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Abstract

In this paper we prove the smoothness of the moduli space of
Landau–Ginzburg models. We formulate and prove a Bogomolov–
Tian–Todorov theorem for the deformations of Landau–Ginzburg
models, develop the necessary Hodge theory for varieties with po-
tentials, and prove a double degeneration statement needed for
the unobstructedness result. We discuss the various definitions of
Hodge numbers for non-commutative Hodge structures of Landau–
Ginzburg type and the role they play in mirror symmetry. We also
interpret the resulting families of de Rham complexes attracted to
a potential in terms of mirror symmetry for one parameter fami-
lies of symplectic Fano manifolds and argue that modulo a natural
triviality property the moduli spaces of Landau–Ginzburg models
posses canonical special coordinates.
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1. Introduction

In this paper we study the local structure of the moduli space of
complex Landau–Ginzburg models. Such a Landau–Ginzburg model is
determined by a pair (Y,w), where Y is a complex quasi-projective vari-
ety, and w : Y → A1 is a holomorphic function on Y . Our main objective
is to prove the unobstructedness of the deformations of (Y,w) in the case
when Y has a trivial canonical class KY

∼= OY . At a first glance, such a
statement is not likely to hold since the non-compactness of Y will often
cause the moduli space of the pair (Y,w) to be infinite dimensional and
to have a complicated and unwieldy local behavior in general.

Before we address this difficulty it is useful to look at the model
example provided by the classical unobstructedness statement for the
deformations of compact Calabi–Yau varieties. This statement was
proven by different methods by Bogomolov [Bog81], Tian [Tia87], and
Todorov [Tod89]. Recall from [Bog81], [Tia87] and [Tod89], that if
X is a smooth compact Calabi–Yau manifold of dimension dimCX =
d, then the (formal) versal deformation space MX of X is smooth
and of dimension hd−1,1(X). Moreover, a choice of a splitting of the
Hodge filtration on Hd

DR(X,C) defines an analytic affine structure on
MX . This theorem has many variants establishing the unobstructed-
ness of deformations of log Calabi–Yau varieties or Deligne–Mumford
stacks, or of weak Fano varieties or Deligne–Mumford stacks, see, e.g.,
[Ran92, Kaw92, Man04, KKP08, IM13, Iac13, San13]. The log
version of the Bogomolov–Tian–Todorov theorem suggests that if we
want to attain a good control of the deformations of a Landau–Ginzburg
model (Y,w), we should look at a nice, e.g., log Calabi–Yau, compact-
ification Z of Y and consider only deformations that fix the boundary
divisor DZ = Z− Y . To streamline this discussion it will be convenient
to distinguish notationally the varying and the fixed parts in any given
deformation problem. Our convention in that regard will be that when
the deformations of some collection of geometric data are studied, the
moving part of the data will be listed in parentheses, while the part of
the data that is kept fixed will be listed in a subscript. Thus when we
say that we are analyzing the deformations of (Z, f)DZ

, we mean that we
consider deformations of the pair (Z, f) together with compatible trivial

deformations of the divisor DZ.
In this framework prove the following unobstructedness result:

Theorem A. Let Z be a smooth projective variety, f : Z → P1 a

flat morphism, and DZ ⊂ Z a reduced anti-canonical divisor with strict

normal crossings. Assume, moreover, that crit(f) does not intersect the

horizontal part of DZ, and that the vertical part of DZ coincides with

the scheme theoretic fiber f−1(∞) of f over ∞ ∈ P1. Then the versal

deformation space M(Z,f)DZ
of (Z, f)DZ

is smooth.
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This theorem can be viewed as an unobstructedness result for the
Calabi–Yau Landau–Ginzburg model (Y,w) where Y = Z − DZ, w =
f|Y : Y → A1. Indeed, the theorem asserts that if (Y,w) admits a com-
pactification (Z, f) with normal crossing boundary DZ, then the defor-
mations of (Y,w) that are “anchored at infinity”, i.e., the deformations
of the compactification that keep the boundary fixed, are unobstructed.
To prove Theorem A we identify the L∞-algebra that controls the de-
formation theory of (Z, f)DZ

and show in Theorem 2.10 that this L∞-
algebra is homotopy abelian. We argue that, as in the case of compact
Calabi–Yau manifolds, the latter statement can be reduced to a Hodge
theoretic property: the double degeneration property for the Hodge-to-
De Rham spectral sequence associated with the complex of f-adapted
logarithmic forms (see Definition 2.11). This double degeneration is
then established in Theorem 2.18.

The setup and conclusion of Theorem A are natural from the point
of view of mirror symmetry. To elaborate on this, note first that a
Landau–Ginzburg pair (Y,w) as above will typically arise as the mirror
of a symplectic manifold (X,ωX) underlying a projective Fano vari-
ety. Now the homological mirror symmetry conjecture predicts that the
Fukaya category Fuk(X,ωX) of (X,ωX) will be equivalent to the cat-
egory MF(Y,w) of matrix factorizations of the potential w : Y → A1.
In particular, the deformation theories of the Fukaya category and of
the category of matrix factorizations will be identified. The heuris-
tics motivating Theorem A comes from the comparison of the corre-
sponding moduli spaces. The versal deformation space of the Fukaya
category is manifestly smooth since it is an open cone in the space of
harmonic 2-forms on X. Thus mirror symmetry predicts that the versal
deformation space of the category of matrix factorizations will also be
smooth. Next recall [Orl04, Orl05, Orl12] that MF(Y,w) is the co-

product
∐

λ∈critw D
b
sing (Yλ) of the categories of singularities of the singu-

lar fibers of w. This interpretation indicates that flat deformations of the
geometric data (Y,w) will not necessarily give rise to flat deformations
of MF(Y,w). Indeed, when we deform (Y,w) geometrically, the singu-
larities of fibers of w can coalesce and more importantly can run away to
infinity. This will happen for instance if we deform a compactification of
(Y,w) so that some interior singular fiber gets absorbed in the fiber at in-
finity. Because of this phenomenon we will have flat families of Landau–
Ginzburg models which give us families of categories of matrix factor-
izations whose periodic cyclic homologies jump. This suggests that we
should only consider geometric deformations of (Y,w) that are anchored
at infinity. Indeed, if ((Z, f),DZ) is a compactification of (Y,w), then
the deformations of (Z, f) that fix the boundary divisor DZ will give de-
formations of (Y,w) without jumps in the global vanishing cohomology.
In this setting the corresponding categories of matrix factorizations will
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move in a flat family and we expect that the deformations of a compact-
ification with a fixed boundary will provide enough parameters to cover
the full versal deformation space MMF(Y,w) of the category MF(Y,w).
In fact, in the process of proving the double degeneration property The-
orem 2.18 we will check that, under the hypothesis of Theorem A, the
natural map of versal deformation spaces M(Z,f)DZ

→MMF(Y,w) is étale.

More precisely, it is not hard to see that the composition of the iso-
morphism constructed in Lemma 2.21 with Efimov’s comparison iso-
morphism [Efi12] can be identified with the differential of the map
M(Z,f)DZ

→MMF(Y,w) at the closed point. In particular, this differential

is an isomorphism and so the map is étale. Altogether this heuristic
reasoning explains why the unobstructedness of the deformation theory
of ((Z, f),DZ) is indeed the expected behavior.

Since the compactified Landau–Ginzburg model ((Z, f),DZ) plays a
central role in the above heuristics it is natural to expect that this com-
pactification should also have a mirror interpretation. A closer look
at the associated Hodge/de Rham data and the double degeneration
property of ((Z, f),DZ) suggests that the mirror of ((Z, f),DZ) is an an-
ticanonical pencil on the symplectic manifold (X,ωX ). In Section 3.2
we discuss this mirror picture in detail and compare the Hodge the-
oretic data appearing on the two sides of this extended mirror cor-
respondence. We use this analysis to explain how the commutative
pure Hodge structure of the compactified Landau–Ginzburg model aris-
ing from the double degeneration property can be reconstructed from
the non-commutative Hodge structure of the original Landau–Ginzburg
model (Y,w). Through the extended mirror symmetry picture we rewrite
this reconstruction process for the Fano mirror and use the resulting
structure to propose a definition of Hodge numbers for X which is for-
mulated entirely in symplectic terms.
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OISE-1242272 PASI grant from the National Science Foundation, by the
FWF grant P24572-N25, and by an ERC GEMIS grant. Tony Pantev
was partially supported by NSF Research Training Group Grant DMS-
0636606, and NSF research grants DMS-1001693 and DMS-1302242.
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2. Moduli of Landau–Ginzburg models

In this section we study variations of pure nc Hodge structures that
arise from universal families of Landau–Ginzburg models. We focus
on the components of the universal variation that encode geometric
properties of the Landau–Ginzburg moduli space and investigate the
Hodge theoretic input in the Landau–Ginzburg deformation theory.

The relevant class of Landau–Ginzburg models appears naturally in
the context of mirror symmetry for Fano manifolds. Since this context
is a primary source of examples for us, we recall it next.

2.1. Mirrors of Fano manifolds. Mirror symmetry is a duality that
identifies seemingly different two dimensional supersymmetric quantum
field theories. Geometrically such theories arise as linear or non-linear
sigma models with Kähler targets, or as Landau–Ginzburg models with
targets given by Kähler manifolds equipped with holomorphic super-
potentials. The mirror map matches the target geometries that pro-
duce mirror symmetric models into mirror pairs. Typically a sigma
model or a Landau–Ginzburg model with a given target geometry ad-
mits two topological twists – the A and B twists – each of which gives
rise to a category of boundary field theories or D-branes (see, e.g.,
[HKK+03, ABC+09]). According to the homological mirror conjec-
ture from [Kon95], the mirror correspondence can be generalized to an
identification of the categories of boundary field theories. Specifically
the homological mirror conjecture predicts that in a mirror pair, the
category of A-branes for one side of the pair must be equivalent to the
category of B-branes for the other side. Such an equivalence induces
non-obvious isomorphisms between the various invariants that one can
extract from the categories. In particular, we get a conjectural match-
ing of the cohomology of the two categories; matching of the nc Hodge
structures on the cohomology of the two categories; matching of the
deformation spaces of the two categories; and matching of the natural
variations of nc motives over these deformation spaces. We will ex-
ploit these conjectural identifications to deduce interesting predictions
for the properties of the moduli spaces and the Hodge theory of the
requisite geometric backgrounds and will eventually prove these predic-
tions directly. To set things up we begin by recalling the basic geometric
framework for the mirror correspondence.

We will indicate that two geometries (X, · · · ) and (Y, · · · ) are mirror
equivalent by writing (X, · · · ) | (Y, · · · ). Mirror pairs of geometries
fall naturally into three classes: mirror pairs of Calabi–Yau, Fano, and
general type. Here we will discuss in detail only the mirror pairs of Fano
type.

By definition a mirror pair of Fano type is a pair

(X,ωX , sX) | ((Y,w), ωY , volY ) ,
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where:
• X is a projective Fano manifold;
• (Y,w) is a holomorphic Landau–Ginzburg model consisting of a

quasi-projective Calabi–Yau manifold Y with dimC Y = dimCX = n,
and a surjective algebraic function w : Y → A1 with a compact critical
locus crit(w) ⊂ Y ;

• ωX ∈ A2
C(X) and ωY ∈ A2

C(Y ) are (complexified) Kähler forms
on X and Y ;

• sX ∈ H0(X,K−1
X ) is an anti-canonical section of X, and volY ∈

H0(Y,KY ) is a trivialization of the canonical bundle of Y , i.e., a holo-
morphic volume form on Y .

The anti-canonical section sX ∈ H0(X,K−1
X ) defines a Calabi–Yau

hypersurface DX = divisor(sX) ⊂ X and a nowhere vanishing section
sX|X−DX

∈ H0(X −DX ,K−1
X ). We will write volX−DX

= 1/sX for the
corresponding holomorphic volume form on X −DX .

Remark 2.1. Mirror pairs of Fano type can be qualified/refined in
different ways:

(i) Requiring that DX is smooth is mirrored by the requirement that
w is proper.

(ii) Requiring that DX has strict normal crossings is mirrored by the
requirement that the fibers of w are Zariski open subsets in pro-
jective (n− 1)-dimensional Calabi–Yau manifolds.

It is helpful to examine the shape of the geometry of a mirror pair
in examples. Many explicit and detailed descriptions of mirror pairs of
Fano type are discussed in, e.g., [Giv98, HV00, AKO08, AKO06,
Abo09]. Here we just briefly recall Givental’s picture [Giv98] of mir-
rors of projective spaces.

Example 2.2. The first instance of a Fano type mirror pair was de-
scribed by Givental [Giv98]. In the most basic setting X = Pn is a
projective space with homogeneous coordinates u0, . . . , un, ωX is the
Fubini–Studi form, DX ⊂ Pn is the union of the (n + 1) coordinate
hyperplanes, and sX is given by the product of the homogeneous coor-
dinate functions. On the mirror side Y = (C×)

n
is an n-dimensional

affine torus with coordinates z1, . . . , zn, the potential w : Y → A1 is
given by

w(z1, . . . , zn) =
n∑

i=1

zi +
1

z1 · · · zn
,

the symplectic form is

ωY =

n∑
i=1

1

|zi|2
dzi ∧ dz̄i,
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the point a is the point at infinity, i.e., a = ∞, and the holomorphic
volume form is

volY =
n∧

i=1

dzi
zi

.

If we change the setting so that on the left hand side of the pair DX is
not the toric divisor of Pn but rather is a smooth Calabi–Yau hypersur-
face, the mirror Y is a partial compactification of the torus so that w

becomes a proper map with n − 1 dimensional Calabi–Yau fibers. Ac-
cordingly the symplectic form ωY and holomorphic volume form volY
have to be extended to the compactification.

The mirror correspondence gives a non-trivial matching [HKK+03]
of the various ingredients of the mirror pair. The complexified Kähler
structure ωX is identified with a combination of the complex structure
on Y , the potential w, and the volume form volY . In the other direction
ωY is identified with a combination of the complex structure on X and
the section sX [HV00, HKK+03].

A Fano type mirror pair gives rise to a pair of mirror non-compact
Calabi–Yau manifolds:(

X −DX , ωX|X−DX
, volX−DX

)
| (Y, ωY , volY ) .

Under a convergence assumption on the quantum product on X the cat-
egory of A-branes for the background (X,ωX , sX) can be identified with
the Fukaya category Fuk(X,ωX ) of the symplectic manifold underlying
the Fano variety X [ABC+09]. Fuk(X,ωX) is a C-linear A∞ category
which is only Z/2-graded [FOOO09a, FOOO09b]. The category of B-
branes associated with (X,ωX , sX) is identified with a dg enhancement
of the bounded derived category Db(X) of coherent sheaves on X. We

will write Db(X) for this Z-graded C-linear dg category. There are many

choices for Db(X), e.g., the homotopy category of complexes of injective
OX -modules with coherent cohomology, or Block’s category of graded
C∞ complex vector bundles on X with (0, •) superconnections [Blo10].
By a theorem of Lunts and Orlov [LO10] all dg enhancements of Db(X)
are quasi-equivalent so one can work with any of those enhancements.
By definition D

b(X) depends only on the complex structure on X and
is independent of the complexified Kähler structure ωX or the section
sX . Both DX and sX are of course essential for defining the associated
Calabi–Yau pair and its categories of branes.

On the right hand side of the mirror pair the definition of the cate-
gories of branes is modified to incorporate the potential w. The cate-
gory of A-branes associated with the background ((Y,w), ωY , volY ) is the
Fukaya–Seidel category FS ((Y,w), ωY , volY ) [Sei08] and the category
of B-branes for ((Y,w), ωY , volY ) is defined as the category MF(Y,w) of
matrix factorizations of the holomorphic function w : X → A1 [Orl04,
KKP08, Orl12, LP11, Pre11, EP15]. By construction
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FS ((Y,w), ωY , volY ) is a C-linear Z-graded A∞ category. Again the
Z/2-folding of FS ((Y,w), ωY , volY ) depends only on the C∞ manifold
underlying Y , on the function w, and on the complexified symplec-
tic structure ωY while the Z-graded version FS ((Y,w), ωY , volY ) de-
pends also on volY viewed as a C∞ form on Y . Similarly MF(Y,w) is
a d(Z/2)graded C-linear category which depends only on the complex
structure of Y and on the holomorphic function w.

Homological mirror symmetry now predicts several conjectural equiv-
alences of categories of branes for the Fano mirror pair and for the as-
sociated Calabi–Yau mirror pair. These equivalences are summarized
in Table 1. In this table D

b
c denotes dg enhancements of the derived

categories of coherent sheaves with compact support and Fuk
wr denotes

the wrapped version of the Fukaya category [AS10, Abo12]. Addi-
tionally, our convention is that whenever the notation for a Fukaya
or a Fukaya–Seidel category includes a holomorphic volume form, the
objects of this category are graded spin Lagrangians or Lagrangian
thimbles, and so the category is Z-graded. In particular, aside from
Fuk(X,ωX) and MF(Y,w) all categories appearing in Table 1 are Z-
graded.

Table 1. Homological mirror symmetry for a mirror pair
(X,ωX , sX) | ((Y,w), ωY , volY )

of Fano type

A-branes B-branes

Fuk(X,ωX) MF(Y,w)

Fuk
wr(X −DX , ωX , volX−DX

) D
b(Y )

Fuk(X −DX , ωX , volX−DX
) D

b
c(Y )

��

HMS

��

B-branes A-branes

D
b(X) FS((Y,w), ωY , volY )

D
b(X −DX) Fuk

wr(Y, ωY , volY )

D
b
c(X −DX) Fuk(Y, ωY , volY )

��

HMS

��
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Remark 2.3. (i) Homological mirror symmetry predicts that the
equivalence

Fuk(X,ωX) ∼= MF(Y,w),

of Z/2-graded A∞ categories in Table 1 will respect the natural addi-
tional structures on these categories of branes. In particular, mirror
symmetry will respect the natural decompositions of these categories.
It is known from the work of Orlov [Orl04, Orl05, Orl12] that the
category of matrix factorizations decomposes

MF(Y,w) =
∐
λ∈A1

a critical value

of w

D
b
sing(Yλ),

into a sum of categories of singularities of the singular fibers of w.
Similarly (see [KKP08]) the Fukaya category of the Fano manifold

X decomposes

Fuk(X,ωX) =
∐
λ∈C

an eigenvalue

of c1(TX)∗1(•)

Fuk(X,ωX)λ,

corresponding to the eigenvalues of quantummultiplication1 with c1(TX)
on H•(X,C).

(ii) The equivalences of the categories of branes listed in Table 1 induce
respective mirror identifications of cohomology groups. For future ref-
erence we collect these identifications in Table 2. In this table Ysm ⊂ Y
denotes a smooth fiber of w : Y → A1 taken “near infinity” as explained
in [KKP08, Section 4.5.2(2)].

(iii) The B-to-A homological mirror correspondence in Table 1 can be
extended to one more case. Let Y−∞ denote the fiber w−1(z) over z ∈ C

with Re z � 0. We will also write ω−∞ for the restriction ωY |Y−∞ of
the symplectic form, and vol−∞ for the induced holomorphic volume
form on the fiber. The parallel transport for the Erhesmann symplectic
connection on w : Y → A1 identifies symplectically all fibers of w over
points z ∈ A1 with Re z � 0. So the dg category Fuk(Y−∞, ω−∞, vol−∞)
is well defined up to quasi-equivalence. Now, we can supplement Ta-
ble 1 by the statement that the category of perfect complexes (= the

1By assumption we are working here with a convergent version of the quantum
product ∗q . The value of q corresponding to the particular complex structure on Y
under the mirror map is normalized in the flat coordinates to be q = 1. This is why
we use the ∗1 quantum product in the decomposition above.
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Table 2. Matching of cohomology for a mirror pair
(X,ωX , sX) | ((Y,w), ωY , volY )

of Fano type

A-brane
charges

B-brane
charges

H• (X,C) H• (Y, Ysm;C)

H• (X −DX ,C) H•(Y,C)

H•
c (X −DX ,C) H•

c (Y,C)

��

HMS

��

B-brane
charges

A-brane
charges

H•(X,C) H•(Y, Ysm;C)

H•(X −DX ,C) H•(Y,C)

H•
c (X −DX ,C) H•

c (Y,C)

��

HMS

��

category of topological B branes) on the Calabi–Yau varietyDX is quasi-
equivalent to the Fukaya category (= the category o f A-branes) on the
fiber Y−∞:

B-branes A-branes

Perf (DX) Fuk (Y−∞, ω−∞, vol−∞)

��

HMS

��

Again this induces an identification of the associated brane charges,
i.e., of the periodic cyclic homologies of the two categories. Since
HP• (Perf(DX)) ∼= H•(DX ,C) and conjecturally

HP• (Fuk (Y−∞, ω−∞, vol−∞)) ∼= H•
c (Y−∞,C),

we get a mirror identification
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B-brane
charges

A-brane
charges

H•(DX ,C) H•
c (Ysm;C)

��

HMS

��

Note that it is not clear how to extend the A-to-B homological mirror
correspondence in a similar manner. If on the A-side we consider the
symplectic data

(
DX , ωX|DX

, volDX

)
, there is no obvious complex fiber

Yc of w : Y → A1 for which we can hope to get a quasi-equivalence
Fuk

(
DX , ωX|DX

, volDX

)
∼= D

b(Yc). The problem is that the mirror

of
(
DX , ωX|DX

, volDX

)
is normally understood in terms of the large

volume degeneration, so for an A-to-B mirror statement we will need
to understand the large complex structure degeneration of w : Y →
A1.

2.2. Families of Landau–Ginzburg models. As we explained in
Section 2.1 the mirror of a symplectic manifold underlying a Fano variety
is a quasi-projective Landau–Ginzburg model ((Y,w), volY ) equipped
with a holomorphic volume form. Such Landau–Ginzburg models ad-
mit a natural class of compactifications.

Definition 2.4. A compactified Landau–Ginzburg model is the
datum ((Z, f),DZ, volZ), where:

(a) Z is a smooth projective variety and f : Z→ P1 is a flat projective
morphism.

(b) DZ =
(
∪iD

h
i

)
∪
(
∪jD

v
j

)
⊂ Z is a reduced normal crossings divisor,

such that
– Dv = ∪jD

v
j is the reduced pole divisor of f, i.e.,

(
f−1(∞)

)
red

=
∪jD

v
j ;

– each component Dh
i of Dh = ∪iD

h
i is a smooth divisor which is

horizontal for w, i.e., w|Dh
i
is a flat projective morphism;

– the critical locus crit(f) ⊂ Z does not intersect Dh.
(c) volZ is a meromorphic section of KZ with no zeroes and with poles

at most at DZ, i.e., volZ ∈ H0 (Z,KZ(∗DZ)).

With every ((Z, f),DZ, volZ) we associate its ‘open part’ ((Y,w), volY )
where Y := Z −DZ, w : Y → A1 is defined to be the restriction w :=
f|Y of f to Y , and volY := volZ|Y is the restriction of volZ to Y . The
condition on volZ ensures that Y is a quasi-projective variety with a
trivial canonical class and that volY is a holomorphic volume form on
Y . The condition that the critical locus of f does not intersect the
horizontal part of DZ, in particular, implies that crit(w) is proper and
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so ((Y,w), volY ) is exactly the type of Landau–Ginzburg model that we
considered in the previous section.

In addition we will often require that the datum ((Z, f),DZ, volZ) sat-
isfies the following tameness assumption which bounds the orders of
poles of volZ and f along DZ:

(T)

ordDh
i
(volZ) = −1,

ordDh
i
(f) = 0,

ordDv
j
(volZ) = −1,

ordDv
j
(f) = −1,

for all i and j.

Remark 2.5. (i) The assumption that volZ has poles of order exactly
1 along all the components of DZ, in particular, implies that the reduced
divisor DZ is an anti-canonical divisor on Z and so (Z,DZ) is a log
Calabi–Yau pair.

Note also that if we start with a Calabi–Yau quasi-projective Landau–
Ginzburg model ((Y,w), volY ) and we choose a smooth normal-crossing
compactification f : Z → P1 of w : Y → A1, then the condition that
the holomorphic volume form has a first order pole along the divisor
at infinity is a tight constraint which is rather unnatural since it is not
invariant under semi-stable reduction. Nevertheless, this condition is of-
ten satisfied in mirror symmetry examples and so it is not unreasonable
to impose.

(ii) The assumption that w has first order poles at the vertical bound-
ary divisor Dv, i.e., that the scheme theoretic fiber f−1(∞) is actually
reduced, is more natural and can be justified by mirror symmetry con-
siderations.

Indeed, if f−1(∞) =
∑

j mjD
v
j , then by Landman’s theorem [Lan73]

we know that the least common multiple m of the mj’s is the order
of the semi-simple part of the local monodromy transformation around
infinity. Concretely, choose a small disk Δ ⊂ P1 centered at ∞ ∈ P1

and such that ∞ is the only critical value of f in Δ. Fix a base point
c0 ∈ ∂Δ, and orient ∂Δ with the orientation on Δ. Consider the mon-
odromy transformation monc0 : H

•(Zc0 ,C)→ H•(Zc0 ,C) corresponding
to going around ∂Δ once in the positive direction. By Landman’s the-
orem monc0 is a quasi-unipotent operator and the minimal power of

monc0 which is unipotent is m. In other words
(
monmc0 − id

)n−1
= 0,

where n = dimC Y , and m is the minimal number with this property.
Similarly, going once around ∂Δ gives a monodromy transformation
T : H•(Y, Yc0 ;C) → H•(Y, Yc0 ;C). From our assumption on equi-
singularity of Dh and from the compatibility of the long exact sequence
of the pair with the action of monodromy we get that T will also be
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quasi-unipotent with eigenvalues which are m-th roots of unity with at
least one eigenvalue being a primitive m-th root of unity. Next observe
that the cycle class map that assigns a relative cohomology class in
H•(Y, Yc0 ;C) to each Lefschetz thimble will identify the periodic cyclic
homology HP•(FS((Y,w), ωY , volY )) of the Fukaya–Seidel category with
H•(Y, Yc0 ;C). From this point of view the operator T is induced from
the inverse of the monodromy auto-equivalence of FS((Y,w), ωY , volY ).
When ((Y,w), ωY , volY ) is the mirror of a Fano datum (X,ωX , sX), the

mirror equivalence (see Table 1) FS((Y,w), ωY , volY ) ∼= D
b(X) identi-

fies the monodromy auto-equivalence with the Serre functor ⊗KX [n] :

D
b(X) → D

b(X). But on cohomology H•(Y, Yc0 ;C)
∼= H•(X,C) the

Serre functor induces multiplication with exp ((−1)nc1(KX)). In other
words T is a unipotent operator, and so we must have m = 1. For fu-
ture reference note that this mirror symmetry description also predicts
that under the identification H•(X,C) ∼= H•(Y, Yc0 ;C) the nilpotent
endomorphism

((−1)nc1(KX)) ∪ (•) : H•(X,C)→ H•(X,C),

becomes identified with the logarithm of monodromy:

− log T : H•(Y, Yc0 ;C)→ H•(Y, Yc0 ;C).

(iii) It is possible and useful to allow for Dv to be a smooth divisor,
i.e., for∞ not to be a critical value of f. Such Landau–Ginzburg models
arise naturally as mirrors of quasi-Fano varieties and can be studied in
the same manner.

Our goal is to understand the moduli spaces of compactified com-
plex Landau–Ginzburg models satisfying the tameness assumption. If
such a model ((Z, f),DZ, volZ) compactifies the mirror of a Fano datum
(X,ωX , sX), then its moduli space will be identified with the symplec-
tic moduli of (X,ωX) and in fact will look like a conical open subset
in H2(X,C) ⊕ H0(X,C). In particular, when ((Z, f),DZ, volZ) arises
from a mirror situation, we expect its moduli space to be smooth. This
motivates the following purely algebraic–geometric statement:

Theorem 2.6. Let ((Z, f),DZ, volZ) be a compactified Landau–Ginz-

burg model satisfying the tameness assumption (T) and the assumption

H1(Z,Q) = 0. Then the deformation theory of ((Z, f)DZ
, volZ) is unob-

structed.

Remark 2.7. The requirement that H1(Z,Q) = 0 is a technical
requirement that simplifies the Teichmüller theory of Z. It is very likely
unnecessary but we will not pursue this here.

Theorem 2.6 extends the classical unobstructedness results of Bogo-
molov [Bog79, Bog81], Tian [Tia87], and Todorov [Tod89] to the
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setup of log Calabi–Yau varieties with potentials. It also gives the fol-
lowing more direct generalization of Bogomolov–Tian–Todorov unob-
structedness:

Corollary 2.8. Let Z be a smooth projective variety of dimension n
satisfying H1(Z,Q) = 0 and such that the anti-canonical linear system

on Z gives a flat projective morphism f : Z→ P1. Then the deformation

theory of Z is unobstructed.

Proof. By assumption the variety Z determines the morphism f : Z→
P1. Let DZ ⊂ Z be a smooth anti-canonical divisor in Z. And let volZ be
a trivialization of KZ(DZ). Then the datum ((Z, f),DZ, volZ) is a tame
compactified Landau–Ginzburg model satisfying the hypotheses of The-
orem 2.6. Locally in the analytic topology the versal deformation space
of the datum ((Z, f),DZ, volZ) is the product of the versal deformation
space of Z and the moduli of pairs (DZ, volZ) for a fixed Z. But the
moduli of such pairs is isomorphic to (P1 − crit(f))× C× and is, there-
fore, smooth. Combined with the unobstructedness of Theorem 2.6 this
implies that the deformations of Z are unobstructed. q.e.d.

Remark 2.9. If Z satisfies the conditions of Corollary 2.8, then the
family f : Z → P1 is classified by a holomorphic map from P1 to the
compactified moduli space of (n−1)-dimensional projective Calabi–Yau
varieties. By the classical Bogomolov–Tian–Todorov theorem [Tia87,
Tod89] we know that the moduli space M of (n− 1)-dimensional pro-
jective Calabi–Yau varieties is smooth. By Corollary 2.8 we know that
a certain component M1 of the moduli space of rational curves in M
is also smooth. Considerations of mirrors of hybrid Landau–Ginzburg
models suggest that this process can be iterated: a component M2 of
the moduli of rational curves in a compactification M1 will be smooth,
and so on. It will be very interesting to analyze this problem from
purely algebraic–geometric point of view and to construct iteratively
the sequence of L∞ algebras controlling the corresponding deformation
problems.

Before we proceed with the proof of Theorem 2.6 we will need to
establish some general facts about the deformation theory of varieties
with potentials.

2.3. Deformations of compactified Landau–Ginzburg models.
Let ((Z, f),DZ, volZ) be a compactified Landau–Ginzburg model satisfy-
ing H1(Z,Q) = 0 and the tameness condition (T). Since H1(Z,Q) = 0
implies Pic0(Z) = 0 and since the Neron–Severi class [DZ] ∈ H2(Z,Z)
is preserved under small deformations of Z, it follows that the con-
dition DZ ∈ |K

−1
Z | is also preserved under small deformations of the

pair (Z,DZ). By (T) the meromorphic volume form volZ is a trivial-
ization of the line bundle KZ(DZ) and so the versal deformation space
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of ((Z, f)DZ
, volZ) is a principal C×-bundle over the versal deformation

space of (Z, f)DZ
. Therefore, it suffices to prove the unobstructedness of

the deformation theory of (Z, f)DZ
.

As usual the deformation theory of (Z, f)DZ
is controlled by an L∞

algebra [KS05, Hin01, KS09, Lur11]. By standard Kodaira–Spenser
theory the deformations of the map f : Z → P1 are computed [Ill71,
Ill72, Hor74, Ser06] by the sheaf of dg Lie algebras

[ TZ
df �� f∗TP1

0 1

].

Here f∗TP1 denotes the O-module pullback, and this is a complex of lo-
cally free coherent sheaves with an OZ-linear differential and C-bilinear
(graded) Lie bracket.

Similarly the deformations of f : Z→ P1 which preserve the boundary
divisor DZ are computed by the sheaf of dg Lie algebras

g• := [ TZ,DZ

df �� f∗TP1,∞

g0 g1

],

where for any smooth variety M and any closed reduced subscheme
S ⊂M we write TM,S for the coherent sheaf of vector fields on M that
are tangent to S at the points of S. Since DZ ⊂ Z and {∞} ⊂ P1

are reduced normal crossings divisors, it follows that TZ,DZ
⊂ TZ and

TP1,∞ ⊂ TP1 are locally free subsheaves.
Recall (see, e.g., [GM90,KS05,Man04]) that the unobstructedness

of the deformation theory defined by an L∞ algebra follows from the
stronger property that this L∞ algebra is homotopy abelian. Therefore,
Theorem A and Theorem 2.6 will follow immediately from the following:

Theorem 2.10. Suppose ((Z, f),DZ, volZ) is a compactified Landau–

Ginzburg model satisfying the tameness condition (T). Then the L∞
algebra

RΓ(Z,g•) = RΓ

(
Z,

[
TZ,DZ

df ��f∗TP1,∞

])
is homotopy abelian.

As in the compact Calabi–Yau case we will deduce Theorem 2.10 from
a Hodge theoretic statement – the degeneration of a “Hodge-to-de Rham
spectral sequence” associated with the divisor DZ and the potential f.
Our main tool here is a new complex of logarithmic forms adapted to f:

Definition 2.11. Let ((Z, f),DZ) be a compactified Landau–Ginzburg
model satisfying the conditions Definition 2.4(a) and Definition 2.4(b).
For any a ≥ 0 we define the sheaf Ωa

Z (logDZ, f) of f-adapted loga-
rithmic forms on (Z,DZ) as the subsheaf of logarithmic a-forms that
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stay logarithmic after multiplication by df. Thus

Ωa
Z (logDZ, f) :=

{
α ∈ Ωa

Z (logDZ)
∣∣ df ∧ α ∈ Ωa+1

Z (logDZ)
}

⊂ Ωa
Z (logDZ) ,

where f is viewed as a meromorphic function on Z and df is viewed as a
meromorphic one form.

The sheaves Ωa
Z (logDZ, f) have several interesting properties. As a

first remark we have the following:

Lemma 2.12. (a) The sheaf Ωa
Z (logDZ, f) of f-adapted logarithmic

forms is a coherent OZ-module which is locally free of rank equal

to rank Ωa
Z =

(n
a

)
.

(b) Suppose ε : Ẑ→ Z is a blow-up of Z with smooth center contained

in Dv and cleanly intersecting each component of Dv. Let D̂
Ẑ
=

ε∗DZ and f̂ = ε∗f denote the pullbacks of the divisor and potential

to Ẑ. Then Rε∗Ω
a
Ẑ

(
log D̂

Ẑ
, f̂
)
= Ωa

Z (logDZ, f).

Proof. Indeed, let jY : Y ↪→ Z denote the inclusion of Y in Z. By
definition Ωa

Z (logDZ, f) is the preimage of the coherent OZ-submodule

Ωa+1
Z (logDZ) ⊂ jY ∗Ω

a+1
Y under the OZ-linear map

df∧ : Ωa
Z (logDZ)→ jY ∗Ω

a+1
Y .

Thus Ωa
Z (logDZ, f) is a torsion-free coherent submodule in Ωa

Z (logDZ)
of maximal rank.

The fact that Ωa
Z (logDZ, f) is locally free can be checked locally an-

alytically on Z.
On the open set Y ⊂ Z we have by definition Ωa

Z (logDZ, f)|Y =

Ωa
Y and so it is locally free. Furthermore, if p ∈ Dh − Dv, then df is

holomorphic in a neighborhood of p. This implies that near p we have
that Ωa

Z (logDZ, f) is isomorphic to Ωa
Z (logDZ) and so is locally free.

Suppose next p ∈ Dv. We can find local analytic coordinates z1, . . . , zn
centered at p so that in a neighborhood of p:

• the divisor Dv is given by
∏k

i=1 zi = 0, the divisor Dh is given by∏k+l
1=k+1 zi = 0;

• the potential f is given by f(z1, . . . , zn) =
1

zm1

1 · · · zmk
k

for some

mi ≥ 1.

Now for any a we have Ωa
Z (logDZ) = ⊕a

p=0 ∧
p V ⊗ ∧a−pR, where

V ⊂ Ω1
Z (logDZ) is the sub O-module spanned by {d log zi}

k
i=1, while

R ⊂ Ω1
Z (logDZ) is the sub O-module spanned by {d log zi}

k+l
i=k+1 and

{dzi}
n
i=k+l+1.

Since df only has poles at the components of Dv, the condition that a
logarithmic form α =

∑
p νp⊗ρa−p ∈ Ωa

Z (logDZ) = ⊕
a
p=0∧

p V ⊗∧a−pR
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is f-adapted will only impose constraints on the pieces νp ∈ ∧
pV . Thus

it is enough to understand which local sections of ∧pV are f-adapted.
Write W ⊂ V for the sub O-module spanned by {d log zi}

k−1
i=1 . In

particular,

V = W ⊕O · d log zk, and ∧p V = ∧pW ⊕
(
∧p−1W ∧ d log zk

)
,

and so given any ν ∈ ∧pV , we can write ν and df ∧ ν uniquely as

ν = η + β ∧ d log zk, with η ∈ ∧pW, and β ∈ ∧p−1W,

df ∧ ν = ϕ+ ψ ∧ d log zk, with ϕ ∈ (∧p+1W )(∗Dv), and

ψ ∈ (∧pW )(∗Dv).

We have df = f·d log f. The logarithmic 1-form d log f also decomposes as

d log f = ω−mkd log zk where ω = −
∑k−1

i=1 mid log zi is itsW -component.
This gives

ϕ = f · ω ∧ η,

ψ = f · (ω ∧ β − (−1)pmkη) .

In particular, we can solve for η in terms of ψ and β. The condition that
ν is f-adapted is simply the condition that ϕ ∈ ∧p+1W and ψ ∈ ∧pW .
But for any ψ ∈ ∧pW and any β ∈ ∧p−1W the form

η =
1

(−1)pmk
·

(
ω ∧ β −

1

f
· ψ

)
,

automatically satisfies η ∈ ∧pW and

f · ω ∧ η = −
1

(−1)pmk
· ω ∧ ψ ∈ ∧p+1W.

In other words ν is f-adapted if and only if we can find a form ψ ∈ ∧pW
and a form β ∈ ∧p−1W so that

ν =
1

(−1)pmk
·

[
d log f ∧ β −

1

f
· ψ

]
.

This shows that the subsheaf ∧pV ∩ Ωp
Z (logDZ, f) in ∧

pV consisting of
f-adapted forms is given by

∧pV ∩ Ωp
Z (logDZ, f) =

1

f
∧p W ⊕ d log f ∧

(
∧p−1W

)
.

In particular, ∧pV ∩Ωp
Z (logDZ, f) is locally free and hence Ωa

Z (logDZ, f)
is locally free. Explicitly
(2.3.1)

Ωa
Z (logDZ, f) =

a⊕
p=0

[
1

f
∧p W

⊕
d log f ∧

(
∧p−1W

)]⊗
∧a−pR.

This completes the proof of part (a) of the lemma. Part (b) follows
immediately from the formula (2.3.1), the description of the exceptional
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divisor of ε : Ẑ → Z as a projectivized normal bundle, and the Euler
sequence of this projective bundle. q.e.d.

Remark 2.13. The f-adapted logarithmic forms are equipped with
two natural differentials of degree one:

• the de Rham differential d : Ωa
Z (logDZ, f)→ Ωa+1

Z (logDZ, f), and

• the differential df∧ : Ωa
Z (logDZ, f)→ Ωa+1

Z (logDZ, f).

Note that by definition the differential df∧ is OZ-linear, while the de
Rham differential satisfies the Leibnitz rule as usual. Note also that
for any complex numbers c1 and c2 the linear combination c1d+ c2df∧
is also a differential and so we get a family of complexes of f-adapted
logarithmic forms

(2.3.2) (Ω•Z (logDZ, f) , c1d+ c2df∧) ,

parametrized by (c1, c2) ∈ C2.

The previous discussion connects directly to the L∞-algebra RΓ(Z,g•)
since in the Calabi–Yau case we can use the holomorphic volume form
to convert f-adapted logarithmic forms to poly-vector fields. Suppose
((Z, f),DZ, volZ) is a compactified Landau–Ginzburg model. The con-
traction with the meromorphic volume form gives a map of OZ-modules

(2.3.3) ιvolZ(•) : ∧aTZ
�� jY ∗Ω

n−a
Y ,

ξ � �� ιvolZ(ξ).

The preimage of Ωn−a
Z (logDZ, f) under the map (2.3.3) will be a coher-

ent subsheaf in ∧aTZ. Furthermore, when ((Z, f),DZ, volZ) satisfies the
tameness condition (T), the explicit description of the local frames of
Ωn−a
Z (logDZ, f) above gives that

(∧aTZ) (− logDZ, f) := (ιvolZ(•))
−1 (Ωn−a

Z (logDZ, f)
)

is a locally free subsheaf of maximal rank in ∧aTZ, and that ιvolZ induces
an isomorphism between (∧aTZ) (− logDZ, f) and Ωn−a

Z (logDZ, f).

With this notation we now have the following:

Lemma 2.14. Let ((Z, f),DZ, volZ) be a compactified LandauGinzburg

model satisfying the tameness assumption (T). Then the subsheaf

(∧•TZ) (− logDZ, f) ⊂ ∧
•TZ

is closed under the Nijenhuis–Schouten bracket on ∧•TZ.

Proof. Recall that the Nijenhuis–Schouten bracket on polyvector fields
is a degree (−1) bracket that extends the Lie bracket, acts as a graded
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derivation for the wedge product, and is given on decomposable polyvec-
tor fields by

[g, ξ1 ∧ · · · ∧ ξa] = ιdg (ξ1 ∧ · · · ∧ ξa) ,

[ξ1 ∧ · · · ∧ ξa,η1 ∧ · · · ∧ ηb] =
∑
i,j

(−1)i+j [ξi, ηj ]

∧
(
ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξa

)
∧ (η1 ∧ · · · ∧ η̂j ∧ · · · ∧ ηb) ,

(2.3.4)

for all g ∈ OZ, and all ξi, ηj ∈ TZ.
The statement of the lemma is local on Z and is obvious away from

the points of Dv. Indeed, away from Dv we have that Ωn−a
Z (logDZ, f)

is isomorphic to Ωn−a
Z (logDZ). Since volZ has first order poles along

the components of DZ this implies that on Y − Dv we have an iso-
morphism (∧aTZ) (− logDZ, f) ∼= ∧aTZ,DZ

. Since the subsheaf TZ,DZ
⊂

TZ is preserved by the Lie bracket we get that away from Dv the
subsheaf (∧aTZ) (− logDZ, f) is preserved by the Nijenhuis–Schouten
bracket.

Suppose next p ∈ Dv. As before we choose local coordinates z1, · · · , zn
centered at p so that near p we have:

• Dv : z1 · · · zk = 0, Dh : zk+1 · · · zk+l = 0;

• f(z1, . . . , zn) =
1

z1z2 · · · zk
;

• volZ =
dz1 ∧ · · · ∧ dzn

z1 · · · zk+l
.

Using this formula for volZ and the description (2.3.1) of the sheaf
of f-adapted logarithmic forms, it is straightforward to compute
(∧aTZ) (− logDZ, f). Let

M = SpanOZ

(
z1

∂

∂z1
, . . . , zk−1

∂

∂zk−1

)
⊂ TZ,DZ

,

N = SpanOZ

(
zk+1

∂

∂zk+1
, . . . , zk+l

∂

∂zk+l
,

∂

∂zk+l+1
, . . . ,

∂

∂zn

)
⊂ TZ,DZ

.

In terms of these sheaves we have

(∧aTZ) (− logDZ, f)

=

a⊕
p=0

[(
1

f
∧p−1 M ∧ zk

∂

∂zk

)
⊕(

ιd log f

(
∧pM ∧ zk

∂

∂zk

))]⊗
∧a−pN.

(2.3.5)
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From the formulas (2.3.4) it is now immediate that (∧•TZ) (− logDZ, f)
is preserved by the Nijenhuis–Schouten bracket. q.e.d.

Example 2.15. It is instructive to examine more carefully the sim-
plest case of a one dimensional compactified Landau–Ginzburg model.
Near a point p of Dv we can choose a local coordinate z on Z so that
f(z) = z−1, volZ = dz/z. Then locally near p we get

Ω•Z (logDZ) = OZ · 1⊕OZ ·
dz

z
;

Ω•Z (logDZ, f) = OZ · z ⊕OZ ·
dz

z
;

∧•TZ,DZ
= OZ · 1⊕OZ · z

∂

∂z
;

(∧•TZ) (− logDZ, f) = OZ · 1⊕OZ · z
2 ∂

∂z
.

Using Lemma 2.14 we can organize the f-adapted polyvector fields
into a sheaf of dg Lie algebras. For any 1− n ≤ b ≤ 1 set

Gb :=
(
∧−b+1TZ

)
(− logDZ, f) .

The sheaves Gb fit together with the Nijenhuis–Schouten bracket [•, •]
and the differential [f, •] = ιdf into a sheaf of dg Lie algebras

(G•, [f, •]) :=

[
G1−n [f,•] �� G2−n [f,•] �� · · ·

[f,•] �� G0 [f,•] �� G1
]

(1− n) (2− n) · · · 0 1

This sheaf of dg Lie algebras is directly related to our unobstructedness
problem. Indeed, note that any stupid truncation of (G•, [f, •]) will be
a subsheaf of dg Lie algebras. In particular, we have a subsheaf of dg
Lie algebras[

G0 [f,•]
��G1

]
= σ≥0 (G

•, [f, •]) ↪→ (G•, [f, •]) .

On the other hand this subsheaf maps naturally to the sheaf of dg Lie

algebras g• =

[
g0 df ��g1

]
that controls our deformation problem. So

we get a diagram

(2.3.6) σ≥0 (G
•, [f, •])

�����
��
��
��
��

����
���

��
���

��

g• (G•, [f, •])
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of sheaves of dg Lie algebras. In fact (2.3.6) is a roof diagram. More
precisely we have the following:

Proposition 2.16. The natural map of sheaves of dg Lie algebras

(2.3.7)

[
G0 [f,•] ��G1

]
→

[
g0 df ��g1

]
is an L∞ quasi-isomorphism.

Proof. The question is local on Z. From the definition of G• it is clear
that the map (2.3.7) is actually an isomorphism away from Dv. Thus it
only remains to check the statement locally near a point p ∈ Dv.

Choose local coordinates z1, . . . , zn as in the proof of Lemma 2.14. In
terms of these coordinates we can describe our dg Lie algebras explicitly.
For the sheaves of f-adapted poly vector fields we have

G0 =

⎧⎪⎨⎪⎩
∑k

i=1 gi
zi∂
∂zi

+
∑k+l

j=k+1 g
′
j
zj∂
∂zj

+
∑n

s=k+l g
′′
s

∂
∂zs

∣∣∣∣∣∣∣
gi, g

′
j , g

′′
s ∈ OZ, and

k∑
i=1

gi ∈ z1 · · · zkOZ

⎫⎪⎬⎪⎭ ,

G1 = OZ.

The differential [f, •] = ιdf : G
0 →G1 is given explicitly by the formula

(2.3.8) G0 [f,•] �� G1,

(g, g′, g′′) �� g1 + g2 + · · ·+ gk
g1 · g2 · · · · · gk

.

We have an analogous local description of the deformation theory dg
algebra:

g0 =

⎧⎨⎩
k∑

i=1

gi
zi∂

∂zi
+

k+l∑
j=k+1

g′j
zj∂

∂zj
+

n∑
s=k+l

g′′s
∂

∂zs

∣∣∣∣∣∣ gi, g
′
j, g

′′
s ∈ OZ

⎫⎬⎭ ,

g1 =
1

z1 · · · · · zk
OZ = f∗TP1,∞

∼= f∗OP1(1).

The differential g0 → g1 is again given by the formula (2.3.8) and the
map of dg Lie algebras

[
G0 →G1

]
→

[
g0 → g1

]
is given by the natural

inclusions G0 ⊂ g0, G1 ⊂ g1. Thus we get a short exact sequence of
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complexes

0 �� G0 ��

[f,•]

		

g0 ��

df

		

OZ/ (z1 · · · zkOZ) ��

1

z1···zk
		

0

0 �� G1 �� g1 ��
(

1
z1···zk

OZ

)
/OZ

�� 0

Since the last vertical map is clearly an isomorphism, this implies that[
G0 →G1

]
→

[
g0 → g1

]
is a quasi-isomorphism. q.e.d.

Proposition 2.16 and the roof diagram 2.3.6 suggest that the unob-
structedness statement in Theorem 2.10 is related to the unobstructed-
ness of the L∞ algebra RΓ(Z, (G•, [f, •])). In fact the standard formality
yoga for L∞ algebras allows us to deduce Theorem 2.10 from a stronger
double degeneration statement for the cohomology of a two parameter
family of L∞ algebras. Specifically let divvolZ = ι−1volZ

◦ d ◦ ιvolZ : Ga →

Ga+1 denote the divergence operator associated with volZ. Note that
by definition the differentials [f, •] and divvolZ anticommute and so for
any pair of complex numbers (c1, c2) we will get a well defined com-
plex RΓ (Z, (G•, c1 divvolZ +c2[f, •])). With this notation we now have
the following:

Proposition 2.17. Suppose that

(2.3.9) For all a the dimension

dimC Ha (Z, (G•, c1 divvolZ +c2[f, •])) is

independent of (c1, c2) ∈ C2.

Then RΓ(Z,g•) is homotopy abelian.

Proof. By Proposition 2.16 we deduce that the L∞ algebra RΓ (Z,g•)
is homotopy abelian (i.e., unobstructed) if and only if the L∞ algebra

RΓ

(
Z,

[
G0 [f,•] ��G1

])
is homotopy abelian. Now in view of [KKP08,

Proposition 4.11(ii)] this reduces2 the unobstructedness statement in
Theorem 2.10 to showing that

(1) The L∞ algebra RΓ (Z, (G•, [f, •])) is homotopy abelian;
(2) The induced map

RΓ (Z, σ≥0 (G
•, [f, •]))→ RΓ (Z, (G•, [f, •]))

is injective on cohomology.

2In [KKP08] Proposition 4.11 is formulated and proven for d(Z/2) graded alge-
bras. However, the statement of the proposition and its proof transfer verbatim to
the d(Z)graded case, and we use this d(Z)graded version here.
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First note that the stupid filtration σ≥•(G
•, [f, •)) gives rise to a spec-

tral sequence which abuts to the spaces Ha (Z, (G•, [f, •])). By assump-
tion dimC Ha (Z, (G•, c[f, •])) is independent of c ∈ C and thus this
spectral sequence will degenerate at E1. This implies that

Ha (Z, σ≥k (G
•, [f, •]))→ Ha (Z, (G•, [f, •]))

is injective for all k and, in particular, property (2) holds.
To prove property (1) we consider the flat family of L∞ algebras over

C [[�]] given by k := RΓ(Z, (G• [[�]] , � · divvolZ +[f, •])). According to
[KKP08, Proposition 4.11(i)] it suffices to check that k satisfies:

(A) k⊗C[[�]] C ((�)) is homotopy abelian over C ((�)), and
(B) H• (k, dk) is a flat C [[�]]-module.

Condition (B) follows immediately from the flatness assumption (2.3.9).
To check condition (A) we will use an observation from [BK98]: the
map k ⊗C[[�]] C ((�)) → k ⊗C[[�]] C ((�)), given by γ �→ exp(γ/�), is a
quasi-isomorphism between k ⊗C[[�]] C ((�)) and an abelian dg algebra
over C ((�)). The proposition is proven. q.e.d.

Proposition 2.17 finishes the proofs of Theorem 2.10 and Theorem 2.6
modulo the flatness assumption (2.3.9). Converting back to f-adapted
logarithmic forms via ιvolZ the assumption (2.3.9) is equivalent to the
statement that the dimension of the hypercohomology

H•(Z, (Ω•Z(logDZ, f), c1d+ c2df∧))

is independent of (c1, c2) ∈ C2. We investigate this Hodge theoretic
statement in the next section.

2.4. The double degeneration property. In this section we com-
plete the proof of the unobstructedness Theorem 2.6 by establishing the
double degeneration property for the complex (2.3.2) of f-adapted log-
arithmic forms associated with a compactified tame Landau–Ginzburg
model which is not necessarily of log Calabi–Yau type. An alternative
proof and a generalization of this statement can be found in the re-
cent work of Esnault–Sabbah–Yu [ESY13]. For the convenience of the
reader we give our original argument here.

Theorem 2.18. Let ((Z, f),DZ) be geometric datum where

(a) Z is a smooth projective variety, and f : Z→ P1 is a flat projective

morphism.

(b) DZ =
(
∪iD

h
i

)
∪ (∪jD

v
i ) is a reduced normal crossing divisor, such

that

– Dv = ∪jD
v
j is the pole divisor of f, i.e., Dv = f−1(∞) is the

scheme-theoretic fiber of f at ∞ ∈ P1.

– crit(f) ∩Dh
Z = ∅.
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Then the following flatness property holds:

(2.4.1)
For all a ≥ 0 dimC Ha (Z, (Ω•Z(logDZ, f), c1d+ c2df∧)) is in-

dependent of (c1, c2) ∈ C2.

Proof. We will obtain the proof by checking the constancy of dimen-
sion of cohomology along various lines in C2. First we have the following:

Lemma 2.19. For every ((Z, f),DZ) satisfying the hypothesis if the

theorem and every a ≥ 0 we have

dimC Ha(Z, (Ω•Z(logDZ, f), d)) = dimC Ha(Z, (Ω•Z(logDZ, f), 0))

=
∑

i+j=a

dimCH i(Z,Ωj
Z(logDZ, f)).

(2.4.2)

In particular, the spectral sequence corresponding to the stupid filtration

on (Ω•Z(logDZ, f), d) degenerates at E1.

Proof. We will use the method of Deligne–Illusie [DI87,EV92, Ill02].
Here we only sketch the necessary modifications that make the method
applicable to f-adapted logarithmic forms. More details can be found in
the Esnault–Sabbah–Yu writeup in [ESY13, Appendix D].

By the standard spreading-out argument of [DI87, EV92, Ill02] it
suffices to check the E1 degeneration of the spectral sequence

(2.4.3) H i(Z,Ωj
Z/k(logDZ, f))⇒ Hi+j(Z, (Ω•Z/k(logDZ, f), d)),

in the case when the geometric datum ((Z, f),DZ) satisfying the hy-
potheses of the lemma is defined over a perfect field k of characteristic
p > dimX and admits a smooth lift to characteristic 0 (or at least to
the second Witt vectors W2(k) of k).

Write ((Z′, f′),D′
Z′
) for the Frobenius twist of the datum ((Z, f),DZ).

In other words ((Z′, f′),D′
Z′
) is the base change of ((Z, f),DZ) by the

absolute Frobenius map ϕ : Speck → Speck. Let Φ : ((Z′, f′),D′
Z′
) →

((Z, f),DZ) be the base change map and let

Fr : ((Z, f),DZ)→ ((Z′, f′),D′Z′)

denote the induced relative Frobenius morphism over k.
The base change property for algebraic differential forms combined

with the fact that Fr is a homeomorphism, and with the local de-
scription (2.3.1) of f-adapted forms implies that we have canonical iso-

morphisms Φ∗H i
(
Z,Ωj

Z/k(logDZ, f)
)
∼= H i

(
Z′,Ωj

Z′/k
(logDZ′ , f

′)
)

and

Ha
(
Z′,Fr∗

(
Ω•
Z/k(logDZ, f), d

))
= Ha

(
Z,

(
Ω•
Z/k(logDZ, f), d

))
. This

gives equality of dimensions of these matching cohomology groups and so
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the E1 degeneration of (2.4.3) will follow immediately (see, e.g., [Ill02,

Section 4.8]) if we can show that the complex Fr∗

(
Ω•
Z/k(logDZ, f), d

)
is formal as an object in the derived category of quasi-coherent OZ′-
modules.

To that end, recall [Car57, Kat70] that the (inverse) Cartier map
defined by γ(Φ∗z) = zp and γ(dΦ∗z) =

[
zp−1dz

]
on a local function z on

Z, extends uniquely by multiplicativity and gives rise to an isomorphism

γ :
⊕

a≥0 Ω
a
Z′/k

(logD′
Z′
)

∼= ��
⊕

a≥0 H a
(
Fr∗

(
Ω•
Z/k(logDZ), d

))
,

of sheaves of super commutative algebras over OZ′ .
Using the explicit local description (2.3.1) of the f-adapted logarith-

mic forms one checks immediately that γ also restricts to an isomor-
phism
(2.4.4)

γ :
⊕

a≥0 Ω
a
Z′/k

(logD′
Z′
, f)

∼= ��
⊕

a≥0 H a
(
Fr∗

(
Ω•
Z/k(logDZ, f), d

))
,

of sheaves of super commutative algebras over OZ′ .
In view of the isomorphism (2.3.1) the formality of

Fr∗

(
Ω•
Z/k(logDZ, f), d

)
as an object in D(Z′) is equivalent to the ex-

istence of a morphism in D(Z′):

for :
⊕

a≥0 Ω
a
Z′/k

(logD′
Z′
, f′)[−a] �� Fr∗

(
Ω•
Z/k(logDZ, f), d

)
,

which induces γ on cohomology sheaves. Following [DI87] the con-
struction of for can be carried out in three stages. Fix a lift ((Z, f),DZ)
over W2(k). We abuse notation and again write ϕ : SpecW2(k) →
SpecW2(k) for the absolute Frobenius. Similarly we will write(
(Z′, f′),D′Z′

)
for the pullback of ((Z, f),DZ) via ϕ and will write Φ :

Z′ → Z for the base change map.
As a first step suppose that the relative Frobenius Fr : Z→ Z′ admits

a global lifting to a morphism Fr : Z→ Z′ of W2(k)-schemes which, fur-
thermore, satisfies Fr∗(f′) = fp and Fr∗OZ′

(
D′Z′

)
= OZ (p ·DZ). With

such a lifting we associate a formality morphism forFr as follows:

• For a = 0 we set for0Fr = Fr∗ : OZ′ → Fr∗OZ;

• For a = 1 we set for1Fr = ((1/p) · Fr∗ mod p) viewed as a map

for1Fr : Ω
1
Z′/k

(
logD′

Z′
, f′

)
→ Fr∗ Ω

1
Z/k (logDZ);

• For a > 1 we define foraFr to be the composition of ∧a for1Fr with

the product map ∧a Fr∗Ω
1
Z/k (logDZ)→ Ωa

Z/k (logDZ).
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The key observation now is that for all a the map foraFr sends

Ωa
Z′/k

(
logD′

Z′
, f′

)
to Fr∗ Ω

a
Z/k (logDZ, f). Once this is checked, the fact

that forFr is a quasi-isomorphism inducing γ on all cohomology sheaves
follows tautologically. To show that

foraFr

(
Ωa
Z′/k

(
logD′Z′ , f

′
))
⊂ Fr∗Ω

a
Z/k (logDZ, f) ,

we argue locally on Z. By (2.3.1) we know that Ωa
Z/k (logDZ, f) is a lo-

cally free sheaf which nearDv
Z is equal to the sum of d log f∧Ωa−1

Z/k (logDZ)

and (1/f)Ωa
Z/k(logDZ) inside Ωa

Z/k(logDZ).

Choosing an appropriate Zariski local etale map to an affine space we
obtain local coordinates z = (z1, . . . zn) as in the proof of Lemma 2.12.
In particular, we have that the divisor DZ is given by the union of zi = 0
for i = 1, . . . , k+ l, and f = 1/(z1 · . . . ·zk). In these coordinates the lifted
Frobenius Fr has the form Fr∗(Φ∗zi) = zpi +p ·zpi vi(z) for i = 1, . . . , k+ l
and Fr∗(Φ∗zi) = zpi + p · vi(z) for i = k + l+ 1, . . . , n. Furthermore, we
have v1(z) + · · ·+ vk(z) = 0.

From these formulas we now see that for the forms in Ωa
Z/k(logDZ, f)

of type d log f∧Ωa−1
Z/k (logDZ) the pullback via (1/pa)Fr∗ modulo p does

not depend on the choice of v1, . . . , vk, and is, therefore, again a log
form multiplied by d log f. For the forms of second type, i.e., forms in
(1/f)Ωa

Z/k(logDZ, f) ⊂ Ωa
Z/k(logDZ, f) we note that these forms belong

to the O-module generated by products over all i of either zi or dzi.
Hence the (1/pa)Fr∗ pullback of such form modulo p will belong to the

O module generated by products of either zpi or zp−1i dzi and is, therefore,
again of second type.

In the second step one notes that locally in the Zariski topology we
can always choose etale maps to an affine space and then use local
coordinates as above to construct a lift of the relative Frobenius over
W2(k). Thus we have to analyze the relation between the formality iso-
morphisms associated to different local liftings of the relative Frobenius.
Following [DI87] we want to show that for any two liftings Fr1 : Z1 → Z′

and Fr2 : Z2 → Z′ of Fr, we can find a canonical map of sheaves

h(Fr1,Fr2) : Ω
1
Z′/k

(
logD′Z′ , f

′
)
→ Fr∗OZ,

so that for1Fr1 − for1Fr2 = dh(Fr1,Fr2). Furthermore, for a third lift-

ing Fr3 : Z3 → Z′ these maps should satisfy the cocycle condition
h(Fr1,Fr2) + h(Fr2,Fr3) = h(Fr1,Fr3).

To construct the maps h we repeat verbatim the reasoning in [DI87,
EV92]. To show that the corresponding dh(Fr1,Fr2) belongs again to
Fr∗Ω

1
Z′/k

(
logD′

Z′
, f′

)
one notes that by construction h(Fr1,Fr2) is given

by substitutions with vector fields of the form
∑k+l

i=1 ui(z) ·z
p
i · (∂/∂zi)+
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i=k+l+1 ui(z) · (∂/∂zi) satisfying

∑k
i=1 ui = 0. Such substitution van-

ish for forms divisible by d log f. For forms α = (1/f) · β with β being
log form, the substitution of such vector field in β is again a log form,
hence its pullback is a log form. Also note that the pullback of 1/f′ is
1/fp which is divisible by 1/f. Thus we again get a form of the second
type. The same argument should work for a triple of lifts. The key point
here is that the forms Ωa

Z/k(logDZ, f) are closed under contractions with

vector fields preserving f.
From this point on the argument proceeds exactly as in [DI87]. First

we cover Z by Zariski open sets Ui on which we can choose Frobenius lifts
Fri : Ui → U′i as above. Then on overlaps we use the maps h(Fri,Frj)

on overlaps to glue the formality morphisms for1Fri into a morphism in
the derived category

for1Z : Ω1
Z′/k(logD

′
Z′ , f

′)[−1]→ Fr∗ Ω
•
Z/k(logDZ, f),

which induces γ on H1.
In the last step we use the condition n = dimZ < p and multiplicative

structure on the de Rham complex to define a map

foraZ : Ωa
Z′/k(logD

′
Z′ , f

′)[−1]→ Fr∗ Ω
•
Z/k(logDZ, f),

by composing
(
for1Z

)⊗a
with the anti-symmetrization map

Ωa
Z′/k

(logD′
Z′
)→

(
Ω1
Z′/k

(logD′
Z′
)
)⊗a

given by

α1 ⊗ · · · ⊗ αa �→
1

a!

∑
σ∈Sa

sgn(σ)ασ(1) ⊗ · · · ⊗ ασ(a).

This completes the proof of the lemma. q.e.d.

Remark 2.20. Morihiko Saito recently found [Sai13] a different an-
alytic proof of this lemma. Saito’s argument uses Hodge theory with
degenerating coefficients and takes place entirely in characteristic zero.

Lemma 2.19 implies that the dimension of the hypercohohomology of
the complex (Ω•Z(logDZ, f), c1d+ c2df∧ ) is constant on the line {c2 =
0} ⊂ C2. Next we will show that this hypercohomology is also constant
along the line {c1 = c2} ⊂ C2. First we have the following topolog-
ical statement (see also [ESY13, Appendix C] where a more general
statement allowing multiplicities is proven):

Lemma 2.21. Consider w : Y → C. Write Y−∞ for the fiber w−1(z)
over z ∈ C with Re z � 0. Then for every a ≥ 0 we have

dimC Ha (Z, (Ω•Z(logDZ, f), d)) = dimC Ha(Y, Y−∞;C).

Proof. Before we address the statement of the lemma, it is instruc-
tive to look at the analogous statement in the classical Hodge theory
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of smooth open varieties. Let jY : Y ↪→ Z be the natural inclusion
viewed as a continuous map in the analytic topology. The pushforward
RjY ∗CY is a constructible complex of sheaves of C-vector spaces on
Z. Recall that the log de Rham complex (Ω•Z(logDZ), d) is naturally
quasi-isomorphic to this constructible complex. Indeed, a direct local
calculation [Gri69, Del71] shows that the natural map of complexes
(Ω•Z(logDZ), d)→ jY ∗A

•
Y is a quasi-isomorphism. Composing this map

with the augmentation quasi-isomorphism jY ∗A
•
Y → RjY ∗CY gives an

identification of (Ω•Z(logDZ), d) and RjY ∗CY in Db (CZ). Since RjY ∗CY

computes the Betti cohomology of the open variety Y this yields the
classical statement that Ha (Z, (Ω•Z(logDZ), d)) ∼= Ha(Y,C).

The idea is to modify this reasoning to take into account relative
cohomology and f-adapted forms. To that end consider the real oriented

blow-up ε : Ẑ → Z of Z along the reduced normal crossing divisor

DZ, and the real oriented blow-up π : P̂1 → P1 of P1 at ∞ ∈ P1.
The morphism f : Z → P1 lifts naturally to a real semi-algebraic map

f̂ : Ẑ → P̂1. The spaces P̂1 and Ẑ are manifolds with boundary, and

∂P̂1 = π−1(∞) ∼= S1 and ∂Ẑ = ε−1 (DZ) ⊃ ε−1 (Dv
Z) = f̂

−1
(
∂P̂1

)
.

The boundary circle ∂P̂1 = π−1(∞) ∼= S1 is the circle of radial di-
rections at ∞ ∈ P1. If as before z denotes the affine coordinate on
A1 = P1 − {∞}, then this circle is parametrized by arg(1/z). Choose a

point θ0 ∈ ∂P̂1 for which Re(z) ≥ 0 and let Ẑθ0 = f̂
−1

(θ0).

Consider the complex

(
A•

Ẑ,Ẑθ0

(logDZ) , d

)
of C∞ logarithmic forms

on Ẑ that vanish along Ẑθ0 . Let

(
A•

Ẑθ0

(logDZ) , d

)
denote the cone

(= quotient complex) of the natural map from

(
A•

Ẑ,Ẑθ0

(logDZ) , d

)
to(

A•
Ẑ
(logDZ) , d

)
. Now from the explicit local description (see

Lemma 2.12) of (Ω•Z (logDZ, f) , d) one checks immediately that near the

boundary ∂Ẑ the quotient complex (Ω•Z (logD) /Ω•Z (logDZ, f) , d) maps

to ε∗

(
A•

Ẑθ0

(logDZ) , d

)
and that the map is a quasi-isomorphism. This

implies that the natural map from Ω•Z (logDZ, f) ε∗

(
A•

Ẑ,Ẑθ0

(logDZ) , d

)
is a quasi-isomorphism and thus gives the equality of dimensions claimed
in the lemma.

A detailed writeup of this argument and an explicit check of the
fact that the map of quotient complexes is a quasi-isomorphism can
be found in [ESY13, Appendix C, Step 2]. Instead of repeating this
calculation here we will give an alternative proof of the lemma which is
be of independent interest.
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To simplify the discussion let us first assume that Dh
Z is empty. Con-

sider the de Rham cohomology of the pair
(
Y,w−1(ρ)

)
where ρ is real

and ρ � 0. Using de Rham’s theorem and the Gauss–Manin paral-
lel transport along the ray ρ ∈ R<0 we can identify the cohomology
Ha (Y, Y−∞;C) with the limit of Ha

DR

(
Y,w−1(ρ);C

)
as ρ→ −∞.

Therefore, the statement of the lemma reduces to understanding the
limit lim

ρ→−∞
Ha

DR

(
Y,w−1(ρ);C

)
in terms of the complex of f-adapted log-

arithmic forms. The relative de Rham cohomology Ha
DR

(
Y,w−1(ρ);C

)
is computed by the complex

(
Ω•Z

(
logDZ, rel f

−1(ρ)
)
, d

)
of holomorphic

forms on Z that have logarithmic poles along DZ = f−1(∞) and vanish
along the divisor f−1(ρ) = w−1(ρ). We now have the following:

Claim 2.22. (a) As ρ→ −∞ the complex(
Ω•Z

(
logDZ, rel f

−1(ρ)
)
, d

)
has a well defined limit, namely the complex (Ω•Z (logDZ, f) , d) of

f-adapted logarithmic forms on Z.

(b) The Gauss–Manin parallel transport along the ray ρ ∈ R<0 is well

defined at the limit ρ → −∞ and identifies Ha
DR

(
Y,w−1(ρ);C

)
with Ha (Z, (Ω•Z (logDZ, f) , d)).

Proof. The statement is local on Z and is obvious at points of the open
set Y = Z −DZ. Suppose next p ∈ Dv

Z = DZ ⊂ Z. As in the proof of
Lemma 2.12 we can choose a local coordinate system z1, . . . , zn centered

at p so that DZ is given by the equation
∏k

i=1 zi = 0 and f =
∏k

i=1 z
−1
i .

Now as in the proof of Lemma 2.12 we write W ⊂ Ω1
Z (logDZ) for the

sub OZ-module spanned by d log z1, . . . , d log zk−1, and R ⊂ Ω1
Z (logDZ)

for sub OZ-module spanned by dzk+1, . . . , dzn.
In these terms we have

Ωa
Z (logDZ) =

a⊕
p=0

[
∧pW ⊕ d log zk ∧

(
∧p−1W

)]⊗
∧a−pR.

Write ε = 1/ρ, and let Yε = f−1(ε). Then for ε close to 0 we can
use z1, . . . , zk−1, zk+1, . . . , zn as coordinates along the divisor Yε. In
particular, the sheaf of holomorphic forms Ω1

Yε

is the OYε
-span of the

forms dz1, . . . , dzk−1, dzk+1, . . . , dzn, and so

Ωa
Yε

=

a⊕
p=0

∧pW|Yε

⊗
∧a−pR|Yε

.

From here we get

Ωa
Z (logDZ, rel Yε) = ker

[
Ωa
Z (logDZ)→ ıYε∗Ω

a
Yε

]
=

a⊕
p=0

[
(z1 · · · zk − ε) ∧p W ⊕ d log zk ∧ ∧

p−1W
]⊗

∧a−pR
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=
a⊕

p=0

[
(z1 · · · zk − ε) ∧p W + d log f ∧

(
∧p−1W

)]⊗
∧a−pR,

and so when ε → 0 this sheaf specializes to the sheaf of f-adapted
logarithmic forms (see (2.3.1))

Ωa
Z (logDZ, f) =

a⊕
p=0

[
z1 · · · zk · ∧

pW ⊕ d log f ∧
(
∧p−1W

)]⊗
∧a−pR.

This shows that as ε→ 0 the complex (Ω•Z (logDZ, rel Yε) , d) will con-
verge to the complex (Ω•Z (logDZ, f) , d). In other words we have a family
of complexes on Z parametrized by a small complex number ε, where
(Ω•Z (logDZ, rel Yε) , d) is the complex corresponding to ε �= 0, while at
ε = 0 we have the complex (Ω•Z (logDZ, f) , d).

More invariantly, let Δ ⊂ P1 be a small disk centered at ∞ with
coordinate ε. Let Z := Z × Δ, and let p : Z → Δ be the natural
projection. The proper family p : Z →Δ is equipped with two relative
divisors

DZ := DZ ×Δ,

Γ := (p× f)−1
(
graph

(
Δ ↪→ P1

))
.

By construction Γ is smooth, DZ has strict normal crossings, both
Γ and DZ are flat over Δ, and the union of Γ ∪ DZ also has strict
normal crossings. Write DΓ for the normal crossing divisor in Γ given
by DΓ = DZ ∩ Γ.

Consider now the sheaves of relative meromorphic forms, i.e., forms
along the fibers of p, having logarithmic poles along DZ and vanishing
along Γ:

Ωa
Z/Δ (logDZ , rel Γ) := ker

[
Ωa
Z/Δ (logDZ)→ ıΓ∗Ω

a
Γ/Δ (logDΓ)

]
.

By definition these are locally free sheaves of (certain) relative loga-
rithmic forms along the fibers of p : Z → Δ, and the graded subsheaf
Ω•
Z/Δ (logDZ , rel Γ) ⊂ Ω•

Z/Δ (logDZ) is clearly preserved by the rel-

ative de Rham differential. The calculation in local coordinates above
shows that the complex

E•
Z/Δ :=

(
Ω•
Z/Δ (logDZ , rel Γ) , d

)
interpolates between relative logarithmic forms vanishing on Yε and f-
adapted relative logarithmic forms. In other words we have(

E•
Z/Δ

)
|Z×{ε 
=0}

= (Ω•Z (logDZ, rel Yε) , d) ;(
E•
Z/Δ

)
|Z×{0}

= (Ω•Z (logDZ, f) , d) .

This proves the first part of the claim.
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The statement about the Gauss–Manin parallel transport follows
form the homological description [KO68] of the Gauss–Manin connec-
tion. To spell this out one needs to describe the local system of relative
cohomology via differential forms. To fix notation, we will use a super-
script (•)× to indicate the removal of the fiber over ε = 0 in the various
geometric and sheaf-theoretic objects we are dealing with. Thus we will
write Δ× = Δ−{0}, Z× = Z−p−1(0), D

Z
× = Z×Δ×, Γ× = Γ∩Z×,

and

E•
Z
×/Δ×

=
(
Ω•
Z
×/Δ×

(
logD

Z
× , rel Γ×

)
, d

)
.

Also we set Y = Y ×Δ = Z −DZ and Y× = Y ×Δ×.
Let E a

B denote the local system of C-vector spaces on Δ× whose
fiber over ε ∈ Δ× is the relative Betti cohomology Ha(Y, Yε;C). The
underlying coherent sheaf E a

B ⊗C OΔ
× can be identified with the sheaf

Ha
DR

(
Y×/Δ×,Γ×/Δ×;C

)
of relative de Rham cohomology and is thus

computed as the hyperderived image

E
a
B ⊗C OΔ

×
∼= Ha

DR

(
Y×/Δ×,Γ×/Δ×;C

)
= Rap∗E

•
Z
×/Δ×

.

Note that the hyper-derived image Rap×∗ E
•
Z
×/Δ×

is naturally an O
Δ
×-

module since the de Rham differential on relative forms is linear over
p−1O

Δ
× . In these terms the Gauss–Manin connection is given by a

C-linear map of sheaves

∇GM : Rap∗E
•
Z
×/Δ×

−→ Rap∗E
•
Z
×/Δ× ⊗O

Δ×
Ω1
Δ
× ,

satisfying the Leibnitz rule. The analysis of [KO68] applies verbatim to
this setting and identifies ∇GM with the connecting homomorphism in
the long exact sequence of hyperderived direct images associated with
the short exact sequence of complexes

(2.4.5) 0

		

E•
Z
×/Δ× [−1] ⊗

p−1O
Δ×

p−1Ω1
Δ
×

		(
Ω•
Z
×

(
logD

Z
× , rel Γ×

)
, d

)
		

E•
Z
×/Δ×

		
0
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In order to check that the parallel transport with respect to ∇GM has
a well defined limit when ε → 0 it suffices to show that the complex(
Ω•
Z
×

(
logD

Z
× , rel Γ×

)
, d

)
extends to a well defined subcomplex E•

Z

in (Ω•
Z
(logDZ) , d), so that E•

Z
is defined on all of Z and fits in a short

exact sequence of complexes

(2.4.6) 0 �� E•
Z/Δ[−1] ⊗

p−1OΔ

p−1Ω1
Δ

��E•
Z

�� E•
Z/Δ

��0

extending (2.4.5) to all of Z .
The naive guess of taking E•

Z
to be (Ω•

Z
(logDZ , rel Γ) , d) will not

work since the natural maps Ωa
Z
(logDZ , rel Γ)→ Ωa

Z/Δ (logDZ , rel Γ)

are not surjective. Because of this we will have to work with the loga-
rithmic de Rham complexes directly. Consider the short exact sequence

(2.4.7) 0

		
Ω•
Z/Δ (logDZ) [−1]⊗OZ

p∗Ω1
Δ

		
Ω•
Z
(logDZ)

		
Ω•
Z/Δ (logDZ)

		
0

of logarithmic de Rham complexes3 on Z .
View (2.4.7) as a morphism

ξZ/Δ : Ω•
Z/Δ (logDZ)→ Ω•

Z/Δ (logDZ)⊗OZ
p∗Ω1

Δ,

in the derived category of sheaves of C-vector spaces on Z . Write
ıΓ : Γ ↪→ Z for the inclusion of the divisor Γ in Z , and let i and
q denote the maps in the short exact sequence of complexes defining
E•
Z/Δ:

0 ��E•
Z/Δ

i ��Ω•
Z/Δ (logDZ)

q ��ıΓ∗Ω
•
Γ/Δ (logDΓ) ��0.

3Here all terms are equipped with the obvious absolute or relative de Rham
differentials, so we have omitted them from the notation. The differential in
the first term is defined via the identification Ω•

Z/Δ (logDZ) [−1] ⊗OZ
p∗Ω1

Δ
∼=

Ω•
Z/Δ (logDZ) [−1]⊗p−1OΔ

p−1Ω1
Δ and the fact that de Rham differential on relative

forms along the fibers of p : Z → Δ is p−1OΔ-linear.
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We claim that the composition

(q ⊗ 1) ◦ ξZ/Δ ◦ i : E
•
Z/Δ → ıΓ∗

[
Ω•
Γ/Δ (logDΓ)⊗OΓ

p∗Ω1
Δ

]
is the zero morphism in Db (CZ). This follows immediately by noting
that ξZ/Δ fits in a commutative diagram in Db (CZ):

(2.4.8) E•
Z/Δ

i
		

E•
Z/Δ ⊗OZ

p∗Ω1
Δ

i⊗1
		

Ω•
Z/Δ (logDZ)

q

		

ξZ/Δ �� Ω•
Z/Δ (logDZ)⊗OZ

p∗Ω1
Δ

q⊗1
		

ıΓ∗Ω
•
Γ/Δ (logDΓ)

ıΓ∗ξΓ/Δ �� ıΓ∗

[
Ω•
Γ/Δ (logDΓ)⊗OΓ

p∗Ω1
Δ

]
in which the columns are parts of exact triangles and

ξΓ/Δ : Ω•
Γ/Δ (logDΓ)→ Ω•

Γ/Δ (logDΓ)⊗OΓ
p∗Ω1

Δ

is the map in Db (CΓ) corresponding to the short exact sequence of
complexes

0

		
Ω•
Γ/Δ (logDΓ) [−1]⊗OΓ

p∗Ω1
Δ

		
Ω•
Γ
(logDΓ)

		
Ω•
Γ/Δ (logDΓ)

		
0

of logarithmic forms on Γ. The vanishing of (q ⊗ 1) ◦ ξZ/Δ ◦ i follows
immediately now since from (2.4.8) we see that (q ⊗ 1) ◦ ξZ/Δ ◦ i =(
ıΓ∗ξΓ/Δ

)
◦ q ◦ i = 0. This in turn implies that ξZ/Δ comes from a

morphism cone(q) → cone(q ⊗ 1) in Db (CZ). In other words we can
find a map ξE : E•

Z/Δ → E•
Z/Δ⊗OZ

p∗Ω1
Δ

so that (i⊗1)◦ξE = ξZ/Δ ◦ i.

Since i is an isomorphism over the open Z× ⊂ Z it now follows that
over Z× the map ξE coincides with the map

ξ×E : E•
Z
×/Δ×

→ E•
Z
×/Δ×

⊗p−1O
Δ×

p−1Ω1
Δ
×

corresponding to the short exact sequence of complexes (2.4.5). Since
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∇GM = Rap∗(ξ
×
E ) it follows that ∇GM extends to a holomorphic con-

nection Rap∗(ξE) : Rap∗E
•
Z/Δ → Rap∗E

•
Z/Δ ⊗OΔ

Ω1
Δ
. This completes

the proof of the claim. q.e.d.

The statement of Claim 2.22 proves Lemma 2.21 in the case when the
divisor DZ does not have a horizontal part. In fact we can incorporate
the horizontal divisor into the proof of Claim 2.22 without any modifi-
cation. The local calculation for the limit, and the extension argument
repeat verbatim, only the notation becomes more cumbersome. We will
not spell this out here and leave it to the interested reader to fill in the
details. q.e.d.

We can now complete the proof of the double degeneration property
by combining Lemma 2.21 with the following well known facts:

Lemma 2.23. For every a ≥ 0 we have

dimCHa (Y, Y−∞; C) = dimC Ha (YZar, (Ω
•
Y , d+ dw∧))

= dimC Ha (YZar, (Ω
•
Y , dw∧)) .

Proof. The first equality is the usual identification of de Rham nearby
cycles with twisted de Rham cohomology via the Fourier transform for
regular holonomic D-modules on the affine line. The second is the degen-
eration theorem for twisted de Rham complexes proven in the work of
Barannikov and Kontsevich (unpublished), Sabbah [Sab99], or Ogus–
Vologodsky [OV05]. q.e.d.

Lemma 2.24. For every a ≥ 0 we have

dimC Ha (YZar, (Ω
•
Y , d+ dw∧))

= dimC Ha (ZZar, (Ω
•
Z(logDZ, f), d+ df∧)) .

Proof. This follows from the usual Grothendieck argument [Gro66].
The local calculation comparing logarithmic forms with meromorphic
forms transfers immediately to the f-adapted complex and combined
with the local description of adapted forms given in Lemma 2.12 implies
that the natural inclusion of complexes

(Ω•Z(logDZ, f), d+ df∧) ↪→ (Ω•Z(∗DZ), d+ df∧) = RjY ∗ (Ω
•
Y , d+ dw∧)

is a quasi-isomorphism. q.e.d.

Taken together Lemmas 2.21, 2.23, and 2.24 imply that the hyperco-
homology of the complex (Ω•Z(logDZ, f), c1 · d+ c2 · df∧) is constant on
the line c1 = c2. This completes the proof of Theorem 2.18. q.e.d.

3. Invariants of nc Hodge structures of geometric origin

In this section we use the deformation theory developed in Section 2
to elucidate the motivic and Hodge theoretic data naturally present
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on the cohomology of a compactifiable Landau–Ginzburg model. Using
considerations from mirror symmetry we propose various new refined in-
variants of nc Hodge structures of Landau–Ginzburg type, and discuss,
in particular, the subtleties involved in understanding Hodge numbers
and decorations.

3.1. Hodge numbers of Landau–Ginzburg models. Suppose
((Z, f),DZ, volZ) is a tame compactified Landau–Ginzburg model in the
sense of Definition 2.4 and assumption (T). Conjecturally (see [KKP08])
the cohomology H• (Y, Y−∞; C) of the associated quasi-projective
Landau–Ginzburg model w : Y → A1 carries a B-model pure nc Hodge
structure. The de Rham data for this nc Hodge structure is described
in [KKP08, Section 3.2], where it is also argued that this data satisfies
the nc Hodge filtration axiom. The much trickier opposedness axiom
has only been verified for models ((Y,w), volY ) which mirror a general
symplectic toric weak Fano manifold [RS15].

A somewhat disappointing feature of nc Hodge structures in general
is that their complexity is not readily captured by simple numerical in-
variants. The absence of easy to compute linear–algebraic invariants in
this setting is a reflection of the nature of the nc de Rham datum. The
nc Hodge filtration is encoded in a connection with irregular singular-
ities, and the Stokes structures characterizing this connection cannot
be encoded in simple linear algebraic quantities. The special nature
of the Landau–Ginzburg context, however, allows one to discern addi-
tional sophisticated linear–algebraic data compatible with the nc Hodge
structure on H• (Y, Y−∞; C). Moreover, this data possesses computable
numerical invariants, such as weights, level, amplitude, and Hodge num-
bers. Most naturally this additional data arises from the concept of
an irregular Hodge filtration that can be associated with a Landau–
Ginzburg potential. There are two variants of such irregular Hodge fil-
trations – the version of Deligne and Sabbah [DMR07, Sab10a], and
the version of J.-D. Yu [Yu12, ESY13]. In [ESY13] these two vari-
ants of the irregular Hodge filtration are generalized, ultimately identi-
fied with each other, and under the assumption (T) identified with the
Hodge filtration on the complex of f-adapted logarithmic forms. Here
we will not discuss this identification but rather will look more closely at
the resulting Hodge numbers and will compare those to other more clas-
sical definitions of Hodge numbers arising from vanishing cohomology
and mirror data.

Given a Calabi–Yau Landau–Ginzburg model w : Y → A1 which
admits a tame compactification ((Z, f),DZ, volZ), we will define geomet-
rically three sets of Hodge numbers ip,q(Y,w), hp,q(Y,w), and fp,q(Y,w),
each of which adds up to the rank of the algebraic de Rham cohomology
Ha

DR ((YZar,w); C) = Ha (YZar, (Ω
•
Y , d+ dw∧)) of the Landau–Ginzburg

model. Since by Lemma 2.23 we have dimCHa
DR (YZar,w; C) =
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dimCHa (Y, Y−∞; C) this implies

dimC Ha (Y, Y−∞; C)

=
∑

p+q=a

ip,q(Y,w) =
∑

p+q=a

hp,q(Y,w) =
∑

p+q=a

fp,q(Y,w).

Each of these sets of Hodge numbers has a different origin. The num-
bers ip,q(Y,w) come from ordinary mixed Hodge theory, the numbers
hp,q(Y,w) come from mirror considerations, and the numbers fp,q(Y,w)
come from the sheaf cohomology of the f-adapted logarithmic forms.
The specific definitions are as follows.

3.1.1. The numbers fp,q(Y,w). Let ((Z, f),DZ, volZ) be a tame com-
pactification of w : Y → A1.

Definition 3.1. The Landau–Ginzburg Hodge numbers
fp,q(Y,w) are defined by

fp,q(Y,w) = dimCHp(Z,Ωq
Z(logDZ, f)).

The fact that dimCHa (Y, Y−∞; C) =
∑

p+q=a f
p,q(Y,w) follows from

Theorem 2.6 and Lemma 2.24.

3.1.2. The numbers hp,q(Y,w). Before we explain the definition we
need to recall a basic construction from linear algebra. Let V be a finite
dimensional complex vector space, N : V → V be a nilpotent linear
operator satisfying Nm+1 = 0 for some m ≥ 0. The (monodromy)
weight filtration of N centered at m is the unique increasing filtra-
tion W = W•(N,m) of V :

0 ⊂W0(N,m) ⊂W1(N,m) ⊂ · · · ⊂W2m−1(N,m) ⊂W2m(N,m) = V,

with the properties

• N(Wi(N,m)) ⊂Wi−2(N,m);

• the map N � : grWm+� V → grWm−� V is an isomorphism for all � ≥ 0.

The existence and uniquencess of this filtration can be deduced from the
representation theory of sl2-triples and the Jacobson–Morozov theorem.
A direct elementary proof can also be found in [Sch73, Lemma 6.4]. Ex-
plicitly the monodromy weight filtration W•(N,m) is defined as follows.
Choose a Jordan basis for the nilpotent endomorphism N : V → V and
assign integer weights to the basis vectors so that N lowers weights by 2,
and so that the weights of each Jordan block are arranged symmetrically
aboutm. Note that even though the Jordan canonical form is not canon-
ical, the monodromy weight filtration will be canonical since Wk(N,m)
is the span of the basis vectors of weights less than or equal to k.

Now let c0 ∈ A1 be a regular value of w near infinity. Consider
the monodromy transformation T : H•(Y, Yc0 ; C)→ H•(Y, Yc0 ; C) cor-
responding to moving the smooth fiber Yc0 once around infinity. By
assumption (Y,w) admits a tame compactification and so, as explained
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in Remark 2.5(ii) the operator T is unipotent. Set N = log T . With
this notation we have the following:

Definition 3.2. The Landau–Ginzburg Hodge numbers
hp,q(Y,w) are defined by

hp,q(Y,w) := dimC grW (N,p+q)
p Hp+q(Y, Yc0 ; C).

The rationale behind this definition is the geometric mirror symmetry
prediction explained in Remark 2.5(ii). Specifically, if (Y,w) is part of
a mirror pair

(X,ωX , sX) | ((Y,w), ωY , volY ) ,

of Fano type with dimCX = dimC Y = n, then the homological mirror
equivalence

D
b(X) ∼= FS((Y,w), ωY , volY )

induces an isomorphism on period cyclic and on Hochschild homologies
of these categories. In particular, we expect a mirror isomorphism

(3.1.1) HHa(D
b(X)) ∼= HHa(FS((Y,w), ωY , volY )),

for all a where the Hochschild homology can possibly be non-zero, i.e.,
for all a such that −n ≤ a ≤ n. It is also expected that these categorical
homology groups have geometric incarnations:

HHa(D
b(X)) ∼=

⊕
p−q=a

Hp(X,Ωq
X),

HHa(FS((Y,w), ωY , volY )) ∼= Ha+n(Y, Y−∞; C).

(3.1.2)

The first of the above identification follows from the work [Wei96] of
Weibel, while the second has been conjectured in general, and proven
in special cases in the works of Seidel (see, e.g., [Sei08, Sei09]).

Thus combining the conjectural mirror isomorphism (3.1.1) with this
geometric interpretation of Hochschild homology we will get a conjec-
tural isomorphism

(3.1.3) Ha+n(Y, Y−∞; C) ∼=
⊕

p−q=a

Hp(X,Ωq
X).

Remark 3.3. Since the mirror identification (3.1.1) comes from the
mirror equivalence of categories, it is clear that a similar equivalence can
also be formulated for the periodic cyclic homologies of the d(Z)g cate-

gories Db(X) and FS((Y,w), ωY , volY ). Respectively, the mirror identi-
fication (3.1.3) can be formulated for the de Rham cohomologies of X
and (Y,w). In these cases we have natural nc Hodge filtrations on each
group. In the categorical setting the Hodge filtrations are encoded in
the negative cyclic homologies HC−• (D

b(X)) and HC−• ((FS((Y,w), ωY ,
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volY )) viewed as modules over C[[u]] (see [KKP08, Section 2.2.3]). Ho-
mological mirror symmetry implies the existence of an isomorphism of
C[[u]]-modules

HC−• (D
b(X)) ∼= HC−• (FS((Y,w), ωY , volY )),

which after tensoring with C((u)) induces an isomorphism of C((u))-
vector spaces

HP•(D
b(X)) ∼= HP•(FS((Y,w), ωY , volY )).

From this point of view the isomorphism (3.1.1) is recovered as the
induced isomorphism of specializations

HC−• (D
b(X))/uHC−• (D

b(X))

∼= HP•(FS((Y,w), ωY , volY ))/uHP•(FS((Y,w), ωY , volY )).

These mirror isomorphisms translate readily into the geometric lan-
guage. Recall that similarly to (3.1.2) we have identifications

HP•(D
b(X)) = H•

DR(X,C) ⊗ C((u)),

HP•(FS((Y,w), ωY , volY )), = H•
DR(Y, Y−∞; C)⊗ C((u)).

(3.1.4)

Furthermore, in geometric terms the C[[u]]-module HC−• (D
b(X)) is

identified with the Rees module of the filtration

F a
ncH

•
DR(X,C) =

⊕
p−q≥a

Hp(X,Ωq
X),

on the complex vector space H•
DR(X,C), while the C[[u]]-module

HC−• (FS((Y,w), ωY , volY )) is identified with the Rees module of the
filtration

F a
ncH

•
DR(Y, Y−∞;C) =

⊕
b≥n+a

Hb(Y, Y−∞;C),

on the complex vector space H•(Y, Y−∞;C).
The de Rham version of the Dolbeault mirror statement (3.1.3) then

becomes the statement that mirror symmetry induces an isomorphism of
the filtered complex vector spaces F •ncH

•
DR(X,C) and F •ncH

•
DR(Y, Y−∞;

C). In fact, more should be true. The induced isomorphism of the alge-
braic vector bundles on A1 associated with the respective Rees modules
should also intertwine the irregular meromorphic connections describing
the nc Hodge structures on both sides.

Going back to the mirror isomorphism (3.1.3), we are faced with the
usual conundrum: simply identifying Hochschild (or cyclic) homolo-
gies of the two mirror categories does not give us matching of Hodge
numbers. The comparison (3.1.3) identifies the homological de Rham
grading on the Landau–Ginzburg side with the (p − q)-folding of the
Dolbeault bigrading on the Fano side.
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The key to reconstructing the bigradings and thus extracting Hodge
numbers on both sides lies in the observation that, in the Fano case, the
Dolbeault bigrading also has a categorical interpretation. Indeed, the
nilpotent operator c1(KX) ∪ (•) acts on each HHa(D

b(X)) =
⊕p−qH

p(X,Ωq
X), and so induces a monodromy weight filtration centered

at a. Since the canonical class is anti-ample this filtration is given by the
forms of degree ≤ (p + q). In particular, the dimensions of the graded
pieces for this monodromy weight filtration are precisely the Hodge num-
bers hp,q(X) of the Fano variety X. Up to a sign, the nilpotent operator
c1(KX)∪ (•) : H•

DR(X,C)→ H•
DR(X,C) is just the logarithm of the ac-

tion of the Serre functor S
D

b(X) on HH•(D
b(X)) ∼= H•

DR(X,C). Thus,

this monodromy weight filtration has a categorical interpretation. But,
as we noted in Remark 2.5(ii), the Serre functor of FS((Y,w), ωY , volY )
can be identified with the inverse of the monodromy autoequivalence
T . The logarithm of the action of T on HH•(FS((Y,w), ωY , volY )) ∼=
H•+n

DR (Y, Yc0 ;C) is just the nilpotent operator N we considered above.
Therefore, the monodromy weight filtration corresponding to N is ex-
pected to have categorical origin, and homological mirror symmetry
predicts, the mirror matching of Hodge numbers:

(3.1.5) hp,q(Y,w) = hp,n−q(X),

for all p, q. This prediction is still conjectural in general but the case
(p, q) = (1, 1) was recently proven by Przyjalkowski and Shramov [PS13]
for all smooth Fano varieties.

3.1.3. The numbers ip,q(Y,w). To simplify the discussion we will first
assume that Dh

Z = ∅, i.e., that w : Y → A1 is proper.
It is well known (see, e.g., [Sab99]) that the dimension of the (Zariski)

hypercohomology of the w-twisted de Rham complex on Y can be com-
puted from the dimensions of the vanishing cohomology for w:

dimC Ha (YZar, (Ω
•
Y , d+ dw∧)) =

∑
λ∈A1

dimC Ha−1
(
Yλ,an,φw−λCY

)
,

where as usual φw−λCY denotes the perverse sheaf of vanishing cocycles
for the fiber Yλ. From the works of Schmid and Steenbrink (see, e.g.,
[Sch73], [PS08, Section 11.2]) and Saito [Sai90] it is classically known
that the constructible complex φw−λCY carries a structure of a mixed
Hodge module and so its cohomology is furnished with a functorial
mixed Hodge structure.

Given a mixed Hodge structure V we will write ip,qV for the (p, q)
Hodge number of the p + q weight graded piece grWp+q V. We now have
the following:

Definition 3.4. For a proper potential w : Y → A1 on a quasi-
projective variety Y the Landau–Ginzburg Hodge numbers ip,q(Y,w)
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are defined by

ip,q(Y,w) :=
∑
λ∈A1

∑
k

ip,q+kHp+q−1
(
Yλ,φw−λCY

)
,

where each vanishing cohomology Ha
(
Yλ,φw−λCY

)
is taken with its

Schmid–Steenbrink mixed Hodge structure.

Remark 3.5. (i) The combination of Hodge numbers of different
weight pieces in this definition is motivated by mirror symmetry. In
the paper [GKR12] it was argued that for a Landau–Ginzburg mirror
of a general type complete-intersection S in a toric variety, the above
definition of Hodge numbers reproduces the rotated Hodge diamond
of S.

(ii) The assumption that Dh
Z = ∅ above was introduced solely for

technical convenience and is not really needed. If Dh
Z �= ∅, we can still

define ip,q(Y,w) by setting

ip,q(Y,w) :=
∑
λ∈A1

∑
k

ip,q+kHp+q−1
(
Zλ,φf−λRjY ∗CY

)
,

where jY : Y ↪→ Z is the natural inclusion.

(iii) It is very interesting to try and understand the categorical meaning
of the numbers ip,q(Y,w). At a first glance, the definition of ip,q(Y,w)
relies heavily on the geometry since the information of the variety Y
and the potential w enter in an essential way in the construction of the
pertinent mixed Hodge structures. On the other hand, from the works
of Shklyarov [Shk11] and Efimov [Efi12] it is known that the space
H•

DR(Y,w; C) together with its nc Hodge filtration admits a purely cate-
gorical interpretation. Specifically, in [Efi12] it is shown that
H•

DR (YZar, (Ω
•
Y ((u)), ud − dw∧)) is isomorphic to the periodic cyclic ho-

mology HP•(MF(Y,w)) of the d(Z/2)g category of matrix factorizations
of w, and that this isomorphism can be chosen so that the irregular
connection ∇DR

d/du = d/du+ u−1Gr+ u−2w · (•) codifying the nc Hodge

filtration on H•
DR(Y,w; C) gets identified with the connection ∇cat

d/du

from [KKP08, Section 2.2.5] used to define the categorical nc Hodge
filtration on HP•(MF(Y,w)).

In other words, the nc Hodge filtration of a Landau–Ginzburg model
(Y,w) admits a purely categorical interpretation. In the case when ∇cat

satisfies the nc-opposedness axiom of [KKP08] we can hope for more.
In this case we expect that the pure complex nc Hodge structure on
HP•(MF(Y,w)) is polarizable and that it admits a natural limit mixed
twistor structure (in the sense of [Sab05]) which in turn is isomorphic to
the Z/2-folding of the ordinary mixed Hodge structure on the vanishing
cohomology ⊕λ∈A1H•−1

(
Yλ,φw−λCY

)
. Concretely, we have a one pa-

rameter deformation {At}t∈A1 of the d(Z/2)g category A1 := MF(Y,w),
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where At has the same objects and hom sets as MF(Y,w) but the com-
position, differential, and units in At are scaled as mAt = t ·mMF(Y,w),

dAt = t · dMF(Y,w), 1At = t−1 · 1MF(Y,w). The periodic cyclic homol-

ogy of these categories equipped with the connection ∇cat in the u-
direction and with the Getzler–Gauss–Manin connection [Get93] in the
t-direction is a variation of twistor D-modules. When the opposedness
and polarizability properties hold, e.g., for Landau–Ginzburg mirrors of
toric Fano varieties, see [RS15], we can form the limit mixed twistor
D-module for t → ∞ and we conjecture that this mixed twistor D-
module is the one corresponding to the ordinary mixed Hodge structure
⊕λ∈A1H•−1

(
Yλ,φw−λCY

)
. In the case of potentials given by tame Lau-

rent polynomials this conjecture is verified in [Sab10a]. The conjecture
gives a categorical interpretation of the mixed Hodge structure on van-
ishing cohomology (modulo Tate twists) and as a consequence gives a
categorical interpretation of the Z/2-folding of the numbers ip,q(Y,w).

3.1.4. Comparison conjectures. Because of their similar behavior
under the mirror correspondence we expect that the various Landau–
Ginzburg Hodge numbers are equal to each other:

Conjecture 3.6. If w : Y → A1 is an n-dimensional Landau–
Ginzburg model which admits a tame compactification, then

fp,q(Y,w) = hp,q(Y,w) = ip,q(Y,w).

Combined with the mirror matching (3.1.5) the previous conjecture
predicts:

Conjecture 3.7. If (X,ωX , sX) | ((Y,w), ωY , volY ) is a mirror pair of
Fano type, and if ((Z, f),DZ, volZ) is a tame compactification of
((Y,w), ωY , volY ), then we have

fp,q(Y,w) = hp,n−q(X),

for all p, q.

3.2. Mirrors of compactified Landau–Ginzburg models. In this
section we look more closely at the role that compactified Landau–
Ginzburg models play in mirror symmetry. In the setting where a com-
plex Landau–Ginzburg model (Y,w) is the mirror of a symplectic Fano
variety (X,ωX), we give a mirror A-model interpretation of the Hodge
information encoded in a compactification ((Z, f),DZ). This suggests
that the mirror symmetry between (Y,w) and (X,ωX) can be extended
to a mirror symmetry between ((Z, f),DZ) and a one parameter sym-
plectic deformation of (X,ωX) which interpolates between the Fukaya
category of the symplectic Fano variety (X,ωX) and the Fukaya category
of the symplectic non-compact Calabi–Yau datum (X −DX , ωX|X−DX

,
volX−DX

). We discuss such an extension and give some evidence for
its validity. This picture is not new and has already been proposed
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and analyzed in one form or another in the works of Seidel [Sei08,
Sei11, Sei12, Sei14a, Sei14b] and Abouzaid et al. [AS10, Abo13,
AAE+13,AAE+13]. Our main contribution here is to formulate a new
procedure for reconstructing the Hodge theory of f-adapted logarithmic
forms from the nc Hodge structure on the cohomology of the Landau–
Ginzburg model (Y,w) or, in the mirror picture, from the A-model nc
Hodge structure on the cohomology of the Fano variety X.

3.2.1. One parameter families of symplectic Fano varieties. Let
(X,ωX) be a symplectic manifold underlying a smooth compact Fano
variety of dimC X = n. Let kX be a closed 2-form representing the
canonical class KX and let κX ∈ H2(X,Z) denote the first Chern class
of KX , i.e., κX = [kX ] = c1(KX). Consider the (multivalued) family
{ωq}q∈C of complex 2-forms ωq := ωX + log(q)kX on X. In the regime

when |q| → 1 these are complexified Kähler forms.
This is an affine-linear one-parameter family of symplectic struc-

tures on X which gives rise to a one-parameter variation of pure nc

Hodge structures parametrized by the q-line. As discussed in [KKP08,
Section 3.1] the de Rham part of such variation is encoded in a pair
(aH, a∇), where

• aH := H•(X,C) ⊗C OA2 is a trivial algebraic Z/2-graded vec-
tor bundle on the affine plane with coordinates (u, q), with Z/2-
grading given by

aH0 =

⎛⎜⎜⎝ ⊕
k=n

mod 2

Hk(X,C)

⎞⎟⎟⎠ ⊗C OA2 ,

aH1 =

⎛⎜⎜⎝ ⊕
k=n+1

mod 2

Hk(X,C)

⎞⎟⎟⎠ ⊗C OA2 .

• a∇ is a meromorphic connection on aH, with poles along the di-
visor uq = 0, given by

(3.2.1)

a∇ ∂
∂u

:=
∂

∂u
+ u−2 (κX ∗q •) + u−1Gr

a∇ ∂
∂q

:=
∂

∂q
− q−1u−1 (κX ∗q •) ,

where
∗q: denotes the quantum product corresponding to ωq, and
Gr : aH → aH: is the grading operator defined to be

Gr|Hk(X,C) :=
k−n
2 idHk(X,C).
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Remark 3.8. More generally we have a variation of nc Hodge struc-
tures over the whole complexified Kähler cone. The meromorphic con-
nection defining the de Rham part of the variation is the Dubrovin
first structure connection [Dub98, Man99] which on each affine line
ω + log(q)α is given by the formula

a∇ ∂
∂u

:=
∂

∂u
+ u−2 (κX ∗q •) + u−1Gr

a∇ ∂
∂q

:=
∂

∂q
− q−1u−1 ([α] ∗q •) ,

with ∗q being the quantum product corresponding to ω+ log(q)α. Tra-
ditionally in mirror symmetry one works with the line of slope ω passing
through the large volume limit, i.e., the line 0 + log(q)ω. This is the
situation considered in [FOOO09a, FOOO09b] and in [KKP08, Sec-
tion 3.1]. In contrast, here we need to work with a line of slope kX , i.e.,
the line ω + log(q)kX which leads to the formula (3.2.1).

The particular affine linear deformation of the symplectic structure
(X,ω + log(q)kX) that we are considering has many special properties
even when compared to other affine linear families. For instance, it is
expected that the affine one parameter deformation of the symplectic
structure (X,ω+log(q)kX) does not change the Fukaya category. From
the point of view of nc Hodge theory this family is significant because
of the following simple observation:

Lemma 3.9. The restriction of (aH, a∇) to any non-vertical line

L through the origin in A2 is a meromorphic connection on the triv-

ial Z/2-graded vector bundle H•(X,C) ⊗ OL, which has a first order

pole at 0, and monodromy around 0 equal to (−1)k on the graded piece

Hk(X,C)⊗O.

Proof. From the formulas (3.2.1) we see that the a∇-covariant deriv-

ative in the direction of the Euler vector field
u∂

∂u
+

q∂

∂q
is given by

a∇u∂
∂u

+ q∂
∂q

=
u∂

∂u
+

q∂

∂q
+ Gr.

Since
u∂

∂u
+

q∂

∂q
is tangent to any line through the origin and is equal

to the Euler vector field on any such line, we get the statement of the
lemma.

To explicate, choose a slope v �= 0 and let Lv ⊂ A2 be the line given
by u = vq. The variable q is the natural coordinate on Lv, and so on
Lv we have du = vdq. To shorten the notation, write M := κX ∗q (•) for
the operator of quantum multiplication by κX . Then on A2 we have

a∇ = d+
(
u−2M+u−1Gr

)
du+

(
−u−1q−1 M

)
dq,
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and
a∇|Lv

= d+
(
v−2q−2M+v−1q−1Gr

)
· vdq +

(
−v−1q−2M

)
· dq

= d+
Gr

q
dq.

Thus a∇|Lv
is logarithmic at 0 and has half integer residues. This

completes the proof of the lemma. q.e.d.

Recall from [KKP08, Section 2.2.7] that when viewed as nc Hodge
structures, ordinary pure Hodge structures are given by meromorphic
connections on algebraic vector bundles over A1 that have a first or-
der pole at zero and monodromy ±1 on graded pieces. Thus the pair
(aH, a∇) can be viewed as a family of ordinary pure complex Hodge
structures parametrized by v ∈ A1−{0}. But this is exactly the type of
data that our Theorem 2.18 associates with a compactified tame com-
plex Landau–Ginzburg model.

3.2.2. One parameter families of complex Landau–Ginzburg
models. Let ((Z, f),DZ) be a compactified tame complex Landau–
Ginzburg model. By Theorem 2.18 the one parameter family of po-
tentials ((Z, q · f),DZ) gives rise to a variation of complex pure Hodge
structures parametrized by q ∈ A1. The de Rham part of this variation
is given by a pair

(
bH, b∇

)
, where

• bH is the coherent sheaf over A2 corresponding to the C[u, q]-
module

H• (Z, (Ω•Z(logDZ, f)[u, q], ud + qdf)) .

By Theorem 2.18 the cohomology H• (Z, (Ω•Z(logDZ, f), ud+ qdf))

has constant dimension for all (u, q) ∈ A2 and so the sheaf bH is
locally free.

• b∇ is the Gauss–Manin connection for the family of complexes of
f-adapted logarithmic forms. This is an algebraic meromorphic
connection. For u, q �= 0 the locally constant sections for b∇ are
identified with the topological cohomology H•(Y, Y−∞;C) via the
identifications from Lemma 2.21 and Lemma 2.23.

By construction, the restriction of
(
bH, b∇

)
on a line of the form q = c

is the u-connection describing the Tate twist folding of the pure Hodge
structure on the vector space H• (Z, (Ω•Z(logDZ, f), ud+ c · df)). As ex-
plained in [KKP08, Section 2.2.7], this means that the vector bundle
bH|q=c is the Rees module associated with the Hodge filtration

F pH• (Z, (Ω•Z(logDZ, f), ud+ c · df))

:= H•
(
Z,

(
Ω•≥pZ (logDZ, f), ud+ c · df

))
,
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on H• (Z, (Ω•Z(logDZ, f), ud+ c · df)), and that b∇ is a connection with
logarithmic singularity at u = 0 and monodromy ±1 on graded pieces.
In particular,

(
bH, b∇

)
has a logarithmic pole at u = 0.

Remark 3.10. It will be useful to have an explicit formula for the
Gauss–Manin connection b∇, similar to the formula (3.2.1). We can
write such a formula for the Gauss–Manin connection acting on the
complex (Ω•Z (∗DZ) [u, q], ud − qdf∧):

(3.2.2)

b∇ ∂
∂u

:=
∂

∂u
+ u−2 (f · (•)) + u−1G

b∇ ∂
∂q

:=
∂

∂q
− q−1u−1 (f · (•)) ,

where G is the grading operator defined to be G := −p
2 on Ωp

Z (∗DZ).
This is the same formula that appears in the works of Shklyarov

[Shk11] and Efimov [Efi12]. Note, however, that this formula does
not preserve the subcomplex of f-adapted logarithmic forms since if
α ∈ Ω•Z (logDZ, f), the form fα will not necessarily be in Ω•Z (logDZ, f).
Therefore, we cannot use these formulas directly to describe the action of
b∇ on bH. This latter action is a combination of the formulas (3.2.2) and
the complicated limiting quasi-isomorphism in the proof of Lemma 2.21.

3.2.3. Mirror symmetry for one parameter families. The formal
similarity between the two connections (aH, a∇) and

(
bH, b∇

)
is very

suggestive. We expect that when the geometric data defining these
connections is part of a mirror pair, we should be able to go beyond
a mere similarity and identify the pairs (aH, a∇) and

(
bH, b∇

)
. More

precisely we propose the following conjecture:

Conjecture 3.11. Suppose (X,ωX , sX) | ((Y,w), ωY , volY ) is a mir-
ror pair of Fano type. Then

(i) The one parameter symplectic family (X,ωX + log(q)kX) is mir-
rored into a one parameter complex family (Y, q · w) of deforma-
tions of (Y,w).

(ii) The homological mirror correspondence induces an isomorphism

(aH, a∇) ∼=
(
bH, b∇

)
,

of meromorphic connections on A2.

The attentive reader will notice that the part (i) of this conjecture re-
lies on a geometric one parameter perturbation of a Fano mirror pair but
does not involve a compactification of the Landau–Ginzburg side of the
pair. On the other hand, at least the B-side of Conjecture 3.11(ii) de-
pends on a tame compactification ((Z, f) ,DZ) of the Landau–Ginzburg
model (Y,w).



100 L. KATZARKOV, M. KONTSEVICH & T. PANTEV

Nevertheless, in Section 3.2.5 we will argue that part (ii) of Conjec-
ture 3.11 is in fact a consequence of the homological mirror symme-
try conjecture for the Fano pair itself. In other words: the existence
of the tame compactification matters, while the choice of a particular
compactification is not important. Indeed, as explained in [KKP08,
Sections 2.2.2, 3.1, and 3.2], the pure nc Hodge structures on H•(X,C)
and H•(Y, Ysm;C) can be defined intrinsically in terms of the categories
Fuk(X,ωX) and MF(Y,w) respectively. Since homological mirror sym-
metry identifies these two categories, it follows that the A-model nc
Hodge structure on H•(X,C) will be isomorphic to the B-model nc

Hodge structure on H•(Y, Ysm;C). Via these identifications Conjec-
ture 3.11(ii) reduces to checking that the two parameter meromorphic
connections a∇ and b∇ can be reconstructed from the nc Hodge struc-
tures on H•(X,C) and H•(Y, Ysm;C) respectively. To that end, in Sec-
tion 3.2.5 we describe a general method for constructing a two parameter
meromorphic connection from a pure nc Hodge structure.

3.2.4. Mirrors of tame compactifications of Landau–Ginzburg
models. Before we proceed with the construction in Section 3.2.5, it
is instructive to examine more closely the apparent mismatch in the
information contained in the one parameter mirror symmetry

(X,ωX + log(q)kX) | (Y, q · w) ,

and in the tame compactification of the Landau–Ginzburg model. This
mismatch is ultimately a reflection of the fact that the one parameter
deformations (X,ωX + log(q)kX) and (Y, q · w) only perturb one direc-
tion of the mirror symmetry: going from the A-model on the Fano side
to the B-model on the Landau–Ginzburg side.

Since the choice of a tame compactification ((Z, f) ,DZ) is a choice
additional data on the Landau–Ginzburg side, its mirror partner will
necessarily depend on the choice of some additional data on the Fano
side. A clue of what this additional data should be, appears in the
works of Seidel [Sei08, Sei11] where the one parameter deformation
(X,ωX + log(q)kX) is interpreted intrinsically in categorical terms. The
relevant key fact from [Sei08, Sei11] is the statement that the family
of Fukaya categories Fuk (X,ωX + log(q)kX) has a well defined limit as
q → 0, namely the Fukaya category of the symplectic manifold under-
lying the non-compact Calabi–Yau X −DX .

To simplify notation write U := X − DX for the complement of
DX , ωU := ωX|U for the restriction of the symplectic structure to U ,
and volU = 1/sX for the holomorphic volume form corresponding to
the anticanonical section sX . As explained in [Sei08, Sei11] (see also
[Aur07]) the Z-graded A∞ category F0 = Fuk(U,ωU , volU ) admits a
natural one-parameter deformation {Fq} as a Z/2-graded A∞ category.
By construction Fq has the same objects and morphisms as F0 but the
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A∞ operations mq
k in Fq are q-perturbations of the A∞ operations m0

k
in F0 where the correction term qa comes with a coefficient counting
not pseudo-holomorphic discs in U but rather disks in X that intersect
the boundary divisor DX at a points4 . Now, a comparison with the
standard construction [FOOO09a, FOOO09b] of the Fukaya category
identifies Fq for q �= 0 the with the Z/2 category Fuk(X,ωX+log(q)kX).

Thus we get a streamlined categorical (or nc geometric) interpretation
of the A-model data associated with the Fano geometry (X,ωX , sX). In
summary Seidel’s analysis shows that:

• from the point of view of nc geometry, the primordial object is the
Z-graded Fukaya category F0 = Fuk (U,ωU , volU );

• the data of a symplectic compactification (U,ωU ) ⊂ (X,ωX) with
anti-canonical boundaryDX = X−U corresponds to a q-deformation
Fq = Fuk(X,ωX + log(q)kX) of F0 as a Z/2-graded Calabi–Yau
category.

To put it differently, the symplectic anti-canonical compactification
(U,ωU ) ⊂ (X,ωX) is encoded in a one parameter degeneration of the
Fukaya category F1 = Fuk(X,ωX) of the compact symplectic Fano
(X,ωX) to the Fukaya category F0 = Fuk (U,ωU , volU ) of the symplec-
tic non-compact Calabi–Yau (U,ωU ).

This categorical interpretation of the compactification of U has a
natural mirror incarnation. The non-compact symplectic Calabi–Yau
(U,ωU , volU ) has a complex non-compact Calabi–Yau mirror Y , con-
structed say by the SYZ prescription as in [Aur07]. Homological mirror

symmetry predicts that F0 is equivalent to the category D
b
c(Y ). The

one parameter deformation Fq of F0 = D
b
c(Y ) then corresponds to a

class in the Hochschild cohomology HH•(F0) = HH•(Db
c(Y )). Since

Fq is only a Z/2-graded deformation, this Hochschild cohomology class
will have a non-trivial component in HH0, i.e., will give us a well de-
fined element w ∈ H0(Y,OY ). If we assume for symplicity that the
boundary divisor DX is smooth, then the Fano/Landau–Ginzburg ho-
mological mirror symmetry conjecture will identify Fq with MF(Y, q ·w)
for q �= 0. If we interpret MF(Y, q · w) as a coproduct of the derived
categories of singularities of the singular fibers of q ·w, we see that this
identification will specialize correctly when q → 0. The category Fq

specializes to F0 while MF(Y, q · w) specializes to the compactly sup-
ported derived category of singularities of the derived fiber of the zero
function on Y , which is readily identified with D

b
c(Y ).

4Making this precise is quite subtle (see [WW10, Sei11]) and requires a version
of the Fukaya category which is linear over C (rather than a Novikov field). In [Sei11]
such a version is built out of balanced (rather than arbitrary) Lagrangians in U . We
thank Denis Auroux for illuminating explanations of this subtlety.
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The upshot of the previous discussion is that the mirror one param-
eter families

(X,ωX + log(q)kX) | (Y, q · w)

arising from the Fano mirror pair (X,ωX , sX) | ((Y,w), ωY , volY ) have
a natural homological interpretation as families of (term by term equiv-
alent) categories

{Fq} = {MF(Y, q · w)},

where the family on the left hand side is the Seidel Z/2-graded deforma-
tion of Fuk(U,ωU , volU ) corresponding to the compactification (U,ωU ) ⊂
(X,ωX).

This interpretation allows us to reverse the process and identify the
mirror information corresponding to a tame compactification of Y . If we
choose a tame compactification ((Z, f),DZ) and also choose an extension
ωZ of the symplectic form ωY , then we can apply Seidel’s analysis to
the symplectic anti-canonical compactification (Y, ωY ) ⊂ (Z, ωZ). Since
by the tameness assumption DZ is an anti-canonical divisor, the same
reasoning shows that this compactification is encoded in a one param-
eter deformation of the Z-graded category Fuk(Y, ωY , volY ) to the Z/2-
graded category Fuk (Z, ωZ + log(r)kZ). Again the degree zero piece of
the Hochschild cohomology class governing this deformation will give
us a holomorphic function v : U → A1. In fact the description of v in
terms of the weighted disk counting on Z relative to the boundary DZ

also predicts that v has first order poles along DX and so v = s/sX for
some anti-canonical section s ∈ H0(X,K−1

X ). This can be packaged in
the following conjecture:

Conjecture 3.12. Suppose (X,ωX , sX) | ((Y,w), ωY , volY ) is a mir-
ror pair of Fano type. Then

(i) a choice of a tame compactification ((Z, f),DZ, ωZ) of the Landau–
Ginzburg side gives rise to a compactified Fano mirror pair

(X,ωX , sX , v) | ((Z, f),DZ, ωZ) ,

where v is a meromorphic function on X with a first order pole
along DX .

(ii) The Fano/Landau–Ginzburg homological mirror correspondence
induces equivalences

Fuk(X,ωX + log(q)kX) ∼= D
b
c(Y, q · w),

D
b
c(U, r · v)

∼= Fuk(Z, ωZ + log(r)kZ),

of one parameter families of categories.

Note that the geometric ingredients of the compactified mirror pair

(X,ωX , sX , v) | ((Z, f),DZ, ωZ) ,
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from Conjecture 3.12(i) appear now in a symmetric fashion in the two
sides of the pair. In particular, we expect A-model data on one side to
be mirror to the B-model data on the other.

It is clear also that the statement of Conjecture 3.12(ii) is but one
facet of the homological mirror correspondence one should associate
with the compactified mirror pair. The full homological mirror con-
jecture will involve various equivalences of categories generalizing the
equivalences described in Table 1 for an ordinary (non-compactified)
Fano mirror pair. It is possible to list all these equivalences but the
list is somewhat cumbersome. Very recently Seidel found [Sei14b] a
uniform conceptual way for capturing the homological content of either
side of the compactified mirror pair and gave a clean formulation of the
complete homological mirror conjecture for the pair Conjecture 3.12(i)
in terms of an equivalence of categories equipped with nc anti-canonical
pencils.

It is very interesting to understand how the two meromorphic con-
nections from Conjecture 3.11(ii) arise directly as Hodge theoretic data
associated with these nc pencils but we will leave this for future inves-
tigations.

3.2.5. Construction of meromorphic connections over A2. Sup-
pose (H•,∇) is the de Rham part of a pure nc Hodge structure. In
this section we explain how, under some mild technical assumptions,
the pair (H•,∇) gives rise to a meromorphic connection over the affine
plane A2.

To keep track of the various copies of the affine line and the affine
plane appearing in the construction, we will indicate the coordinates on
these lines and planes as subscripts. Thus A1

u will denote the affine line
with coordinate u, A2

(u,q) will denote the affine plane with coordinates

(u, q), etc. By definition (see [KKP08, Section 2.1.4]) the pair (H,∇)
is the de Rham part of a pure nc Hodge structure if it satisfies:

H•: is a Z/2-graded algebraic vector bundle on the affine line A1
u,

and
∇: is a meromorphic connection on H•, which has at most a reg-
ular singularity at u = ∞, at most a second order pole at u = 0,
and no other singularities in A1

u.

View A1
u as the u-axis in the plane A2

(u,q). Our goal is to extend H•

to a holomorphic bundle ‡H• on all of A2
(u,q), and ∇ to a meromorphic

connection ‡∇ on ‡H• over A2
(u,q) so that ‡∇ has poles only at uq = 0

and has logarithmic singularities along q = 0. We will carry this out in
two steps:

Step 1. Start with the connection (H•,∇) on A1
u. Write (H,∇) for the

underlying ungraded algebraic vector bundle with connection. Since by
assumption ∇ has a regular singularity at u = ∞ we can consider the
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Deligne extension (H,∇) of (H,∇) (see, e.g., [Del70, Chapter II.5] or
[Sab02, Corollary II.2.21]). The bundleH is the algebraic vector bundle
on P1

u = A1
u ∪ {∞} which is uniquely characterized by the properties

that at ∞ the connection ∇ has a logarithmic pole on H, and that
the residue ResH∞(∇) : H∞ → H∞ is a nilpotent, grading preserving
endomorphism of the fiber of H at ∞.

The bundle H decomposes into a direct sum of line bundles H =
⊕r

k=1OP1(dk) and so it admits a natural decreasing biregular filtration
by subbundles

F iH =
⊕
dk≥i

OP1(dk), i ∈ Z.

The restrictions F iH := F iH|A1
u
give a Z-labeled filtration of H by

holomorphic subbundles.
For any complex number v ∈ C consider the Rees bundle

ξ(Hv, F
•Hv) → A1

q associated with this filtration, [Sim97]. The bun-

dle ξ(Hv, F
•Hv) is defined as the locally free sheaf on A1

q associated

with the C[q]-submodule
∑

i q
−iF iHv ⊂ Hv[q, q

−1]. By construction
ξ(Hv, F

•Hv) is a C×-equivariant vector bundle on A2
q for the scaling

action of C× on the q-line. Allowing v to vary we get a Rees bundle
ξ(H,F •H)→ A2

(v,q) which is algebraic and equivariant for the C×-action

λ · (v, q) := (v, λq). By construction we have canonical identifications

ξ(H,F •H)(v,1) ∼= Hv,

ξ(H,F •H)(v,0) ∼= grF •Hv
Hv.

Since the filtration F •H was compatible with the grading on H, we get
a natural Z/2-grading on ξ(H,F •H). Similarly, since F •H arose from
the Deligne extension of (H,∇), the meromorphic connection ∇ on H =
ξ(H,F •H)|A1

v×{1}
extends to a well defined meromorphic connection on

ξ(H,F •H) over the plane A2
(v,q) which has poles on vq = 0 and on each

line {v} × �, v �= 0 has monodromy +1 on the even graded piece of
ξ(Hv, F

•H) and −1 on the odd graded piece. To simplify notation we
will write †H• for the Z/2-graded ξ(H,F •H) on A2

(v,q), and will write
†∇ for the extension of the connection ∇.

Step 2. In this step we will modify the Z/2-graded bundle with con-
nection

(
†H, †∇

)
to ensure that its monodromy is ±1 not on vertical

lines but rather on lines through the origin.
Consider an affine plane A2

(u,q) with coordinates (u, q). Let s : S →

A2
(u,q) be the blow-up of A2

(u,q) at the origin (u, q) = (0, 0). The surface

S is glued out of two affine charts A2
(v,q) and A2

(u,w) via the gluing map

u = vq, w = 1/v. In particular, A2
(v,q) embeds as a Zariski open subset
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in S and we have a commutative diagram of surfaces

A2
(v,q)

�
� i ��

p 

�
��

��
��

�
S

s

		
A2
(u,q)

where i : A2
(v,q) ↪→ S denotes the inclusion, and p is the map

p : A2
(v,q) → A1

(u,q), (u, q) = p(v, q) = (vq, q).

Note that S−A2
(v,q) = A1

u and that a point u �= 0 ∈ A1
u ⊂ S is a limiting

point in S completing the hyperbola {(v, q) |vq = u} ⊂ A2
(v,q) to a copy

Cu of A1 embedded in S.
Now observe that if we restrict (†H, †∇) to the hyperbola vq = u, the

restricted connection has a regular singularity as v → ∞. Therefore,
we have a canonical Deligne extension of †H|vq=u to an algebraic vector
bundle on Cu. This process depends algebraically on u and so gives
an extension of †H to an algebraic vector bundle Ξ on the punctured
surface S − {x}, where x ∈ A2

(u,w) is the point with coordinates u = 0,

w = 0.
Next observe that since the surface S is smooth, any vector bundle

V on S − {x} will extend to a (necessarily unique) vector bundle on S.
Indeed, choose a torsion free coherent sheaf F on S which restricts to
V on S − {x}. For instance, if j denotes the inclusion of S − {x} in
S, we can take F to be the intersection ∩K of all coherent subsheaves
K ⊂ j∗V such that V ⊂ j∗K. Since V is locally free, the double dual
F∨∨ will also restrict to V . Being the dual of a coherent sheaf F∨∨

is automatically reflexive, and by Auslander–Buchsbaum theorem can
only fail to be locally free in codimension three. Thus F∨∨ is a locally
free sheaf which extends V to S. The uniqueness of the extension follows
again from the fact that x is a smooth point and so the local ring OS,x

satisfies the Serre condition S2.
Let Ξ̃ be the unique extension of Ξ to S. To complete the construction

we will need to know that Ξ̃ satisfies a descent property for the morphism
s : S → A2

(u,q). Let E ⊂ S denote the exceptional P1 of the blow-up

morphism s : S → A2
(u,q). With this notation we have the following:

Definition 3.13. We will say that an nc Hodge filtration (H•,∇) is

extendable if the restriction of the algebraic vector bundle Ξ̃ to E is
holomorphically trivial.

Note that if (H•,∇) is extendable, then by the projection formula

this extension Ξ̃ is canonically a pullback of a vector bundle on A2
(u,q),

namely s∗Ξ̃ is a vector bundle and Ξ̃ ∼= s∗s∗Ξ̃.
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In particular, if the nc Hodge filtration (H•,∇) is extendable, we get a

well defined holomorphic bundle ‡H := s∗Ξ̃ on A2
(u,q). The meromorphic

connection †∇ on †H is holomorphic on the open set vq �= 0 and so can
be viewed as a meromorphic connection ‡∇ on ‡H with poles on uq = 0.
Altogether we have proven the following:

Lemma 3.14. Let (H•,∇) be an extendable nc Hodge filtration, then

(H•,∇) gives rise to a Z/2-graded meromorphic connection
(
‡H•, ‡∇

)
on A2

(u,q), such that

• ‡∇ is holomorphic away from uq = 0;
• ‡∇ has at most a logarithmic pole along u = 0, and a pole of order

≤ 2 along q = 0;
• The restriction of

(
‡H0, ‡∇

)
to a line through the origin has trivial

monodromy, while the restriction of
(
‡H1, ‡∇

)
to a line through the

origin has monodromy (−1).

The discussion in Section 3.2.1 shows that the extendability assump-
tion in the previous lemma holds for the de Rham part of the nc Hodge
structure associated with a symplectic Fano variety:

Corollary 3.15. Let (X,ωX) be a symplectic manifold underlying a

smooth Fano variety of complex dimension n. Let ∗1 denote the quantum
product corresponding to the symplectic form ωX . Then the A-model nc

Hodge filtration(
AH•, A∇

)
:=

(
H•(X,C) ⊗OA1

u
, d+ (u−2(κX ⊗1 (•)) + u−1Gr)du

)
,

for the nc Hodge structure on the cohomology of (X,ωX ) is extendable

and
(
‡H•, ‡∇

)
reconstructs the standard q-variation of nc Hodge struc-

tures for the symplectic manifold (X,ωX). That is, we have a canonical

identification (
‡
(
AH

)•
, ‡

(
A∇

))
= (aH•, a∇) ,

where (aH•, a∇) is the connection defined in (3.2.1).

Proof. Follows immediately from the two step construction above and
by Lemma 3.9 and Lemma 3.14. q.e.d.

In particular, Corollary 3.15 shows that the one parameter mirror
symmetry Conjecture 3.11(ii) is equivalent to the extendability property
for the B-model nc Hodge filtration. More precisely, suppose (Y,w) is
a complex Landau–Ginzburg model. Consider the B-model nc Hodge
filtration for the cohomology of (Y,w):(

BH•, B∇
)
=

(
H• (Ω•Y [u], ud − dw∧) , d+

(
u−2 (w · (•)) + u−1G

))
.

Here G is the grading operator of multiplication by −p/2 on Ωp
Y . When

(Y,w) is the mirror of a symplectic Fano variety (X,ωX), homological
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mirror symmetry identifies the nc Hodge filtrations on the cohomology,
i.e., gives an isomorphism(

AH•, A∇
)
∼=

(
BH•, B∇

)
.

Combined with Corollary 3.15 this identification reduces Conjec-
ture 3.11(ii) to the following purely algebro–geometric conjecture:

Conjecture 3.16. Suppose (Y,w) is a complex Landau–Ginzburg
model which admits a tame compactification ((Z, f),DZ) of log Calabi–
Yau type. Then the associated nc Hodge filtration

(
BH•, B∇

)
is ex-

tendable, and (
‡
(
BH

)•
, ‡

(
B∇

))
=

(
bH•, b∇

)
.

Remark 3.17. In a very interesting recent work Sabbah and Yu
[SY14] consider a different but related notion of extendability arising
from a nilpotent orbit for the pure complex Hodge structure attached to
a compactification of a Landau–Ginzburg model. Moreover, they prove
that the scaling variation of this pure Hodge structure is polarizable and
satisfies their extendability condition. This result seems closely related
to Conjecture 3.16 but we have not investigated the precise relation
between the two statements.

3.3. Canonical decorations. In this section we take a closer look at
the data needed to write special coordinates on the versal deformation
space M of tame compactified Landau–Ginzburg models ((Z, f),DZ) of
log Calabi–Yau type. Recall from [Tia87] and [Tod89], that when Y is
a smooth compact Calabi–Yau manifold of dimension dimC Y = d, then
any choice of a splitting of the Hodge filtration on Hd

DR(Y,C) defines an
analytic affine structure (= an integrable torsion free connection on the
tangent bundle on) on the versal deformation space of Y . In [KKP08,
Section 4.1.3] we analyzed the nc counterpart of this statement. In
the nc setting the splitting of the nc Hodge filtration is encoded in the
notion of a decoration (see [KKP08, Definition 4.5]) and in [KKP08,
Claim 4.6] we argue that for decorated variations of pure nc Hodge
structures of Calabi–Yau type there is a natural affine structure on the
base of the variation.

This analysis applies directly to M and the B-model variation of nc
Hodge structures over it. Concretely this variation is given by a Z/2-

graded holomorphic bundle with connection
(
BH•,B∇

)
over A1

u ×M ,

where the fiber of BH• over a point {u} × {(Z, f),DZ)} is the hyperco-

homology H• (Z; (Ω•Z(logDZ, f), ud + df∧)) and B∇ is the Gauss–Manin
connection. Consider the projective line P1

u = A1
u ∪ {∞} compactifying

A1
u. As explained in [KKP08, Section 4.1.3] the special coordinates on

M arise from decoration data for
(
BH•,B∇

)
. By definition a decoration

is a pair
(
BH̃•, ψ

)
, where
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• BH̃• is an extension of BH• to a Z/2-graded holomorphic vector

bundle on P1
u × M for which B∇ has a logarithmic pole along

{∞} ×M .

• ψ is a holomorphic section of BH̃•
|{∞}×M

which is horizontal with

respect to the holomorphic connection
BH̃

(
B∇

)
induced from B∇.

Remark 3.18. The variation
(
BH•,B∇

)
is a multi parameter variant

of the one parameter variation
(
bH•, b∇

)
we considered in Section 3.2.2

and Conjecture 3.16. In fact, the one parameter variation
(
bH•, b∇

)
is the restriction of the multi parameter variation

(
BH•,B∇

)
to the

straight line in M given by the scaling of a fixed potential by a complex
number q.

In the remainder of this section we will describe a conjectural con-
struction which will produce a natural decoration in this setting, i.e.,
will lead to canonical special coordinates that do not depend on random
choices. The construction is based on mirror symmetry considerations
and a description of decorations for the A-model variation of nc Hodge
structures. We begin by recalling the relationship between filtrations
and logarithmic extensions that we used repeatedly in the previous sec-
tion and in [KKP08, Section 4.1.3].

3.3.1. Extensions and filtrations. Let D = {t ∈ C | |t| < R� 1} be
a small one dimensional complex disk centered at zero, and let D× =
D − {0} denote the corresponding punctured disk. Let (V,∇) be a
holomorphic bundle with holomorphic connection on D×, and suppose
∇ is meromorphic and has a regular singularity at 0. By Deligne’s
extension theorem [Del70, Chapter II.5], [Sab02, Corollary II.2.21]
we can always find a holomorphic bundle on D which extends V , and
on which ∇ has a logarithmic pole. Fixing one such extension V as a
reference point we can use the Deligne–Malgrange classification theorem
[Sab02, Theorem III.1.1] to enumerate all other logarithmic extensions
of (V,∇) by their relative position to V (see, e.g., [Sab02, Chapter III] or
[KKP08, Section 4.1.3]). In particular, the choice of V gives a bijection(

Holomorphic extensions of V to
D on which ∇ has logarithmic
pole at 0

)
��

		(
Increasing biregular filtrations of V by
covariantly constant holomorphic sub-
bundles V ≤i ⊂ V on D×

)
.

If we choose for concreteness V to be the unique Deligne extension on
which ∇ has a logarithmic pole at 0 and a residue with eigenvalues
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whose real parts are in (−1, 0], then the above bijection can be described

explicitly as follows. Let Ṽ be another extension of V on which ∇ has

a logarithmic pole. Fix an analytic trivialization of Ṽ near t = 0 and
let || • || denote the Hermitian norm of a section of V computed in
this trivialization. For any t ∈ D and any v ∈ Vt we have a well
defined∇-horizontal section sv(r) of V over the segment (0, 1]·t uniquely
determined by the initial condition sv(1) = v. With this notation we
have

V ≤it =

{
v ∈ Vt

∣∣∣∣ The ∇-horizontal section sv(r)
satisfies ||sv(r)|| = O

(
r−i

) }
.

Remark 3.19. • The growth condition defining V ≤i depends on the

extension Ṽ but not on the choice of a local holomorphic frame of Ṽ
near 0.
• In [KKP08, Section 4.1.3] we discussed the classification of loga-

rithmic extensions of (V,∇) in terms of biregular decreasing filtrations
of V . The above description of V ≤i is just a relabeling of the filtrations
described in [KKP08, Section 4.1.3].

3.3.2. The A-model decoration. Let (X,ωX ) be a compact symplec-
tic manifold of real dimension 2n. Under the convergence assumption
from [KKP08, Section 3.1] for the quantum multiplication ∗q, the nc

Hodge filtration on the de Rham cohomology of X is encoded in the
meromorphic connection on A1

u:(
AH, A∇

)
:=

(
H•(X,C)⊗OA1

u
, d+ (u−2(κX ⊗1 (•)) + u−1Gr)du

)
,

where ∗1 denotes the quantum product for ωX . Note that by definition
A∇ has a regular singularity at u =∞.

Remark 3.20. Conjecturally the convergence assumption on ∗q is
closely related to the properties of the nc geometry attached to the pair
(X,ωX). In particular, if convergence for q = 1 holds we expect that

(i) the Fukaya category Fuk(X,ωX) is smooth and compact;
(ii) the geometrically defined nc Hodge filtration

(
AH, A∇

)
coincides

with the nc Hodge filtration on HP•(Fuk(X,ωX)) defined in
[KKP08, Section 2.2.5];

(iii) the monodromy of A∇ around u =∞ is unipotent and conjugate
to the classical multiplication κX ∧ (•) by the canonical class.

Trough a combination of various results from [Abo09, RS15, Shk11,
Efi12] properties (i)–(iii) are known to hold when (X,ωX) underlies a
smooth toric Fano variety.

As we explained in Section 3.3.1, logarithmic extensions of
(
AH, A∇

)
across u =∞ will correspond to A∇-horizontal filtrations of AH. In par-
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ticular, from the definition of Gr we see that extensions of AH as a trivial
bundle over P1

u = A1
u ∪ {∞}, will correspond to filtrations AH≤• whose

associated graded is isomorphic to H•+n(X,C) ⊗ OA1
u
as a Z-graded

bundle on A1
u. Therefore, in order to get a decoration for the A-model

data
(
AH, A∇

)
we need to specify a canonical A∇-covariant filtration on

AH whose associated graded pieces have dimensions h•+n(X,C). If in
addition this filtration depends holomorphically on ωX , then it will au-
tomatically give a decoration not only for the fixed nc Hodge filtration(
AH, A∇

)
but also for the universal variation

(
AH,A∇

)
over the cone

of complexified symplectic structures.
Such a canonical decoration arises naturally in the Fano case. Indeed,

suppose that (X,ωX) underlies a complex Fano manifold of complex di-
mension n, and that property (iii) from Remark 3.20 holds for (X,ωX).
In this case the operator κX ∧ (•) satisfies the Lefschetz property on
H•(X,C) and, in particular, has Jordan blocks which are symmetri-
cally situated around the middle dimension n. In particular, the Lef-
schetz filtration (= the monodromy weight filtration for the nilpotent
operator κX ∧ (•)) will have associated graded pieces with dimensions
h•+n(X,C). Thus the extension of AH across u = ∞ corresponding to
this filtration will be holomorphically trivial on P1

u. This shows that
for a symplectic Fano the universal Calabi–Yau variation of nc Hodge

structures
(
AH,A∇

)
→ A1

u×K over the complexified Kähler cone K

will have a canonical decoration data:

AH̃: is the holomorphic extension of AH to P1
u × K which corre-

sponds to the monodromy weight filtration for the monodromy
around u =∞.

ψ: is the covariantly constant section of AH̃|{∞}×K defined by

ψ(∞, β) = s(∞), where s ∈ Γ
(
P1
u × {β},

AH̃
)
is the unique holo-

morphic section in the trivial bundle AH̃|P1
u×{β}

∼= H•(X,C) ⊗O

whose value at (0, β) is 1 ∈ H0(X,C).

For ease of reference it will be useful to introduce terminology that
describes this extendability behavior. Again fix a small complex disk D

and a meromorphic connection (V,∇) on D× with a regular singularity
and unipotent monoromy around zero. Fix the unique Deligne extension
V →D of V on which ∇ has a logarithmic pole with nilpotent residue.
As we saw in Section 3.3.1 this data establishes a 1-to-1 correspondence
between logarithmic extensions of V to P1

u and covariantly constant
biregular increasing filtrations of V → A1

u.

Definition 3.21. • The skewed canonical extension of V is
the holomorphic vector bundle Ṽ which corresponds to the monodromy
weight filtration for the monodromy operator around u =∞.
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• An abstract nc Hodge filtration (H• → A1
u,∇) will be called spe-

cial if ∇ has unipotent monodromy around u =∞ and the correspond-

ing skewed canonical extension H̃ of H is holomorphically trivial.

In these terms the discussion about the extendability behavior of the
A-model nc Hodge structure above can be rephrased as the statement
that the A-model nc Hodge filtration

(
AH, A∇

)
associated with a sym-

plectic Fano variety is special. Specialty is the main property needed
to define the canonical decoration for the universal A-model variation(
AH,A∇

)
.

Since the skewed extension and the specialty property are intrinsi-
cally determined by the monodromy, it is straightforward to transfer
them through the mirror correspondence and to formulate the B-model

extendability that will give rise to a canonical decoration of
(
BH,B∇

)
and canonical special coordinates on the moduli M of compactified
Landau–Ginzburg models.

3.3.3. The B-model decoration. The A-model picture in the previ-
ous section and the mirror identification of the A and B model universal
variations of nc Hodge structures suggest that a canonical decoration

for
(
BH,B∇

)
and canonical special coordinates on the moduli M arise

from the skewed extension of the B-model nc Hodge structure. Specifi-
cally we get the following purely algebro-geometric conjecture:

Conjecture 3.22. (a) Let (Y,w) be a complex Landau–Ginzburg
model, and let(

BH•, B∇
)
=

(
H• (Ω•Y [u], ud − dw∧) , d+

(
u−2 (w · (•)) + u−1G

))
be the nc Hodge filtration on the de Rham cohomology of (Y,w).
If (Y,w) admits a tame compactification ((Z, f),DZ) of Calabi–Yau
type, then

(
BH•, B∇

)
is special.

(b) Let M be the versal deformation space of ((Z, f),DZ). The uni-

versal B-model variation
(
BH•,B∇

)
over A1

u×M has a canonical

decoration data:
BH̃: is the skewed extension of BH to P1

u ×M .

ψ: is the covariantly constant section of BH̃|{∞}×M defined by

ψ(∞, ((Z, f),DZ)) = s(∞), where s ∈ Γ
(
P1
u × {((Z, f),DZ)},

BH̃
)
is the unique holomorphic section in the trivial bundle

BH̃|P1
u×{((Z,f),DZ)}

∼= H•
DR((Y,w);C) ⊗O,

whose value at (0, ((Z, f),DZ)) is 1 ∈ H0(Z,Ωn
Z(logDZ, f)).
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Dirichlet branes and mirror symmetry, volume 4 of Clay Mathemat-
ics Monographs. American Mathematical Society, Providence, RI, 2009,
MR2567952, Zbl 1188.14026.

[Abo09] M. Abouzaid. Morse homology, tropical geometry, and homological mir-
ror symmetry for toric varieties. Selecta Math. (N.S.), 15(2):189–270,
2009, MR2529936, Zbl 1204.14019.

[Abo12] M. Abouzaid. On the wrapped Fukaya category and based loops. J.
Symplectic Geom., 10(1):27–79, 2012, MR2904032, Zbl 1298.53092.

[Abo13] M. Abouzaid. Symplectic cohomology and Viterbo’s theorem. ArXiv e-
prints, page 182, 2013, 1312.3354.

[AKO06] D. Auroux, L. Katzarkov, and D. Orlov. Mirror symmetry for del
Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math.,
166(3):537–582, 2006, MR2257391, Zbl 1110.14033.

[AKO08] D. Auroux, L. Katzarkov, and D. Orlov. Mirror symmetry for weighted
projective planes and their noncommutative deformations. Ann. of
Math. (2), 167(3):867–943, 2008, MR2415388, Zbl 1175.14030.

[AS10] M. Abouzaid and P. Seidel. An open string analogue of Viterbo functo-
riality. Geom. Topol., 14(2):627–718, 2010, MR2602848, Zbl 1195.53106.

[Aur07] D. Auroux. Mirror symmetry and T -duality in the complement of an
anticanonical divisor. J. Gökova Geom. Topol. GGT, 1:51–91, 2007,
MR2386535, Zbl 1181.53076.

[BK98] S. Barannikov and M. Kontsevich. Frobenius manifolds and formality
of Lie algebras of polyvector fields. Internat. Math. Res. Notices, 4:201–
215, 1998, MR1609624, Zbl 0914.58004.

[Blo10] J. Block. Duality and equivalence of module categories in noncommu-
tative geometry. In A celebration of the mathematical legacy of Raoul
Bott, volume 50 of CRM Proc. Lecture Notes, pages 311–339. Amer.
Math. Soc., Providence, RI, 2010, MR2648899, Zbl 1201.58002.

[Bog79] F. Bogomolov. Hamiltonian Kählerian manifolds. Soviet Math. Dokl.,
19:1462–1465, 1979, MR0514769, Zbl 0418.53026.

[Bog81] F. Bogomolov. Kähler varieties with trivial canonical class. IHES
preprint M/81/10, 1981.

[Car57] P. Cartier. Une nouvelle opération sur les formes différentielles.
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