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MODULES SATISFYING THE PRIME AND
MAXIMAL RADICAL CONDITIONS

MAHMOOD BEHBOODI AND MASOUD SABZEVARI

ABSTRACT. In this paper, we introduce and study P-
radical and M-radical modules over commutative rings. We
say that an R-module M is P-radical whenever M satisfies

the equality ( p
√
PM : M) =

√
P for every prime ideal

P ⊇ Ann(PM), where p
√
PM is the intersection of all prime

submodules of M containing PM . Among other results, we
show that the class of P-radical modules is wider than the
class of primeful modules (introduced by Lu [19]). Also, we
prove that any projective module over a Noetherian ring is
P-radical. This also holds for any arbitrary module over an
Artinian ring. Furthermore, we call an R-module M by M-

radical if ( p
√
MM : M) = M, for every maximal ideal M

containing Ann (M). We show that the conditions P-radical
and M-radical are equivalent for all R-modules if and only
if R is a Hilbert ring. Also, two conditions primeful and
M-radical are equivalent for all R-modules if and only if
dim (R) = 0. Finally, we remark that the results of this
paper will be applied in a subsequent work of the authors
to construct a structure sheaf on the spectrum of P-radical
modules in the point of algebraic geometry view.

1. Some preliminaries. For an arbitrary commutative ring R, the
associated spectrum Spec (R) of R is the family of its prime ideals. Let
V (I) = {P ∈ Spec (R) : I ⊆ P} for each ideal I of R. One can equip
Spec (R) with the so-called Zariski topology by considering the sets
of the form V (I) as the closed subsets of this topology. Moreover,
it is proved that the collection {D(f), f ∈ R} is a basis for this
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topology where D(f) = {P ∈ Spec (R) : f /∈ P} = Spec (R) \ V (f)
and V (f) = V (Rf) (see [2, 15]).

All rings in this article are commutative with identity and modules
unital. For a ring R, we denote by dim (R) the classical Krull dimension
of R, and for a submodule N of an R-module M we denote the
annihilator of the factor module M/N by (N : M), i.e., (N : M) =
{r ∈ R | rM ⊆ N}. M is called faithful if (0 : M) = 0. A non-zero
R-module M is called prime if the equality rm = 0 for m ∈ M ; r ∈ R
implies that m = 0 or rM = (0) (i.e., r ∈ Ann (M)). We recall that
a proper submodule P of M is a prime submodule if M/P is a prime
module (i.e., for every r ∈ R and m ∈ M , if rm ∈ P , then m ∈ P
or r ∈ (P : M)). In this case, P = (P : M) is a prime ideal of R
and M/P is a torsion free R/P-module. This motivates one to call the
prime submodule P by P-prime submodule.

This notion of prime submodule was firstly introduced and system-
atically studied by Dauns [9] and Feller and Swokowski [12] and re-
cently has received a good deal of attention from several authors (see
for instance, [4, 6, 7, 16, 20, 21, 22, 24]). Motivated by algebraic
geometry, the set of all prime submodules of M is called the spectrum
of M and is denoted by Spec (M). Similar to the case of commutative
rings, the sets of the form:

V (N) = {P ∈ Spec (M) | (N :M) ⊆ (P :M)},

for any arbitrary submodule N of M allow one to associate the Zariski
topology on the collection Spec (M), in which each of the sets V (N) is
a closed subset in this topology (see for instance, [17, 18, 23, 26]).

For an R-module M , consider the so-called natural map:

ψ : Spec (M) −→ Spec (R/Ann (M))

P 7−→ (P :M)/Ann (M).

An R-moduleM is called primeful if eitherM = (0) orM ̸= (0) and the
associated natural map ψ is surjective. This notion of primeful module
has been introduced for the first time and extensively studied by Lu in
[19]. She found out some worthwhile properties of this type of module.
This motivated us to extend the class of primeful modules to wider
classes (which we call P-radical modules and M-radical modules) in
which the above-mentioned worthwhile properties are to be preserved.
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In fact, in the subsequent results (see [1]), we will show that this class
of P-radical module is an appropriate one for considering in an algebraic
geometry view.

In Section 2, we introduce and study P-radical modules and compare
them with primeful modules. In particular, we show that the class of
P-radical modules is wider than that of primefuls (Proposition 2.3).
Even more, we prove that any projective module over a Noetherian
ring is also a P-radical (Theorem 2.5). This also holds for any arbitrary
module over an Artinian ring (Theorem 2.13). Furthermore, we call an

R-module M by M-radical if ( p
√
MM : M) = M, for every maximal

ideal M containing Ann (M), where p
√
MM is the intersection of all

prime submodules of M containing MM . We see the following chart
of implications for M :

M is finitely generated ⇒ M is primeful ⇒ M is P-radical ⇒ M is M-radical

We show that the two conditions P-radical and M-radical are equiv-
alent for all R-modules if and only if R is a Hilbert ring (Theorem
2.11). Also we see that the two conditions primeful and M-radical are
equivalent for all R-modules if and only if dim (R) = 0 (Theorem 2.12).
Recall that an R-module M is called a multiplication module if, for ev-
ery submodule N of M , there exists an ideal I of R such that N = IM
(see [3, 11] for more details). We prove that for a multiplication mod-
ule M the four conditions of the above table are equivalent (Proposi-
tion 2.18). Moreover, we give an analogue of Nakayama’s lemma for
P-radical modules at the end of Section 2. In Section 3, semisimple
primeful modules, semisimple P-radical modules and semisimple M-
radical modules are fully investigated. For instance, in Proposition 3.5,
it is shown that a semisimple R-module M is M-radical if and only if
there exists a submodule N of M such that:

N ∼=
⊕

Ann (M)⊆M∈Max (R)

R/M.

Also, a semisimple R-module M is P-radical if and only if M is a
M-radical and R/Ann (M) is a Hilbert ring (Proposition 3.6).

In [1], we will employ the results achieved in this paper to study the
spectrum of modules from the point of view of algebraic geometry. In
particular, we will construct a structure sheaf on the spectrum of the
modules which belong to the wide class of P-radicals (see also [26]).
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2. P-radical and M-radical modules. Contrary to the rings with
identity, one should notice that not every R-module contains a prime
submodule. For example, Zp∞ as a Z-module does not contain any
prime submodule (see [4, 12]). For a proper submodule N of an

R-module M , the prime radical p
√
N is the intersection of all prime

submodules of M containing N . We put p
√
N = M in the case that

there is no such prime submodule. Clearly V (N) = V ( p
√
N). We note

that, for each ideal I of R, p
√
I =

√
I (the intersection of all prime ideals

of R containing I). The prime radicals of submodules are studied by
several authors (see for instance, [5, 6, 20]).

In [20], it is probed whether or not the equality p
√
IM =

√
IM is

satisfied for every ideal I containing Ann (M) in the case of finitely
generated R-modules M . Also, in [19], the author extended the
investigation to primeful flat content modules (e.g., free modules), and
primeful flat modules over rings with Noetherian spectrum.

In this article, we introduce a slight differentiation of the above
equality, that is:

(
p
√
IM :M) =

√
I,

for every ideal I containing Ann (M). This radical condition on
modules plays a key role in our work to build a desired structure
sheaf of modules in [1]. The following proposition offers several
characterizations of R-modules M which satisfy the above condition.

Proposition 2.1. For an R-module M , the following four statements
are equivalent :

(1) ( p
√
IM :M) =

√
I for every ideal I ⊇ Ann (M).

(2) ( p
√
PM :M) = P for every prime ideal P ⊇ Ann (M).

(3)
√
I =

∩
P∈V (IM)(P :M), for every ideal I ⊇ Ann (M).

(4) P =
∩

P∈V (PM)(P :M), for every prime ideal P ⊇ Ann (M).

Proof. (1) ⇒ (2) and (3) ⇒ (4) are trivial.

For (2) ⇒ (1), let I ⊇ Ann (M). We have I ⊆ (IM :M) ⊆ ( p
√
IM :

M) and ( p
√
IM : M) an intersection of all prime ideals. This implies



MODULES SATISFYING RADICAL CONDITIONS 509

that
√
I ⊆ ( p

√
IM :M). On the other hand, we have:

(
p
√
IM :M) ⊆

∩
P∈V (I)

(
p
√
PM :M) =

∩
P∈V (I)

P =
√
I,

which immediately gives the desired equality ( p
√
IM :M) =

√
I.

For (1) ⇒ (3), one checks that, for each I ⊇ Ann (M), we have:

√
I = (

p
√
IM :M) =

(( ∩
P∈V (IM)

P

)
:M

)
=

∩
P∈V (IM)

(P :M),

as desired.

For (4) ⇒ (2), suppose that P ⊇ Ann (M) is a prime ideal of R.

Substituting
∩

P∈V (PM) P with p
√
PM in the equality

∩
P∈V (PM)(P :

M) = (
∩

P∈V (PM) P : M) immediately gives the desired equality

P = ( p
√
PM :M). �

Definition 2.2. Let M be an R-module M . We call that M is P-
radical whenever it satisfies one of the equivalent conditions listed in
the above proposition.

The following proposition together with Example 2.6, below, asserts
that the class of P-radical is wider than that of primeful modules
introduced in [19].

Proposition 2.3. Any primeful R-module M is P-radical.

Proof. Let P ⊇ Ann (M) be a prime ideal. By the primeful assump-
tion of M , there is some P ∈ Spec (M) with (P : M) = P. It follows

that p
√
PM ⊆ P and P =

√
P ⊆ ( p

√
PM : M), and consequently we

have:
P =

√
P ⊆ (

p
√
PM :M) ⊆ (P :M) = P,

which immediately implies that ( p
√
PM : M) = P. Thus, M is a

P-radical module. �
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For an arbitrary ring R, it is easy to check that every free R-module
M is primeful. Moreover, it is shown that every finitely generated R-
module M and also every projective module over a domain is primeful
(see [17, Theorem 2.2, Corollary 2.6]). Thus, we immediately obtain
the following corollary.

Corollary 2.4. Let R be a ring.

(i) Every free R-module is a P-radical.
(ii) Every finitely generated R-module is a P-radical.
(iii) If R is a domain, then every projective R-module is a P-radical.

We show that Corollary 2.4 (iii) is also true when we replace the
phrase “R is a domain” with “R is a Noetherian ring.”

Theorem 2.5. Every projective R-module is P-radical whenever R is
a Noetherian ring.

Proof. Suppose thatM is a projective R-module and P ⊇ Ann (M).
We claim that PM ̸= M . Indeed, if PM = M , then the collection
A = {I D R | IM ̸= M and Ann (M) ⊆ I ⊆ P} is not empty since
Ann (M) ∈ A. The Noetherian assumption of R implies that A has a
maximal element, say P0. If P0 is not a prime ideal of R, then there
exist a, b ∈ R \ P0 such that ab ∈ P0. It follows that (P0 + Ra)M =
(P0+Rb)M =M , and soM = (P0+Ra)(P0+Rb)M ⊆ P0M , which is a
contradiction. Since for each projectiveR-moduleM and each ideal I of
R, the factor module M/IM is also projective as an R/I-module, thus
M := M/P0M is projective as an R := R/P0-module. Furthermore,
R is a domain, and hence M is a P-radical R-module according to
Corollary 2.4 (iii). Now, if r ∈ R \ P0, then (Rr + P0)M = M , and it
follows that r+P0 /∈ AnnR(M), i.e., AnnR(M) = (0). Since P := P/P0

is a prime ideal of R, we must have (
p
√
PM : M) = P. But, the

equality PM = M implies that PM = M , and so (
p
√
PM : M) = R,

which is a contradiction. Thus, PM ̸= M and so PM is a proper
submodule of M . Suppose F = M ⊕ L where F is a free R-module
and L is a submodule of F . Clearly, PF is a prime submodule
of F , namely, F/PF is a prime R-module and Ann (F/PF ) = P.
Since F/PF ∼= M/PM ⊕ L/PL, we conclude that M/PM is also
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a prime R-module with Ann (M/PM) = Ann (F/PF ) = P, and
hence PM is a prime submodule of M with (PM : M) = P. Thus,

( p
√
PM : M) = (PM : M) = P, which implies satisfaction of the

P-radical condition on the R-module M . �

The following example shows that the converse of Proposition 2.3 is
not true in general and, consequently, the class of P-radical modules
contains the class of primeful R-modules, properly. Moreover, the next
proposition helps us to better recognize the relationship between these
two types of modules.

Example 2.6. (see also [19, page 136, Example 1]). Consider the
Z-moduleM :=

⊕
p∈Ω Z/pZ for the set of prime integers Ω. One easily

convinces oneself that Ann (M) = 0 and according to [19], for any non-
zero prime ideal (p) of Z, pM is a (p)-prime submodule of M , while
it doesn’t have any (0)-prime submodule. Consequently, M is not a
primeful Z-module. The zero submodule (0) of M is an intersection of

maximal submodules and hence p
√
(0) = (0). Thus:

( p
√
(0)M :M) = ((0) :M) = Ann (M) = (0).

Furthermore, if (q) is a non-zero prime (maximal) ideal of Z, then

(q)M =
⊕

q ̸=p∈Ω Z/pZ ̸= M . It follows that (q) = ( p
√
(q)M : M), and

hence M is P-radical.

Proposition 2.7. For every ring R, there is a non-primeful P-radical
R-module M if and only if there exist some prime ideals P and {Pi}i∈I

of R such that P ⊂ Pi and P =
∩

i∈I Pi.

Proof. Let M be a non-primeful P-radical R-module and P a prime
ideal of R such that M does not have any P-prime submodules. Then,
for any prime submodule N of M with PM ⊆ N , we should have
P ⊂ PN := (N : M). On the other hand, the P-radical property of M
implies that:

P = (
p
√
PM :M) =

( ∩
N∈X

N :M

)
=

∩
N∈X

(N :M) =
∩

N∈X

PN ,
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where X = {N | N ∈ Spec (M) with PM ⊆ N}. For the converse,
there is no loss of generality in assuming that P =

∩
i∈I Pi and, for each

prime ideal Q ⊃ P of R, there exists i ∈ I such that Q = Pi. Consider
the R-module M =

⊕
i∈I R/Pi. Then, Ann (M) =

∩
i∈I Pi = P and,

for each j ∈ I, Nj =
⊕

j ̸=i∈I R/Pi is a Pj-prime submodule of M with

PM ⊆ PjM ⊆ Nj . Thus, for each prime ideal Pj ⊃ Ann (M) = P, we

have ( p
√
PjM :M) = Pj (since Pj ⊆ ( p

√
PjM :M) ⊆ (Nj :M) = Pj).

On the other hand,

(
p
√
PM :M) ⊆

(∩
i∈I

Ni :M

)
=

∩
i∈I

(Ni :M) =
∩
i∈I

Pi = P,

and hence M is a P-radical module. We claim that M doesn’t have
any P-prime submodule. Otherwise, let N be a P-prime submodule
of M with (N : M) = P. Since N ̸= M , there exists j ∈ I such
that (· · · , 0, 1 + Pj , 0, · · · ) /∈ N . Since Pj(· · · , 0, 1 + Pj , 0, · · · ) ∈ N ,
we should have PjM ⊆ N , namely, Pj ⊆ P, which is a contradiction.
Thus, M is not primeful. �

According to Proposition 2.1, an R-module M is P-radical if and
only if ( p

√
PM : M) = P for each prime ideal P ⊇ Ann (M). Now let

us generalize it by the notion of M-radical modules.

Definition 2.8. An R-module M is called M-radical (or Maxful)

whenever ( p
√
MM :M) = M for each maximal ideal M ⊇ Ann (M).

The following evident proposition offers several other characteriza-
tions of M-radical modules.

Proposition 2.9. The following statements are equivalent for a non-
zero R-module M :

(1) M is an M-radical module.
(2) MM ̸=M for every maximal ideal M ⊇ Ann (M).
(3) PM ̸=M for every prime ideal P ⊇ Ann (M).
(4) There is a maximal submodule P of M such that (P :M) = M

for every maximal ideal M ⊇ Ann (M).
(5) There is a prime submodule P of M such that (P : M) = M

for every maximal ideal M ⊇ Ann(M).
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Proof. (1) ⇒ (2) can be immediately obtained from the direct
definition of the M-radical modules.

For (2) ⇒ (1), suppose that MM ̸= M for every maximal ideal
M ⊇ Ann (M). Then, for each maximal ideal M ⊇ Ann (M), MM is

a prime submodule of M , and so p
√
MM = MM . It follows that M ⊆

( p
√
MM : M) = (MM : M) = M, and hence ( p

√
MM : M) = M, as

desired.

The case (2) ⇔ (3) is obvious.

For (2) ⇒ (5), suppose that M ⊇ Ann (M) is a maximal ideal. Then
the non-equality MM ̸= M implies that MM is a prime submodule
with (MM :M) = M.

Two cases, (5) ⇒ (2) and (4) ⇒ (5), are immediate and for
(5) ⇒ (4), suppose that (P : M) = M where P is a prime submodule
of M and M ⊇ Ann (M) is a maximal. Then M/P is an R/M-vector
space, and hence M/P has a maximal R/M-subspace such as K/P .
Then, K ⊆ M is a maximal R-submodule and (K : M) = M, as
desired. �

A commutative ring R is called a Hilbert ring–or Jacobson or
Jacobson-Hilbert ring–if every prime ideal of R is an intersection of
its maximal ideals. The class of commutative Hilbert rings is closed
under the finite polynomial rings forming. On the other hand, we have
already observed some modules M having no prime submodule (for
example Zp∞ as a Z-module). We call such modules primeless. We
recall that a module M over a domain R is called divisible if rM =M
for each 0 ̸= r ∈ R and is called torsion if Ann (m) ̸= 0 for each
m ∈M . We shall be interested in seeing, under which conditions, two
notions of P-radical and M-radical are equivalent. We characterize this
equivalency using the notion of Hilbert rings. But, at first, we need the
following lemma.

Lemma 2.10. (see [23, Lemma 1.3 (i)]). Let R be a domain. Then
every torsion divisible R-module is primeless.

Theorem 2.11. For an arbitrary ring R, every M-radical R-module
is P-radical if and only if R is a Hilbert ring.
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Proof. Let every M-radical R-module be P-radical. To obtain a
contradiction, suppose that P is a prime ideal of R which is not an
intersection of the maximal ideals of R. One convinces oneself that
every M-radical R/P-module is also a P-radical R/P-module. Let
S = R/P and Q be the field of fraction of S. Since P is not a maximal
ideal, S is not a field and so S ̸= Q. For a non-zero proper S-submodule
K of Q the quotient L := Q/K is a torsion divisible S-module and so,
by the above lemma, L is a primeless S-module. Now consider the
S-module:

M =
⊕

M∈Max (S)

S/M⊕ L.

Since, for each M1 ∈ Max (S), we have:

M1M =
⊕

M1 ̸=M∈Max(S)

S/M⊕ L

is a prime S-module with (M1M : M) = M1, then M is M-radical.
We claim that every prime S-submodule of M is also of the above
form. To see this, let P be a prime S-submodule of M . We have⊕

M∈Max (S) S/M ̸⊆ P ; otherwise, we must haveM/P ∼= L/T for some

proper submodule T of L, which is a contradiction according to the
primeless assumption of L. Then there is someM1 ∈ Max (S) such that
(0, · · · , 0, 1 +M1, 0 · · · ) /∈ P . Since M1(0, · · · , 0, 1 +M1, 0 · · · ) ⊆ P ,
hence M1M ⊆ N , and consequently, we have M1M = N . It follows
that:

p
√

(0) =
∩

M∈Max (R)

MM = L.

Now the equality Ann (SL) = (0) implies that Ann (SM) = (0) and
hence:

( p
√
(0)M :M) = ( p

√
(0) :M) = (L :M) =

=
(
(0) :

⊕
M∈Max(S)

S/M
)
=

∩
M∈Max(R)

M.

But
∩

M∈Max (R) M ̸= (0) since P ̸=
∩

P⊆M∈Max (R) M. Thus,

( p
√
(0)M :M) ̸= (0), which is impossible (since M is a P-radical mod-

ule). Thus, R is a Hilbert ring.
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For the converse, assume that M is an M-radical module and P
is a prime ideal of R with P ⊇ Ann (M). Since R is a Hilbert ring,
P =

∩
P⊆M∈Max (R) M. The M-radical property of M implies that

(MM :M) = M for each P ⊆ M ∈ Max (R), and hence we have:(
p
√
PM :M

)
⊆

( ∩
P⊆M∈Max (R)

MM :M
)

=
∩

P⊆M∈Max(R)

(MM :M)

=
∩

P⊆M∈Max (R)

M = P.

This inequality, together with the fact P ⊆ (PM :M) ⊆ ( p
√
PM :M),

implies that ( p
√
PM :M) = P, as desired. �

According to the results obtained so far, we have the following chart
of implications for an arbitrary R-module M :

M is primeful ⇒M is P-radical ⇒M is M-radical

Moreover, none of the implications is reversible in general. However,
for zero-dimensional rings, we have the following result, which expresses
the relationship between primeful and M-radical modules.

Theorem 2.12. For an arbitrary ring R, every M-radical module is
also primeful if and only if dim (R) = 0.

Proof. If every M-radical R-module is primeful, then, according to
Theorem 2.11, R is a Hilbert ring. Suppose, contrary to our claim,
that dim (R) ≥ 2 and P is a non-maximal prime ideal of R. Thus,
P =

∩
P⊆M∈Max (R) M, and according to Proposition 2.7 there exists

an R-module M which is P-radical but not primeful, a contradiction.
Thus, dim (R) = 0. The converse is clear. �

We shall be interested in seeing whether every R-module is primeful
(and hence P-radical and M-radical). This question leads us to the
concept of Artinian rings.
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Theorem 2.13. For an Artinian ring R, every R-module is primeful
(and hence P-radical and M-radical).

Proof. We know that the dimension of the Artinian rings is iden-
tically zero and hence the three concepts of primeful, P-radical and
M-radical are equivalent for all modules defined over such rings. Since
R is Artinian, we can express it by:

R = R1 × · · · ×Rn, n ∈ N,

where each Ri is an Artinian local ring. In the special case n = 1, where
R is a local ring with maximal idealM, consider the non-zero R-module
M . Then Ann (M) ̸= R, and so Ann (M) ⊆ M. By Proposition 2.9,
it is sufficient to show that MM ̸= M . If R is a domain (field),
then M = (0), and so the proof is complete. Hence, to obtain a
contradiction, suppose that R is not a domain and also MM = M .
Then there are some non-zero elements a, b ∈ R such that ab = 0. Thus,
(Ra)(Rb)M = (0), and consequently we should have either RaM ̸=M
or RbM ̸= M . It follows that A := {I D R | IM ̸= M and I ̸= (0)}
is a non-empty set of the ideals of R. Since R is Noetherian, A has a
maximal element such as P which is not a prime (maximal) ideal of
R according to the inequality PM ̸= M . Thus, there exist two ideals
A and B of R such that P ⊂ A, P ⊂ B and AB ⊆ P. Now, using
the equalities AM = BM = M implies that M = ABM ⊆ PM , a
contradiction. Now, assume that n ≥ 2, and for each i (1 ≤ i ≤ n) let
Mi be the maximal ideal of the local ring Ri. Furthermore, consider
the non-zero R-module M with Ann (M) ⊆ M where M is a maximal
ideal of R. Then M is of the form R1×· · ·×Ri−1×Mi×Ri+1 · · ·×Rn

for some 1 ≤ i ≤ n. Without loss of generality, we can assume that
i = 1. Again, according to Proposition 2.9, it is sufficient to show that
the inequality MM = (M1 × R2 × · · · × Rn)M ̸= M holds. On the
contrary, suppose that (M1 × R2 × · · · × Rn)M = M . Consider two
ideals I = R1 × (0)× · · · × (0) and J = (0)× R2 × · · · × Rn of R. We
have J = Ann (I), and hence R1

∼= R/J which implies that M = IM
is a unitary R1-module (in fact, M = (R1 × 0× · · · × 0)M is a unitary
R1-module with r1m defined to be r1(1, 0, · · · , 0)m for r1 ∈ R1 and
m ∈ M). We claim that M ̸= (0), otherwise, R1 × (0) × · · · × (0) ⊆
Ann (M) ⊆ M1 × R2 × · · · × Rn, which is a contradiction. Thus,
M is a non-zero R1-module and so, according to the case n = 1, we
have M1M ̸= M , i.e., (M1 × 0 × · · · × 0)M ̸= (R1 × 0 × · · · × 0)M .
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On the other hand, for each m ∈ M , we have (1, 0, · · · , 0)m ∈ M =
(M1 ×R2 × · · · ×Rn)M and, consequently, for each m ∈M , we have:

(1, 0, . . . , 0)m =
∑k

j=1(p1j , r2j , . . . , rnj)mj ,

where k ∈ N, mj ∈M , p1j ∈ M1 and rij ∈ Ri. Thus:

(1, 0, . . . , 0)m = (1, 0, . . . , 0)2m

=
k∑

j=1

(p1j , 0, . . . , 0)mj ,

and hence (1, 0, . . . , 0)m ∈ (M1 × (0)× · · · × (0))M , for each m ∈ M .
It follows that (R1 × 0 × · · · × 0)M ⊆ (M1 × (0) × · · · × (0))M , i.e.,
M1M =M , which is a contradiction. �

The following example shows that the converse of the above theorem
is not true, in general.

Example 2.14. Let K be a field, D := K[{xi : i ∈ N}] (a unique
factorization domain) and R = K[{xi : i ∈ N}]/({xixj : i, j ∈ N}),
where ({xixj : i, j ∈ N}) is the ideal of D generated by {xixj : i, j ∈
N} ⊆ D. Furthermore, for each k ∈ N, let xk = xk +({xixj : i, j ∈ N})
and M = ({xk : k ∈ N}). The ideal M is simply the image of the
maximal ideal N = ({xk : k ∈ N}) of D. Clearly M2 = (0), and so
R is a local zero-dimensional ring, but is not Artinian (Noetherian).
The equality M2 = (0) implies that, for each non-zero R-module,
we have M , MM ̸= M , and hence according to Proposition 2.9 and
Theorem 2.12, M is a P-radical module. Thus, every R-module is P-
radical, while R is not Artinian.

A ring R is called a Max-ring (or a Bass ring) if every non-zero
R-module has a maximal submodule. Also, a ring R is called a P-ring
if every non-zero R-module has a prime submodule. It is proved that
the commutative P-rings coincide with the Max-rings (see [7, Theorem
3.9]). Moreover, we have the following lemma.

Lemma 2.15. (see [14, Theorem 2]). For a commutative ring R, the
following conditions are equivalent :



518 MAHMOOD BEHBOODI AND MASOUD SABZEVARI

(1) R is a max ring;
(2) R/J(R) is a regular ring and J(R) is a t-nilpotent ideal.

The following theorem offers several characterizations of Noetherian
rings R over which every module is P-radical.

Theorem 2.16. Consider the following statements for a ring R:

(1) R is an Artinian ring.
(2) Every R-module is primeful.
(3) Every R-module is P-radical.
(4) Every R-module is M-radical.
(5) R is a Max-ring.
(6) R is a P-ring.
(7) dim (R) = 0.

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇔ (6) ⇒ (7). Moreover, when R is
Noetherian (or domain), all the seven statements are equivalent.

Proof. (1) ⇒ (2) is Theorem 2.13.
(2) ⇒ (3) is Proposition 2.3. (3) ⇒ (4) is clear.
(4) ⇒ (5). Assume that every R-module is M-radical. For an arbitrary
non-zero R-moduleM we have Ann (M) ̸= R and so there is a maximal
ideal M of R such that Ann (M) ⊆ M. Since M is maxful, there is,
moreover, a prime submodule P of M with (P : M) = M. Thus,
M/P is an R/M-module (R/M-vector space), and hence, M/P has a
maximal R/M-submodule such as K/P . It is easy to see that K < M
is a maximal R-submodule. Thus, every non-zero R-module has a
maximal submodule, namely, R is a Max-ring.
(5) ⇔ (6) is by [7, Theorem 3.9].
(6) ⇒ (7). Let R be a P-ring and P a non-maximal prime ideal of R.
For R′ := R/P, consider K as the field of fractions of R′. Since R′ is
not a field, then R′ ̸= K, and K is a divisible R′-module. It follows
that K/R′ is a non-zero torsion divisible R′-module. Then, according
to Lemma 2.10, K/R′ is a primeless R′-module. Now, one convinces
oneself that K/R′ is a primeless R-module and consequently R is not
a P-ring, which is a contradiction.
(4) ⇒ (2). If (4) holds, one concludes from (4) ⇒ (7) that dim (R) = 0.
Then, according to Theorem 2.12, every R-module is primeful.
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Finally, if R is a Noetherian ring, then dim (R) = 0 if and only if R is
Artinian. Thus, (7) ⇒ (1) holds whenever R is a Noetherian ring. �

The following is now immediate.

Corollary 2.17. For a domain R, the following statements are equiv-
alent :

(1) Every R-module is primeful.
(2) Every R-module is P-radical.
(3) Every R-module is M-radical.
(4) R is a field (i.e., R is an Artinan domain).

The following proposition demonstrates the relationship between
finitely generated, primeful, P-radical and M-radical modules in the
interesting case of multiplication modules.

Proposition 2.18. Consider the following statements for a non-zero
R-module M :

(1) M is finitely generated.
(2) M is primeful.
(3) M is a P-radical module.
(4) (PM :M) = P for every prime ideal P ⊇ Ann (M).
(5) M is a M-radical module.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). In particular, when M is a
multiplication module, then (5) ⇒ (1) holds, too.

Proof. (1) ⇒ (2) holds by [19, Proposition 3.8], and (2) ⇒ (3) holds
by Proposition 2.3. Moreover, (3) ⇒ (4) is straightforward by the fact

P ⊆ (PM : M) ⊆ ( p
√
PM : M) for every prime ideal P ⊇ Ann (M).

To prove (4) ⇒ (5), we know that the equality (PM :M) = P implies
that PM ̸= M for every prime ideal P ⊇ Ann (M). Thus, M is an
M-radical module. WhenM is a multiplication module, then (5) ⇒ (1)
holds according to [19, Proposition 3.8]. This completes the proof. �

We conclude this section with the next analogue of Nakayama’s
lemma.
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Proposition 2.19. Let M be an M-radical R-module. Then M satis-
fies the following assertion (NAK): If I is an ideal of R contained in
the Jacobson radical J(R) with IM =M , then M = (0).

Proof. If M ̸= (0) then, Ann (M) ̸= R. Hence, for a maximal ideal
M of R containing Ann (M), we have I ⊆ M and IM = M = MM ,
which is a contradiction. �

3. Characterization of semisimple P-radical modules. Recall
that, for an R-module module M , the socle of M (denoted by soc (M)
is the sum of all simple (minimal) submodules of M . If there are
no minimal submodules in M , we put soc (M) = (0). Thus, M is a
semisimple module whenever soc (M) =M . Furthermore, a semisimple
module M is called homogeneous if any two simple submodules of M
are isomorphic. One checks that an R-module M is homogeneous
semisimple if and only if Ann (M) is a maximal ideal. In this section,
we aim to characterize semisimple P-radical modules. First we need
the following definition.

Definition 3.1. Let R be a ring. A semisimple R-module M is called
full semisimple if, for each maximal ideal M ⊇ Ann (M) the simple R-
module R/M can be embedded inM , namely, there exists a submodule
N of M such that N ∼=

⊕
Ann (M)⊆M∈Max (R)R/M.

Example 3.2. Consider the Z-module M =
⊕

p∈Ω Z/pZ where Ω
is the set of prime integers. Obviously, M is a full semisimple Z-
module while the semisimple Z-module M1 =

⊕
2̸=p∈Ω Z/pZ is not full

semisimple since Ann (M1) = (0) ⊆ 2Z and Z/2Z is not a submodule
of M1.

The proof of the following result is straightforward and left to the
reader.

Proposition 3.3. LetM be a semisimple R-module such that Ann (M)
is a finite intersection of maximal ideals. ThenM is full semisimple. In
particular, all finitely generated semisimple modules are full semisimple
as well as all homogenous semisimple modules.
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Lemma 3.4. Let M be an R-module with the non-zero socle. Then
M is a prime module if and only if M is a homogeneous semisimple
module.

Proof. Let M be a prime module with non-zero socle, and let Rm
be a simple submodule of M for some m ∈ M . Then Ann (m) =
Ann (M) = P , and hence P is a maximal ideal of R. Since Ann (m) =
Ann (m′) for each 0 ̸= m′ ∈ M , then M is a homogeneous semisimple
R-module. The converse is evident. �

We are now in a position to show that the two concepts of M-radical
and full semisimple are equivalent in the case of semisimple modules.

Proposition 3.5. Let M be a semisimple R-module. Then M is M-
radical if and only if M is full semisimple.

Proof. Since M is a semisimple R-module, we can assume that
M =

⊕
i∈I R/Mi where I is an index set and each Mi is a maximal

ideal of R. LetM be an M-radical module. Then Ann (M) =
∩

i∈I Mi.
Suppose that M ⊇ Ann (M) is a maximal ideal of R. If M ̸= Mi,
then, M(R/Mi) = R/Mi for each i ∈ I. It follows that MM = M ,
which is in contrary to Proposition 2.9 (2). Thus, M = Mi for some
i ∈ I and hence R/M can be embedded in M . To prove the converse,
assume that M ⊇ Ann (M) is a maximal ideal of R. Since M is full
semisimple, then M = Mi for each i ∈ I and so MM ̸= M . Thus M
is an M-radical module, according to Proposition 2.9. �

Proposition 3.6. For a semisimple R-module M , the following state-
ments are equivalent :

(1) M is a P-radical module.
(2) M is an M-radical module and R/Ann (M) is a Hilbert ring.
(3) M is full semisimple and R/Ann (M) is a Hilbert ring.

Proof. SinceM is a semisimple R-module, we can assume thatM =⊕
i∈I R/Mi where I is an index set and each Mi is a maximal ideal

of R. To prove (1) ⇒ (2), one should notice that since every P-radical
module is M-radical, then it is sufficient to show that R/Ann (M) is a
Hilbert ring. Suppose P ⊇ Ann (M) is a prime ideal of R. Thus, we
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have ( p
√
PM : M) = P and hence p

√
PM ̸= M . We can assume that

p
√
PM =

∩
λ∈Λ Pλ, where Λ is an index set and each Pλ is a prime

submodule of M containing PM . Hence, the factor module M/Pλ is
a prime semisimple module for each Pλ and, consequently, M/Pλ is a
homogenous semisimple R-module, according to by Lemma 3.4. More
precisely, Mλ := (Pλ :M) is a maximal ideal of R. Thus:

P = (
p
√
PM :M) =

( ∩
λ∈Λ

Pλ :M

)
=

∩
λ∈Λ

(Pλ :M) =
∩
λ∈Λ

Mλ,

and hence every prime ideal P ⊇ Ann (M) is an intersection of maximal
ideals of R, namely, R/Ann (M) is a Hilbert ring. (2) ⇔ (3) and
(2) ⇒ (1) hold by Proposition 3.5 and Theorem 2.11, respectively. �

Corollary 3.7. For a semisimple R-module M where R is either a
Hilbert ring or a domain of dimension one, the following statements
are equivalent:

(1) M is P-radical.
(2) M is M-radical.
(3) M is full semisimple.

Proof. If R is a Hilbert ring then by Proposition 3.5 and Theo-
rem 2.11, the proof is complete. Thus, we can assume that R is a
domain of dimension one. Since M is a semisimple R-module, we can
assume that M =

⊕
i∈I R/Mi where I is an index set and each Mi is

a maximal ideal of R. Now (1) ⇒ (2) is straightforward and (2) ⇒ (3)
is Proposition 3.5. To prove (3) ⇒ (1), assume that P ⊇ Ann (M) is
a prime ideal of R, and let M ⊇ P be a maximal ideal. Since R is
a domain with dim (R) = 1, either P = (0) or M = P. If M = P,
then P is one of the maximal ideals Mi in the direct summand of M
and so PM = MiM ̸= M . Clearly, PM is a prime submodule of M
with (PM : M) = P. It follows that ( p

√
PM : M) = (PM : M) = P.

Otherwise, if P = (0) then, Ann (M) = (0) =
∩

i∈I Mi. We know
that every proper submodule of a semisimple module is an intersection
of maximal submodules and furthermore each maximal submodule is
a prime submodule. Hence, p

√
PM = p

√
(0) = (0), which implies that

( p
√
(0)M : M) = ((0) : M) = Ann (M) = (0) =

√
(0). Thus, M is a

P-radical module. �
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We conclude this paper with the following result that offers several
characterizations for semisimple primeful modules.

Corollary 3.8. The following statements are equivalent for an arbi-
trary semisimple R-module M :

(1) M is primeful.
(2) M is P-radical and dim (R/Ann (M)) = 0.
(3) M is M-radical and dim (R/Ann (M)) = 0.
(4) M is full semisimple and dim (R/Ann (M)) = 0.

Proof. To prove (1) ⇒ (2), it is sufficient to show that dim (R/
Ann (M)) = 0. For a prime ideal P ⊇ Ann (M) of R, there is a
prime submodule P of M such that (P : M) = P. Since M/P is
a prime semisimple R-module, then P is a maximal ideal according
to Lemma 3.4. Thus, dim (R/Ann (M)) = 0. The assertion (2) ⇒
(3) is a consequence of Theorem 2.12. Furthermore, (3) ⇒ (4) is
Proposition 3.5. �
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