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COFINITENESS AND NON-VANISHING OF
LOCAL COHOMOLOGY MODULES

IRAJ BAGHERIYEH, KAMAL BAHMANPOUR AND JAFAR A’ZAMI

ABSTRACT. Let R be a commutative Noetherian local
ring, I an ideal of R, and let M be a non-zero finitely
generated R-module. In this paper, we establish some new
properties of the local cohomology modules Hi

I(M), i ≥ 0.
In particular, we show that if (R,m) is a Noetherian local
integral domain of dimension d ≤ 4 which is a homomor-
phic image of a Cohen-Macaulay ring and x1, . . . , xn is a
part of a system of parameters for R, then for all i ≥ 0,
the R-modules Hi

I(R) are I-cofinite, where I = (x1, . . . , xn).
Also, we prove that if (R,m) is a Noetherian local ring of
dimension d and x1, . . . , xt is a part of a system of param-

eters for R, then Hd−t
m (Ht

(x1,...,xt)
(R)) ̸= 0. In particular,

µd−t(m, Ht
(x1,...,xt)

(R)) ̸= 0 and injdimR(Ht
(x1,...,xt)

(R)) ≥
d− t.

1. Introduction. Throughout this paper, all rings will be assumed
to be commutative Noetherian with non-zero identity, and all modules
will be assumed to be finitely generated. For each ideal I of a ring R
and for each R-module M , the ith local cohomology module of M with
respect to I is defined as

Hi
I(M) = lim−→

n≥1

ExtiR(R/In,M).

We refer the reader to [4, 6] for more details about local cohomology.

In [8], Huneke asked the following wild problem:
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Let W := {depth (Mp) + height (I + p/p) : I * p ∈ SuppM}. Is it
true that, 0 ≤ n /∈ W if and only if Hn

I (M) is finitely generated?

Concerning this wild problem, see the interesting paper [11]. In
this paper, we obtain a similar result to this problem whenever R is a
complete local ring and I is the maximal ideal of R.

In 1969, Grothendieck conjectured that, if I is an ideal of R andM is
a finitely generatedR-module, then theR-modules HomR(R/I,Hi

I(M))
are finitely generated for all i ≥ 0. Hartshorne has provided a coun-
terexample to this conjecture in [7]. Also, he defined a module T to be
I-cofinite if SuppT ⊆ V (I) and ExtiR(R/I, T ) is finitely generated for
each i ≥ 0, and he asked the following question.

For which rings R and ideals I are the modules Hi
I(M) I-cofinite for

all i and all finitely generated modules M?

Hartshorne proved that, if I is an ideal of the complete regular local
ring R and M a finitely generated R-module, then Hi

I(M) is I-cofinite
in the two following cases:

(i) I is a principal ideal, (see [7, Corollary 6.3]),
(ii) I is a prime ideal with dimR/I = 1, (see [7, Corollary 7.7]).

This subject was studied by several authors afterward, (see [1, 3, 5,
9, 13, 19]).

In this paper we also prove some new results concerning the cofinite
local cohomology modules and vanishing of certain local cohomology
modules.

Recall that, for each R-module M , all integers j ≥ 0 and all prime
ideals p of R, the jth Bass number of M with respect to p is defined
as µj(p,M) = dimk(p) Ext

j
Rp

(k(p),Mp), where k(p) := Rp/pRp. For an

Artinian R-module A we denote by AttRA the set of attached prime
ideals of A. Also, for any ideal a of R, we denote {p ∈ SpecR : p ⊇ a}
by V (a). Also, we denote the injective dimension of M by injdimR(M).
For any unexplained notation and terminology, we refer the reader to
[4, 14].

2. Local cohomology modules over complete local rings. In
this section, we study the finiteness properties of local cohomology
modules over the complete Noetherian local rings.
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The following theorem is the first main result of this paper.

Theorem 2.1. Let (R,m) be a complete Noetherian local ring and I
an ideal of R. Let M be a non-zero finitely generated R-module such
that dimM/IM > 0. Then

inf{i ∈ N0 : Hi
m(M) is not I-cofinite}

= inf{ 1 + depth (Mp) : p ∈ SuppM/IM and dimR/p = 1}
< ∞.

Proof. Set

n := inf{i ∈ N0 : Hi
m(M) is not I-cofinite},

and

t := inf{1 + depth (Mp) : p ∈ SuppM/IM and dimR/p = 1}.

First we show that n < ∞. To do this, suppose that the contrary is true.
Then the R-modules Hi

m(M) are I-cofinite, for all i ≥ 0. From the hy-
pothesis, dimM/IM > 0, it follows that there exists p ∈ Supp (M/IM)
such that dim (R/p) = 1. So, using [5, Corollary 1] or [17, Corol-
lary 2.5], we deduce that the R-modules Hi

m(M) are p-cofinite, for all
i ≥ 0. But, since p ∈ Supp (M/IM) ⊆ Supp (M), it follows from
the definition that Mp ̸= 0. Therefore, it follows from [4, Theorem

7.3.2] that H
dimRp (Mp)
p (M)p ∼= H

dimRp (Mp)

pRp
(Mp) ̸= 0. Consequently,

in view of [2, Lemma 2.1], the R-module H
1+dimRp (Mp)
m (M) is not

p-cofinite, which is a contradiction. Therefore, we have n < ∞. Now,
it follows from the assumption that Hn

m(M) is not I-cofinite. Conse-
quently, according to Melkersson’s theorem [16, Theorem 1.6], there
exists p1 ∈ AttHn

m(M) such that dimR/(p1 + I) > 1, and therefore
there is an element p ∈ V (p1 + I) such that dimR/p = 1. Since
0 :R M ⊆ 0 :R Hn

m(M) ⊆ p1 ⊆ p, it follows that dimM/pM = 1.
Thus, by [16, Theorem 1.6] and by assumption dimR/p = 1, we
deduce that Hn

m(M) is not p-cofinite. Hence, by [2, Lemma 2.1],
p ∈ SuppHn−1

p (M), and so depth (Mp) ≤ n − 1 that implies t ≤ n.
On the other hand, for each p ∈ SuppM/IM with dimR/p = 1, it fol-
lows from the definition of n and [17, Corollary 2.5] that the R-modules
Hi

m(M) are p-cofinite, for i = 0, . . . , n−1. Therefore, using [2, Lemma
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2.1] and [4, Theorem 6.2.7], it follows that depth (Mp) ≥ n−1. Hence,
we have t ≥ n. This completes the proof. �

Theorem 2.2. Let (R,m) be a complete Noetherian local ring and M
a non-zero finitely generated R-module. Let

W := {i+ 1 : p ∈ SuppHi
p(M) and dimR/p = 1},

and let n be a non-negative integer. Then Hn
m(M) is finitely generated

if and only if n /∈ W .

Proof. Assume that Hn
m(M) is not finitely generated. Then it

follows from [4, Corollary 7.2.12] that AttHn
m(M) * {m}. Thus,

there exists an element p1 ∈ AttHn
m(M) such that dimR/p1 > 1,

and so there is an element p ∈ V (p1) such that dimR/p = 1. Since
0 :R M ⊆ 0 :R Hn

m(M) ⊆ p1 ⊆ p, it follows that dimM/pM = 1.
Now, by [16, Theorem 1.6], and by the assumption dimR/p = 1,
we deduce that Hn

m(M) is not p-cofinite. Hence, by [2, Lemma 2.1],
p ∈ SuppHn−1

p (M) and so, by definition, n ∈ W . Now let n ∈ W .
Then, by definition, there exists p ∈ Spec (R) such that dimR/p = 1
and p ∈ SuppHn−1

p (M). Thus, in view of [2, Lemma 2.1], the R-
module Hn

m(M) is not p-cofinite and hence is not finitely generated.
This completes the proof. �

The following result is a generalization of [2, Lemma 2.1].

Proposition 2.3. Let (R,m) be a complete Noetherian local ring, I an
ideal of R and M a finitely generated R-module such that dimM/IM >
0. Then, for each positive integer n, the following statements are
equivalent :

(i) Hn
m(M) is I-cofinite.

(ii) For each p ∈ SuppM/IM with dimR/p = 1, Hn−1
pRp

(Mp) = 0.

(iii) For each p ∈ SuppM/IM with dimR/p = 1, Hn−1
p (M) is

Artinian.

Proof. (i)→(ii). Let p ∈ SuppM/IM and dimR/p = 1. Then,
since Hn

m(M) is I-cofinite, it follows from [17, Corollary 2.5] that the
R-modules Hn

m(M) are p-cofinite. So, the assertion follows from [2,
Lemma 2.1].
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In order to prove (ii) → (i), assume that the contrary is true. Then
Hn

m(M) is not I-cofinite and so, by [16, Theorem 1.6], there exists
p1 ∈ AttHn

m(M) such that dimR/(p1 + I) > 1, and therefore, there
is p ∈ V (p1 + I) such that dimR/p = 1. Since 0 :R M ⊆ 0 :R
Hn

m(M) ⊆ p1 ⊆ p, it follows that dimM/pM = 1 and p ∈ SuppM/IM .
Now, by [16, Theorem 1.6], and by the assumption dimR/p = 1,
we deduce that Hn

m(M) is not p-cofinite. Hence, by [2, Lemma 2.1],
p ∈ SuppHn−1

p (M), which is a contradiction. The proof of (ii) ↔ (iii)
follows from [2, Lemma 2.1]. �

3. Local cohomology modules over Noetherian local rings.
In this section, we derive some new results about local cohomology
modules over Noetherian local rings.

Theorem 3.1. Let R be a Noetherian ring and M an R-module. Let
I ⊆ J be proper ideals of R, and let t be a non-negative integer. Then
the following conditions are equivalent :

(i) For all i ≤ t, Hi
I(M) ∼= Hi

J (M).
(ii) For all i ≤ t, AssRH

i
I(M) = AssRH

i
J(M).

(iii) For all i ≤ t, SuppHi
I(M) = SuppHi

J (M).
(iv) For all i ≤ t, SuppHi

I(M) ⊆ V (J).

Proof. (i) → (ii). This statement is clear.

(ii) → (iii). The assertion follows immediately from the fact that,
for every R-module T , we have SuppT =

∪
p∈AssRT

V (p).

The conclusion (iii) → (iv) is obvious.

(iv) → (i). Since R is Noetherian and I ⊆ J , it follows that there
exist elements x1, . . . , xn ∈ R such that J = I + Rx1 + · · ·+ Rxn and
n ≥ 0. We argue by induction on n. When n = 0, we have I = J
and so there is nothing to prove. Now suppose, inductively, that n ≥ 1
and the result has been proved for n − 1. Then since, for all i ≤ t,
SuppHi

I(M) = SuppHi
J(M) ⊆ V (J) ⊆ V (I + Rx1 + · · · + Rxn−1), it

follows from inductive hypothesis thatHi
I(M) ∼= Hi

I+Rx1+···+Rxn−1
(M)

for i ≤ t. On the other hand, by assumption, for all i ≤ t, we
have SuppHi

I(M) ⊆ V (J), and therefore, Hi
I(M) is Rxn-torsion. So,
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Hi
I+Rx1+···+Rxn−1

(M) is Rxn-torsion for i ≤ t. Therefore,

H1
Rxn

(Hi−1
I+Rx1+···+Rxn−1

(M)) = 0

and

H0
Rxn

(Hi
I+Rx1+···+Rxn−1

(M)) ∼= Hi
I+Rx1+···+Rxn−1

(M) ∼= Hi
I(M),

for all i ≤ t. Consequently, from the exact sequence

0 −→ H1
Rxn

(Hi−1
I+Rx1+···+Rxn−1

(M))

−→ Hi
I+Rx1+···+Rxn

(M)

−→ H0
Rxn

(Hi
I+Rx1+···+Rxn−1

(M))

−→ 0,

(see [18, Corollary 3.5]), it follows that, for all i ≤ t,

Hi
J (M) = Hi

I+Rx1+···+Rxn
(M) ∼= H0

Rxn
(Hi

I+Rx1+···+Rxn−1
(M))

∼= Hi
I(M).

This completes the inductive step. �

Proposition 3.2. Let (R,m) be a Cohen-Macaulay Noetherian local
ring of dimension d ≥ 1 and p a prime ideal of R. Then the following
statements are equivalent :

(i) H1
m(R/p) is not finitely generated,

(ii) dimR/p = 1.

Proof. (ii) →(i) is clear.

(i) →(ii). Since H1
m(R/p) is not finitely generated, it follows that

dimR/p ≥ 1. If dimR/p ≥ 2, then p contains an R-regular sequence
x1, . . . , xn of length n = height (p). We have

depth (R/(x1, . . . , xn)) = dimR−n = dimR−height (p) = dimR/p ≥ 2

and so H1
m(R/(x1, . . . , xn)) = 0. Since height ((x1, . . . , xn)) = n =

height (p) and (x1, . . . , xn) ⊆ p, it follows that p is a minimal prime
ideal of (x1, . . . , xn), and hence, p ∈ AssR(R/(x1, . . . , xn)). Therefore,
there exists an exact sequence

0 −→ R/p −→ R/(x1, . . . , xn) −→ T −→ 0
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for some finitely generated R-module T . This exact sequence implies
that H1

m(R/p) ∼= H0
m(T ). Since T is finitely generated, it follows that

H1
m(R/p) is finitely generated, which is a contradiction. �

Let (R,m) be a Noetherian local ring, I a proper ideal of R and M
a finitely generated R-module such that SuppM/IM ̸⊆ V (m). Let r
be a non-negative integer such that Hi

I(M) is Artinian for all i < r
and Hr

I (M) is not Artinian. It is shown in [15, Theorem 3.1] and [10,
Theorem 3.10] that r is equal to filter depth, f -depth (I,M), of M in
I, i.e., the length of a maximal filter regular sequence of M in I. Recall
that we say that a sequence x1, . . . , xr of elements in the ideal I of the
local Noetherian ring (R,m) is a filter regular sequence for a finitely
generated R-module M , if

xi /∈ p for all p ∈ AssR(M/(x1, . . . , xi−1)M) \ {m},

for all i = 1, . . . , r.

Theorem 3.3. Let (R,m) be a Noetherian local ring, M a non-zero
finitely generated R-module of dimension d ≥ 1 and 0 ≤ t ≤ d − 1 an
integer. Then the following conditions are equivalent :

(i) Ht
m(M) = 0.

(ii) m /∈ AssR(H
t
I(M)), for all ideals I of R with dimM/IM ≤ 1.

Proof. (i) → (ii). Let I be an ideal of R with dimM/IM ≤ 1. If
dimM/IM = 0, then Ht

I(M) ∼= Ht
m(M) and so there is nothing to

prove. Next, let dimM/IM = 1. Then there is an element x in m such
that dimM/(I +Rx)M = 0 and so in view of [18, Corollary 3.5] there
is an exact sequence:

0 −→ H1
Rx(H

t−1
I (M)) −→ Ht

I+Rx(M) −→ H0
Rx(H

t
I(M)) −→ 0.

But as dimM/(I+Rx)M = 0, it follows that the ideal J := AnnR(M)+
I + Rx is an m-primary ideal. Therefore, using [4, Theorem 4.2.1], it
follows that

Ht
I+Rx(M) ∼= Ht

(I+Rx+AnnR(M))/AnnR(M)(M) = Ht
m/AnnR(M)(M)

∼= Ht
m(M) = 0.

So, from the above exact sequence we can conclude thatH0
Rx(H

t
I(M)) =

0, and hence H0
m(H

t
I(M)) = 0, which implies that m /∈ AssR(H

t
I(M)).
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(ii) → (i). The case t = 0 is clear. So, without loss of generality,
we may assume 1 ≤ t ≤ d − 1. Then we have d ≥ 2. Since
dim (M) = d ≥ 2, using the prime avoidance theorem, we can find
elements x1, . . . , xd−1 ∈ m such that x1, . . . , xd−1 be a filter regular
sequence for M . Then x1, . . . , xd−1 is a part of a system of parameters
for M (and hence dimM/(x1, . . . , xd−1)M = 1). Then the R-modules

H0
(x1,...,xd−1)

(M), H1
(x1,...,xd−1)

(M), . . . , Hd−2
(x1,...,xd−1)

(M)

are Artinian. But, there is an element xd ∈ m, such that x1, . . . , xd

is a system of parameters for M . On the other hand, in view of [18,
Corollary 3.5], there is an exact sequence:

0 −→ H1
Rxd

(Ht−1
(x1,...,xd−1)

(M)) −→ Ht
(x1,...,xd)

(M)

−→ H0
Rxd

(Ht
(x1,...,xd−1)

(M)) −→ 0.

Now, as Ht−1
(x1,...,xd−1)

(M) is Artinian, it follows from Grothendieck’s

vanishing theorem that

H1
Rxd

(Ht−1
(x1,...,xd−1)

(M)) = 0.

Also, since the ideal (x1, . . . , xd) is m-primary, it follows that

Ht
(x1,...,xd)

(M) ∼= Ht
m(M).

As dimM/(x1, . . . , xd−1)M = 1, by the assumption we have m /∈
AssR(H

t
(x1,...,xd−1)

(M)), and so

H0
Rxd

(Ht
(x1,...,xd−1)

(M)) ∼= H0
m(H

t
(x1,...,xd−1)

(M)) = 0.

Therefore, by the above exact sequence, we have Ht
m(M) = 0, as

required. �

Theorem 3.4. Let (R,m) be a Noetherian local ring and M a non-
zero finitely generated R-module of dimension d ≥ 1. Let 0 ≤ t ≤ d− 1
be an integer such that the R-module Ht

m(M) is non-zero and finitely
generated. Then, for all ideals I of R with dimM/IM ≤ 1, we have
m ∈ AssR(H

t
I(M)). In particular, Ht

I(M) ̸= 0.

Proof. Let I be an ideal of R with dimM/IM ≤ 1. If dimM/IM =
0, then Ht

I(M) ∼= Ht
m(M), and so there is nothing to prove. Now,

let dimM/IM = 1. Then there is an element x in m such that
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dimM/(I + Rx)M = 0 and so ([18, Corollary 3.5]) there is an exact
sequence:

0 −→ H1
Rx(H

t−1
I (M)) −→ Ht

I+Rx(M)

−→ H0
Rx(H

t
I(M)) −→ 0. (∗)

According to the argument given in the proof of Theorem 3.3, we have
Ht

I+Rx(M) ∼= Ht
m(M). Hence, from the above exact sequence, we can

conclude that the R-module H1
Rx(H

t−1
I (M)) is finitely generated. But,

in view of [4, Theorem 2.2.4], there is an exact sequence

DRx(H
t−1
I (M)) −→ H1

Rx(H
t−1
I (M)) −→ 0, (∗∗)

and, in view of [4, Remark 2.2.17], we have DRx(H
t−1
I (M)) ∼=

(Ht−1
I (M))x which implies that DRx(H

t−1
I (M)) = xDRx(H

t−1
I (M)).

Therefore, it follows from the exact sequence (∗∗) thatH1
Rx(H

t−1
I (M)) =

xH1
Rx(H

t−1
I (M)). Now it follows from Nakayama’s lemma that

H1
Rx(H

t−1
I (M)) = 0.

Consequently, it follows from the exact sequence (∗),

H0
m(H

t
I(M)) ∼= H0

Rx(H
t
I(M)) ̸= 0,

which implies that m ∈ AssR(H
t
I(M)), as required. �

Now we present a new and short proof of Grothendieck’s non-
vanishing theorem. In the proof of this theorem we do not need to
reduce to the complete regular local ring case.

Theorem 3.5. Let (R,m) be a Noetherian local ring, and let M be a
non-zero finitely generated R-module of dimension n. Then Hn

m(M) ̸=
0.

Proof. We argue by induction on dimM = n. When n = 0, we
have H0

m(M) ∼= M ̸= 0. Now suppose that n > 0 and the case
n − 1 is settled. Then there is an element p ∈ SuppM such that
dimRp

Mp = n − 1 and dimM/pM = 1. Next, by the inductive

hypothesis, we have Hn−1
pRp

(Mp) ̸= 0, and so by [2, Lemma 2.1], Hn
m(M)

is not p-cofinite; therefore, Hn
m(M) is not finitely generated R-module.

Hence, Hn
m(M) ̸= 0. The inductive step is now complete. �
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Before bringing the next results, note that, in [13, Theorem 3.4], it
is shown that if (R,m) is a Noetherian local ring, I is an ideal of R with
dimR/I = 2 and M is a finitely generated R-module of dimension d,
then the Bass numbers µj(p, Hi

I(M)) are finite for all i, j and all but
finitely many primes p. The following result shows that, in some special
cases, all Bass numbers of the local cohomology module Hd−1

I (M) are
finite.

Theorem 3.6. Let (R,m) be a Noetherian local ring, I an ideal of R
with dimR/I = 2, and M a finitely generated R-module of dimension

d ≥ 2 such that SuppHd−2
I (M) ⊆ {m}. Then, for any ideal J of R with

I ⊆ J ⊆ m and dimR/J ≤ 1, the R-modules ExtjR(R/J,Hd−1
I (M)) are

finitely generated for all j ≥ 0.

Proof. From dimR/J ≤ 1, it follows that there exists an element
x ∈ J such that

dimR/(I +Rx) = 1.

Next, let L := I + Rx. Then, in view of [18, Corollary 3.5], there are
the following exact sequences:

0 −→ H1
Rx(H

d−2
I (M)) −→ Hd−1

L (M)

−→ H0
Rx(H

d−1
I (M)) −→ 0, (∗)

and

0 −→ H1
Rx(H

d−1
I (M)) −→ Hd

L(M) −→ H0
Rx(H

d
I (M)) −→ 0. (∗∗)

But, according to the hypothesis, we have SuppHd−2
I (M) ⊆ {m}, and

hence the R-module Hd−2
I (M) is Rx-torsion implying that

H1
Rx(H

d−2
I (M)) = 0.

Therefore, from the exact sequence (∗), we get the following isomor-
phism:

Hd−1
L (M) = H0

Rx(H
d−1
I (M)).

Now, as dimR/L = 1, according to the main result of [5], or in view

of [3, Corollary 2.7], the R-module Hd−1
L (M) is L-cofinite. So the

R-module
H0

Rx(H
d−1
I (M)) = H0

L(H
d−1
I (M)),
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is L-cofinite. On the other hand, by [4, Exercise 2.1.9], we have

H1
Rx(H

d−1
I (M)) = H1

L(H
d−1
I (M)).

Moreover, by [17, Proposition 5.1], the R-module Hd
L(M) is Artinian

and L-cofinite. So, using [17, Corollary 4.4], it follows from the exact
sequence (∗∗), that the R-module

H1
Rx(H

d−1
I (M)) = H1

L(H
d−1
I (M)),

is L-cofinite. Thus, the R-modules H0
L(H

d−1
I (M) and H1

L(H
d−1
I (M))

are L-cofinite. But, in view of [12, Corollary 2.5], the set SuppHd−1
I (M)

is finite and dimHd−1
I (M) ≤ 1. So, it follows from Grothendieck’s van-

ishing theorem, that
Hj

L(H
d−1
I (M)) = 0,

for all j ≥ 2. Consequently, by [17, Proposition 3.9] for all j ≥ 0, the

R-modules ExtjR(R/L,Hd−1
I (M)) are finitely generated. As L ⊆ J ,

it follows from [5, Corollary 1] or [17, Corollary 2.5] that, for all

j ≥ 0, the R-modules ExtjR(R/J,Hd−1
I (M)) are finitely generated, as

required. �

Corollary 3.7. Let R, I and M be as in Theorem 3.6. Then the Bass
numbers of the R-module Hd−1

I (M) are finite.

Proof. In view of [12, Corollary 2.5], the set SuppHd−1
I (M) is finite

and dimHd−1
I (M) ≤ 1. Hence, for any p ∈ SuppHd−1

I (M), we have
I ⊆ p ⊆ m and dimR/p ≤ 1. So, by Theorem 3.6, the R-modules

ExtjR(R/p,Hd−1
I (M)) are finitely generated for all j ≥ 0. �

Theorem 3.8. Let (R,m) be a Noetherian local ring, I an ideal of
R with dimR/I = 2 and M a finitely generated R-module of di-

mension d ≥ 2, such that dimHd−2
I (M) ≤ 1. Then the R-modules

ExtjR(R/m, Hd−1
I (M)), are finitely generated for all j ≥ 0. In particu-

lar, the Bass numbers of the R-module Hd−1
I (M) are finite.

Proof. By Theorem 3.6, we may assume that dimHd−2
I (M) =

1. Since dimR/I = 2, it follows from [3, Corollary 3.3], that
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AssRH
d−2
I (M) is a finite set. Next, suppose that

AssRH
d−2
I (M) \ {m} = {p1, . . . , ps},

and
AsshR(R/I) = {q1, . . . , qt}.

Now, by the prime avoidance theorem, there exists an element x in m,
such that x /∈

∪s
i=1 pi and x /∈

∪t
i=1 qi. Whence, dimR/(I + Rx) = 1

and SuppH1
Rx(H

d−2
I (M)) ⊆ {m}. Let L := I + Rx. Then, in view of

[18, Corollary 3.5], there are exact sequences:

0 −→ H1
Rx(H

d−2
I (M)) −→ Hd−1

L (M) −→ H0
Rx(H

d−1
I (M)) −→ 0, (∗)

and

0 −→ H1
Rx(H

d−1
I (M)) −→ Hd

L(M) −→ H0
Rx(H

d
I (M)) −→ 0. (∗∗)

Applying the method used in the proof of Theorem 3.6, we have

H0
Rx(H

d−1
I (M)) = H0

L(H
d−1
I (M)),

H1
Rx(H

d−1
I (M)) = H1

L(H
d−1
I (M)),

and
Hj

L(H
d−1
I (M)) = 0, for all j ≥ 2.

On the other hand, according to the [3, Corollary 2.7], the R-module

Hd−1
L (M) is L-cofinite. Therefore, it follows from the exact sequence

(∗), that the R-module HomR(R/L,H1
Rx(H

d−2
I (M))) is finitely gener-

ated. But, we have

SuppH1
Rx(H

d−2
I (M)) ⊆ {m},

and hence the R-module

HomR(R/L,H1
Rx(H

d−2
I (M))),

has support in V (m). Whence, we can deduce that the R-module

HomR(R/L,H1
Rx(H

d−2
I (M))),

is of finite length. Consequently, it follows from [17, Proposition 4.1]

that the R-module H1
Rx(H

d−2
I (M)) is Artinian and L-cofinite. Thus,

the R-module H0
L(H

d−1
I (M)) is also L-cofinite. On the other hand,

applying the method used in the proof of Theorem 3.6, we can see
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that the R-module H1
L(H

d−1
I (M)) is L-cofinite, too. Now, by [17,

Proposition 3.9] for all j ≥ 0, the R-modules ExtjR(R/L,Hd−1
I (M)) are

finitely generated. Therefore, as in the proof of Theorem 3.6, since L ⊆
m, it follows that, for all j ≥ 0, the R-modules ExtjR(R/m, Hd−1

I (M))

are finitely generated. On the other hand, if m ̸= p ∈ Supp (Hd−1
I (M)),

then as dim ((M/IM)p) ≤ 1, it follows from [3, Corollary 2.10] that

the Bass numbers of the R-module Hd−1
I (M) with respect to p are

finite. This completes the proof. �

4. Cofiniteness of local cohomology modules for ideals gen-
erated by a part of a system of parameters.

Theorem 4.1. Let R be a Noetherian ring, I an ideal of R and M a
finitely generated R-module. Let s be a non-negative integer such that,
for all i ̸= s, the R-module Hi

I(R) is I-cofinite. Then Hs
I (R) is also

I-cofinite.

Proof. See [13, Proposition 2.5]. �

Theorem 4.2. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1 and I an ideal of R such that dimR/I = d. Let a1, . . . , ad ∈ m
be system of parameters for R-module R/I. Then there are elements
b1, . . . , bd ∈ I such that the elements c1 := a1 + b1, . . . , cd := ad + bd
compose a system of parameters for R.

Proof. Since dim (R/(I + Ra1)) = d − 1, it follows that I + Ra1 *∪
p∈AsshR(R) p. So, in view of [14, Exercise 16.8], there exists an

element b1 ∈ I such that b1+a1 /∈
∪

p∈AsshR(R)
p. Now c1 := a1+ b1 is

a part of a system of parameters for R. Let, by induction, the elements
c1 = a1 + b1, . . . , ck = ak + bk be a part of a system of parameters for
R, where 1 ≤ k ≤ d− 1 and {b1, . . . , bk} ⊆ I. Then we have

I +Ra1 + · · ·+Rak = I +Rc1 + · · ·+Rck

and

dim (R/(I +Ra1 + · · ·+Rak +Rak+1)) = d− (k + 1).

Consequently, (I+Rc1+ · · ·+Rck+Rak+1) *
∪

p∈AsshR(R/(c1,...,ck))
p.

Since (c1, . . . , ck) ⊆
∩

p∈AsshR(R/(c1,...,ck))
p, it follows that I+Rak+1 *
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∪
p∈AsshR(R/(c1,...,ck))

p. Therefore, in view of [14, Exercise 16.8], there

exists bk+1 ∈ I such that ak+1 + bk+1 /∈
∪

p∈AsshR(R/(c1,...,ck))
p. Set

ck+1 := ak+1+bk+1. Then it is easy to see that c1, . . . , ck+1 is a part of
a system of parameters for R. This completes the inductive step. �

Theorem 4.3. Let (R,m) be a Noetherian local ring of dimension
d = 3 and x1, x2, x3 a system of parameters for R. Set I1 = (x1),
I2 = (x1, x2) and I3 = (x1, x2, x3). Then, for each 1 ≤ n ≤ 3 and each
i ≥ 0, the R-module Hi

In
(R) is In-cofinite.

Proof. In the case n = 1, the ideal In is principal and so the result is
well known. The cases n = 2, 3 follow from the main result of [5]. �

Theorem 4.4. Let (R,m) be a Noetherian local integral domain of
dimension d ≤ 4 which is a homomorphic image of a Cohen-Macaulay
local ring. Let 1 ≤ n ≤ 4 and x1, . . . , xn be a part of a system of
parameters for R. Then, for each i ≥ 0, the R-module Hi

I(R) is a
I-cofinite, where I = (x1, . . . , xn).

Proof. Let (R,m) be a homomorphic image of the Cohen-Macaulay
ring (S, n) with dimS = d1. Then d1 ≥ d. We may assume that
R = S/J for some ideal J of S. Then we have height (J) = d1 − d,
and so there exists an R-sequence as y1, . . . , yd1−d contained in J .
Now we can replace the ring S with the Cohen-Macaulay local ring
T := S/(y1, . . . , yd1−d). So, we may assume that n = 2. Since R is an
integral domain and dimR = dimS it follows that R = S/p for some
p ∈ AsshS(S) and so there is an exact sequence

0 −→ R −→ S −→ K, (∗)

for some finitely generated S-module K. Since x1, x2 ∈ m = n/p,
it follows that x1 = t1 + p and x2 = t2 + p, for some elements
t1, t2 ∈ n. Now, by Lemma 4.1, there exist elements y1, y2 ∈ p such
that z1 := t1 + y1 and z2 := t2 + y2 is a part of a system of parameters
for S. Therefore, as S is a Cohen-Macaulay ring, it follows that z1, z2
is an S-sequence and, hence, according to [4, Theorem 6.2.7] we have

H0
(z1,z2)

(S) = 0 = H1
(z1,z2)

(S) = 0.
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So, from the exact sequence (∗), we get the following isomorphism:

H1
(z1,z2)

(T ) ∼= H1
(z1,z2)

(R).

But, using [4, Theorem 4.2.1] we have

H1
(z1,z2)

(R) = H1
(z1,z2)+p/p(R) = H1

(t1,t2)+p/p(R) = H1
(x1,x2)

(R).

Since H0
(z1,z2)

(T ) is a finitely generated S-module, it follows that

H1
(x1,x2)

(R) is a finitely generated S-module, and so H1
(x1,x2)

(R) is

a finitely generated R-module. In particular, H1
(x1,x2)

(R) is (x1, x2)-

cofinite. On the other hand, in view of [4, Theorem 3.3.1], for i ≥ 3,
we have Hi

(x1,x2)
(R) = 0. Now, by [13, Proposition 2.5], the R-module

H2
(x1,x2)

(R) is (x1, x2)-cofinite. This completes the proof. �

Theorem 4.5. Let (R,m) be a Noetherian local ring of dimen-
sion d and x1, . . . , xn a part of a system of parameters for R. Then
Hd−t

m (Ht
(x1,...,xt)

(R)) ̸= 0. In particular, µd−t(m,Ht
(x1,...,xt)

(R)) ̸= 0

and injdimR(H
t
(x1,...,xt)

(R)) ≥ d− t.

Proof. Let x1, . . . , xt, . . . , xd be a system of parameters for R. Then,
using [18, Corollary 3.5] and [4, Theorem 3.3.1], we have the following:

H1
Rxt+1

(Ht
(x1,...,xt)

(R)) ∼= Ht+1
(x1,...,xt+1)

(R),

H1
Rxt+2

(Ht+1
(x1,...,xt+1)

(R))∼=Ht+2
(x1,...,xt+2)

(R)∼=H2
(xt+1,xt+2)

(Ht
(x1,...,xt)

(R))

...

H1
Rxd

(Hd−1
(x1,...,xd−1)

(R)) ∼= Hd
(x1,...,xd)

(R)

∼= Hd−t
(xt+1,xt+2,...,xd)

(Ht
(x1,...,xt)

(R)).

But, by Grothendieck’s non-vanishing theorem, we have Hd
(x1,...,xd)

(R)

= Hd
m(R) ̸= 0. Therefore, it follows from [4, Exercise 2.1.9] that

Hd−t
m (Ht

(x1,...,xt)
(R)) ∼= Hd−t

(x1,...,xd)
(Ht

(x1,...,xt)
(R))

∼= Hd−t
(xt+1,xt+2,...,xd)

(Ht
(x1,...,xt)

(R)) ̸= 0,

as required. �
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