Open Access
Translator Disclaimer
November 2015 A Yamabe-type problem on smooth metric measure spaces
Jeffrey S. Case
J. Differential Geom. 101(3): 467-505 (November 2015). DOI: 10.4310/jdg/1445518921

Abstract

We describe and partially solve a natural Yamabe-type problem on smooth metric measure spaces which interpolates between the Yamabe problem and the problem of finding minimizers for Perelman’s $\nu$-entropy. In Euclidean space, this problem reduces to the characterization of the minimizers of the family of Gagliardo–Nirenberg inequalities studied by Del Pino and Dolbeault. We show that minimizers always exist on a compact manifold provided the weighted Yamabe constant is strictly less than its value on Euclidean space. We also show that strict inequality holds for a large class of smooth metric measure spaces, but we also give an example which shows that minimizers of the weighted Yamabe constant do not always exist.

Citation

Download Citation

Jeffrey S. Case. "A Yamabe-type problem on smooth metric measure spaces." J. Differential Geom. 101 (3) 467 - 505, November 2015. https://doi.org/10.4310/jdg/1445518921

Information

Published: November 2015
First available in Project Euclid: 22 October 2015

zbMATH: 1334.53031
MathSciNet: MR3415769
Digital Object Identifier: 10.4310/jdg/1445518921

Rights: Copyright © 2015 Lehigh University

JOURNAL ARTICLE
39 PAGES


SHARE
Vol.101 • No. 3 • November 2015
Back to Top