle, and, therefore, we have
Myner + 2 bridges.
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The approach here can be extended to apply at least to the case
when My, is large in terms of mp,, [19]. The exact limitations of the
applicability of this approach are currently under investigation although
there certainly exist cases where the ODE model is inadequate, as, for
example, when my,, is large and m,e, small. In such cases further ideas
will be needed to carry out the construction.

Outline of the approach. The constructions in this article and articles
in preparation using the same approach are based on the following two
main ideas: The first idea involves the introduction of an intermediate
step in the construction, as mentioned earlier, where singular solutions
of the linearized equation on the given surface being doubled (the equa-
torial two-sphere in this article) are constructed and analyzed. These
singular solutions have logarithmic singularities at the points where we
plan to place the catenoidal bridges. The initial surfaces are constructed
by gluing the catenoidal bridges to appropriately modified graphs of
these singular solutions with neighborhoods of the singular points ex-
cised.

More precisely the simplest singular solutions of the linearized equa-
tion we consider satisfy the linearized equation away from the singulari-
ties and can be viewed also as multi-Green’s functions for the linearized
equation. We call them linearized doubling (LD) solutions (see 3.1).
If we use an LD solution to construct an initial surface as described
above, to ensure that the error introduced by the gluing is small, the
LD solution has to satisfy certain matching conditions. Unfortunately
the supply of LD solutions which satisfy these matching conditions is
inadequate for our purposes. This can be remedied, however, by ex-
panding the class of LD solutions under consideration to a larger class
of solutions which satisfy the linearized equation only modulo a cer-
tain space which we call K[L] (see 3.2) which plays also the role of the
(extended) substitute kernel used in the linear theory in various earlier
constructions [18, 17, 20, 5, 4, 16, 15, 14, 13, 11, 12, 10, 9]. We
call those of the solutions in the expanded class that satisfy the desired
matching conditions matched linearized doubling (MLD) solutions (see
3.4). MLD solutions are in sufficient supply because by an easy tech-
nical step it is possible to convert any LD solution (even if it does not
satisfy the matching conditions) to a corresponding MLD solution. In
doing so we trade the failure to satisfy the matching conditions for the
failure to satisfy the precise linearized equation.

It is rather difficult to estimate the LD and MLD solutions carefully
so that we have satisfactory control of the construction. In particular,
we need to construct families of MLD solutions which satisfy the bal-
ancing and unbalancing conditions as required by the general approach
(see [17, 18] for a discussion of the general approach). The second main
idea of this article allows us in certain cases to achieve the required con-
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trol by comparing the LD and MLD solutions to certain ODE solutions
which can be well understood. In particular, the study of balancing and
unbalancing questions is reduced to the ODE framework. The imple-
mentation of this idea relies on the rotational invariance of the original
surface (the equatorial two-sphere in this article) and the largeness of
Mmer. If these conditions are not satisfied the questions involving the
LD and MLD solutions (and the corresponding doubling constructions)
are still open.

At a more technical level we remark that in this article we exper-
imented with constructing the initial surfaces carefully so that they
are exactly minimal away from the gluing regions and the support of
the functions in K[L]. This reduces the error terms we have to deal
with later, at the expense of complicating the construction of the initial
surfaces. We also note that we organized the presentation so that the
results using standard or earlier methodology (sections 2, 3, 4 and 7) are
separated from the more innovative steps of constructing and analyzing
the LD and MLD solutions (sections 5 and 6).

Organization of the presentation. The main body of this article
consists of three parts. The first part consists of sections 2, 3, and 4,
where we present a general construction of initial approximate minimal
surfaces based on LD solutions and MLD solutions. The second part of
the paper consists of sections 5 and 6 where we construct and study in
detail the LD and MLD solutions needed for the constructions carried
out in this paper. Finally, in the last part which consists of section 7
only we combine the earlier results to prove the main results of this
paper.

In more detail now, in section 2, we review the elementary geometry
of the geometric objects we are interested in, and we establish the cor-
responding notation. In particular, we study aspects of the geometry
of the round three-sphere and its equator, the symmetries we impose,
and the catenoidal bridges we will be using later. In section 3, we dis-
cuss in detail linearized doubling, the LD and MLD solutions, and we
construct the initial surfaces by gluing MLD solutions and catenoidal
bridges. We also discuss geometric aspects of the initial surfaces needed
later in understanding their perturbations. In section 4, we develop the
perturbation theory on the initial surfaces constructed in section 3: We
solve the linearized equation on the initial surfaces and we also estimate
the solutions and the corresponding nonlinear terms. Note that the the-
ory in sections 3 and 4 is developed with a general setting in mind (see
also 3.21) and is not restricted to the cases we actually pursue in this
article.

In section 5, we carefully study and estimate the LD and MLD so-
lutions needed for the construction of doublings where the catenoidal
bridges are distributed on two parallel circles. In section 6, we do the



398 N. KAPOULEAS

same in the case where the catenoidal bridges are distributed on the
equatorial circle with two more bridges, one at each pole. Finally, in
section 7, we use the MLD solutions constructed in sections 5 and 6 to
construct our minimal surfaces by using the results of sections 3 and 4.

General notation and conventions. In comparing equivalent norms
we will find the following notation useful.

Definition 1.1. If a,b > 0 and ¢ > 1 we write a ~. b to mean that
the inequalities a < ¢b and b < ca hold.

We discuss now the Holder norms we use. We use the standard no-
tation ||u : C*#(Q,g) | to denote the standard C*”-norm of a function
or more generally tensor field v on a domain 2 equipped with a Rie-
mannian metric g. Actually the definition is completely standard only
when 8 = 0 because then we just use the covariant derivatives and take
a supremum norm when they are measured by g. When § # 0 we have
to use parallel transport along geodesic segments connecting any two
points of small enough distance in order to define the Holder seminorms
and this could lead to complications in some cases. In this paper we
take care to avoid situations where such complications may arise and so
we will not discuss this issue further.

In this paper we use also weighted Holder norms. The definition we
use is somewhat more flexible than the one used in some earlier work
(for example, in [16, 10, 14, 20, 4]):

Definition 1.2. Assuming that 2 is a domain inside a manifold, ¢
is a Riemannian metric on the manifold, p, f : Q@ — (0,00) are given
functions, k € Ny, 5 € [0,1), u € C{ZCB(Q) or more generally u is a Clkof
tensor field (section of a vector bundle) on 2, and that the injectivity
radius in the manifold around each point x in the metric p=2(z) g is at
least 1/10, we define

el NG —2
s CR5(, p, g, ) o= sup L2 QO Ber (@ )
e f(l')

where B, is a geodesic ball centered at z and of radius 1/100 in the
metric p~2(x) g. For simplicity we may omit any of 3, p, or f, when
8=0,p=1,or f =1, respectively.

f can be thought of as a “weight” function because f(x) controls the
size of u in the vicinity of the point x. p can be thought of as a function
which determines the “natural scale” p(x) at the vicinity of each point
x. Note that if u scales nontrivially we can modify appropriately f by
multiplying by the appropriate power of p. Note that from the definition
follows that we always have

(13) [ Vu:C*Y(Q, 0,9, 07 I < [lu: OB, 0,9, 1),
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and the multiplicative property

(14) Jwus : C*P(Q,p,9, fif2)] <
Ck) |ur : C*P(Q, p,g, f1)l [|uz : C*F(Q,p,9, f2)]-

We will be using extensively cut-off functions, and for this reason we
adopt the following.

Definition 1.5. We fix a smooth function ¥ : R — [0, 1] with the
following properties:

(i). W is nondecreasing.
(ii). ¥ =1on [1,00] and ¥ =0 on (—oo, —1].
(iii). ¥ — 3 is an odd function.

Given now a,b € R with a # b, we define smooth functions 1.[a, ] :
R — [0,1] by

(1.6) Yeut[a,b] == W o Ly,

where L,p : R — R is the linear function defined by the requirements
L(a) = —3 and L(b) = 3.
Clearly then t.y]a, b] has the following properties:

(1). eut[a, b] is weakly monotone.
(ii). Yeutla,b] = 1 on a neighborhood of b and tcufa,b] = 0 on a
neighborhood of a.
(iii). Yeut]a, b] + ew[b,a] =1 on R.

Suppose now we have two sections fy, f1 of some vector bundle over
some domain 2. (A special case is when the vector bundle is trivial and
fo, f1 real-valued functions). Suppose we also have some real-valued
function d defined on 2. We define a new section

(1.7) Wla,b; d)(fo, f1) = Yeut|a, b] o d f1 + Yeu|b, a] o d fo.

Note that W[a,b;d](fo, f1) is then a section which depends linearly on
the pair (fo, f1) and transits from fy on €2, to f; on €, where Q, and
), are subsets of Q which contain d~!(a) and d~*(b) respectively, and
are defined by

1

o (b—a),0)),

Q= d((—ooat Sb—a))), @ =d (b :

3
when a < b, and
1 1
Qtl = d_l((a - g(a - b)7 OO)), Qb = d_l((—OO, b + g(a - b)))7

when b < a. Clearly if fy, f1,d are smooth then Wla, b; d|(fo, f1) is also
smooth.
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2. Elementary geometry and notation

The parametrization © and the coordinates xyz. We consider now
the unit three-sphere S*(1) ¢ R%* We denote by (x1,2,23,74) the
standard coordinates of R* and we define by

(2.1) qu = S*(1) N {zy =0},

an equatorial two-sphere in S3(1). To facilitate the discussion we fix
spherical coordinates (x,y,z) on S3(1) (see 2.12) by defining a map
0 :R3 — S3(1) by

(2.2)  ©O(x,y,z) = (cosx cosy cos z, cos X si y COS z, sin X cos z, sin z).
Note that in the above notation we can think of x as the geographic

latitude on qu and of y as the geographic longitude. We will also refer
to

Py := qu N{zxs =0} =0({x=2z=0}),
(2.3) pn :=(0,0,1,0) = ©(7/2,y,0),
bs = (07 0, -1, 0) = @(—7/27 Y 0)7
as the equator circle, the North pole, and the South pole of qu respec-
tively. More generally to facilitate reference to circles of latitude we
introduce the notation for z € [—1, 1]
(2.4) P, = qu N{zs = z}.

We have then that Py, is the circle (or pole) of latitude x (which is
consistent with the definition of the equator circle Py above), P_; =

{ps}, and Py = {pn}.
Clearly the standard metric of S3(1) is given in the coordinates of 2.2

by

(2.5) O*g = cos?z (dx? + cos® x dy? ) + dz.

Finally, we define a nearest-point projection by
Mg :S*(1)\ {(0,0,0,£1)} — S?

eq’
(2.6) 1

HSEQ($17$27$37$4) = ‘(171,172,133,0).

(%1, 22, 73,0)
Clearly we have

(2.7) g2 ©O(x,y,z) = O(x,y,0).
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We introduce now some convenient notation.

NoTATION 2.8. For X a subset of qu we will write dx for the distance
function from X, that is dx(p) denotes the distance in S2, of some

p € qu from X with respect to the standard metric. Moreover, for
0 > 0 we define a tubular neighborhood of X by

Dx(6):={pe€ qu cdx(p) <6}
If X is finite we just enumerate its points in both cases, for example,

d,(p) is the geodesic distance between p and ¢ and Dy(6) is the geodesic
disc in qu of center ¢ and radius 9. 0

Symmetries of (9 and symmetries of the construction. We | first
define reflections X Y X = YO, and Z in R3, and translations YC in
R3, where ¢ € R, by

(2.9) X(x,y,z) = (—x,y,2), zc(x,y,z) = (x,2c —y,2),
‘ Z(x,y,z) = (x,y,—2), Vc(x,y,z) = (x,y+¢,2).
All these clearly preserve

Tom T
(210) Dom@ = <—§, 5) x R x <—§, 5) .

We also define corresponding reflections X, Y., Y := Y,, and Z in R*,

and rotations Y. in R, all of which preserve S3(1) C R%, by

(2.11)
X($1,l‘2,l‘3,l‘4 T1,T2, :E3,2E4),

X €X1,22,T3,T4 $17_$27$37$4)7
z T1, T2, T3, —T4),

Y

Y ($1,$2,$3,$4

o~ o~ o~ o~

T1,T9, T3, T4 21 €os 2¢ + wo sin 2¢, xq sin 2¢ — x9 cos 2¢, w3, x4),

) =
( T4) ==
(r1,29,x3,24) :=
o T4) =
) := (x1cosc— xgsinc, xysinc+ xycosc, T3, T4).

Note that X, Y, Z, and Y, are reflections with respect to the 3-planes
{x3 = 0}, {xo = 0}, {z4 = 0}, and Y.({x2 = 0}), respectively. Z fixes
qu pointwise and exchanges its two sides in S?(1). Clearly Yo, is the
identity map. We record the symmetries of © in the following lemma:

Lemma 2.12. O restricted to Domeg is a covering map onto S3(1)\
{x1 = x9 = 0}. Moreover, the following hold:

(i). The group of covering tmnsformatwns i genemted by Y27r
(ii). Xo©O = OoX, Y. 00 = GOY ,Z0©® =00Z, and Y00 =0OoY.,.

The symmetry group of our constructions depends on a large number
m € N which we assume now fixed. We define L,er = Lpper[m] C qu
to be the union of m meridians symmetrically arranged:

(2.13)
Lyer = Liperm] == O({(x,y,0) : x € [-7/2,7/2],y = 2mi/m,i € Z}).
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Definition 2.14. We denote by Ggs ,,, and Sggq,m the groups of isome-
tries of S3(1) and S, respectively which fix Lye,[m] as a set.

Clearly Ggs ., is a finite group and is generated by the reflections X,
Y, Zand Y, /.. 9qu,m can be identified with the subgroup of Ggs ,,
which is generated by X, Y, and Y Jm-

The linearized equation and rotationally invariant solutions.
It will be easier later to state some of our estimates if we use a scaled
metric on S2, and scaled coordinates (X,y) defined by

(2.15) g:= mZQqu, X = mx, v =my.

To simplify the notation we also define linear operators acting on twice
differentiable functions on domains of qu by

(2.16) L£=A+2, L5 = Ag+2m~> =m~L'.

L' is of course the linearized operator for the mean curvature on qu.

By a rotationally invariant function we mean a function on a domain
of qu which depends only on the latitude x. The linearized equation
L'¢p = 0 amounts to an ODE when the solution ¢ is rotationally in-
variant. Motivated by this we introduce some notation to simplify the
presentation.

NOTATION 2.17. Consider a function space X consisting of functions
defined on a domain €2 C qu. If Q is invariant under the action of 9S§qvm
we use a subscript “sym” to denote the subspace Xy, C X consisting
of those functions in X which are invariant under the action of 9S£q7m.
If Q is a union of parallel circles we use a subscript “x” to denote the
subspace of functions Xy consisting of rotationally invariant functions
which, therefore, depend only on x. If, moreover, () is invariant under
reflection with respect to the equator of qu we use a subscript “|x|” to
denote the subspace of functions X x| = Xy N Xy consisting of those

functions which depend only on |x|. O
For example, we have C&‘ (S2,) € CY,n(S2,) CCO(SE,) and C&‘(qu) C
CY(SZ,), but C2(SZ,) is not a subset of CF,,,(SZ,).

Definition 2.18. We define rotationally invariant functions ¢,qq €
C)?O(qu) and Qeyen € Cﬁj(ggq \ {pN,pS}) by

. . 1 +sin . 1 —sin
Godd = SINX, Pepen = 1 — sinx log S TEnx 1+ sinx log 7}(.
COS X Cos X
Lemma 2.19. ¢epen, and ¢oqq are even and odd in x respectively.
They satisfy L ¢even = 0 and L'¢oqq = 0. Moreover, ¢epen is strictly

decreasing on [0,7/2) where it has a unique root we will denote by X,oot -
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Proof. ¢eyen corresponds to a translation and is a first harmonic of the
Laplacian on qu. Dodd is the pushforward of the scaling of the catenoid
by the Gauss map and we can finish the proof using this. Alternatively
it is straightforward to check by direct calculation. q.e.d.

We discuss now the Green’s function for £’ on qu:

Lemma 2.20. There is a function G € C*((0,7)) uniquely char-
acterized by (i) and (ii) and, moreover, satisfying (iti—vii) below. We
denote by r the standard coordinate of R™:

(i). For small v we have G(r) = (1 + O(r?)) logr.

(ii). For eachp € SZ, we have L'Gy = 0 where G, := God, € C*(SZ,\
{p,—p}) (recall 2.8).

(ili). Gpy = (l0g2 — 1) dodd + Geven .(recall 2.3).
(iv). G(r) = 14 cosr(—1 + log ffégs’"r ). .
(V). G(r) = —sinr log Z0L 4 o+ Sprooer,
(vi). |G — cosr logr : Ck( (0,1), r,dr2,r?) || < C(k).
(vii). |G : Ck((O, 1), r,dr?, [logr|) || < C(k).

Proof. Since dj,,, = § — x we have by direct calculation using 2.18
that

2sinod,, B
1+ cosod,, -

— (1+0(d2,)) logod,.

(108 2 — 1)@odd + Peven = 1 — cosody, + cosod,, log

This clearly implies (i-iv). (v) follows from (iv) by direct calculation.
(vi) follows from (iv) and (v). (vii) follows from (vi). q.e.d.

For future reference we define a decomposition of functions on do-
mains of qu as follows.

Definition 2.21. Given a function ¢ on some domain 2 C qu we
define a rotationally invariant function ¢g,, on the union €’ of the
parallel circles on which ¢ is integrable (whether contained in € or
not), by requesting that on each such circle C'

© = avg .
avglc v
We also define @5 on QN Q' by Yose = ¢ — @aug-

Catenoidal bridges. Recall now that a catenoid of size 7 in Euclidean

three-space can be parametrized conformally on a cylinder R x S'(1) by

(2.22)

Xeat(t,0) := (7 coshtcosf, 7 coshtsinf, 7t)=(r(t)cos,r(t)sinb,z(t)),
where  r(t) :=71cosht, z(t):=r7t.
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Alternatively the part above the waist can be given as a radial graph of
a function @eq @ [T,00) — R defined by

(2.23)

©eat (1) := T arccosh LI (logr —log 7 + log (1 +V1— 722 >> =
T

(102 e (L LT
ST\ T8 T 2 )

where we denote by (z!,72,2?%) the standard Cartesian coordinates of
R3 and r is the polar coordinate on the z'z2-plane defined by r :=

V(z1)? + (22)2. By direct calculation or balancing considerations we
have for future reference that

8900at T
2.24 = .
Lemma 2.25. || ¢ (r) — Tlog 2 : CH((97,00), rydr?,r=2) || <
C(k)73.
Proof. This follows easily from 2.23 and 2.24. q.e.d.

Because of the rotational invariance it simplifies the presentation to
use exactly minimal catenoidal bridges in the construction of the min-
imal surfaces, unlike in [20, 26, 25] where the catenoidal bridges used
are only approximately minimal:

Lemma 2.26 (G, and G, ;). For 7 > 0 small enough there is a
function G € CO([r,972)) N C®((1,972)) uniquely characterized by
(i) and (ii) and, moreover, satisfying (iii):

(). The initial conditions G (1) = 0 and adGT (r) = o0 asr — 7+
r
hold.
(ii). For each p € S2, the graph of G, , := G, od, is minimal in S*(1)
(recall 2.8).
(iii). If 7 is small enough in terms of given k € N and a € (0,1/2),
then there is a constant beq; such that

|G, — @ear — bear : C¥((97,97%), r,dr?, 72 ) || < C(k,a) T |logT],
where beq; depends only on T and satisfies |beat| < CT2.

Proof. We can assume without loss of generality that p = py. The
graph of G, . can be parametrized on the portion of a cylinder by

Y (r,6) = (sinrcosfcos G, (r), sinrsinfcos G (1),
cosrcos G (r), sinG_(r)) € S3(1) c RY,
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where clearly Ilgz o Y (r,0) = (sinrcosf,sinrsind, cosr) € S, (recall
2.6). Straightforward calculation implies then that

%};(7‘, 0) = (cosrcos G.(r) — a(%f (r)sinrsin G, (r))(cos 0,siné,0,0)
+(0,0, —sinr cos G.(r) — 88%7 (r)cosrsinG,(r), 88%7 (r)cos G.(r)),

which implies further that
2 2
oy = cos’ G(r) + <a§f (7‘)) .

—(r,0
)
We will apply the standard balancing formula (see, for example, [17,
18]) with Killing field K given by

—

K

= (O, 0, —XT4, xg).

(z1,22,23,24)

Using 2.5 we calculate that the length of the circle Y ({r} x S!) is
2w sinr cos G, (r) and then we have

00 o\ —1/2
/ 7-K = 27 sinr cos G, (r) <C082 G.(r)+ ( — (r)) > :
Y ({r}xsh) or

. (sinrsinQT(r) cos G, (r) + G, (r) cos r> .

or

By the balancing formula this is independent of r and so equals the
value at r = 7. We conclude then

sinr cos G(r) (Sin rsinG_(r)cos G.(r) + %(7‘) Cos 7‘) =
1/2

_ <0052 G.(r) + <88Q7j (r)>2) Sin T cos 7.

By squaring both sides, calculating, and solving for g G_(r), we obtain
(2.27)

2
A (7o) + 2800 %70 = o),

aQT—_E_|_ 9+B_2 h
or A Va'a where

A(r) == sin® r cos?r cos’ G (r) — sin® 7 cos® 7,

B(r) := sin®r cos7 sin G, (r) cos® G (),
C(r) == sin® 7 cos? 1 cos® G, (r) — sin'r sin? G_(r) cos* G (7).

Let beat = G(97) — @eat(97). Using the smooth dependence of ODE
solutions on the coefficients it is easy to confirm that |b..:| < C72.
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Using also 2.23 we conclude (97,107) C S, where S” := {r € (97,97%) :
G, <107logZ}. Let S be the connected component of S’ containing
(97,107). We have then on S that G < Ct|log 7|, and, therefore,

APy = =) 1+ 00 +1210g’ 7)),
B(r) =0(r*r|log 7)),
Cr)y=7>(1+00?+7121log?7)).

Using 2.27 and 2.24 we obtain that on S

oG, OPcat

or (r) = or

By integrating we conclude that on .S
G (1) = Peat(r) + bear + O(T 72| log 7| ).

We conclude then that on S we have G < 87'10g£ and hence S =
(97,97%). Finally, using 2.27 we can estimate the higher order deriva-
tives and conclude (iii). q.e.d.

(2.28)

(r)+ O(rr|logT|).

Corollary 2.29. For 7 small enough in terms of given k € N and
a € (0,1/2) the following holds.
|G, — 7log(2r/7) : C*((97,97%), r,dr?, 2% |log 7| + % 72) ||
< Clk,a)T.

Proof. This follows by combining 2.25 and 2.26.iii and using that
7+ 1% log 7| < 27%*|log 7| on the interval under consideration. q.e.d.

Corollary 2.30. For 7 small enough in terms of given k € N and
a € (0,1/2) the following holds.

|G, — 7G + 7log(1/2) cosr : Ck( (7%,979), 72 qp? )
< C(k, ) 712 | log 7|.
Proof. We have G — cosr log § — log2{ = (I —cosr) (1l +1logg —

log )+ cosr log T(ffcr(l)g o) by an easy calculation based on 2.20.iv. This

implies that
| G — cosr log(t/2) —log(2r/T) : C*((97,97%), r,dr?, r?)|
< C(k,a)|logT]|.
Combining this with 2.29 we conclude the proof. q.e.d.

CONVENTION 2.31. We fix now some small o« > 0 which we will
assume as small in absolute terms as needed. O

Definition 2.32. For 7 € (0,1) and p € S*(1) we define Exp,, , :=
Rp.r o exp,, where R, - : T,S%(1) — T,S%(1) is defined by R, -(v) =
7v and exp,, denotes the exponential map of (S3(1),9) at p. Let
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Byr C T,S%(1) be the ball such that the restriction of Exp, , to By,
is a diffeomorphism onto S?(1) \ {—p}. We define a metric on B, ; by
Ipr = Expy . (1729).

Lemma 2.33. The estimate
1 Gpr — hp = C¥(Bo(9* 7"\ {0}, R, hy, R*) || < C(k)7*

holds, where Bo(927%71) C T,S3(1) is the ball centered at the origin
and of radius 9>~ with respect to Iy, R denotes the distance from
the origin in the h, metric, and h, is the Euclidean metric on T,S?(1)
defined by hy := g|p = 5p,7|p'

Proof. Clearly h, = dR? + ]5;2982(1) and gp, = dR? +

772 sin? (Té) gs2(1)- By calculating and using the definitions we obtain

H§2 gs2(1) - Ok(Bp,T\{0}7 E) hpv §2)H < O(k)7

and

| 772 R™2 sin?(TR) — 1 : C*(By(9*r*"1)\ {0}, R, h,, R?) |
< C(k) T2
Using 1.4 we complete the proof. q.e.d.

Definition 2.34. We define the catenoidal bridge K, ; centered at
p € qu and of waist size 7 to be the union of the graphs of +G,, . re-
stricted to Dp(97%)\ Dp(7) where « is as in 2.31. For 7 > 0 small enough

we define (recall 2.32) K, - :=K, _, := Exp;l(KpJ). Finally, we define
K, to be the standard catenoid in the Euclidean space (T,S3(1), hy),

appropriately placed so that ]Kp; depends smoothly on 7 for |7| small
enough.

Note that the last statement above applies since ]Kp; is controlled
by an ODE with initial conditions at the waist independent of 7 and
coefficients smoothly depending on 7.

Definition 2.35. For p € S? we define ﬁKm to be the nearest point
projection from an appropriate neighborhood of ]Kp,o in (T,S3(1), hy)
to K,,0. We also define 7 : T,S?(1) — R to be the distance from the axis
of ]Kp,o in 7,S3(1) with respect to h,,.

Lemma 2.36. For 7 small enough the restriction of ﬁK,p to Kpj
is well defined and is, moreover, a smooth diffeomorphism onto a do-
main Q, C Kpp. Moreover, ]Kp; is the graph in the FEuclidean space
(T,S*(1), hy) over Q, C Ky of a function @, which satisfies

13- : C*(Q, 7, G0, T4 7272 |log7|) || < Clk,a),
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where go is the metric on ]Kp,o induced by the Euclidean metric h, on
T,S%(1) and 7 is as in 2.35.
Proof. We assume without loss of generality that p = py. We identify
then 7,,S3(1) with R3 so that for @ = (u1,u2,u3) € R? we have
sin 7|
]
where || = (u3-+u3+u3)/2. The upper half of K, , can be parametrized
by Xpr 0 [1,97%) x St — S3(1) defined by (recall 2.2)

Exp,, ,(u1,ug,u3) = cos7|d| (0,0,1,0) + (u1,u2,0,us).

Xp7(r,0) =cosG, (r) (sinrcosf,sinrsiné, cosr,0) +
+sinG.(r) (0,0,0,1).

The upper half of Kpp can be parametrized by )N(p,o : [r,00) x ST —
T,S3(1) defined by (recall 2.23)

)Z'p,o(r,ﬂ) =71 (rcos@, rsind, peq(r)),

and, therefore,

(2.37) Exp,, 0)2';,,70(7‘,9) = cos /12 + 92, (r) (0,0,1,0) +

sin /72 + @2, (r) (
T2 + 903@ (7")
Using 2.26.iii and 2.25 we conclude

rcosf, rsin€, 0, @ea(r)).

H Xpr— Exp, o)pr . Ck ((97’,97'0‘) x S, r
(Exp,,. o)N(p,o)*g, T +7‘2|log7'|) H < Clk,a)T

This implies that the points of ]Kp; = Bxp, ;(K,,;) are within distance
C 72| log 7| from KK, o, where for the region {7 < 10} we use the smooth

dependence on 7. The restriction hence of ﬁK,p to }Kpﬁ is well defined.
Magnifying and using the implicit function theorem we conclude the
proof. q.e.d.

Since by 2.36 }Kpﬁ is a small perturbation of a domain Q, C H~§p,0, its
first and second fundamental forms induced by h, are a small pertur-
bation of those of ;. However, we are really interested in the first and
second fundamental forms g and A of K -+ induced by g, » (defined in
2.32), or equivalently

(2.38) g=r1"2Exp}. g A=7"1Exp} A,

where g and A denote the first and second fundamental forms of K, » C
S*(1) induced by the standard metric of S*(1) and Exp} , denotes pull-
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back by the restriction of Exp, ; to K, . The next corollary provides
the estimates we will need.

Corollary 2.39. For SNIT, Jgo, and 7 as in 2.36 we have that
| (T p)<g — Go : CH(2r, 7, G, 77+ 727 | < Clk, ),
| (g p)eA — Ag : C*(Q,, 7, G0, 74 727 || < Ck,0),

where (ﬁK,p)* denotes the pushforward by ﬁKm restricted to Kpm that
is the pullback by its inverse, and g and A are as above.

Proof. Let ¢ € Q, C ]Kp,o C T,5%(1) and consider the Euclidean
metric Eq := 7 2(q) hy on T,S3(1). Consider Cartesian orthonormal
coordinates on (TpS3(1),Eq) so that Xe defined as in 2.22 with 7 = 1
provides a conformal parametrization of H~§p,0. We consider the geodesic
disc B(’l C KJILO with center ¢, radius 1/10, and defined with respect to
the metric induced lAzq. It is then easy to check that there is a constant
C(k) which depends only on k such that on X _I(Bf]) we have that

cat

the C* norms of the coordinates of )A(cat are bounded by C(k) and also
Geyt < C(k) )A(:atﬁq, where g, is the standard metric on the cylinder
RxS(1) and X ;‘atlAzq is the pullback by X of the metric induced by ﬁq.

Note that by 2.36 Kpﬁ is the graph in the Euclidean space (7,S*(1),

lAzq) over QT of the function % ©r. Since we have uniform bounds for

the coordinate functions of X, we can combine the estimates in 2.33
and 2.36 to conclude that on B(’l the norms of the differences of the
fundamental forms induced by 7~2(q) gp.~ on the graph versus the ones
induced by lAzq on H~§p,0, are bounded by a constant depending only on k

and o times
(2.40)

T+ 127 (q) |log 7| 2 732 T 22 2
— + 77 R(q) < C(== +77(q)) < C1°%,
wa) W=y )
where for the last inequality we used that 7 < 97%~! by definition, and
we also used that linear terms dominate because of the smallness of the
last term in 2.40. By scaling and applying 1.2 we conclude the proof.
q.e.d.

3. Linearized doubling and initial surfaces

We expect that the approach developed in this paper, which consists
of finding appropriate linearized doubling (LD) solutions first, and using
them to “build” the desired minimal surfaces afterward, can be modified
to apply to general situations with little or no symmetry (see 3.21). Un-
der this approach the difficulty is shifted to finding and understanding
the appropriate LD solutions.
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LD and MLD solutions. We proceed now to describe the LD solu-
tions for doubling constructions of qu. Note that our definitions al-
though stated for qu can easily be modified to apply to any minimal
surface. Note also that we can think of an LD solution ¢ as a multi-
Green’s function, since clearly in the distributional sense £’ is a linear
combination of delta functions:

Definition 3.1 (LD solutions). Given a finite set L C qu and a
function 7 : L — R, we define a linearized doubling (LD) solution of
configuration (L, T) to be a function ¢ € C"X’(qu\L) which satisfies the
following conditions where 7, denotes the value of 7 at p:

(i). L'o=00nSZ\ L.
(ii). Vp € L there is ¢, € C>°({p} U (SZ, \ (L U{—p}))), a smooth
extension across p, such that @, = ¢ — 7,G, on S2,\ (LU {—p}).

The main idea of our current approach is to construct initial surfaces
by gluing catenoidal bridges centered at the points of L to (appropriately
modified) graphs of the LD solutions. This step requires a satisfactory
matching of each LD solution to the catenoidal bridge at the annulus
where the gluing occurs. The matching can be controlled by the first
terms of the Taylor expansion of each @, at p. It turns out, however, that
well matched LD solutions are not in sufficient supply for our purposes.
For this reason we have to employ also LD solutions which are not well
matched. Such solutions need to be modified so that they satisfy the
matching conditions at the expense of not satisfying the exact linearized
equation anymore. The solutions in this new class will only satisfy the
linearized equation modulo a space X[L] which will be defined later
in 3.7. K[L] depends smoothly on L and plays also the role of the
(extended) substitute kernel in the linear theory (see 4.17).

Definition 3.2 (LD solutions modulo K[L]). Given L and 7 as in
3.1, and also a finite dimensional space K[L] C C*(SZ,), we define a
linearized doubling (LD) solution modulo X[L] of configuration (L, T, w)
to be a function ¢ € C“(qu \ L) which satisfies the same conditions as
in 3.1, except that condition (i) is replaced by the following:

({i"). L'y =weX[L] C C‘X’(qu) on qu \ L.

Note that LD solutions in the sense of 3.1 are LD solutions in the
sense of 3.2 with w = 0. We describe now the matching conditions.

Definition 3.3 (Mismatch of LD solutions). Given ¢ as in 3.1 or
3.2 we define V[L] := @, V[p], where V[p] := R & TyS?2,, and the
mismatch of ¢ by

BLy = ®per (&p(p) + 1plog(7p/2) , dp@p ) € VI[L].

Among all the LD solutions modulo X[L] we will be mainly interested

in the ones which are well matched:
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Definition 3.4 (MLD solutions). We define a matched linearized
doubling (MLD) solution modulo X[L] of configuration (L, T,w) to be
some ¢ as in 3.2 which, moreover, satisfies the conditions Bry = 0 and
T, >0Vpe L.

REMARK 3.5. Note that given ¢ and L as in 3.2, 7, w, each @,, and
the second components of Bry, are uniquely determined and depend
linearly on . The first components of By, are not linear in ¢, however,
and this makes the construction harder. O

The definition of X[L]. In order to describe the support of the func-
tions in K[L] we have first the following.

CONVENTION 3.6 (The constants d,). Given L as in 3.1 we assume
that for each p € L we have chosen a constant J, > 0, where each §,
is small enough so that any two D,(99,)’s are disjoint for two different
points p € L. ([l

Definition 3.7 (The obstruction space X[L]). Given L and §,’s as
in 3.6 we define X[L] C C’OO(qu) by KI[L] := @, K[p], where Kp] is
spanned by the following.

(i). L' [25,,0,;d,] (Gp,logd,cosod, ) =
= —L'W (26, 6p;dp] (log d, cosod, ,G)).
(ii). L£'®[26,,6,;dp] (0,up), where u, is any first harmonic of SZ, van-
ishing at p.

Note that the functions in K[L] are supported on | |, (Dp(26p) \
D,(6p)). Clearly Vp € L we have dimX[p] = 3 and hence dimK[L] =
3|L| where |L| is the number of points in L.

Symmetric LD solutions. Because of the symmetries imposed on our
constructions we concentrate now on LD solutions which are invariant
under the action of Sggwm (recall 2.14). In such a case we can write

(3.8) L = Lyer N Lpgy,

where L, is the union of a finite number of parallel circles and perhaps
{pn,ps}, symmetrically arranged around the equator so that
9qu7mLmr = Lpqr. We assume that 6,’s have been chosen as in 3.6

and so that they are Sggwm-invariant. We also define (recall 3.2 and
2.17)

:Ksym[L] =XI[L] N C:;m(qu)7
Koym[L] :={v € C2,,(S2) : L'v € Kyym[L]}.

Note that because of the symmetries £ has no kernel and, therefore,
L restricted to Kgym[L] provides an isomorphism onto Kym[L]. The

(3.9)

dimension of Ky, [L] and Ky [L] is clearly keg + kpoles + 2Kk other Where
keq = 1 if the equatorial circle is included in L, and 0 otherwise,
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Epoles = 1 if the poles are included and 0 otherwise, and myer = keg +
Epotes + 2kother- Note now that the symmetries imposed ensure that the
configuration of an LD solution uniquely determines the LD solution as
in the next lemma:

Lemma 3.10 (Symmetric LD solutions). Given a finite SSgwm—inva—
riant set L C qu, a Sggqm—mvam'ant function 7 : L — R, and w €
Ksym|L], there is a unique Ssz, m-invariant LD solution modulo K[L]
© = [L, 7, w| of configuration (L,T,w) (recall 3.2). Moreover, the fol-
lowing hold.

(i). ¢ and each o, depend linearly on (7,w).
(il). @avg € CO(SZ,\ (L N {pn,ps})) (recall 2.21) and @ayg is smooth
on qu \ Lpar where it satisfies the ODE L' pgpg = Wayyg-

If w =0 then we also write ¢ = p[L, 7| and ¢ is the unique Ss2,m-
invariant LD solution of configuration (L,T) as in 3.1.

Proof. We define p; € C5,,(S2,\ L) by requesting that it is supported
on ||, (Dp(20,)) and @1 = ¥ [6y, 26,5 dp] (Gp,0) on Dp(26,) for each
p € L. Note that L'p; € Cg5,,(S2,) (by assigning 0 values on L) and
it is supported on | |, (Dp(20,) \ Dp(dp)). Because the symmetries
2

do not allow the first harmonics of the Laplacian on S7,, there is @2 €
C’;’;m(qu) such that £ 9 = —L'p1+w. We can define then ¢ := o1 +s.
Uniqueness and (i) follow then immediately. To prove (i) we need to
check that ¢ is integrable on each circle contained in L, and that
Pavg 1s continuous there also. But these follow easily by the logarithmic
behavior of G, (recall 2.20). Since the case w = 0 is clearly a special
case of the general case the proof is complete. q.e.d.

Next we will need the following.

Definition 3.11 (The map £). We define Vg, [L] to be the sub-
space of V[L] (recall 3.3) consisting of those elements which are invari-
ant under the obvious action of Sggmm. We define then a linear map

Er : KyymlL] = Viym[L] by Ep(v) = (u(p),dpv)per, € VsymlL] for
v € Kgym[L] (recall 3.9).

The following assumption is crucial for the construction and will be
checked later. Note that besides being used in the linear theory later
it also allows us to convert any LD solution ¢ in the sense of 3.1 to an
MLD in the sense of 3.4 by subtracting from it EL_l Brp:

~

ASSUMPTION 3.12. We assume that the map &1, : Koym[L] = Veym|[L]
is a linear isomorphism.

Definition 3.13. We denote by ||| the operator norm of ;' :
Vsym[L] = Ksym[L] with respect to the C*7 (S2,,9) norm on the target
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and the maximum norm on the domain subject to the standard metric
g of qu.

Initial surfaces from Squ,m—symmetric MLD solutions. In this
subsection we construct the initial surfaces by gluing catenoidal bridges
to appropriately modified graphs of MLD solutions. More precisely
we start by assuming given a Sggq,m—symmetric MLD solution, ¢ =
@[L, 7, w] in the notation of 3.10. The first step in the construction is to
modify the MLD solution so that its graph on an appropriate domain
(corresponding to the complement of the catenoidal bridges) is minimal
except on the support of the elements of Kgy,[L]. We then attach
the catenoidal bridges and this way we obtain an initial surface where
the unwelcome mean curvature is supported on small annuli where the
gluing occurs. We choose now the scale of the gluing annuli:

Definition 3.14. For each p € L we define 5;) = 7, where a is
as in 2.31. We will also use the notation 0., := min,cr, dp, Tmin =
MiNyer, Ty, Tingz 1= MaXpef, Tp, and o . = minyey, 5;, =70

To simplify the presentation and the construction it is convenient to
assume the following which we will confirm later for the actual construc-
tions we carry out (see 5.32.vii and 6.24.v).

CONVENTION 3.15. We assume from now on that the following hold.

. 3.6 holds and 7,4, is small enough in absolute terms as needed.

i). Vp € L we have 9(5;<T£‘/9<5p.

. 1-a/9
. Trmaz < Trin

)
)
)
(iv). p € L we have (3,)~2]| &, : C2(9D,(3y), (6,)%9) || <7 /",
) Nl = Copn(S2,\ Uger Da(0), 9) | < 7ol -

i). On qu \ |_|qeL Dy () we have 75123/5 < . O

REMARK 3.16. Note that condition 3.15.vi is only needed to ensure
embeddedness. For constructions of immersed surfaces which may not
be embedded we could drop 3.15.vi. For such constructions we could
also allow negative 7,’s by replacing 7, > 0 in 3.4 with “7, # 0” and the
first term on the right in 3.3 with “@,(p) + 7, log |7,/2| = 0”. Note that
in such a case if 3.15.vi holds the positivity of 7, is implied anyway. [J

In order now to modify ¢ which by definition satisfies the linearized
condition 3.2.i', to another function ¢,; which satisfies the nonlinear
condition 3.18.i, we first define a cutoff function " € C’;’Zj’m(qu) by

¢ =1on SZ,\ Uper, Dp(26,), and on Dy, (24;,) (for each p € L)

¢ =W [6,,26,:dp] (0,1).
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We then define inductively sequences {u,}22,; C Cgﬁl(qu) and
{6n )01 C Cm(S2,) by -1 =0, ¢ := i, and for n > 0

(317) ¢TL = ¢n_1 + un’ ‘E, uTL — ¢” (Q¢n72 - Q(bnfl)?
pel D,(8,) and to satisfy Hy, =
L6k + Qp, on Sg \ Uper Dp(0,), where Hg, is the mean curvature

of the graph of ¢;, in S® pushed forward to qu by the projection Hggq
(recall 2.6).

where we define @y, to vanish on | |

Lemma 3.18. Given a Squm—symmetm'c MLD solution ¢ = ¢[L,
T,w| which is as in 3.10 and 3.4 and where 3.15 is satisfied, we can
define on = oni[L, 7, w] € CS5,,(S2,\ L) as the limit of the sequence ¢y,

sym

defined above. Moreover, the following hold.
(). Hy,, = L'¢ =w on SZ,\ U,er Dp(26,,), where Hy,,, is the mean
curvature of the graph of ¢, in S® pushed forward to qu \ L by
the projection Hggq (recall 2.6 ).

(ii). @ni— @ can be extended to a smooth function on qu which satisfies

3/2
< c<5;m> 2 Hso O30 (S2,\ Uyer, Dp(6)), 9)|I> < 7202

Proof. By standard linear theory, 3.17, and the triviality of the kernel
of £' on 82 modulo the symmetries, we conclude that for n > 1 we have

lun : C*F (82, 9)II < Cllw" - CHP(SZ Il Qs — Qs = CHP (R, ),

where Q := S2 \ |],c; Dp(d,) D suppy”. Since the quadratic (and

higher) terms Q4, can be expressed as an algebraic expression involving

geometric invariants of Seq, ok, and the derivatives of ¢y, we have

1Q0,—1 = Qo : CHP (R 9)I| <
_ { Cllg : C*P(Q,9)I* (n=1),
B C H¢n—1 - ¢n—2 : Cg’ﬁ(Qag)H H¢n—2 : 03’6(979)” (Tl > 2)

Combining the last two estimates and substituting u,,_1 for ¢,_1 — ¢, _o
we conclude that

lun = CH2(S2, 9)| <
< { C (min) Ml : C*P( Q)P (n=1),
C (Bhin) " ltnor : C3H (9| buz : C*P (o) (n > 2).

Since 2% —2a > % by 2.31, we conclude inductively using 3.15.v that
forn>1

lu : C*P(S2,,9)| < 27 C' (8!

min

)2l : C3F Q)P <27

mzn
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Taking limits and sums and using standard regularity theory for the
smoothness we conclude the proof. q.e.d.

Definition 3.19. Given ¢ = ¢[L, 7, w] as above we define a function

Pinit = Pinit L, 0]+ S2\ Uper, Dp(7p) = [0, 00),
as follows:
(i). On qu \ Uper Dp(38),) we have @inir := @u[L, 7, w].
(ii). For each p € L we have on Dy(36),) \ Dy(7p) (recall 1.7)
Pinit = W [28,,36,:dp] (G, ., ou[L, 7, w] ).

Definition 3.20. Given an LD solution ¢ as above we define the
initial smooth surface M[L, 7, w] to be the union over 2, \ Uper Dp(7p)
of the graphs of +;,it[L, T, w].

REMARK 3.21. The approach developed so far is quite general and
can be easily modified to apply to doublings of minimal surfaces where
the following hold:

(i). A reflection exists exchanging the two sides of the given surface.
(ii). The linearized operator has no kernel on the given surface.

If those conditions are not satisfied the approach still applies with
further modifications we will describe elsewhere. O

The regions of the initial surfaces.

Lemma 3.22 (The gluing region). For M = M|[L,7,w] defined as
i 3.20 and Vp € L the following hold.

() 1| 9init = Gy + C*X(Dy(48) \ Dyl8). ()2 9)| < 79

(ii). || pinie = CP(Dy(40,) \ Dp(dy), (3,)2g) || < CTpllongl

(iii). || (5,)2 H' : COP(Dy(36,) \ Dy(28}), (5,)2 )” < 2EY here
H' denotes the pushforward of H to Seq by Eq and H the mean
curvature of the initial surface M.

_l’_

Proof. By the definitions we have for each p € L
Ginit = TpGp — Tplog % cosod, + ¥ [2(5;, 35;,; dp] (p—, p+),
on Q, := D,(40;,) \ Dp(d},), where
o= G, — 7pGp + 1plog(7,/2) cosod,,
o4 1= Pp + 1plog(7,/2) cosody, + pn — .

By scaling now the ambient metric to ¢’ := (5;)_2 g and expanding in
linear and higher order terms we have

(6,)° H' = (Ag +2(6,)% ) init + 5;;@(6;,)*1

Pinit "
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Note that on €2, we have
Pinit — G =W [26,,,36,;d,] (0,04 — ),
L' Qinit =L [265,,36,;dp] (0, 04) -
Using these (for the second and the third inequality below) and also
2.20.vii we clearly have
@it [| < C (7p|log 7p| + [~ [ + llp 1),
1@init = Gy r,y | <C (llo— [+l 1),
1(Ag +2(8,)% )it = C*P(Qp, (8,)729) I SC (oo I + I+ 1),
16,Q6) e+ C¥P (s (8,)729) | < C (8) " Mlpimae 1%,
where in this proof when we do not specify the norm we mean the

C3P( €Yy, (6,)"2%g) norm. We conclude that if ||| < &), (to control the
quadratic terms), then we have

1(6,)° H' - C*P(Qy, (6,)"%9) || < C (&) 7| log 7>+ [leo— |+l II)-
By 2.30 we have
lo—|| < C 2 log 7.
By the definition of ¢ we have

o Il < 119p + 7o (1/2) cosody || + llons — ¢ : Coin (824 9)I-
By standard theory (with interior regularity for the gain of derivative)
and separation of variables the matching condition in 3.4 implies that

|Pp + 7plog(7p/2) cos od, || < 0(5;)/513)2”@3 : 02’6(8Dp(5p)7 (517)_29)”-
Using 3.15.iv, 3.18.ii, and 2.31, we conclude that

17
losll < CEP R +rln < n" "

Combining the above we complete the proof. q.e.d.
Lemma 3.23. If 3.15 holds then M is embedded. Moreover, the
following estimates hold.
(i). On qu \ Uper Dp(8,) we have %7’,}13?/5 < Qinit-
. 3, 8/9
(). lpinit = Cim (52 \ Uper, Dp(6), 9) || < ot -
(iii). Yp € L we have
| init — mplog(2dp/7p)
15, B
: 03’B(Dp(47';z?) \Dp(97p),dp, g, 7" + ngpz) | <Cmp.

Proof. We first prove the estimates (i-iii): (i) on qu \ Uper Dp(35,)
follows from 3.15.vi, 3.18.ii, and 3.19.i, and on D,(4d,) \ D,(d,) for
p € L from 3.22.i, 2.29, and 3.15.iii. (ii) on SZ,\ Uper Dp(36,) follows
from 3.15.v, 3.18.ii, and 3.19.i, and on D,(49;,) \ Dy(d;) for p € L from
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3.22.ii, 2.29, and 3.15.iii. 3.19.ii and 3.22.i allow us to replace @;;; with
G, in (iii). (iii) follows then from 2.29. Finally, the embeddedness

7p’T
of M follows from (i) and by comparing the rest of M with standard
catenoids using 2.36. q.e.d.

Our general methodology requires that we subdivide the initial sur-
faces into various regions [20, 4, 16, 14, 11, 12, 10]. Because of the
modified approach we only need some of the regions. Because of the
linearized doubling approach we also need to define the projections of
some regions by sz (recall 2.6):

Definition 3.24. We define the following for = € [0, 4].
(3:25a) S5 =S\ Uper, Dp(20,/(1 + @),
(325b) S, =52\ Uper Dp(b7p(1 + 2)),
(3:250)  Sulp] = M N1Ig! (m) wpel,
(3.25d)  Su[L] := | lyep Salp),
(3:25¢)  Sulp] = M N1Lg! (D,,(25;,/(1 n x))) CKpr, VpelL,
) SelL] == Uper, Selp),

where b is a large constant independent of the 7 parameters which is to
be chosen appropriately later. When = = 0 we may omit the subscript.

We define now precise Euclidean catenoids approximating the appro-
priately scaled catenoidal regions of the initial surface M, and also aux-
iliary notation for future reference.

Definition 3.26. We define a map (recall 2.34)
g, = ﬁK,p o Exp;,lrp : S[p] — Kpp.

We also define KL = |_|p€L KJILO and Ik : §[L] — }KL by taking the
restriction of Il to each S[p] to be Ik .

Clearly by 2.36 Ilk , is a diffeomorphism from S[p] to a domain of
]INQP,O. IIk is also a diffeomorphism from S [L] to a domain of K. To
incorporate now the symmetries into the discussion observe that we
can clearly define uniquely an action of Ggs ,,, on |_|pe s pqu D Ky, so
that Ik is equivariant under the actions of the Ggs ,,. Because of the
importance of the scaling we will need the following.

Definition 3.27. We define 7 : ]KL — R by 7 =17, on Kpp.

We extend now the notation in 2.17 to apply to functions on domains
of M or Ky, as follows.
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NOTATION 3.28. Suppose X is a function space consisting of functions
defined on a domain 2 C M or Q@ C Kp. If Q is invariant under the
action of Ggs ,,, acting on M or Ky, (recall 2.14), then we use a subscript
“sym” to denote the subspace X, C X consisting of those functions
in X which are invariant under the action of Ggs ,,,. O

4. The linearized equation and the nonlinear terms on the
initial surfaces

The definition of R 4ppr- In this section, we state and prove proposi-
tion 4.17 and lemma 4.24. In 4.17 we solve with estimates the linearized
equation on an initial surface M = M[L, 7, w| defined as in 3.20, where
olL, T,w] is a Sggmm-symmetric MLD solution of configuration (L, 7, w)
defined as in 3.4. In 4.24 we estimate the nonlinear terms on the initial
surface M. To streamline the presentation we have the following.

CONVENTION 4.1. From now on we assume that b (recall 3.24) is as
large as needed in absolute terms. We also fix some g € (0,1) and
v € (1,2) satisfying 1 — 3 > 2a- and (1 — a) (y — 1) > 2a, for example,
v = % We will suppress the dependence of various constants on [

and 7. O

We construct now a linear map (recall 3.28)
(42)  Rarappr : Cogm(M) = O, (M) @ Ky [L] @ CO0, (M),

where if F € ngén(M) and Rarappr . = (u1,wg1, Er), then u; is an
approximate solution to the linearized equation modulo the “extended
substitute kernel”, that is the equation

(4.3)

Lu=E+wgollg where wg € Keym[L], L:=A+|A*+2,

wg,1 is the Kgym[L] term, and E; is the approximation error defined by
(4.4) Ey:=Lu; —FE—wgyo0 Hggq.

The approximate solution u; is constructed by combining semi-local
approximate solutions. Before we proceed with the construction we
define some cut-off functions we will need.

Definition 4.5. We define ¢/ € Cg5,,(SZ,) and P € Coym (M) by
requesting the following.

(D). = (1 —4)ollg on M.
(ii). v is supported on S [L], v is supported on §[L], and ¢ on S’
(recall 3.24).
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(iii). ¢/ = 1 on S} and for each p € L we have
W' =W b7y, 2b7p5dp] (0,1) on Dp(2b7,),
=W [25;, &y dy o gz, (0,1) on §[p]

Given now FE € C’g?fn(M ), we define E' € C’gﬂn(qu) by requiring that

it is supported on S’ , and that on M we have the decomposition
(4.6) E=¢FE+F ol .

Because of 3.12 there are unique v’ € ny% (82,) and wp1 € Koym[L]
such that

(4.7) L'v'=F +wg; on qu and Vpe L u/'(p)=0, dyu' =0.
We define now E € CSZ}%(]KL), supported on Il (Si[L]), by

(48) Eollx= ¢ E+ {[¢,Lv + (1—¢)E'} ollgz  on S [L].
We introduce a decomposition

(4.9) E = Elow + Ehigha

- 0 - ~ 0 -
where Ej,,, € Csyfn,low(KL) and Ep;qn € Csyfn,high(KL) are supported on
Ik (S1[L]). Note that here we use subscripts “low” and “high” to denote
subspaces of functions which satisfy the condition that their restrictions
to a meridian of a K, o belong or are orthogonal respectively to the

span of the constants and the first harmonics on the meridian. Let Lz
denote the linearized operator on Ky, and let ., € c%8 (Kr) and

~ sym,low
Upigh € Cszﬁhhigh(KL) be solutions of (recall 3.27)

(4.10) L lUjow =T Elow, L Unigh = T° Ehigh,

determined uniquely as follows. By separating variables the first equa-
tion amounts to uncoupled ODE equations which are solved uniquely
by assuming vanishing initial data on the waist of the catenoids. For
the second equation we can as usual change the metric conformally to
h= %]AF g=r* gsz, and then we can solve uniquely because the inho-
mogeneous term is clearly orthogonal to the kernel. We conclude now
the definition of Rz qppr:

Definition 4.11. We define R/ qppr as in 4.2 by taking RarapprEl =

(u1,wg 1, E1), where wg ; was defined in 4.7, E; in 4.4, and u; :== 1 uo
Mg + (¢ ) oTlgy € C3n(M), where T := Giow + Unigh € Cjm(KL).



420 N. KAPOULEAS

Norms and approximations. We introduce now some abbreviated
notation for the norms we will be using.

Definition 4.12. For k € N, 3 ¢ (0,1), ¥ € R, and © a domain in

S2 . M, or Ky, (recall 3.26), we define

eq’
k > ~
|’u“k737’-§;g = HU : C ’B(Qa/)v%PV)Ha
where p := dy and ¢ is the standard metric on qu when  C qu,
p = drpo Hggq and ¢ is the metric induced on M by the standard
metric on S3(1) when Q C M, and p = 7 (recall 2.35) and g is the

metric induced by the Euclidean metric h, on T,S3(1) as in 2.32 when
Q CKg.

Note that these definitions are equivalent to more popular definitions
but we find these definitions more intuitive. We compare now norms on
some nearby surfaces.

Leera 4.13. (i). If Tae s small enougNh in terms of given € > 0,
Q is a domain in Mg (S[L]), Q := Oz (Q) c S[L] c M, k = 0,2,

7 ER, and f € C*B(Q), then we have (recall 1.1 and 3.27):

1 follk llksme ~te 1777 flly s20 -

(ii). Ifb is large enough in terms of given € > 0, Tz is small enough in
terms of € and b, Q' is a domain in §' = qu\l_lpeL D, (bry) (recall
3.25b), Q = ngi(sz') NM, k=02 7€R, and f € CHA(Q),
then

| follsz [lksz0 ~1+e [[fllksm0 -

Proof. Note that by assuming 7,4, small enough we can ensure that
9C(k,a) 22, <. (i) follows then from the definitions, 2.39, and 2.40.

max

To prove (ii) let ¢ € S” and consider the metric g, := (dz(q)) 2g on
S3(1), where g is the standard metric on S3(1). In this metric M is the
union of the graphs of +¢., where ¢., := (dr(q) ) inir. Let B; be
the geodesic disc in (qu, gq) of center ¢ and radius 1/10. Note that

| log(2r/7) : C*((97,97%), r,dr?, log(r/7)) | < C(k).
By 3.23 we have then that

(4.14) e+ C*P(Bl,Gg) | < C fucigni(a) < Cb™'logh,

where fueignt(q) = % if ¢ € Dy(36;,) for some p € L (where
. 14480 . _ o Tp

we used that if b > 10 then 7, *® dpl(q) + ngpg < % )

and fuyeight(q) = 27’%2 otherwise (where we used 3.18.ii and 3.15.v). By
comparing the metrics and using the definitions we complete the proof.

q.e.d.
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We reformulate now the estimate for the mean curvature from 3.22
to an estimate stated in terms of the global norm we just defined.

Lemma 4.15. The function H —w oﬂggq on the initial surface M =

ML, 7,w] is supported on HS_21 <|_|p€L(Dp(35;,) \ Dp(24,) )) More-
eq
over, it satisfies the estimate

[ H —wo Mgz llo.g.y—2:0 < Toa! >

Proof. The statement on the support follows from 2.26.ii, 3.18.i, and
the definitions. Combining now 3.22.iii, 4.12, and 4.13.ii we complete
the proof. q.e.d.

Lemma 4.16. (i). If Tyqs is small enough and f € szB(HK(g[L])),
then we have

IL(f ollg) =772 (Lgf) oMk llys5- 0,505 <

< e 1777 Flly s 5 a8 -

(). If Tmae is small enough and f € C2P(S"), then for ¢; € [0,1/2]
we have

125 0T5,} = (L7 0T oy om0 <
< Cbr tlogb il | f H2,Bﬁ+61;§’ .

N Proof. (i). In analogy with 3.26 we deﬁne the map I : Uper H~§Tp,p —
K by requesting that its restriction to K., , for p € L is the restriction
of Ik, to K;, , (recall 2.36 and 2.35). We also define £ to be the
linearized operator on |—|p€ 1 K+, p with respect to the ambient metric

which Vp € L on B, -, C T,S*(1) equals gp, defined as in 2.32. We
have then

T I{L(f ollg) Y olly! — 777 (Lgf) =
= r T [{L(f ollx) o llg! — Lgf].
Using then 4.13.1 and that 7 is locally constant proving (i) reduces to
proving
I{L(f o TIg)} o I — Lgfllosr-ome@m) < 07331:(:||f||2,5ﬁ;HK(§[L])'

We fix now a p € L and we apply 2.39 and the notation and the ob-
servations in its proof (with 7, instead of 7) including 2.40: We have
then that the C%? norm on B[’] with respect to the metric induced by
lALq of the corresponding difference of linearized operators applied on f
is bounded by

C 1o | £ 2 CPP (B, hy) |-

max
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Using scaling and the definitions we conclude the proof of (i).

(ii). In this case we apply the notation and observations in the proof
of 4.13.ii. By 4.14 and by using scaling for the left hand side, we conclude
that for ¢ € S’, we have

(de(@)? 1 £{folls } —{L'f} ollg : COP(UIG (B)), gp) || <
S Ofweight(Q) || f : 0275(31/1’ /g\p) H .

By the definitions it is enough then to check that Vq € S we have

fweight(q) (dL(q) )61 < b ! IOgb max

This follows from the definition of fyeigne (given in the proof of 4.13)
and the observation that ¢ ~!log x is decreasing in = for « > b. This
completes the proof. q.e.d.

The main Proposition.

Proposition 4.17. Recall that we assume that 2.31, 3.15, 4.1, and
3.12 hold. Suppose further that

(4'18) 67’:”71 max ”8

A linear map Ry : C’gyén(M) — C’szy,%(M) X Ksym[L] can be defined
then by

<1

o

RuE = (u,wg) =Y (tn,wpy) € Cof (M) x Kgym[L],

n=1

for E € ngﬁn(M), where the sequence {(un, WE n, En)}nen is defined
inductively for n € N by
(unwa,naEn) = _RM,apprEn—ly Ey:=—FE.

Moreover, the following hold.

(1). Lu=FE+wgollg .

.. —2 —

(). Julosnr < C0) 8,27 €211 E o2
(iii). Jwp : OS2, 9)| < C o0 €L I 1 Bllo,s—2iar-

min
(iv). Rar depends continuously on the parameters of ¢.

Proof. We subdivide the proof into five steps:

Step 1: Estimates on v’ and wg,;: We start by decomposing E’ and
u' (defined as in 4.6 and 4.7) into various parts which will be estimated
separately. We clearly have by the definitions and the equivalence of
the norms as in 4.13 that

||E,H0,ﬁn/—2;82q < Cl|Elo,8,y—2;0-

We first solve uniquely for each p € L the equation £’ 1’0 = E’ on D,(25,)
by requiring that wu,(p) = 0, dyu;, = 0, and that the restriction of u,
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on 0Dp(26,) is a linear combination of constants and first harmonics.
Clearly then by standard theory and separation of variables we have

We define now u” € Cgé%(qu) supported on | |, Dp(26,) by requesting
that for each p € L we have

u' = W[26,,0,;dy] (0,u;,) on  Dy(26,).
We clearly have then
[”ll2,6.:52, < C | Ellogr—2:-

E' — L' vanishes on ||, Dy(d,) and, therefore, it is supported on
qu \ Uper Dp(dp) = 57 (recall 3.25a). Moreover, it satisfies

1B = L4 lo,55-2:52, < CIENlo,8,5-2:m-

Using the definition of the norms and the restricted support S| we
conclude that
_9_
1B — L' C¥ (82, 9)l| < C o™ IIE = L' llo 2.5,
The last two estimates and standard linear theory imply that the unique

by symmetry solution v € Cfgf,ﬂn(qu) to L'u" = E' — L'u" satisfies

Hu/l/ : 02,6 (SQ

_9_
209 < C8Z PN Elo g -t

min

By 3.12 there is a unique v € Ky [L] (recall 3.9) such that u” + v
and d(u” +v) vanish at each p € L. Moreover, by the last estimate and
3.13 v satisfies the estimate
o C28(S2, )+ 10 s OS2, 0)] < C oL 1€ 1B o5 -aar

eq’ man

By the definition of u” we conclude that £'(u” + v +v) = E' + L'v.
By the definitions of u” and v we clearly have that u” + v + v satisfies
also the vanishing conditions in 4.7 and hence

"

u=d"+d"+v and WE,1 = L.

Note now that L£'u"" = E'— L'u" vanishes on | | ., D;(0,) and by 3.7
and 3.9 so does L'v € Kgym[L]. We conclude that for each p € L we
have £'(u" 4+ v) = 0 on D,(d,), and since we know already that v’ + v
and d(u"” + v) vanish at p, we can use standard theory and separation
of variables to estimate with decay «” + v on D,(d,) in terms of the
Dirichlet data on 9D,(d,). Combining with the earlier estimates for u"”’
and v we conclude that

A9 _
" ol gz, < Ot 2P NET I E lop—zaar
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where ' = 774'2 € (7,2). We need the stronger decay for estimating E
later. A similar estimate holds with 7 instead of 7/. Note that by 3.13
€]l > 1. Combining with the earlier estimate for u” we conclude that

—2— -1
12,662, < C O IELH I E llop 1201

Step 2: Estimates on u: By the definitions and 4.13 (with e = 1) we

have that
172 Ellg s 0, < CUIElon—zar + 1t sz, ).
By considering the standard conformal parametrization of the catenoid
on a cylinder it is easy to conclude that
H a Ulow ||27571§H~<L < C(b) || 7_2—«/ E ||075,’Y—2;H~<L'

Similarly, by standard linear theory and the obvious C° bound on Uhigh
we conclude

iy~ QN T
I nign llp .0z, < CONT Ello gy,
Combining the above we conclude that

ey~ ey~ —9_ _
17l gz, < 0770l 00, < COVGEPIET N E llosq—2ar.

Step 3: A decomposition of Fyi: Using 4.4 and 4.11, 4.6, 4.10, and
4.9, we obtain
(4.19)

Ey = Ey+¢ £ (Toll ) +Eyr+{ £ (') } ollgy — E—wp 101l

where Ey 1, B 111 € ng%(M) are supported on S[L] \ Si[L] and S’
respectively by 4.5.ii, and where they are defined by

~

El,[ :[£7¢] (ﬂOHK)7
By =L{(¢'u")ollgz } —{L' (Y u')} ollgs .
Using 4.6, 4.10, 4.9, and 4.8, we obtain

(4.20)

(421) Ey=FEi + B+ B+ {[W, L0 + (1-¢)E'} ol +
+ B +{ 1L, 4]0+ L Yollgy —$ B — E'ollgy —wp, 01l ,

where Fy 1 € Cg?fn(M ) is supported by 4.5.ii on S[L] where it satisfies
(4.22)

Evir=1v¢ (L(tollg) —77% (Lgu)ollg) = O L(Uollg) — Eollg.

By 4.5.ii and 4.7 we have ¢/ L' = ¢/E’+wg 1. Using this and canceling
terms we conclude that

(4.23) Ey=FEi 1+ Ev i+ By
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Step 4: FEstimates on uy; and Ep: Using the definitions, 4.13 with
€ = 1, and the estimates for «’' and u above we conclude that

—92_ _
lur 28000 < CO) 0 P NELH NN E llo,s9—201-
By 4.13 we have

1y~ N~
FCr =) o iy 1. gpp g ~2 177 Wy, g 1 (81208 2]
Using definitions 4.12 and 3.24 we conclude that

(1—xoc)(v—1) [

H aOHK ”275’7;3‘7[[&\3‘1[[]} S CTma T_’YﬂHZBvl?]KL’

and, therefore, we have by the definition of F; ; that

— max

1—a)(y—1 —y =
1EL llogn—2m < CTha00™D |77 ally 4, 7, -
Applying now 4.16.1 with f = @ and 4 = v and using the definition of
1) we conclude that
2 — ~
| Evirllopr—2m < Crige |7 VUH2,6¢/;H~<L'

We decompose now Ej 11 = E{’JH + Ei’fHI where E{’JH and Ei’fln
are defined the same way as Ej 77 but with «' replaced by u” and
u” + v respectively. Applying 4.16.ii with e; = 0, f = u”, and 7 = 7,
we conclude that

| Ei/,HI lo,sy-2m < Cb~" logh Hu"Hzﬁ,v;qu-
Applying 4.16.ii with e =+ —~, f =", and 7 =,

/_ _ /_
| Ei/,,III ||07Bﬁ—2;M <cp ! log b 7,000 ||um + U||2,B,'y’;83q'

Combining the above with the earlier estimates and using 4.18 and
4.1 we conclude that

I E1llo,pry—2:m <
< (CO) T2+ Co  logh + Cb Y2 logh 7a ™ V| E llopy—2: ar-

Step 5: The final iteration: By assuming b large enough and Ty,4z
small enough in terms of b we conclude using v — v — a > 0 and
induction that

| Enllogr—2 < 27" Ellogr—2: M-

The proof is then completed by using the earlier estimates. q.e.d.

The nonlinear terms. If ¢ € Cslym(M ) is appropriately small, we
denote by M, the perturbation of M by ¢, defined as the image of
Iy M — S3, where I : M — S3(1) is the inclusion map of M and Iy
is defined by Is(z) := exp,(d(z)v(x)) where v : M — TS*(1) is the
unit normal to M. Clearly then (recall 3.28) M, is invariant under the
action of Ggs ,,, on the sphere S3(1). Using now rescaling we prove a
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global estimate for the nonlinear terms of the mean curvature of M, as
follows (see [20, Lemma 5.1] for a similar statement):

Lemma 4.24. If M is as in 4.17 and ¢ € C’szyén(M) satisfies
| 6ll2,8,7:0m1 < T,}jg?/“, then My is well defined as above, is embedded, and

)

if Hy is the mean curvature of My pulled back to M by Iy and H is the
mean curvature of M, then we have

| Hy — H—Llosr—2m < Cl 55400

Proof. Note that such a strong bound on ¢ is only needed for ensuring
the embeddedness of My. Following the notation in the proof of 4.13
and by 4.14 we have that for ¢ € S’ the graph By of ¢4 over By in
(S2,, gq) can be described by an immersion X, : B} — B} = X.4(B})
such that there are coordinates on B}, and a neighborhood in $*(1) of Bl
which are uniformly bounded and the immersion in these coordinates
has uniformly bounded C%# norms, the standard Euclidean metric on
the domain is bounded by C X7 g,, and the coefficients of g, in the target

coordinates have uniformly bounded C3# norms. By the definition of
the norm and since [|¢||2,8y0m < T,ij;;‘/ 4, we have that the restriction

of ¢ on By satisfies

ld; (@) ¢ = C*2(By. G,) | < Cdp (@) 16 2,50

Since the right hand side is small in absolute terms we conclude that
Iy is well defined on By, its restriction to By is an embedding, and by
using scaling for the left hand side that

Id(q) (Hy — H— L) : COP(B), G) | < CdT @) |63 5.0
Since 2y — 3 — (v —2) =y — 1 > 0 we conclude that
A7 (q) | Hy— H—L¢ : CP(BY,G,) || < Cl 1350

Note now that BZ]’ is very close to the geodesic disc of radius 1/10 in
gy and with a center a point of M which projects by ngq to ¢q. It re-

mains to establish similar estimates for such discs B, C M with centers
at points © € S[L]. Note that the components of S[L] appropriately
scaled are small perturbations of a fixed compact region of the standard
catenoid by smooth dependence on each 7,. This allows us to repeat
the arguments above in this case and combining with the earlier esti-
mates we conclude by the definitions the estimate in the statement of
the lemma.

It remains to prove the global embeddedness of M. Given the local
embeddedness we already know, global embeddedness could only fail if
there was a nontrivial intersection between M, and qu. Using the esti-
mates in 3.23 we can exclude this possibility and the proof is complete.

q.e.d.
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5. LD and MLD solutions in the two-circle case

Basic definitions. We concentrate now to the case where L,,, consists
of only two circles. Because of the invariance under 983q7m there exists

x1 € (0,7/2) such that
(6.1)  Lpar = Lpar[x1] := (Psinx; UP_ginx,) = O({x = £x1,2 = 0}).
We define
(5.2) L := L[x1,m] = Lyper[m] N Lpgr[x1] = 9qu7mp1,
where p; := O(x1,0,0). Clearly L consists of 2m points, m of them at
latitude x1, and the other m at latitude —x;. We define (recall 3.6)

1

(5.3) Op =61 = om COSXpoot (P € L),

where we assume from now on

(54) X1 € (Xbalanced/2 s (Xroot + Xbalanced)/2 )7

where X,,o; was defined in 2.19 and Xpgianced Will be defined in 5.12.
5.4 ensures that the condition in 3.6 is satisfied. Clearly Ky [L] is
two-dimensional and spanned by W, W’ € Ky, [L], both of which are

supported on Dy, (201) \ Dr(01), and are defined by requesting that on

Dy, (261) we have
(5.5 W = Wixy,m] :=L" ¥ [261,61;d,,]| (Gp,, log b1 cosody, ),
) W' =W'xy,m] =L ¥ [261,61;d,,] (0,u),

where u is the first harmonic on qu characterized by u(p;) = 0 and
dp,u = dyx. Because of the symmetries we only consider constant
T7:L—R.

Definition 5.6. We define an LD solution
® =[xy, m] := p[L[x1,m], 1] € Cop,,(S2,\ L),
and V = Vix;,m],V' = V'[x;,m] € K[L] by L'V =W and LV’ =W’
(recall 3.10, 3.9, and 5.5).
Clearly JACSym [L] is spanned by V and V.

The rotationally invariant part ¢ := ®,,,. To help with the presen-
tation we first introduce some notation.

NOTATION 5.7. If a function u is defined on a neighborhood of Ly,
and has one-sided partial derivatives at x = x;, then we use the notation
(so that if u is C' then 914 u + 0y u = 0)

81+u::— s 81_u::—— . O
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Lemma 5.8. For xi as in 5.4 we have that ¢ := ®y4[x1,m] is given
by (recall 2.18 and 2.21)

S peen o {x] <3} €S,
p (bevenqgl 1) !
%T(Xl)qﬁodd on {x; <x}C Seq,
where g1 = cos X1 (hﬁ +hi-)’
hiy = magz{dd (x1) = %51445 > 0,

Moreover, we have ¢ > ¢1 > 0 on qu

Proof. To simplify the notation for this proof we define domains of
S2,, v == {x1 < x} and Q¢q := {|x| < x1}, which are neighborhoods of
the North pole and the equator respectively. Because of the symmetries
it is clear that ¢ = A4 @ogq on Qn and ¢ = A_peyen, on Q¢ for some
constants A4 and A_. Because of the continuity of ¢ at P := QnNQe, =
Pgin x, by 3.10.ii we have

A_¢even(X1) = Ay doad(x1).

For 0 < €1 << €3 we consider now the domain ., , := Dp(e2)\ D (€1).
By integrating £'® = 0 on €, ., and integrating by parts we obtain

/ L 2/ =0,
0%, .y ON Q

€1:€2
By taking the limit as e; — 0 first and then as e — 0 we obtain using
the logarithmic behavior near L that

2mm = 27 cos X1 (A_|_ (bodd(xl) h1+ + A_ ¢even(xl) hl_ )

Solving the system of the two equations for A4 and using the mono-
tonicity of Gepen and ¢oqq (recall 2.19) we conclude the proof. q.e.d.

Motivated by the above lemma we have the following definition. Note
for later applications that ¢ depends linearly on (a,b) € R? and J on

3 cR:
Definition 5.9. Given a, b€ R we define

¢ =glabixi] € CF({xe[0,7/2)}) () Cly(S2\ {pn.ps}),
j=ilbixi] e O ({x € [x,m/2)}) [ O (fx € [0,x1]})
(N CP (82, \ {pn.ps}) s
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by requesting they satisfy the initial data

. ol 1 99 ~
o(x1) = a, = — = E?;(Xl) =,

J(x1) =0, Oryj=01-j= mb,
and the ODEs £'¢ = 0 on {x € [0,7/2)}

and £'j =0 on {x € [x;,7/2)} C SZ, and on {x € [0,x1]} C SZ,.

To simplify the presentation we define also the function % : (0,7/2) —
R by

1 o, 1 Opeven
~ L %0ad® o (X) + Peven(x) Ox ()
(510) h(X) = 2 COoS X 1 Obodd 1 OPeven ’
T o (X) T g e (%)

Corollary 5.11. On {x € (—x1,7/2)} we have that

¢ 1= Dayglx1,m] = Glo1, h(x1);x1] + jlyekesxi).
Proof. By 5.8 on Py, x, we have
p=¢1, O p=d1hiy, - =¢1hi_.
By 5.9 the corresponding initial data for the right hand side are
o mh) ) m(h) F ).
Using the definitions we calculate that
h(x)) = s (hiy — h1-) ¢, ﬁ = g (hiy + hi_)1.

This implies that the initial data are the same for both sides and, there-
fore, the corollary follows by the uniqueness of ODE solutions. q.e.d.

The following is important for horizontal balancing considerations.

Lemma 5.12. fl—z < 0 on (0,Xp00t)- h has a unique root in (0, X0t )
which we will denote by Xpalanced-

Proof. By direct calculation using 2.18 and 2.19 we have
2

~ sin“ x 1+ sinx
2h(x) = cosx — — sin 2x log S sinx
CcosS X cos X
-2
o~ ~ COS Xpoot  SIN Xppot
lim A(x) =1/2, h(x = — To% _ <0,
x—0+ () / (roor) 2 2 COS Xy oot
dh sin® 1+ sin 1+ sin
2— = —5sinx — X—210gu+4sin2xlogg.
dx cos? x cos X cos X

COS X COS X

We clearly have log 588X ~ () and by 2.18 and 2.19 sinx log 188X < ]

on (0, Xpo0t). It follows that on (0, X0t ) 2% < —sinx < 0 which allows
us to complete the proof. q.e.d.
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It will be very important that we often work with solutions which
are “almost” symmetric with respect to reflection in the x coordinate
across X1 in a sense made precise later. In this spirit we define an
“antisymmetrization” Ay, as follows.

Definition 5.13. We define Q; = Q1[x1,m] := Dp_, [1,)(3/m) and
given u € ngm(Ql [x1,m]) we define a function Ayu € C’gym(Ql[Xl, m])
by requesting that for x' € (—=3/m, 3/m) and y € R we have

Axu(xi +x,y) = u(xi +x,y) —ulx —x,y).
Lemma 5.14. The following estimates hold.
(1) ” 9[170;}(1] —1: ngm(Ql[Xlrm] 76) H < C/m2
(). [15[5x]—m] x| =xi |+ Cp(Qlxr, m]\ Lpar[xa],G) | < C'/m.
(). || A, ¢[1,0:x1] : CF,, (a1, m],g) | < C/m?.
(V). A jlixa] : CFp(Qulxr,m] \ Lpar[xa] . 3) || < C'/m.
(v)- 1900, Lsxa] = m (|x| =x1) = CZp(Qulxa,m], g) | < C/m.

Proof. Let ¢, := ¢[1,0;x1]. ¢, satisfies the ODE L'¢, = 0 which in

the notation of 5.22 amounts to

02 o, — m~! tan(x; + mIR) oo+ 2m 2 ¢, = 0.

Consider (2, the subset of Q;[x1, m| where |¢ — 1] <1/2 and [0z ¢ | <
1/m. Using the equation we have | 92 o, | < C'/m? on that subset, and,
therefore, we obtain a contradiction unless it is the whole Qq[x1,m].
This proves (i). The proof of (ii) is similar (note that mds | |x| —x1 | =
+1). (iii) follows then from (i) and (iv) from (ii). (v) is equivalent
to (ii). q.e.d.
Estimates on ¢ = ®[x;, m|. Lemma 5.8 provides explicit information
on ®4,,. We need to estimate ®,s. also. To this end we introduce a
new decomposition ® = G + ®” as follows.

Definition 5.15. We define G € O

sym
G = {W[201,361; I+](G, A1) }odp, where Aj:= logé;.

Observe that by 2.20 for each p € L we have on D,(20;) that G = Gp.
This, 3.10, 3.1.ii, and the definition of ® in 5.6, imply that ® — G can
be extended smoothly across L. This allows us to have the following.

Definition 5.16. We define ", E” ¢ C’;’Zj’m(qu) by requesting that
on S2,\ L

(S2,\ L) by requesting that

d=G+@", E":=-LG.
Note that by 5.15 and 2.20 E” vanishes on Dy, (261). By 2.21 we have
@// @// E// E// c COO

2
avgr *oscr Havgr Hosc Sym(Seq)7
and on qu @” = @N _|_ @” E// — E/l + E//

avg 0scy avg osc*

(5.17)
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Since £'® vanishes by 3.10 and 5.6, and £’ is rotationally covariant,
we conclude from 5.16 and 5.17 that

(5.18) L'®"=E", ~ L'®" =E Lo, =B onSk,

avg avg’ osc osc

Moreover, since @4,y € C(SZ,) by 3.10 and 5.6, and @, € C,,(SZ)
by 5.17, we conclude by 5.16 that
(5.19)

é3(11}9 € CO(qu)a (I)” = (I)avg - é3(11}9 — ¢ - éavg on Sz

avg eq’
O =¢+ Gose + ¥y, on S\ L.
Using 5.17 we conclude that
(520) (I)// = (25 - éavg + q):),sc on qu‘

Note that in this expression although ¢ and @avg are not smooth because

of a derivative jump at x = x;, we do have ¢ — éavg =&y, € C;j’m(qu)
because the derivative jumps cancel out. Note also that neither £'®7,

nor L£'®”  have to vanish on Dp,(24;) but their sum does.

"

¢ is known explicitly by 5.8. We need to estimate @avg and ®7. .
G is almost explicit and @7, can be estimated by estimating E/,, and
using 5.18. We first estimate E” as follows. Note that (Ax,E” )ose =

Ay, (E”..) by the definitions.

Lemma 5.21. The following hold (recall 5.4 and 2.15).

(i). |G — Ay : C’fym(qu \ D(61),9)|| < C(k) and G — Ay vanishes
on qu \ DL(351).

(). 2B O, (S, ) < C(k), m2Ely = Chn(S2, 7)) <
C(k), and E" vanishes on D (201).

(iii). |m~2E), : Ck . (S2,.9)|l < C(k) and EJ,. is supported on
DLPM(351) C Ql[xl,m] .

(i) [ 24" Cly alxt,m]  G) < C() Jm and =2 A,
Clym(Qlx1,m],g)|| < C(k) /m.

(V)' ”m_z'AXlE(/)/sc : Cﬁym(Ql[Xhm]?a)H < C(k) /m and AXlE(/)/sc is
supported on D, (361).

Proof. (i) follows from 2.20.vi and the definitions. By 2.16 and 5.16
we have
m2E" = —L'3G = —L'3(G — A1) — 2m 2 A;.

As mentioned earlier E” vanishes on Dy, (26;) and clearly —1 < m™24; <
0 by 5.3. (ii) follows then from (i). The second part of (iii) follows from
(i) which implies that G = A; on qu \ Dr(361). The first part of (iii)
follows then from (ii) and the second part.

Recall now the coordinates defined in 2.15 and define a new coordi-
nate X := X — mx;. The metric g then in coordinates (X,y) is equal to
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the metric
(5.22) G = d=* + cos®(xy + %) dy?,

with ¢ = 1/m. g clearly depends smoothly on ¢ for |t| small, and
for t = 0 is the Euclidean metric with (X,y) the standard coordinates.
This implies that d( ) as a function of (¢,X,y) is smooth for small |¢|
and bounded (X,y) independently of m. Since Ay, d (o) clearly vanishes
for t = 0 we conclude that ||Aydyz : C’fym(DL(?)él) \ Dr(201),9)] <

Note now that Ay, E” is supported on Dr,(361) \ Dr(2461). By 5.15
and 5.16 E” factors through dz. (iv) follows then from (ii) (with a
loss of one derivative) by the estimate on Ay, d; above. By averaging
over the circles then and subtracting we obtain the estimate in (v). The
statement on the support follows from the support of £/, in (iii). q.e.d.

Lemma 5.23. Given E € C’SZ’,,@L(S2 ) with Equg =0 and E supported

on Qq[x1,m], there is a unique v € C’s’én(S2 ) characterized by (i) below
and satisfying the following.
(i). L'v = E, or equivalently Lsv = m~2E.
(ii). vavg = 0.
(it). o+ CHm(S20:9: fez, o)l < Clm™E = Cgm(ulx1,ml,g)|| (re-

eqr

—c1m min( “x\ x1’702 fO’/“ some

call 1.2), where we have fs2 = e
eqr
absolute constants ci,co > 0.
(iv). A : Cojm(Qulxi,m], )| < C
(m_le‘2E ol (lx1,m], )l

sym

+ I 2 AGE : O (@alxi,m] )] )

sym

Proof. The existence and uniqueness of v is clear by the symmetries.
(i) follows also because L'vgyg = Eqvg = 0.
For (iii) observe first that S2, \ {pn,ps} equipped with the metric
(recall 2.5)
2 =2 2

y:=m?cos?xg = m?cos ?xdx® + m?dy?,

can be isometrically identified with the cylinder R xS! equipped with the
metric y = ds?+ df?, where (s,0) (with 0 defined modulo 27m) denotes
the standard coordinates of the cylinder. Under this identification we
can assume that s is an odd function of x and § = my = y. By (ii)
u(pn) = u(ps) = 0 and on the cylinder the equation (i) is equivalent to
(AX + 2m 2 cos? x) v=m2cos’xE.

Because of the symmetries we can work with 6 modulo 27 instead of
27m. Let v’ be the solution on the cylinder of

-2

A =m cos’x E,
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subject to the condition v/ — 0 as s — +oo. By standard theory
and separation of variables, and using also 5.4 to ensure the uniform
equivalence of y and g on the support of £, we have

[0 C2o(RxS!, y, e [OI=C0l2) | < Cm=2E : €4 (1, m), G-

sym sym

v — v’ now satisfies the equation

(Ay + 2m 2 cos’x) (v —v') = —2m Zcos®xv'.

Note that vy, clearly vanishes. Using the smallness of the perturbation
introduced by the coefficient 2m =2 cos?
we conclude that

lo =o' : C25,(R x St x, e lsI=sbl 12y <
< Cm~2||m2E : C%° ([x1,m], )]

sym

x, and the estimate on v’ above,

We have then
v : €28 (RxS!, x, e IOI=s6DI2))| < Clm=2E : €08, (Q4[x1,m], ).

sym sym
By choosing now ¢; and cg appropriately (iii) follows easily.

To prove (iv) recall first that we are working on the cylinder R x
S! equipped with the metric xy = ds? + df?, where (s,0) denotes the
standard coordinates on the cylinder with # defined modulo 27. qu \
{pn,ps} is then an m to 1 covering of the cylinder, and the coordinate
x can be considered as a function on the cylinder as well with

ds m

dx  cosx

We define following 1.7 s_ : R — R by

s_(x) == [3/m,6/m, |x—x1|] (s(2x1 —x), 2s(x1) — s(x) ).
For u € CO(R x S') we define Au € C°(;[x1,m]) by

Au(s,0) :=u(s,0) —u(s_(s),0).

Note that Au agrees on 2 N {x > 0} with Ayu defined as in 5.13. We
define now v/, E'. € C°(R x S') by requesting

Ay = m_zcossz;, E=E"+E_, v=vy +v_,
where E = E; on {s > 0} and v — 0 as s — £oo. We have then that
v4(s,0) =v_(—s,0) and

AyAY, = A(m 2 cos® x B ) + [A, A V).

Using the definitions it is clear that fé; + 1 and both terms on the right

of the equation are supported on {|x — x;| < 6/m}. Moreover, by an

easy calculation

ds—_+1:C3

< .
ds < C/m
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Estimating first ¢/, and then Av/  (both with exponential decay
e~ls=s6D1) we conclude that (iv) is valid with v replaced by v/,. Since

S(Xbalanced) > MXpalanced We have e~ *(Xbatancea) <<m™? and, therefore,
we conclude that (iv) is valid with v replaced by v'. Combining with
the earlier estimate for v — v/ we conclude the proof. q.e.d.

Lemma 5.24. @/ . satisfies the following estimates.

(i). [|®%.. : fyén(SQq,g, fSQ )|l £ C, where fSQ x, 15 as in 5.23.71i.
(ii). [ AxPpsc : Sym(Ql[Xla m],g)| <C/m (Tecall 5.13).

Proof. Since L'®” . = E!_ . by 5.18 we can use the estimates of 5.21
to conclude the proof by appealing to 5.23. q.e.d.

It helps with the presentation of our estimates to introduce one more
decomposition which holds in the vicinity of L:

Definition 5.25. We define @' € Cgy, (Q1[x1,m]) by requesting that
(recall 5.9)

" = ' + P[p1 — AL h(x1):xi]  on Qfxq,m).
Using 5.9 we have then for p € L N Q4 [x, m]
(5.26)  @"(p) = ®'(p)+ 1 — A1, dp® = d,® + h(x;) dX.

Lemma 5.27. The following estimates hold.

(i). ”(I)/' sym(Ql[le m],g)| <C.
() ||Ax1(1),' sym(Ql[Xla ] §)||§C'/m

Proof. By combining 5.19, 5.25, and 5.11, we conclude

(I);vg ¢[A17 0; Xl] + ][chsxl Xl] - Gavga q>/osc - (I):J/sc

Note that the discontinuities on the right hand side of the first equation
cancel and the left hand side is smooth. Moreover, by 5.25 and 5.18 we
have £'®/ = E” ~which in the notation of 5.22 amounts to the ODE

avg — “avg

+o2m™2P. = m2E"

avg avg*

02 Py — M ! tan(x; +mIR) 0 @

avg

Using then 5.14 and that Gavg = Ay on SZ,\ Dg,,,(361) by 5.21.i, we
conclude that at 9 [x;, m] we have ]@avg] < C and [0 P, | < C.
Using these as initial data for the ODE and 5.21.ii we estimate ®,,,,.
By this estimate together with 5.24.i we conclude (i).

To prove (ii) it is enough to prove the estimate for U := Ax,®g,,
instead of Ay, ®" because Ay, @ .. = A®". . satisfies the estimate by
5.24.ii. To estimate U we calculate that it satisfies

O2U —m™! tan(x; — m'R) (U +2m 2 U+
+m ! (tan(x; — mTIR) — tan(x) +m7IR)) kP, = mZALE".

avg
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Using 5.14 we obtain estimates for the initial data for U on 09 [x1,m].
These estimates and 5.21.iv imply the required estimate. q.e.d.

Lemma 5.28. (i). ||®":C sygn( q79)||<0()
(ii). C'm < §¢1 < ®” on SZ,.

Proof. By 5.25, 5.27.i, and 5.14, we have that C’'m < Sqﬁl <9’ <
Cm on Q[x;,m]. By 5.20 and 5.21.i we have on S2, \ Dr(361) that
= ¢ — Ay + ®J,.. By 5.24.i and 5.8 we conclude that C'm < §¢; <
®” < Cm on S2,\ Dr(361). Since Q[x1,m] and SZ, \ Dr(36) cover
S2, the proof of (i) is complete and (i) follows by standard interior
regularity theory and 5.21.ii. q.e.d.

Estimates on V, V', W, W’.

Lemma 5.29. V,V' € Cg7, (S gq) defined as in 5.6 satisfy the follow-
mg.
(i). On SZ,\ Dr(26,) we have V = ® and V' = 0.
(ii). With p1 as in 5.2 and w as in 5.5 we have that on Dy, (261) the
following hold.

V =W [261,61;dp,] (Gp,, logdy cosod,, ) + D",
V, =wv [2(51,51;(311,1] (O,u)

(). V(p) = 61+ ®(p) ~c m, O (m) = ha) + (1) ~c 1

< C, for some absolute constant C' > 1. We also

/
have  V'(p1) =0, aav(pl):m_l.
(iv). |V 2 Oy (8%, 9)Il < C(k)m and |[V': CF,,. (82, 9| < C(k)/m
(v). 3.12 holds and ||E; Y| < Cm**P (recall 3.13).
(vi). For p,p/ € R we have that |ulm + |¢'| < C||uW + f/W'

Coim(SZ,, 9.

Proof. Let Ve and V!, be defined by the expressions for V and V'
in (i) and (ii). To establish (i) and (ii) we need to prove that V = Ve,
and V' =V . Note first that the expressions for Vj,¢,, and V.., in (i)
and (ii) match because by 5.15 and 5.16 Ve, = ® and V., = 0 on a
neighborhood of dD,, (261). Since L'® = 0 by 5.6, we conclude that by
5.5 we have that £'V,,e, = W and L'V}, = W', which characterize V/
and V' defined as in 5.6. This completes the proof of (i) and (ii). The
equalities in (iii) follow from (ii) by using 5.26, the definition of u in
5.5, and the definition of Ay in 5.15. Clearly by 5.8 and 5.4 we have
C’'m < ¢1 < C'm. Because of 5.4 we have also that |h(x1)| < C. The
proof of (iii) is completed then by using 5.27.

oV
and 'a}zm)
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(iv) is implied by (i) and (ii) by using 5.28 and 5.21.i. By direct
calculation using (iii) we have (recall 3.11)

EL_I((()’ dp‘i’)peL) = mV’.

(v) follows then by using (iii) and (iv).

We have |plm+|i/| < C[lpV +p'V' : Co(SE,.9)| < C|uW +

WW' s CHP( S2,+9)l, where the first inequality follows easily from (iii)
and the second inequality from the symmetries and £ (uV + p/'V') =
uW + /W', (vi) follows then and the proof is complete. q.e.d.

The family of MLD solutions. We determine now the family of MLD
solutions we need. The parameters of the family are ¢ = (¢, (') € R?
and their range is specified by

(5.30) ICL 1€ < e,

where ¢1 > 1 is a constant independent of m and 7 which will be
specified later. We want to construct MLD solutions ¢[L, T, w] where
L = L[x1[¢,m],m|, 7 = 7[¢,m], and w = w[{, m], that is the parameters
of ¢ are functions of ¢ and m. Clearly then ¢ = 7® + uV + 'V’ where
w = pW + /W' (see also 5.34 below). Note that by 3.1.ii, 5.15, 5.16,
and 5.34, we have that

(5.31) VpelL op = 17O +uV + vV’ on  Dp(201).

The matching condition in 3.4 amounts to a system of two equations
with x1 and 7 as the unknowns where we assume . and 4/ given in terms
of ¢ and m. We will write later this system explicitly by using 5.31,
5.26, and 5.29.iii. We consider now the following simplified approximate
version which is obtained by treating ® as an error term to be ignored
and making appropriate simple choices for p and p' (recall also dx =

T (P — Ay) + 7log(7/2) = 7¢, Tmﬁ(xl)dx = 7('dx.

By straightforward calculation using 5.8 this is equivalent to 7 =
2¢eC et and mﬁ(xl) = (/. To ensure a simplified expression we
use a modified (by replacing A; with A) version of these conditions to
define x1 and 7 in 5.33 below.

Lemma 5.32. For m large enough depending on c1, and ¢ = (¢, ()
as in 5.30, there are unique x1 = x1[{,m] € (0,Xpo0t) and 7 = 7[{, m] >
0 satisfying

m N /
i ec e_ cosxq (h1++h17) s h(Xl) — i
m

(5.33) T=2eSeMT =
m
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where A} := —log2m. Moreover, there is a unique
w = w[C7 m] = M[Ca m] W[Xla m] + N,[C7 m] W/[X17 m]a
such that (recall 3.10)

(5.34)
¢ = ¢l[¢,m]] :=7[¢,m]@[x1,m] + p[¢, m]V[x1,m] + p'[¢, m]V'[x1,m]

:SD[L[XI [C? m]7 m]? T[C? m]7 w[c= m] ]
1s an MLD solution as in 3.4. Furthermore, the following hold.

(1) X1 = Xl[C7m]) T = T[C7m]; n= M[CamL and ,U,/ - N/[C7m] depend
continuously on ¢.
(11) |X1[C7m] - Xbalanced| <C |</|/m < CQl/m-
(iii). In the notation of 1.1 we have

m ~sg |log 7| cos Xpatanced (M+ + M)l ey, v T ~c(ey) TIC M,

where 7 := 7[(0,0),m] and C(c1) > 1 depends only on c.
(iv). [C+pdi/T|<Cand |+ /7] <C.
() [li¢,ml] : Clym(S3,\ Dr(81), g)|| < 7't < 757,
(vi). emT < LT < ¢ on S2,\ DL(0}) for some absolute constant
c>0.
(vii). ¢ satisfies the conditions in 3.15, 3.12, and 4.18.

Proof. The existence and uniqueness of x; and 7, their smoothness,
and also (ii), follow from 5.33 and 5.12. (iii) follows from (ii), 5.33,
and 5.30. Using 5.31, 5.26, and 5.29.iii, we conclude that the matching
conditions in 3.4 amount to

.
¥(p) + ¢ — A+ L (61 + @) +log T =0,
u) - o0’ G
1+=) | h — — =0.
( +7‘ < (1) + 8X(p) +m7’
By further calculation and 5.33 these conditions are equivalent to

Al — A1+ (+2(p)

e o+ ¥(p)
b (A A+ (p) , 0P’
i (A ey ) ()

w is uniquely determined by these conditions and (i) follows. Using 5.27
and the definition of ¢ in 5.8 we conclude that

[(+pgr/T| < C+Ccy/m, |+ /7] < C+ Ceq/m.
(iv) then follows. By 5.16 we have that
o=TG+T7®" +uV 4+ V.
By (iv) and 5.29.iv we have
(5.35) | uV + 'V’ CH0 (S?

eqvg)H SCQIT-
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Using 2.20.vii we obtain
|G C35.(S2,\ Di(8}), 9)l| < C (87)73 7| log 8]

sym
Combining the above with 5.28.i for ®” we conclude that
e : CH0(S2\DL(61), 9l < C (c1m®P+m* P4 (51) 727 |log 1] ) 7.

sym

Using (iii) and §7 = 7% we conclude (v) by assuming m is large enough
(equivalently 7 is small enough). By 2.20.vii we conclude that |G| <
Cam on SZ,\ Dr(8}). By 2.31 we can assume o small enough so that
(vi) follows by using 5.28.ii and 5.35.

Finally, we prove (vii): 3.15.i follows from 5.3, 5.33, and by choosing
using 5.28.i and 5.35. 3.15.v—vi follow from (v) and (vi). 3.12 and 4.18
follow from 5.29.v. q.e.d.

6. LD and MLD solutions in the equator-poles case

Basic definitions. We proceed now to study the LD and MLD solu-
tions we need in the case that the catenoidal bridges are located on the
equatorial circle and the two poles. The construction of these solutions
parallels that of the LD and MLD solutions in the two-circle case as
presented in the previous section. The main differences are that now
we have two different catenoidal bridges modulo the symmetries. On
the other hand, we have no horizontal forces and no horizontal sliding
because the symmetries fix the location of the catenoidal bridges com-
pletely. The configuration now consists of m + 2 points, m of which lie
on the equator and the other two are the poles:

(6.1)

Leq-poi = Legpor[m] := Lo[m] U Lo, where

Lo = Lolm] := Lmer[m] NPy = sz mpo, L2 :={pn,ps} = Gsz, m P2,

eqs
where pg := 0(0,0,0) = (1,0,0,0) and py := py (recall 2.3). We define
(6.2)
dp =100 :=1/9m (p € Ly), dp := 02 :=1/100 (p € {pn,ps})-
Clearly Ksym[Leg-pot] is two-dimensional and spanned by W; := W;[m] €
Ksym|L] for j = 0,2, where W is defined by requesting (recall 3.7 and
3.9) that it is supported on Dy, (2d;)\ Dr,(d;) and satisfies on Dy, (24;)

(6.3) W, =L [25j,5j;dpj] (G, logd; cosody, ).
Because of the symmetries each 7 : Legpo — R we consider takes only

two values: 79 := 7, taken on Lo and 75 := 75, taken on the poles. In
analogy with 5.6 we have:

Definition 6.4. For j = 0,2 we define LD solutions ®; = ®;[m| :=
o[ L;j[m], 1,0] € C’;’;m(qu \ Lj). We also define V; = V;[m] €
UACSym[Leq_pol] by L£'V; = W; (recall 3.10, 3.9 and 5.5).
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Clearly JACSym [Leg-pot] is spanned by Vj and Va.
The rotationally invariant parts.
Lemma 6.5. We have that ¢eq := (®o[m])awg = % sin|x| on qu.

Proof. The proof is similar to the one for 5.8 but simpler: Because of
the smoothness on each hemisphere and the rotational symmetry it is
clear that ¢., = Asin [x| for some A € R. For 0 < €1 << €3 let Q, (, :=
Dp,(e2) \ Dr,(e1). By integrating £'®y = 0 on €, ,, integrating by
parts, and taking the limit as e; — 0 first and then as es — 0, we obtain
using the logarithmic behavior near Lg that 2mm = 47 A, which implies
the lemma. q.e.d.

Note that if we extended the notation of 5.9 in the obvious way we
would have ¢.q = j[1/2;0].

Lemma 6.6. We have that (recall 2.18)
@2[777/] = Qeven = GpN + (1 - log 2)¢odd S Cﬁ(o\(sgq \ {pNapS} )

Proof. The second equality is just 2.20.iii and it implies clearly the
first equality by the definitions and 3.10. q.e.d.

Estimates on ®, = ®([m]. Since P, is rotational invariant and well
understood by 6.6 and (®o[m])qvg = Peq is well understood by 6.5, the
main remaining task is estimating (®g[m])ssc. Our approach for this is
similar to the one for estimating ®,s. in the previous section, except
that the situation is simplified by the extra symmetry. In analogy with
5.15 and 5.16 we have now the following.

Definition 6.7. Let Gy € C5,,(S%, \ Lo), &0, EY, ® 4

sym 0,avg’ *0,0sc?

BY g Bl 0se € O (S2,), Go € C(S2, \ {pw.ps}), and &, EY €

,avg’ ,08C x|

“;"’(qu) be defined by requesting that for j = 0,2

(6.8) Gj:={®[200,300; Ip+](G, A;) Yodr,, where A;:= logd;,

¢; =G+, El=-LCG;,  onSL\Lj
(69) g,avg = (q)lol)avgv /0,,050 = (@3)0867 on Sztp
E(,)/,avg = (Eg)avga E(l),,osc = (E(,)/)OSC7 on qu‘

Note that by 6.8 E{j vanishes on Dr,(2d9). Moreover, E{ is con-
stant on SZ, \ Dp,(300) and, therefore, Eg .. is supported on Dp,(3d0).
Since £'®, vanishes by 3.10 and 6.4, and £’ is rotationally covariant,
we conclude from 6.9 that
(6.10)

E/@é]/ — E(/]/, E/@// 1/ £/¢// — /! on qu

0,avg — 0,avg> 0,0sc 0,0sc
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Moreover, since ®g v € ngm(qu) by 3.10 and 6.4, and @f .
cee (qu) by 6.9, we conclude by 6.9 that éO,avg € C’O(qu),

sym

S
<I>6/,avg :q>0,twg - GO,avg = ¢eq - GO,avg on qu,
¢y = ¢eq + GO,OSC + g,osc on qu \ L.
Using 6.9 we conclude that
(6.12) 0 =teq — Goavg + P ose  On S

(6.11)

Note that in this expression although ¢, and é(],avg are not smooth

because of a derivative jump at the equator Py, we do have ¢4 —(A}ovavg =
PG avg € C’;’;m(qu) because the derivative jumps cancel out. Note also
that neither £'®{ . nor L'®  have to vanish on D,(2d;) but their

0,avg 0,0sc
sum does.

Lemma 6.13. The following hold where Qeq := Dp, (3/m).
(i). |Go—Ap : CE (Qeq\Dr,(60),9)|| < C(k) and Go — Ay vanishes

sym

on S2,\ Dy (300).

(11) ”m_zE(/)/ : nym(Qeq 75)” S C(k) ’ Hm_2E6/,avg : nym(szqva)” S
C(k), and E{ vanishes on Dr,(2dp).

(). 2B e = Co(S2,9)]| < CR) and BY

DPO (350) C Qeq.

Proof. (i) follows from 2.20.vi and the definitions. By 2.16 and 6.9
we have

osc 1S supported on

m2El = —ﬁlgéo = —ﬁ/g(éo — Ao) — 2’171,_2/10.

As mentioned earlier E{ vanishes on Dr,(2dp) and clearly —1 <
m~24p < 0 by 6.2. (ii) follows then from (i). The second part of
(iii) follows from (i) which implies that Go = Ag on S, \ D1 (38y). The

first part of (iii) follows then from (ii) and the second part. q.e.d.
Lemma 6.14. <I>6”osc satisfies H<I>6”osc : C’sgﬁm(qu,g,fggq,o)H < C
where we have fggwo = emammin(xlc2) for some absolute constants

c1,c0 > 0.

Proof. The proof is similar to the proof of 5.24, where we apply an
appropriately modified version of 5.23 on 6.13. Since the modifications
are clear we omit the details. q.e.d.

Definition 6.15. We define ®; € Cgy,,(Qeq) by requesting that &f =
@6 - A0¢even on Qeq'

6.15 corresponds to 5.25 with —Ag and ¢eyey, corresponding to ¢ —Aq
and ¢[1,0;0]. Using now 6.9 we obtain

(6'16) (I)O = a0 + (1)6 - A0¢even on Qeq \ LO'
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Lemma 6.17. ®) satisfies the estimate ||} : Copy(Qeq, 3| < C.
Proof. By using the definitions we have

0 Lavg gbeq + A0¢even - GO,avga 67080 = (I)O 0sc? L' 0,avg — g,avg‘
Note that the discontinuities on the right hand side of the first equation
cancel and the left hand side is smooth. Using then that éO,avg = Ag
on SZ, \ Dp,(300) by 6.13.1 and 2.18 we conclude that at 9, we have
| @0 4y | < C and [0z Pp,,,| < C. Using these as initial data for
the ODE and 5.21.ii we estimate <I>67ng. By this estimate together with

6.14 we conclude the proof. q.e.d.
Lemma 6.18. (). || @0 — % sin|x| : Ciym(82, \ Dz, (60),9)] <
C(k).
(ii). || @ : CHm(Qeq\ DLo(00),§)|| < C (k) (recall Qeq = Dy, (3/m) >
DP0(350))

(). || @F + Ao : Cogm( g, 9)I| < C(R).
Proof. By 6.11, 6.13.i, and 6.5 we have ®y— 3 sin [x| = &f

0 osc

Ap)ose on S2,\ D, (8). By 6.14 6.13.1 we conclude (i) for k& = 2.

By 6.16 we have &g = GO — A + Df — Ao (Peven — 1) on Qg \ Lo
and by 6.15 ®f + Ay = @ — Ao (Peven — 1) on Q¢q. (ii) and (iii) follow
then for £ = 2 from 6.13.i, 6.17, and 2.18. Using interior regularity and
6.13.iii we complete the proof. q.e.d.

Corollary 6.19. (i). || ®o : Cfﬁl(qu \ Dr,(00),9)| <C(k)m

(iD). [|@F = Cajm(82,.3)|| < C(k)m
(iii). [®o — % sin|x|| < C on SZ,\ DL, (o).

Proof. (i) follows from 6.18.i,ii. (ii) follows from (i) and 6.18.iii by
using also that on S2,\ Q¢ we have ®f = &9 — Ag and [Ag| < m. (iii)
follows from 6.18.1,ii. q.e.d.

Lemma 6.20. (i). || P, : Sym( 0 \ DLy (d2),9)[| < C(k).

(ii). [|®f : syﬁm( S2,,9)| < C(k) and, moreover, ® = (1 —log2) sin [x|
on Dr,(62).

Proof. This follows easily from the definitions and 6.6. q.e.d.
Estimates on Vj, V5, Wy, Wa.

Lemma 6.21. 1,15 € C’;’;m(qu) satisfy the following.

(i). We have Vi = &g on qu \ Dr,(28p) and Vo = Py = @epen 0N

qu \ Dipy.ps}(202)-
(ii). We have on D,,(209) and on Dy, (200) respectively that

Vo = ¥ (260, 60; dp, ] (G, log 8o cos ody, ) + ®f — AgPeven,
Vo = W (202, 02;dp, ] (Gpy, log 02 cosody,, ) + (1 — log 2)doda-

+ (Go—
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(iii). Vo(po) = ®4(po),  Volpn) =m/2,  Va(po) =1, and  Va(pn) =
1+ log(d2/2). Moreover, |Vo(po)| < C and |Va(pn)| < C.

(iv). [IVo = CLyn(Dre(50). 9)ll < C(k), Vo = CL(S20: DI < C(k)m,
and [|Va : CF,,,(S2, 9| < C(k).

(v). 3.12 holds and HSL_elq | < Cm*P (recall 3.13).

-pol

(vi). For po, po € R we have that
lwolm + 2| < C || poWo + paWa = C%5 (S2,,9)).

Proof. The proof is similar in structure to the one for 5.29. Let Vj pew
and V5 pey be defined by the expressions for V4 and V5 in (i) and (ii).
The expressions for Vi new and Va pey in (i) and (ii) match because by
6.7, 6.16, and 6.6 we have Vppew = P9 = Go + D) — AgPepen ON a
neighborhood of 0D,,(20p) and Vi pewy = P2 = deven = Gpy + (1 —
log 2)odq on a neighborhood of 9D, (2d2). Since L'®y = L'Py = 0 by
6.4, we conclude that by 6.3 we have that £'Vj new = Wo and L'Va pey =
Wy, which characterize by 3.10 Vy and V5. This completes the proof of
(i) and (ii).

The equalities in (iii) now follow from (i), (ii), 6.5, and 2.18, where we
used also Ay = logdy from 6.8. The estimates in (iii) follow from 6.17
and 6.2. (iv) is implied by (i), (ii), 6.19, 2.18, 6.20, and Ay = log dy.
Note now that if we use {Vp,Va} as the basis for &Sym[Leq_pol] and
the standard basis for Veym[Leg-pot], then the entries for the matrix of
ELeypor» defined as in 3.11, are given in (iv), and, therefore, using (iv)
we can easily check that (v) holds. (vi) follows by the same argument
we used for 6.21.vi. q.e.d.

The family of MLD solutions. We discuss now the family of MLD
solutions which is converted to a family of initial surfaces by 3.20. The
parameters of the family are ¢ = ({p, (2) € R? and their range is specified
by

(6.22) 1Cols G2l < e,

where co > 1 is a constant independent of m and 7 which will be

specified later. Given ({p,(2) as in 5.30 we define 79, 72 by

7o = T0[¢, m] s=m /4 o VP2,

(6.23)
= T2[¢,m] :=To <C2 - ilogm—I— \/? > .

This definition is motivated by a straightforward calculation where var-
ious error terms are ignored. We skip this calculation because it is not
needed for the proof and is similar to a precise calculation we present
in the proof of 6.24.

Lemma 6.24. For m large enough depending on co and ¢ = (o, (2)
as in 6.22, we define T : Legpor — RT to take the values 79 on Lo and
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To on {pN,ps}, with 19,72 defined as in 6.23, and also w = w[¢,m] :=
wol¢, m] Wo[m]+pz[C, m) Walm)| defined uniquely by the requirement that

(6.25) ¢ = @[[¢,m]] := @[ Legpor[m], T[¢,m], w[¢,m]] =
= 10P0 + 72P2 + f10V0 + p2Va
is an MLD solution as in 3.4. Moreover, the following hold.
(i). 7 = 7[¢,m] and p = p[¢,m] := (uo,p2) depend continuously
on ¢

iii). || ¢[[¢,m]] : 038 (2 D g)|| < it < 7'8/9 where D' =
Yy eq 0 0

Uj—02 Dr; (07) where &% := 77",

(iv). cmo < ¢ on qu \ D’ for some absolute constant ¢ > 0.

(V). ¢ satisfies the conditions in 3.15, 3.12, and 4.18.

Proof. Note that by 3.1.ii and 6.7 for ¢ as in 6.25 we have that
(6.26) Bpo =T10P + T2P2 + poVo + p2Va, on D, (2d),
' Pox =T0P0 + 1Py + puoVo + p2Va, on D, (202),

where motivated by 6.6 we define @4 := (1 —log 2)$qq. Using 6.15, 6.6
we calculate

PG (po) = Po(po) — Ao, Po(po) =1,
Po(pn) = m/2, DY (py) =1 —log 2.

By straightforward calculation using 6.23 we obtain
(6.28)

logTo—Co—flogm 1/2 log 7o = Co—flogm ,/ +0(1

where in this proof we use O(1) to denote terms which are uniformly
bounded (independently of c9) as m — oo. Using the above, 6.21.iii,
and 6.17, we calculate the matching condition in 3.4 amounts to

70 (Co+ G +0(1)) +O0(1) po + p2 = 0,

70 (o — G2+ 0(1)) \/?+ %uo +0(1) py =0.

Solving this linear system for pig, 1o we obtain its unique solution given
by

o=~ (G~ G2+ 01) M/, 2= (Co+ G2+ O(1)),

where we assumed that m is large enough in terms of ¢s.
The above clearly imply (i) and (ii). They also imply that

(6.29) lol vVm + 2| < Ceam,

(6.27)
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which together with 6.21.iv implies that

(6.30) 110Vo + paVa = O30 (82, 9)II < CeavVmmy .
Using 2.20.vii we obtain that for j = 0,2

|Gj + Com(S2\ D 9)ll < € (8)7 7 [log &)
Note that we have on SZ, \ D’

Y= Toéo + Tgég + TQCI)g + TQCI)IQ, + woVo + uaVe.

Combining the above with 6.20.ii and 6.19.ii we conclude (iii) by assum-
ing m large enough. R

To prove (iv) observe that on Dy, (d9) \ Dr,(d) we have ¢ = 19Go +
TOCI>6+(Tg+u2)<I>2+uo‘/E), on Dy, (02)\ D, (6%) we have ¢ = (1o+po)Po+
72G2—|—7'2<I>2—|—,u2V2, and on Seq\|_|] _0.2Dr;(0;) we have ¢ = (10+40)Po+
(T2 + p2)®4. Using 6.29 and 6.23 we obtaln bounds for the coefficients.
(iv) on SZ,\ Ll;j—02 Dr,(6;) follows then by using 2.19. By 2.20.vii and
6.28 we have ](A;J\ < CallogTj|| < Cay/mon D, (6;) \ Dr,(0}) for
7 = 0,2. Using 6.19.iii, 6.20, and 6.21.iv to estimate the remaining
terms, we conclude the proof of (iv) by assuming « small enough as in
2.31.

Finally, we prove ( ): 3.15.4 follows from 6.2, 6. 23 and by choosing m

large enough. 3.15.1V follows from 6.26 by using 6.19.i,ii, 6.20, and 6.30.
3.15.v—vi follow from (iii) and (iv). 3.12 and 4.18 follow from 6.21.v.
q.e.d.

REMARK 6.31. Note that if we only had bridges on the equatorial
circle then 6.25 would have to be replaced by “p = 79®g+puoVy”. Clearly
then it would be impossible to satisfy the vertical matching condition
and construct an MLD solution in this way. O

7. Main results

Theorem 7.1 (The two parallel circles case). There is an abso-
lute constant c¢q > 0 such that if m is large enough depending on

c1, then there is Z = (Z Z) S R2 satzsfymg 530 such that (in the
notation Of 532) 3(\1 = Xl[C) ] [C) ] [Cv ]}
ol[¢,m]], satisfy 5.32.ii—vii, and, moreover, there is gb S C°°( ), where

M = MI[L[x1,m], T, w] in the notation of 3.20, such that in the no-
tation of 4.12
~1+ 4
16y 557 < 7/
and, furthermore, M$ (in the notation of 4.24) is a genus 2m — 1 em-
bedded minimal surface in S3(1), which is invariant under the action of

Sss.m and has area Area(M(z) — 87 as m — 0.
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Proof. Step 1: Construction of the diffeomorphisms F¢: We fix an
m € N which we assume as large in terms of c¢q as needed. We will
use the notation 0 := (0,0) € R?, 7 := 7[0,m], and for ¢ € R? sat-
isfying 5.30 M{[[¢]] := M[L[x1[¢,m],m], T[¢,m], w[C,m]] (recall 5.32
and 3.20) and L[[¢]] := L[x1[¢,m],m]. We define for ¢ € R? satisfying
5.30 a smooth diffeomorphism F¢ : M[[0]] — M][{]], covariant under
the action of Ggs ,,,, as follows. We start by constructing smooth diffeo-
morphisms F}, : qu — qu which depend smoothly on x;, are covariant
under the action of Sggmm, and satisfy the following.

(a). F{ (L[[0]]) = L[x1,m] and, moreover, if p € L[[0]], then F} (p)
is the nearest point in L[xi,m] to p (which amounts to being on the
same side of the equator and of the same longitude).

(b). Vp € L[[0]] we have on D,(461) that F = R[x1,p|, where
R[x1,p] € SO(3) is characterized by R[x1,p](p) = F}, (p) (as defined in
(a) above), and dpR[x1,p](V,x) = vF)il (p)X-

(¢). If ¢ = O(x,y,0) € DLpa,'r[Xl [07m”(851) \DLHOH(561) with x € (0,7)

(recall 2.2), then F (q) = O(x+x1 — x1[0,m],y,0).
(d). On SZ,\ Dy (561) FY, is rotationally covariant in the sense
that it maps a point O(x,y,0) to O( fx, (x),y,0) for a suitably chosen
function fy,. Note this is consistent with (c) where fy, is implicitly
specified on a smaller region.

(e). On Dpyoy(561) \ Drjo)(461) we interpolate between the defini-
tions in (b) and (c) by using cut-off functions.

By choosing fy, carefully we can ensure that F) depends smoothly
on x1 and is close to the identity in all necessary norms. We proceed
now to use F! L[¢m] to define F¢ by requesting the following.

(f). Vp € L[[0]] we define F¢ to map Ag := Silp] ¢ M]J[0]] onto
A¢ = Si[q] € M][C]], where ¢ := F!

x1[¢,m)] (p), and to satisfy on Ag
(recall 3.26 and 3.25¢)

FeoYpollx, = Y¢ o llx g 0 I,

where Y¢ (and similarly for Yp) is the conformal isometric from Il 4(A¢)
equipped with the induced metric from the FEuclidean metric
772[¢, m) g|p, to the cylinder [—£¢, £¢] x S'(1) equipped with the stan-
dard flat metric, and

(7.2) Fp : [~to, o] x S(1) = [t £] x S(1)
is of the form in standard coordinates
Fe(t,0) = (£ct/ o, 6),

where the ambiguity due to possibly modifying the 6 coordinate by
adding a constant is removed by the requirement that F¢ is covariant
with respect to the action of Ggs ,,.



446 N. KAPOULEAS

(g). We deﬁne now the restriction of Fe on M][[0]] \3:\[ [0]]] =
MI[O]] NI, (82, \ Drjjo(97)) to be a map onto M[[C]]\ S[L[[C]]] =
MI[¢]] N Hgi(qu \ Drjey(61) ) which preserves the sign of the z coor-

dinate and satisfies

lgz, o Fe = Fyjem © sz, -

(h). On the region S[L[[0]]] \ Si[L[[0]] C M][[0]] we apply the
same definition as in (g) but with F! L¢m] appropriately modified by
using cut-off functions and dp¢y so that the final definition provides
an interpolation between (f) and (g).

Step 2: Equivalence of norms under F¢: Using 5.32.iii and 2.22 it is
easy to check that

b¢ ~14C(ch) jm Lo

Using this and arguing as in the proof of 4.13 we conclude that for
u € C?P(M][[¢]]) and E € COP( M[[¢]]) we have

o Fellag o) ~2llwll2,s:m¢)
| E 0 F¢ llo,5,4—2;m10] ~2 | E llo,6,4—2m1¢])-

Step 3: The map J: We define now a map J : B — C’szyén(M[[O]] ) X
R?, where

B = {ve %l (M[0]]) : [vll2pmpoy < T} x [—c1,c1]* C
C Co(M[[0]) x R?,

as follows: We assume (v,{) € B given. By 5.32.vii we can apply
4.17 to obtain (u,wr) = =Ry (H —wolls ). We define then
¢ € CPP(MIC]]) by ¢ :=wvo F(;_1 + u. We have then

(J)- Lu+H = (w+wg) ol .

(k). By the definition of B, 5.32.iii, 4.17, 4.15, and 5.29.v we obtain

lwe = CP(S2,, )| + 10llagrngey < T4

Applying 4.24 and 4.17 we obtain (ug,wq) = —Ry¢)(He—H—Le)
which satisfies the following:

(). Lug +Hy =H + Lo+ wg OHSQ .

(m). |lwg : C*P(S q?g)H + Jug Hw»yM[[cu <7

(). L(ug —voly D+ Hy = (w+wp +wg)ells . which follows
by combining the deﬁnition of ¢ with (j) and (1).

This motivates us to define

j(’L),C):<UQOFg C+ [C ](ﬂsumgblaﬂlsum)>y

2+a/4

where fisumW + plym W' = w + wy + wg.
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Step 4: The fixed point argument: By using (k), (m), 5.29.vi and
5.32.iv, and by choosing ¢ large enough in terms of an absolute con-
stant, it is straightforward to check that J(B) C B. B is clearly a

compact convex subset of C’gyé,;(M[[O]]) x R? for g € (0,3), and it
is easy to check that J is a continuous map in the induced topology.
By Schauder’s fixed point theorem [3, Theorem 11.1] then, there is a

fixed point (v, E) of J, which, therefore, satisfies v = ug o FZ and
W + Wy + wWg = 0, where we use «77 46 denote the various quantities
for ¢ = E and v = U. By (n) then we conclude the minimality of M-
The smoothness follows from standard regularity theory and the embed-
dedness from 4.24 and (k). The genus follows because we are connecting
two spheres with 2m bridges. Finally, the limit of the area as m — oo

follows from the available estimates for ;[ L[X1,m], 7, @] and the
bound on the norm of @. q.e.d.

Theorem 7.3 (The equator and poles case). There is an absolute
constant co > 0 such that if m is large enough depending on co, then
there is E = (50,52) € R? satisfying 6.22 such that (in the notation of
6.23 and 6.24) 7; = Tj[E,m] for j =0,2, 7 = 7[¢,m], @ := w[¢,m],
and cp[[E,m]], satisfy 5.32.ii—v, and, moreover, there is gg € COO(J\/Z),
where M := M{[Legpotm], T, W] in the notation of 3.20, such that in
the notation of 4.12

”(25”275,7;]?[\ < 5_\14—01/47

and, furthermore, ]\/4\5 (in the notation of 4.24) is a genus m~+1 embedded
minimal surface in S3(1), which is invariant under the action of Gs3.m

and has area Area(]\/](g) — 87 as m — o0.

Proof. The proof has the same structure as the proof of 7.1 and so
we only provide a brief outline emphasizing the differences:

Step 1: Construction of the diffeomorphisms F¢: We fix an m € N
which we assume as large in terms of ¢, as needed. We will use the
notation 0 := (0,0) € R?, 7 := 7[0,m] taking the value 7; := 7;[0, m]
on L; for j = 0,2, and for ¢ € R? satisfying 6.22 we write M[[{]] :=
M| Legpor[m], T[¢,m], w[¢,m]] (recall 6.24 and 3.20). It is easy to
modify the definition of F¢ in the proof of 7.1 to define for ¢ € R?
satisfying 6.22 a smooth diffeomorphism F¢ : M[[0]] — M[[¢]] covariant
under the action of Sgs ,,,. Note that actually the definition is simpler
because Ly o does not depend on ¢ and, therefore, we can skip the
initial steps concerning the diffeomorphisms Fy . The substantial step

is to define maps analogous to the ﬁg’s which were defined in 7.2. In
analogy we denote (half) the lengths of the corresponding cylinders
by fo[p] and l¢[p], where p € Legpo is mentioned because the lengths
depend on whether p is a pole or on the equator.
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Step 2: Equivalence of norms under F¢: Using 6.28 and 2.22 it is
easy to check that
EC[p] ~M14+Cm=1/2 logm f()[p]
Using this and arguing as in the proof of 4.13 we conclude that for
ue CPB(M[[¢]]) and E € COB( M][[¢]]) we have
l o Fe ll2,psmaion ~2 11 ll2,8,7 011615
I o Ee llo,g.y—2:na1i0) ~2 Il E llo,s.7-2:m1161)-

Step 3: The map J: By applying 6.24.v, 6.28, and 6.21.v we can
repeat all definitions and estimates in step 3 of the proof of 7.1, except
for using ¢4 instead of ¢ and modifying the definition of 7 as follows:

fio(m/2)Y2 + iy —fio(m/2)Y? + fia
ZTO[Cvm] ’ 27—0[C7m] '

j(U,C): uQOFC7C+

where oWy + pioWo = w + wyr + wQ-
Step 4: The fized point argument: Using 6.21.vi and 6.24.ii we can
argue in the same way as in the proof of 7.1 to complete the proof.
q.e.d.
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