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HOMOLOGICAL DIMENSIONS WITH RESPECT TO
A SEMIDUALIZING COMPLEX

JONATHAN TOTUSHEK

ABSTRACT. In this paper, we build off of Takahashi and
White’s PC -projective dimension and IC -injective dimension
to define these dimensions for when C is a semidaulizing
complex. We develop the framework for these homological
dimensions by establishing base change results and local-
global behavior. Furthermore, we investigate how these
dimensions interact with other invariants.

1. Introduction. Let R be a commutative Noetherian ring. The
projective, flat, and injective dimensions of an R-module M are now
classical invariants that are important for studying M and R. These
dimensions were later generalized for R-complexes by Foxby [3], and
many useful results about dimensions for modules also hold true for
complexes.

A finitely generatedR-module C is semidualizing ifR ∼= HomR(C,C)

and Ext≥1
R (C,C) = 0. Takahashi and White [10] defined, for a semi-

dualizing R-module C, the PC-projective and IC-injective dimensions.
The PC-projective dimension of an R-module M (PC- pdR(M)) is the
length of the shortest resolution of M by modules of the form C ⊗R P
where P is a projective module. They define IC-injective dimen-
sion (IC- idR(M)) dually, and one defines the FC-projective dimension
(FC- pdR(M)) similarly. We extend these constructions to the realm
of R-complexes. Note that we work in the derived category D(R). See
Section 2 for some background and notation on this subject.

A complex C ∈ Df
b(R) is semidualizing if the natural homothety

morphism χR
C : R → RHomR(C,C) is an isomorphism in D(R). An

R-complex D is dualizing if it is semidualizing and has finite injective
dimension. To understand the PC-projective, FC-projective and IC-
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injective dimensions in this context, we use the following result, see
Theorem 3.9 below.

Theorem 1.1. Let X ∈ Db(R), and let C be a semidualizing R-
complex.

(i) We have pdR(RHomR(C,X)) < ∞ if and only if there exists
Y ∈ Db(R) such that pdR(Y ) < ∞ and X ≃ C ⊗L

R Y in D(R).
When these conditions are satisfied, one has Y ≃ RHomR(C,X)
and X ∈ BC(R).

(ii) We have fdR(RHomR(C,X)) < ∞ if and only if there exists
Y ∈ Db(R) such that fdR(Y ) < ∞ and X ≃ C ⊗L

R Y in D(R).
When these conditions are satisfied, one has Y ≃ RHomR(C,X)
and X ∈ BC(R).

(iii) We have idR(C⊗L
RX) < ∞ if and only if there exists Y ∈ Db(R)

such that idR(Y ) < ∞ and X ≃ RHomR(C, Y ) in D(R). When
these conditions are satisfied, one has Y ≃ C ⊗L

R X and X ∈
AC(R).

With this in mind, we define, e.g., PC- pdR(X) := sup(C) +
pdR(RHomR(C,X)); thus, PC- pdR(X) < ∞ if and only if X satisfies
the equivalent conditions of Theorem 1.1 (i). We define FC- pdR(X)
and IC- idR(X) similarly.

In Section 3 we develop the foundations of these homological di-
mensions. For instance, we establish finite flat dimension base change
(3.11) and local-global principles (3.16)–(3.18). Also, in Theorem 3.10,
we show how these notions naturally augment Foxby equivalence. In
Section 4, we establish some stability results and the following, see
Theorem 4.9.

Theorem 1.2. Assume R has a dualizing complex D, and let X ∈
Db(R). Then FC- pdR(X) < ∞ if and only if IC†- idR(X) < ∞ where
C† = RHomR(C,D).

This result is key for the work in [9].

2. Background. Throughout this paper, R and S are commutative
Noetherian rings with identity, and C is a semidualizing R-complex.
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We work in the derived category D(R) of complexes of R-modules,
indexed homologically (see, e.g., [5, 6]). A complex X ∈ D(R)
is homologically bounded if Hi(X) = 0 for all |i| ≫ 0 and X is
homologically finite if ⊕i Hi(X) is finitely generated. We denote by
Db(R) and Df

b(R) the full subcategories of D(R) consisting of all
homologically bounded R-complexes and all homologically finite R-
complexes, respectively. Isomorphisms in D(R) are identified by the
symbol ≃.

For R-complexes X and Y , let inf(X) and sup(X) denote the
infimum and supremum, respectively, of the set {i ∈ Z | Hi(X) = 0}.
Let X ⊗L

R Y and RHomR(X,Y ) denote the left-derived tensor product
and right-derived homomorphism complexes, respectively.

Definition 2.1. Let X ∈ D+(R). The projective dimension of X is

pdR(X)=inf

{
n ∈ Z

∣∣∣∣ P ≃−→ X where P is a complex of projective
R-modules such that Pi = 0 for all i > n

}
.

The flat dimension (fd) and injective dimension (id) are defined
similarly. Let P(R), F(R) and I(R) denote the full subcategories of
Db(R) consisting of complexes of finite projective, flat and injective
dimensions, respectively.

Fact 2.2 ([1, Proposition 4.5]). Let X,Y ∈ D(R).

(a) If idR(Y ) < ∞, then fdR(RHomR(X,Y )) ≤ idR(X) + sup(Y ).
(b) If fdR(Y ) < ∞, then idR(X ⊗L

R Y ) ≤ idR(X)− inf(Y ).

The following result is for use in Section 4.

Lemma 2.3. Let X ∈ Db(R).

(i) If I is a faithfully injective R-module and idR(RHomR(X,E)) ≤
n, then fdR(X) ≤ n.

(ii) If F is a faithfully flat R-module and fdR(X ⊗L
R F ) ≤ n, then

fdR(X) ≤ n.
(iii) If E is a faithfully injective R-module and idR(X) ≤ n, then we

have that fdR(RHomR(X,E)) ≤ n.
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(iv) If F is a faithfully flat R-module and idR(X) ≤ n, then we have
that idR(X ⊗L

R E) ≤ n.

Proof.

(i) Assume that idR(RHomR(X,E)) ≤ n, and let F
≃→ X be a flat

resolution of X.

A standard truncation argument shows that HomR(Coker(∂
F
n+1), E)

is injective. Since E is faithfully injective, we also have that Coker(∂F
n+1)

is flat. Thus, fdR(X) ≤ n.

The proofs of (ii), (iii) and (iv) are similar. �

Fact 2.4 ([1, Lemma 4.4]). Let L,M,N ∈ D(R). Assume that
L ∈ Df

+(R).

The natural tensor-evaluation morphism

ωLMN : RHomR(L,M)⊗L
R N −→ RHomR(L,M ⊗L

R N)

is an isomorphism when M ∈ D−(R) and either L ∈ P(R) or N ∈
F(R).

The natural Hom-evaluation morphism

θLMN : L⊗L
R RHomR(M,N) −→ RHomR(RHomR(L,M), N)

is an isomorphism when M ∈ Db(R) and either L ∈ P(R) or N ∈ I(R).

Definition 2.5 (Foxby classes).

(i) The Auslander class with respect to C is the full subcategory
AC(R) ⊆ Db(R) such that a complex X is in AC(R) if and
only if C ⊗L

R X ∈ Db(R) and the natural morphism γC
X : X →

RHomR(C,C ⊗L
R X) is an isomorphism in D(R).

(ii) The Bass class with respect to C is the full subcategory BC(R) ⊆
Db(R) such that a complex Y is in BC(R) if and only if
RHomR(C, Y ) ∈ Db(R) and the natural morphism ξCY : C ⊗L

R

RHomR(C, Y ) → Y is an isomorphism in D(R).

For a generalized diagrammatic version of the next result, see The-
orem 3.10.
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Fact 2.6 (Foxby equivalence [2, Theorem 4.6]). Let X,Y ∈ Db(R).
We have that

(a) X ∈ AC(R) if and only if C ⊗L
R X ∈ BC(R).

(b) Y ∈ BC(R) if and only if RHomR(C, Y ) ∈ AC(R).

Fact 2.7 ([2, Proposition 4.4]). Let X ∈ Db(R).

(a) If fdR(X) < ∞ (e.g., pdR(X) < ∞), then X ∈ AC(R).
(b) If idR(X) < ∞, then X ∈ BC(R).

3. C-Dimensions for complexes. In this section, we define the
PC-projective, FC-projective and IC-injective dimensions and build
their foundations.

Definition 3.1. Let X ∈ Db(R).

(i) The PC-projective dimension of X is defined as

PC- pdR(X) = sup(C) + pdR(RHomR(C,X)).

(ii) The FC-projective dimension of X is defined as

FC- pdR(X) = sup(C) + fdR(RHomR(C,X)).

(iii) The IC-injective dimension of X is defined as

IC- idR(X) = sup(C) + idR(C ⊗L
R X).

Let PC(R), FC(R), and IC(R) denote the full subcategories ofDb(R) of
all complexes of finite C-projective, C-flat, and C-injective dimension,
respectively.

Remark 3.2. Let X ∈ Db(R). Observe that sup(C) < ∞. Hence,
PC- pdR(X) < ∞ if and only if pdR(RHomR(C,X)) < ∞. If
PC- pdR(X) < ∞, then Fact 2.7 (a) implies that RHomR(C,X) ∈
AC(R) and Foxby equivalence (2.6) implies that X ∈ BC(R). Simi-
larly, FC- pdR(X) < ∞ if and only if fdR(RHomR(C,X)) < ∞. If
FC- pdR(X) < ∞, then X ∈ BC(R). Also, we have IC- idR(X) < ∞
if and only if idR(C ⊗L

R X) < ∞. Hence, if IC- idR(X) < ∞, then
X ∈ AC(R).
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Remark 3.3. Let X ∈ Db(R). Note that, when C = R, we have that
PC- pdR(X) = sup(R)+ pdR(RHomR(R,X)) = pdR(X). Similarly, in
this case, FC- pdR(X) = fdR(X) and IC- idR(X) = idR(X).

Remark 3.4. Let M be an R-module. When C is a semidual-
izing R-module, Takahashi and White [10, Theorem 2.11], using
the definition described in Section 1, showed that PC- pdR(X) =
pdR(RHomR(C,X)). Since sup(C) = 0 in this case, Definition 3.1 (i)
shows that our definition is consistent with the one from [10]. In a sim-
ilar way, it can be shown that IC- id recovers Takahashi and White’s
definition in this case.

The next result compares FC- pd with PC- pd.

Proposition 3.5. Let X ∈ Db(R). Then

FC-pdR(X) ≤ PC- pdR(X) ≤ FC-pdR(X) + dim(R).

In particular, if dim(R) < ∞, then we have PC-pdR(X) < ∞ if and
only if FC-pdR(X) < ∞.

Proof. Assume that PC- pdR(X) = n < ∞. Then

fdR(RHomR(C,X)) ≤ pdR(RHomR(C,X)) = n− sup(C) < ∞.

It now follows that FC- pdR(X) ≤ n.

Next assume that dim(R) < ∞ and FC- pdR(X) = n < ∞. By [8],
we have

pdR(RHomR(C,X)) ≤ fdR(RHomR(C,X)) + dim(R)

= n− sup(C) + dim(R).

Therefore, PC- pdR(X) ≤ dim(R) + n. �

The following three results are versions of [10, Theorem 2.11]
involving a semidaulizing complex.

Proposition 3.6. Let X ∈ Db(R). Then, we have

PC-pdR(C ⊗L
R X) = sup(C) + pdR(X).

In particular, PC-pdR(C ⊗L
R X) < ∞ if and only if pdR(X) < ∞.
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Proof. Let n ∈ Z. We prove that PC- pdR(C ⊗L
R X) ≤ n if and only

if sup(C) + pdR(X) ≤ n.

For the forward implication, assume that PC- pdR(C ⊗L
R X) ≤ n.

Then, by Definition 3.1 (i), we have

sup(C) + pdR(RHomR(C,C ⊗L
R X)) = PC- pdR(C ⊗L

R X) ≤ n.

Thus, pdR(RHomR(C,C⊗L
RX)) < ∞. Fact 2.7 (a) implies RHomR(C,

C ⊗L
R X) ∈ AC(R). By Foxby equivalence (2.6), we have C ⊗L

R X ∈
BC(R) and X ∈ AC(R). Therefore, we have X ≃ RHomR(C,C ⊗L

R X)
and pdR(RHomR(C,C ⊗L

R X)) = pdR(X). Thus, sup(C) + pdR(X) ≤
n.

For the reverse implication, assume that sup(C) + pdR(X) ≤
n. In particular, we have that pdR(X) < ∞. Therefore, X ∈
AC(R) and X ≃ RHomR(C,C ⊗L

R X). It follows that pdR(X) =
pdR(RHomR(C,C ⊗L

R X)). By Definition 3.1 (i), we have

PC- pdR(C ⊗L
R X) = sup(C) + pdR(RHomR(C,C ⊗L

R X))

= sup(C) + pdR(X) ≤ n. �

The next two results are proven like Proposition 3.6.

Proposition 3.7. Let X ∈ Db(R). Then we have

FC-pdR(C ⊗L
R X) = sup(C) + fdR(X).

In particular, FC-pdR(C ⊗L
R X) < ∞ if and only if fdR(X) < ∞.

Proposition 3.8. Let X ∈ Db(R). Then we have

IC- idR(RHomR(C,X)) = sup(C) + idR(X).

In particular, IC- idR(RHomR(C,X)) < ∞ if and only if idR(X) < ∞.

Next, we have Theorem 1.1 from the introduction.

Theorem 3.9. Let X ∈ Db(R).

(i) We have PC- pdR(X) < ∞ if and only if there exists Y ∈ Db(R)
such that pdR(Y ) < ∞ and X ≃ C ⊗L

R Y . When these conditions
are satisfied, one has Y ≃ RHomR(C,X) and X ∈ BC(R).
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(ii) We have FC-pdR(X) < ∞ if and only if there exists Y ∈ Db(R)
such that fdR(Y ) < ∞ and X ≃ C ⊗L

R Y . When these conditions
are satisfied, one has Y ≃ RHomR(C,X) and X ∈ BC(R).

(iii) We have IC- idR(X) < ∞ if and only if there exists Y ∈ Db(R)
such that idR(Y ) < ∞ and X ≃ RHomR(C, Y ). When these
conditions are satisfied, one has Y ≃ C ⊗L

R X and X ∈ AC(R).

Proof.

(i) For the forward implication, assume that PC- pdR(X) < ∞.
Then, by Definition 3.1 (i), we have pdR(RHomR(C,X)) = PC-
pdR(X)− sup(C) < ∞. Fact 2.7 (a) implies that RHomR(C,X)
∈ AC(R) and Foxby equivalence implies that X ∈ BC(R).

Thus, X ≃ C ⊗L
R RHomR(C,X) ≃ C ⊗L

R Y with Y = RHomR(C,X).

For the reverse implication, assume that there exists a Y ∈ Db(R)
such that pdR(Y ) < ∞ and X ≃ C ⊗L

R Y . Then Fact 2.7 (a) implies
that Y ∈ AC(R), and hence we have

Y ≃ RHomR(C,C ⊗L
R Y ) ≃ RHomR(C,X).

It now follows from Definition 3.1 (i) that PC- pdR(X) < ∞. �
Parts (ii) and (iii) are proven similarly.

The previous results give rise to a generalized Foxby equivalence.

Theorem 3.10 (Foxby equivalence). There is a commutative diagram:

..

..IC(R) . ..I(R)

..AC(R) . ..BC(R)

..F(R) . ..FC(R)

..P(R) . ..PC(R)

.

C ⊗L
R −

.
RHomR(C,−)
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where the vertical arrows are full embeddings, and the unlabeled hori-
zontal arrows are quasi-inverse equivalences of categories.

The next result shows how PC- pd and FC- pd transfer along a ring
homomorphism of finite flat dimension. Note that, if φ : R → S is a ring
homomorphism of finite flat dimension, then C⊗L

R S is a semidualizing
S-complex by [2, Theorem 5.6] and [4, Theorem II (a)].

Proposition 3.11. Let φ : R → S be a ring homomorphism of finite
flat dimension and X ∈ Db(R). Then we have:

(i) PC⊗L
RS- pdS(X ⊗L

R S)− sup(C ⊗L
R S) ≤ PC-pdR(X)− sup(C),

(ii) FC⊗L
RS- pdS(X ⊗L

R S)− sup(C ⊗L
R S) ≤ FC- pdR(X)− sup(C),

(iii) PC⊗L
RS- pdS(X ⊗L

R S) ≤ PC-pdR(X), and

(iv) FC⊗L
RS- pdS(X ⊗L

R S) ≤ FC-pdR(X).

Equality holds when φ is faithfully flat.

Proof. (i) and (iii). Assume first that PC- pdR(X)− sup(C) = n <
∞. Then pdR(RHomR(C,X)) = n, and hence, by the base change, we
have

pdS(RHomR(C,X)⊗L
R S) ≤ pdR(RHomR(C,X)) = n.

Observe that, by tensor-evaluation (2.4) and Hom-tensor adjointness,
there are isomorphisms

RHomR(C,X)⊗L
R S ≃ RHomR(C,X ⊗L

R S)

≃ RHomR(C,RHomS(S,X ⊗L
R S))

≃ RHomS(C ⊗L
R S,X ⊗L

R S).

Therefore pdS(RHomS(C ⊗L
R S,X ⊗L

R S)) ≤ n. Thus, we have

PC⊗L
RS- pdS(X ⊗L

R S)− sup(C ⊗L
R S) ≤ n = PC- pdR(X)− sup(C),

that is, the inequality in (i) holds.

Observe that since fdR(S) < ∞, we have S ∈ AC(R), and hence
sup(C⊗L

RS) ≤ sup(C) by [2, Proposition 4.8(a)]. Hence, the inequality
in (iii) follows from part (i).
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Now assume that φ is faithfully flat. Therefore, one has that
sup(C⊗L

RS) = sup(C). It suffices to show that PC⊗L
RS- pdR(X⊗L

RS) ≥
PC- pdR(X). Assume that PC⊗L

RS- pdR(X ⊗L
R S) = n < ∞. Then

pdS(RHomR(C,X)⊗L
R S) = pdS(RHomS(C ⊗L

R S,X ⊗L
R S))

= n− sup(C ⊗L
R S).

Therefore, we have pdS(RHomR(C,X)⊗L
R S) ≤ n− sup(C). Observe

that, if P is an R-module such that P ⊗RS is projective over S, then P
is projective over R by [7, Theorem 9.6] and [8]. A standard truncation
argument thus shows that

pdR(RHomR(C,X)) ≤ pdS(RHomR(C,X)⊗L
R S) = n− sup(C),

as desired.

Parts (iv) and (ii) are proven similarly. �

Corollary 3.12. Let X ∈ Db(R), and let U ⊂ R be a multiplicatively
closed subset. Then there are inequalities

(i) PU−1C- pdU−1R(U
−1X) ≤ PC- pdR(X),

(ii) FU−1C- pdU−1R(U
−1X) ≤ FC- pdR(X),

(iii) IU−1C- idU−1R(U
−1X) ≤ IC- idR(X),

(iv) PU−1C- pdU−1R(U
−1X)− sup(U−1C) ≤ PC- pdR(X)− sup(C),

(v) FU−1C- pdU−1R(U
−1X) − sup(U−1C) ≤ FC-pdR(X) − sup(C),

and
(vi) IU−1C- idU−1R(U

−1X)− sup(U−1C) ≤ IC- idR(X)− sup(C).

Proof. The map φ : R → U−1R is flat. Hence, (i), (ii), (iv) and (v)
follow from Proposition 3.11. Parts (iii) and (vi) are proven similarly
to Proposition 3.11. �

Remark 3.13. Observe that, to obtain the inequality in Corol-
lary 3.12, we need the inequality sup(U−1C) ≤ sup(C) to hold. If we
had defined PC- pdR(X) as inf(C)+ pdR(RHomR(C,X)), then Corol-
lary 3.12 would not hold because

inf(U−1C) ̸≤ inf(C).

This is why we choose sup(C) instead of inf(C) in the definition of
PC- pd.
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The next result is a local-global principal for Bass classes.

Lemma 3.14. Let X ∈ Db(R). The following conditions are equiva-
lent :

(i) X ∈ BC(R);
(ii) U−1X ∈ BU−1C(U

−1R) for all multiplicatively closed subsets
U ⊂ R;

(iii) Xp ∈ BCp
(Rp) for all p ∈ Spec(R);

(iv) Xp ∈ BCp
(Rp) for all p ∈ Supp(R);

(v) Xm ∈ BCm
(Rm) for all m ∈ Max(R); and

(vi) Xm ∈ BCm
(Rm) for all m ∈ Supp(R) ∩Max(R).

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (vi) and
(iii) ⇒ (v) ⇒ (vi) follow from definitions. We prove (v) ⇒ (i) and
(vi) ⇒ (v).

For the implication (v) ⇒ (i), assume Xm ∈ BCm
(Rm) for all

m ∈ Max(R). We use the following commutative diagram in D(R):

..

..Cm ⊗L
Rm

RHomR(C,X)m ..
[
C ⊗L

R RHomR(C,X)
]
m

..Cm ⊗L
Rm

RHomRm
(Cm, Xm) ..Xm.

.

≃

.≃ . (ξCX)m.

ξCm
Xm

As Xm ∈ BCm
(Rm) for all m ∈ Max(R), the morphism ξCm

Xm
is an

isomorphism for all m ∈ Max(R). Commutativity of the above diagram
now forces (ξCX)m to be an isomorphism for all m ∈ Max(R). Therefore,
ξCX is an isomorphism.

It remains to show thatRHomR(C,X) ∈ Db(R). AsRHomR(C,X) ∈
D−(R), it suffices to show that RHomR(C,X) ∈ D+(R). By assump-
tion, Xm ∈ BCm

(Rm). Then, for all m ∈ Max(R), we have

inf(RHomR(C,X)m) = inf(RHomRm
(Cm, Xm))

≥ inf(Xm)− sup(Cm)

≥ inf(X)− sup(C),
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where the isomorphism RHomR(C,X)m ≃ RHomRm
(Cm, Xm) gives

us the equality, the first inequality is by [2, Proposition 4.8(c)]
and the second inequality is by properties of localization. Thus,
inf(RHomR(C,X)) ≥ inf(X)− sup(C) > −∞.

For the implication (vi) ⇒ (v), assume Xm ∈ BCm
(Rm) for all

m ∈ SuppR(X) ∩ Max(R). Then, for all m ∈ Max(R) \ SuppR(X),
we have Xm ≃ 0 ∈ BCm

(Rm), as desired. �

The following is proven similarly to Lemma 3.14.

Lemma 3.15. Let X ∈ Db(R). The following conditions are equiva-
lent :

(i) X ∈ AC(R);
(ii) U−1X ∈ AU−1C(U

−1R) for all multiplicatively closed subsets
U ⊂ R;

(iii) Xp ∈ ACp
(Rp) for all p ∈ Spec(R);

(iv) Xp ∈ ACp
(Rp) for all p ∈ Supp(R);

(v) Xm ∈ ACm
(Rm) for all m ∈ Max(R); and

(vi) Xm ∈ ACm
(Rm) for all m ∈ Supp(R) ∩Max(R).

Proposition 3.16. Let X ∈ Db(R), and let n ∈ Z. Consider the
following conditions:

(i) PC- pdR(X)− sup(C) ≤ n;
(ii) PU−1C- pdU−1R(U

−1X) − sup(U−1C) ≤ n for each multiplica-
tively closed subset U ⊂ R;

(iii) PCp
-pdRp

(Xp)− sup(Cp) ≤ n for each p ∈ Spec(R); and

(iv) PCm
- pdRm

(Xm)− sup(Cm) ≤ n for each m ∈ Max(R).

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Furthermore, if X ∈ Df
b(R), then

(iv) ⇒ (i), and

PC-pdR(X)− c = sup

 PU−1C-pdU−1R(U
−1X)

− sup(U−1C)

∣∣∣∣∣∣
U ⊂ R is
multiplicatively
closed


= sup{PCp

- pdRp
(Xp)− sup(Cp) | p ∈ Spec(R)}

= sup{PCm
- pdRm

(Xm)− sup(Cm) | m ∈ Max(R)},

where c = sup(C).
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Proof. Observe that (i) ⇒ (ii) follows from Proposition 3.11. The
implications (ii) ⇒ (iii) ⇒ (iv) follow from properties of localization.
For the rest of the proof, assume that X ∈ Df

b(R).

For the implication (iv) ⇒ (i), assume that PCm
- pdRm

(Xm) −
sup(Cm) ≤ n < ∞ for all m ∈ Max(R). Then, by Remark 3.2, we
have Xm ∈ BCm

(Rm) for all m ∈ Max(R). Therefore, Lemma 3.14
implies that X ∈ BC(R), and hence, RHomR(C,X) ∈ Db(R). Now

PC- pdR(X)− sup(C) = pdR(RHomR(C,X))

= sup
m∈Max(R)

(pdRm
(RHomRm

(Cm, Xm)))

≤ n,

where the second equality is by [1, Proposition 5.3P].

For the equalities, assume first that PC- pdR(X)−sup(C) = n < ∞.
Then, each displayed supremum in the statement is at most n. If any
of the supremums are strictly less than n, then the above equivalence
will force PC- pdR(X)− sup(C) < n, contradicting our assumption. A
similar argument establishes the desired equalities if we assume any of
the supremums equal n.

Finally, if any of the displayed values in the statement are infinite,
then the above equivalences forces the other values to be infinite as
well. �

To prove the implication (iv) ⇒ (i) in Proposition 3.16, the condition
X ∈ Df

b(R) is required. However, the flat and injective versions only
require X ∈ Db(R); see [1, Propositions 5.3F, 5.3I]. Thus, the next
two results are proven similarly to Proposition 3.16.

Proposition 3.17. Let X ∈ Db(R), and let n ∈ Z. The following
conditions are equivalent :

(i) FC- pdR(X)− sup(C) ≤ n;
(ii) FU−1C- pdU−1R(U

−1X) − sup(U−1C) ≤ n for each multiplica-
tively closed subset U ⊂ R;

(iii) FCp
-pdRp

(Xp)− sup(Cp) ≤ n for each prime ideal p ⊂ R; and

(iv) FCm
-pdRm

(Xm)− sup(Cm) ≤ n for each maximal ideal m ⊂ R.
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Furthermore,

FC- pdR(X)− c = sup

 FU−1C- pdU−1R(U
−1X)

− sup(U−1C)

∣∣∣∣∣∣
U ⊂ R is
multiplicatively
closed


= sup{FCp

-pdRp
(Xp)− sup(Cp) | p ∈ Spec(R)}

= sup{FCm
-pdRm

(Xm)− sup(Cm) | m ∈ Max(R)},

where c = sup(C).

Proposition 3.18. Let X ∈ Db(R), and let n ∈ Z. The following
conditions are equivalent :

(i) IC- idR(X)− sup(C) ≤ n;
(ii) IU−1C- idU−1R(U

−1X)−sup(U−1C) ≤ n for each multiplicatively
closed subset U ⊂ R;

(iii) ICp
- idRp

(Xp)− sup(Cp) ≤ n for each prime ideal p ⊂ R; and
(iv) ICm

- idRm
(Xm)− sup(Cm) ≤ n for each maximal ideal m ⊂ R.

Furthermore,

IC- idR(X)− c = sup

idU−1R(U
−1C ⊗L

U−1R U−1X)
− sup(U−1C)

∣∣∣∣∣∣
U ⊂ R is
multiplicatively
closed


= sup{idRp

- idRp
(Cp ⊗L

Rp
Xp)− sup(Cm) | p ∈ Spec(R)}

= sup{idRm
- idRm

(Cm ⊗L
Rm

Xm)−sup(Cm) |m∈Max(R)},

where c = sup(C).

Remark 3.19. When C is a semidualizing R-module, e.g., C = R, we
recover the known local-global conditions for PC- pd, FC- pd, IC- id,
pd, fd, and id.

4. Stability results. In this section, we investigate the behavior of
PC- pd, FC- pd and IC- id after applying the functors ⊗L and RHom.

Proposition 4.1. Let X,Y ∈ Db(R). The following inequalities hold :

(i) PC- pdR(X ⊗L
R Y ) ≤ PC-pdR(X) + pdR(Y );

(ii) IC- idR(RHomR(X,Y )) ≤ FC-pdR(X) + idR(Y ); and
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(iii) FC- pdR(X ⊗L
R Y ) ≤ FC- pdR(X) + fdR(Y ).

Proof.

(i) Without loss of generality, we assume that PC- pdR(X) < ∞
and pdR(Y ) < ∞. It now follows that PC- pdR(X) = sup(C) +
pdR(RHomR(C,X)). By [1, Theorem 4.1 (P)], we have that

pdR(RHomR(C,X)⊗L
R Y ) ≤ pdR(RHomR(C,X)) + pdR(Y ).

Since pdR(Y ) < ∞ (hence fdR(Y ) < ∞) we get that the tensor-
evaluation (2.4) is an isomorphism in D(R). That is, RHomR(C,X⊗L

R

Y ) ≃ RHomR(C,X)⊗L
R Y . Hence, we have

pdR(RHomR(C,X ⊗L
R Y )) ≤ pdR(RHomR(C,X)) + pdR(Y ).

By adding sup(C) to each side we see that PC- pdR(X ⊗L
R Y ) ≤

PC- pdR(X) + pdR(Y ).

(ii) and (ii) are proven similarly to (i). �

Corollary 4.2. Let X ∈ Db(R). The following inequalities hold :

(i) PC- pdR(X ⊗L
R RHomR(C, Y )) ≤ PC- pdR(X) + PC-pdR(Y ) −

sup(C);
(ii) IC- idR(RHomR(X,C ⊗L

R Y )) ≤ FC- pdR(X) + IC- idR(Y ) −
sup(C); and

(iii) FC- pdR(X ⊗L
R RHomR(C, Y )) ≤ FC-pd(RX) + FC-pdR(Y ) −

sup(C).

Proof.

(i). By Proposition 4.1 (i), we have that PC- pdR(X⊗L
RRHomR(C, Y ))

≤ PC- pdR(X)+pdR(RHomR(C, Y )). Add and subtract sup(C) to the
right hand side to obtain the result.

(ii) and (iii) are proven similarly. �

The next result is a version of Fact 2.2 involving a semidualizing
complex.

Proposition 4.3. Let X,Y ∈ Db(R).
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(i) If idR(Y ) < ∞, then FC-pdR(RHomR(X,Y )) ≤ IC- idR(X) +
sup(Y ).

(ii) If fdR(Y ) < ∞, then IC- idR(X ⊗L
R Y ) ≤ IC- idR(X)− inf(Y ).

Proof.

(i) Assume that idR(Y ) < ∞. By applying Definition 3.1, we get
that

FC- pdR(RHomR(X,Y )) = sup(C)+ fdR(RHomR(C,RHomR(X,Y ))).

Observe that, by Hom-tensor adjointness, there is an isomorphism

RHomR(C,RHomR(X,Y )) ≃ RHomR(C ⊗L
R X,Y ).

Therefore, fdR(RHomR(C,RHomR(X,Y )))=fdR(RHomR(C⊗L
RX,Y )).

Hence, by Fact 2.2 (a), we have that

fdR(RHomR(C ⊗L
R X,Y )) ≤ idR(C ⊗L

R X) + sup(Y ).

By adding sup(C) to each side of the above inequality, we obtain the
desired result.

(ii) is proven similarly. �

Proposition 4.4. Let X ∈ Db(R). The following conditions are
equivalent :

(i) FC- pdR(X) < ∞;
(ii) IC- idR(RHomR(X,Y )) < ∞ for all Y ∈ Db(R) such that

idR(Y ) < ∞; and
(iii) IC- idR(RHomR(X,E)) < ∞ for some faithfully injective R-

module E.

Proof. (i) ⇒ (ii). This follows from Proposition 4.1 (ii).

(ii)⇒ (iii). Since E is a faithfully injective module we have idR(E) =
0 < ∞. Therefore, (ii) implies that IC- idR(RHomR(X,E)) < ∞.

(iii) ⇒ (i). Assume that there exists a faithfully injective R-module
E such that IC- idR(RHomR(X,E)) < ∞. Then, by Definition 3.1 (iii),
IC- idR(RHomR(X,E)) = sup(C) + idR(C ⊗L

R RHomR(X,E)). By
Hom-evaluation (2.4), there is an isomorphism

RHomR(RHomR(C,X), E) ≃ C ⊗L
R RHomR(X,E).
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It follows that

idR(C ⊗L
R RHomR(X,E)) = idR(RHomR(RHomR(C,X), E)) < ∞.

Therefore, by Lemma 2.3, fdR(RHomR(C,X)) < ∞. It now follows
that FC- pdR(X) < ∞. �

The following three propositions are proven similarly to Proposi-
tion 4.4.

Proposition 4.5. Let X ∈ Db(R). The following conditions are
equivalent :

(i) FC- pdR(X) < ∞;
(ii) FC- pdR(X⊗L

RY ) < ∞ for all Y ∈ Db(R) such that fdR(Y ) < ∞;
(iii) FC- pdR(X ⊗L

R F ) < ∞ for some faithfully flat R-module F .

Proposition 4.6. Let X ∈ Db(R). The following conditions are
equivalent :

(i) IC- idR(X) < ∞;
(ii) FC- pdR(RHomR(X,Y )) < ∞ for all Y ∈ Db(R) such that

idR(Y ) < ∞;
(iii) FC- pdR(RHomR(X,E)) < ∞ for some faithfully injective R-

module E.

Proposition 4.7. Let X ∈ Db(R). The following conditions are
equivalent :

(i) IC- idR(X) < ∞;
(ii) IC- idR(X ⊗L

R Y ) < ∞ for all Y ∈ Db(R) such that fdR(Y ) < ∞;
(iii) IC- idR(X ⊗L

R F ) < ∞ for some faithfully flat R-module F .

Corollary 4.8. Let X ∈ Db(R) and, if there exists a dualizing
complex D and FC-pdR(X) < ∞, then IC- idR(X†) < ∞ where
X† = RHomR(X,D).

Proof. Since D is a dualizing complex, it has finite injective dimen-
sion. Therefore, the result follows from Proposition 4.4. �
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The last result of this paper establishes Theorem 1.2 from the
introduction.

Theorem 4.9. Assume R has a dualizing complex D, and let X ∈
Db(R). Then IC- idR(X) < ∞ if and only if FC†-pdR(X) < ∞ where
C† = RHomR(C,D).

Proof. For the forward implication, assume that IC- idR(X) < ∞.
Then, set J = C ⊗L

R X. Since IC- idR(X) < ∞ we have that J has
finite injective dimension. By Remark 3.2, we have X ∈ AC(R). This
explains the first isomorphism in the following display:

X ≃ RHomR(C, J) ≃ RHomR(RHomR(C
†, D), J)

≃ C† ⊗L
R RHomR(D,J).

The second isomorphism is from the isomorphism C ≃ C††, and the
third is by Hom-evaluation (2.4). Observe that, since idR(D) < ∞ and
idR(J) < ∞, we have fdR(RHomR(D,J)) < ∞ by Fact 2.2 (a). Thus,
it follows that FC† - fdR(X) < ∞ by the displayed isomorphisms.

For the reverse implication, assume that FC† - fdR(X) < ∞. Then we
can write X ≃ C†⊗L

R F , where F = RHomR(C
†, X) and fdR(F ) < ∞.

We then have the following isomorphisms:

X ≃ C† ⊗L
R F = RHomR(C,D)⊗L

R F ≃ RHomR(C,D ⊗L
R F ),

where the second isomorphism is by tensor-evaluation (2.4). Since
idR(D) < ∞ and fdR(F ) < ∞, we have idR(D ⊗L

R F ) < ∞ by Fact
2.2 (b). Hence, IC- idR(X) < ∞ by Theorem 3.9 (iii), as desired. �
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