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QUASIDUALIZING MODULES

BETHANY KUBIK

ABSTRACT. We introduce and study “quasidualizing”
modules. An artinian R-module T is quasidualizing if the

homothety map R̂ → HomR(T, T ) is an isomorphism and
ExtiR(T, T ) = 0 for each integer i > 0. Quasidualizing
modules are associated to semidualizing modules via Matlis
duality. We investigate the associations via Matlis duality
between subclasses of the Auslander class and Bass class and
subclasses of derived T -reflexive modules.

Introduction. Let R be a commutative local noetherian ring with
maximal ideal m and residue field k = R/m. The m-adic completion of

R is denoted R̂, the injective hull of k is E = ER(k), and the Matlis
duality functor is (−)∨ = HomR(−, E).

The motivation for this work comes from the study of semidualizing
modules. Semidualizing modules were first introduced by Vasconce-
los [9]. A finitely generated R-module C is semidualizing if the homo-
thety map R → HomR(C,C) is an isomorphism and ExtiR(C,C) = 0
for each integer i > 0. For example, R is always a semidualizing R-
module. Therefore, duality with respect to R is a special case of duality
with respect to a semidualizing module, as is duality with respect to a
dualizing R-module when R has one. On the other hand, Matlis duality
is not covered in this way. The goal of this paper is to remedy this by
introducing and studying the “quasidualizing” modules: An artinian

R-module T is quasidualizing if the homothety map R̂ → HomR(T, T )
is an isomorphism and ExtiR(T, T ) = 0 for each integer i > 0, see
Definition 1.14. For example, E is always a quasidualizing module.

This paper is concerned with the properties of quasidualizing mod-
ules and how they compare with the properties of semidualizing mod-
ules. For instance, the next result gives a direct link between quasi-
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dualizing modules and semidualizing modules via Matlis duality; see
Theorem 3.1.

Theorem A. If R is complete, then the set of isomorphism classes
of semidualizing R-modules is in bijection with the set of isomorphism
classes of quasidualizing R-modules by Matlis duality.

Following the literature on semidualizing modules, we use quasidu-
alizing modules to define other classes of modules. For instance, given
an R-module M , we consider the class Gfull

M (R) of “derived M -reflexive
R-modules” and their subclasses Gnoeth

M (R) and Gartin
M (R) of noetherian

modules and artinian modules, respectively. We also consider sub-
classes of the Auslander class AM (R) and the Bass class BM (R). See
Section 1 for definitions. Some relations between these classes are listed
in the next result which is proved in Section 3.

Theorem B. Assume R is complete, and let T be a quasidualizing R-
module. Then we have the following inverse equivalences and equalities:

(i) Bnoeth
T∨ (R)

(−)∨ // Gartin
T (R) = Aartin

T∨ (R)
(−)∨
oo ;

(ii) Bartin
T∨ (R)

(−)∨ // Gnoeth
T (R) = Anoeth

T∨ (R)
(−)∨
oo ;

(iii) Bartin
T (R)

(−)∨ // Gnoeth
T∨ (R) = Anoeth

T (R)
(−)∨
oo ; and

(iv) Bnoeth
T (R)

(−)∨ // Gartin
T∨ (R) = Aartin

T (R)
(−)∨
oo .

As a consequence of the previous result, we conclude that the classes
Gnoeth
T∨ (R) and Gartin

T (R) are substantially different. For instance, as we
observe next Gartin

T (R) satisfies the two-of-three condition, while the
class Gnoeth

T∨ (R) does not; see Theorem 3.13.
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Theorem C. Assume that R is complete, and let T be a quasidualizing
R-module. Then Gartin

T (R) satisfies the two-of-three condition, that is,
given an exact sequence of R-module homomorphisms 0 → L1 → L2 →
L3 → 0 if any two of the modules are in Gartin

T (R), then so is the third.

In Section 1 we provide some definitions and background material.
Section 2 describes properties related to quasidualizing modules, and
Section 3 describes relations between the different classes of modules
using Matlis duality as well as Theorem C.

1. Background material.

Definition 1.1. We say that an R-module L is Matlis reflexive if the
natural bidualitiy map δEL : L → L∨∨, given by l 7→ [ϕ 7→ ϕ(l)] is an
isomorphism.

Fact 1.2. Let L be an R-module. The natural biduality map δL is
injective; see [7, Theorem 18.6(i)]. If L is Matlis reflexive, then L∨ is
Matlis reflexive.

Fact 1.3. Assume R is complete, and let L be an R-module. If L is
artinian, then L∨ is noetherian. If L is noetherian, then L∨ is artinian.
Since R is complete, both artinian modules and noetherian modules
are Matlis reflexive; see [7, Theorem 18.6(v)].

Lemma 1.4. Let L and L′ be R-modules such that L is Matlis reflexive.
Then, for all i > 0, we have the isomorphisms

ExtiR(L
′, L) ∼= ExtiR(L

∨, L
′∨) and ExtiR(L

′, L∨) ∼= ExtiR(L,L
p∨).

Proof. For the first isomorphism, since L is Matlis reflexive, by
definition the map

ExtiR(L
′, δL) : Ext

i
R(L

′, L) → ExtiR(L
′,HomR(L

∨, E))

is an isomorphism. A manifestation of Hom-tensor adjointness yields
the following isomorphisms

ExtiR(L
′,HomR(L

∨, E))
∼=−→ ExtiR(L

′ ⊗R L∨, E)
∼=−→ ExtiR(L

∨, L′∨).
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The composition of these maps provides us with the isomorphism
ExtiR(L

′, L) ∼= ExtiR(L
∨, L′∨).

For the second isomorphism, the fact that L is Matlis reflexive
explains the second step in the following sequence ExtiR(L

′, L∨) ∼=
ExtiR(L

∨∨, L′∨) ∼= ExtiR(L,L
′∨). The first step follows from the first

isomorphism since L∨ is Matlis reflexive. �

Fact 1.5. Assume R is complete, and let A and A′ be artinian R-
modules. Then HomR(A,A′) is noetherian. This can be deduced
using [6, Theorem 2.11].

Fact 1.6. Let L be an R-module. Then L is artinian over R if and only

if it is artinian over R̂. See [6, Lemma 1.14] or [2, Remark 10.2.9].

Lemma 1.7. Assume R is artinian, and let L be an R-module. Then
the following are equivalent :

(i) L is noetherian over R;
(ii) L is finitely generated over R; and
(iii) L is artinian.

Proof. The equivalence (i) ⇔ (ii) is standard; see [1, Propositions
6.2 and 6.5].

For the implication (ii) ⇒ (iii), assume that L is finitely generated

over R. Then there exists an n ∈ N and a surjective map Rn ϕ−→ L
so that we have L ∼= Im(ϕ) ∼= Rn/Ker(ϕ). Since R is artinian, Rn

is artinian. Thus, L is artinian because the quotient of an artinian
module is artinian; see [1, Proposition 6.3].

For the implication (iii) ⇒ (i), assume that L is artinian. Then there
exists an n ∈ N such that L ↩→ En; see [3, Theorem 3.4.3]. Since R is

artinian, we have R∨ ∼= E is noetherian over R̂ by Fact 1.3, where the
isomorphism follows from [7, Theorem 18.6 (iv)]. Hence, we have that

En is noetherian over R̂ = R since R is artinian. Since any submodule
of a noetherian module is noetherian, we conclude that L is noetherian
over R; see [1, Proposition 6.3]. �

Lemma 1.8. Assume R is complete, and let A be an artinian R-
module. Then there exists an injective resolution I of A such that,
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for each i > 0 we have Ii ∼= Ebi for some bi ∈ N. Furthermore, I∨ is
a free resolution of A∨.

Proof. Since A is artinian, we have the map A ↩→ Eb0 for some
b0 > 1; see [3, Theorem 3.4.3]. Because the finite direct sum of artinian
modules is artinian, Eb0 is artinian, and we have Eb0/A ↩→ Eb1 for some
b1 > 0. Recursively, we can construct an injective resolution of A such
that, for each i > 0, we have Ii ∼= Ebi for some bi ∈ N.

Next we show that I∨ is a free resolution of A∨. The fact that
Ii ∼= Ebi explains the first step in the following sequence

I∨i = HomR(Ii, E) ∼= HomR(E
bi , E) ∼= HomR(E,E)bi ∼= R̂bi ∼= Rbi .

The second step is standard. The third step is from [7, Theo-
rem 18.6(iv)], and the last step follows from the assumption that R
is complete. The desired conclusion follows from the fact that (−)∨ is
exact. �

Definition 1.9. Let L, L′ and L′′ be R-modules. The Hom-evaluation
morphism

θLL′L′′ : L⊗R HomR(L
′, L′′) → HomR(HomR(L,L

′), L”)

is given by a⊗ ϕ 7→ [β 7→ ϕ(β(a))].

Fact 1.10. The Hom-evaluation morphism θLL′L′′ is an isomorphism
if the modules satisfy one of the following conditions:

(a) L is finitely generated and L′′ is injective; or
(b) L is finitely generated and projective.

See [5, Lemma 1.6] and [8, Lemma 3.55].

Definition 1.11. An R-module C is semidualizing if it satisfies the
following:

(i) C is finitely generated;
(ii) the homothety morphism χR

C : R → HomR(C,C), defined by
r 7→ [c 7→ rc], is an isomorphism; and

(iii) one has ExtiR(C,C) = 0 for all i > 0.
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Remark 1.12. Let S0(R) denote the set of isomorphism classes of
semidualizing R-modules.

Example 1.13. The ring R is always semidualizing.

Definition 1.14. An R-module T is quasidualizing if it satisfies the
following:

(i) T is artinian;

(ii) the homothety morphism χR̂
T : R̂ → HomR(T, T ), defined by

r 7→ [t 7→ rt], is an isomorphism; and
(iii) one has ExtiR(T, T ) = 0 for all i > 0.

Remark 1.15. The homothety morphism χR̂
T is well defined since T

is artinian implying by Fact 1.6 that T is an R̂-module.

Remark 1.16. Let Q0(R) denote the set of isomorphism classes of
quasidualizing modules.

Example 1.17. The injective hull of the residue field E is always
quasidualizing. See [3, Theorem 3.4.1] and [7, Theorem 18.6(iv)]
for conditions (i) and (ii) of Definition 1.14. Since E is injective by
definition, we have ExtiR(E,E) = 0 for all i > 0 satisfying the last
condition.

Definition 1.18. Let M be an R-module. Then an R-module L is
derived M -reflexive if:

(i) the natural biduality map δML : L → HomR(HomR(L,M),M)
defined by l 7→ [ϕ 7→ ϕ(l)] is an isomorphism; and

(ii) one has ExtiR(L,M) = 0 = ExtiR(HomR(L,M),M) for all i > 0.

We write Gfull
M (R) to denote the class of all derived M -reflexive R-

modules, Gmr
M (R) to denote the class of all Matlis reflexive derived

M -reflexive R-modules, Gartin
M (R) to denote the class of all artinian

derived M -reflexive R-modules, and Gnoeth
M (R) to denote the class of

all noetherian derived M -reflexive R-modules.
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Remark 1.19. When M = C is a semidualizing R-module, the class
Gnoeth
M (R) is the class of totally C-reflexive R-modules, sometimes

denoted GC(R).

Definition 1.20. Let L and L′ be R-modules. We say that L is in the
Bass class BL′(R) with respect to L′ if it satisfies the following:

(i) the natural evaluation homomorphism ξL
′

L : HomR(L
′, L)⊗RL′ →

L, defined by ϕ⊗ l 7→ ϕ(l), is an isomorphism; and

(ii) one has ExtiR(L
′, L) = 0 = TorRi (L

′,HomR(L
′, L)) for all i > 0.

We write Bmr
L′ (R) to denote the class of all Matlis reflexive R-modules

in the Bass class with respect to L′. We write Bartin
L′ (R) to denote the

class of all artinian R-modules in the Bass class with respect to L′, and
Bnoeth
L′ (R) to denote the class of all noetherian R-modules in the Bass

class with respect to L′.

Definition 1.21. Let L and L′ be R-modules. We say that L is in the
Auslander class AL′(R) with respect to L′ if it satisfies the following:

(i) the natural homomorphism γL′

L : L → HomR(L
′, L′ ⊗R L), which

is defined by l 7→ [l′ 7→ l′ ⊗ l], is an isomorphism; and

(ii) one has TorRi (L
′, L) = 0 = ExtiR(L

′, L′ ⊗R L) for all i > 0.

We write Amr
L′ (R) to denote the class of all Matlis reflexive R-modules

in the Auslander class with respect to L′. We write Aartin
L′ (R) to denote

the class of all artinian R-modules in the Auslander class with respect
to L′, and Anoeth

L′ (R) to denote the class of all noetherian R-modules
in the Auslander class with respect to L′.

2. Quasidualizing Modules. We begin with a few preliminary
results pertaining to quasidualizing modules.

Proposition 2.1. Let T be an R-module. Then T is a quasidualizing

R-module if and only if T is a quasidualizing R̂-module.

Proof. We need to check the equivalence of three conditions. For the
first condition, T is an artinian R-module if and only if T is an artinian

R̂-module by Fact 1.6. For the rest of the proof we assume without loss
of generality that T is artinian.
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For the second condition, we have the equality HomR(T, T ) =
HomR̂(T, T ) from the fact that T is m-torsion and [6, Lemma 1.5(a)].
This explains the equality in the following commutative diagram.

R̂
χR̂
T //

∼=
��

HomR(T, T )

=

��̂̂
R

χ
̂̂
R
T // HomR̂(T, T )

Since R̂ ∼= ̂̂
R, we have χR̂

T is an isomorphism if and only if χ
̂̂
R
T is an

isomorphism.

For the last condition, Lemma 1.8 implies that there exists an
injective resolution I of T such that for each i > 0 we have Ii ∼= Ebi

for some bi ∈ N. For all i > 0, the modules T and Ii are artinian
and hence m-torsion. By [6, Lemma 1.5(a)], we have the equality
HomR̂(T, Ii) = HomR(T, Ii) and I is an injective resolution of T over

R̂. This explains the first and second steps in the next display:

Exti
R̂
(T, T ) ∼= H−i(HomR̂(T, Ii))

∼= H−i(HomR(T, Ii)) ∼= ExtiR(T, T ).

The third step is by definition. Thus, we have Exti
R̂
(T, T ) = 0 for all

i > 0 if and only if ExtiR(T, T ) = 0 for all i > 0. �

Proposition 2.2. The following conditions are equivalent :

(i) E is a semidualizing R-module;
(ii) R is a quasidualizing R-module;
(iii) E is a noetherian R-module;
(iv) R is an artinian ring ;
(v) Q0(R) = S0(R); and
(vi) Q0(R) ∩S0(R) ̸= 0.

Proof. (iii) ⇔ (iv). By [7, Theorem 18.6 (ii)] we have lenR(R) =
lenR(R

∨) = lenR(E), where lenR(L) denotes the length of an R-module
L. Since R is noetherian by assumption, we have R is artinian if and
only if R has finite length if and only if R∨ = E has finite length (by
the equalities above), if and only if E is noetherian over R (since E is
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artinian; see [3, Theorem 3.4.1] or [2, Theorem 10.2.5]). That is, R is
artinian if and only if E is noetherian over R.

(i) ⇒ (iii). If E is a semidualizing R-module, then E is noetherian
over R by definition.

(iv) ⇒ (i). Assume that R is artinian. Then E is finitely generated

by the equivalence (iii) ⇔ (iv). We have R ∼= R̂ since R is artinian, and

R̂ ∼= HomR(E,E) by [7, Theorem 18.6 (iv)] explaining the unspecified
isomorphisms in the following commutative diagram.

R
χR
E //

∼=
��

HomR(E,E)

R̂

∼=

99ttttttttttt

Hence, we conclude that the homothety morphism χR
E is an isomor-

phism. Since E is injective, we have that ExtiR(E,E) = 0 for all i > 0.
Thus, E is a semidualizing R-module.

(iv) ⇒ (v). Assume that R is artinian, and let L be an R-module.
We show that L is a semidualizing module if and only if L is a
quasidualizing module. We need to check the equivalence of three
conditions. For the first condition, L is finitely generated if and only if
L is artinian by Lemma 1.7. For the second condition, the fact that R is

artinian implies that R̂ ∼= R. This explains the unlabeled isomorphism
in the following commutative diagram

R

χR
L

��

∼= // R̂

χR̂
Lyyttt

ttt
ttt

tt

HomR(L,L).

Thus, the map χR
L is an isomorphism if and only if the map χR̂

L

is an isomorphism. The Ext vanishing conditions are equivalent by
definition.

For the implication (v) ⇒ (ii), assume that Q0(R) = S0(R). The
R-module R is always semidualizing. Then, by assumption, it is also a
quasidualizing R-module.
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The implication (ii) ⇒ (iv) is evident since R is an artinian ring if
and only if it is an artinian R-module. For the implication (ii) ⇒ (vi),
if R is a quasidualizing R-module, then the intersection Q0(R)∩S0(R)
is nonempty since R is also a semidualizing R-module.

For the implication (vi) ⇒ (ii), assume that the intersection Q0(R)∩
S0(R) is nonempty. Let L ∈ Q0(R) ∩ S0(R). Then L is artinian
and noetherian, so it has finite length. Since L is artinian, it is m-
torsion and by [6, Fact 1.2(b)] we have SuppR(L) ⊆ {m}. Since L is a
semidualizing R-module, the map R → HomR(L,L) is an isomorphism
so we have AnnR(L) ⊆ AnnR(R) = 0. This explains the second step in
the following sequence

SuppR(L) = V (AnnR(L)) = V (0) = Spec(R).

Thus, Spec(R) = SuppR(L) ⊆ {m} ⊆ Spec(R), and we conclude that
Spec(R) = {m}. Thus, [1, Theorem 8.5] implies that R is artinian. �

3. Classes of modules and Matlis duality. This section explores
the connections between the class of quasidualizing R-modules and
the class of semidualizing R-modules as well as connections between
different subclasses of AM (R), BM (R) and Gfull

M (R). The instrument
used to detect these connections is Matlis duality.

Theorem 3.1. Assume that R is complete. Then the maps

S0(R)
(−)∨ //

Q0(R)
(−)∨
oo

are inverse bijections.

Proof. Let C ∈ S0(R). We show that C∨ ∈ Q0(R). Fact 1.3
implies that C∨ is artinian. In the following commutative diagram,
the unspecified isomorphisms are from Hom-tensor adjointness and the
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commutativity of tensor product

R
χR
C∨ //

χR
C

��

HomR(C
∨,HomR(C,E))

∼=
��

HomR(C,C)

HomR(C,δEC )∼=
��

HomR(C
∨ ⊗R C,E)

∼=
��

HomR(C,HomR(C
∨, E))

∼= // HomR(C ⊗R C∨, E).

Since C ∈ S0(R), it follows that χR
C is an isomorphism. Fact 1.3

implies that the map δEC , and by extension the map HomR(C, δ
E
C ), is

an isomorphism. Hence, we conclude from the diagram that χR
C∨ is an

isomorphism.

For the last condition, Lemma 1.4 explains the first step in the
following sequence

ExtiR(C
∨, C∨) ∼= ExtiR(C,C) = 0.

The second step follows from the fact that C is a semidualizing module.
Thus, C∨ is a quasidualizing module.

A similar argument shows that, given a quasidualizing R-module
T , the module T∨ is semidualizing. Fact 1.3 implies that C ∼= C∨∨

and T ∼= T∨∨, so that the given maps S0(R)
(−)∨−−−→ Q0(R) and

Q0(R)
(−)∨−−−→ S0(R) are inverse equivalences. �

Example 3.2. Assume that R is Cohen-Macaulay and complete and
admits a dualizing module D. The fact that D is dualizing means that
D is semidualizing and has finite injective dimension. Therefore, by
Theorem 3.1, we conclude that D∨ is quasidualizing.

Proposition 3.3. Assume that R is complete, and let T be a quasidu-

alizing R-module. Then the maps Bmr
T∨(R)

(−)∨ // Gmr
T (R)

(−)∨
oo are inverse

bijections.
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Proof. Let M be a Matlis reflexive R-module. We show that, if
M ∈ Bmr

T∨(R), then M∨ ∈ Gmr
T (R). Fact 1.2 implies that M∨ is Matlis

reflexive. There are three remaining conditions to check.

First we show that ExtiR(M
∨, T ) = 0 for all i > 0. Since T is

artinian and R is complete, Fact 1.3 implies that T is Matlis reflexive,
so we have

(3.3.1) ExtiR(M
∨, T ) ∼= ExtiR(T

∨,M).

by Lemma 1.4. We have ExtiR(T
∨,M) = 0 for all i > 0 since

M ∈ Bmr
T∨(R). Thus, we conclude ExtiR(M

∨, T ) = 0 for all i > 0.

Next we show that the map δTM∨ is an isomorphism. The fact that

M ∈ Bmr
T∨(R) implies the map ξT

∨

M is an isomorphism. Therefore,

the map HomR(ξ
T∨

M , E) in the following commutative diagram is an
isomorphism

M∨
∼=

HomR(ξT
∨

M ,E) //

δT
M∨

��

HomR(HomR(T
∨,M)⊗R T∨, E)

∼=
��

HomR(HomR(M
∨, T ), T ) ∼=

// HomR(HomR(T
∨,M), T ).

The unspecified isomorphisms are from Hom-tensor adjointness and the
isomorphism (3.3.1). Hence, we conclude from the diagram that δTM∨

is an isomorphism.

For the last condition, let I be an injective resolution of T such that,
for each i > 0, we have Ii ∼= Ebi for some bi ∈ N. Lemma 1.8 implies
that I∨ is a free resolution of T∨. This explains steps (2) and (6) in



QUASIDUALIZING MODULES 221

the following sequence:

ExtiR(HomR(M
∨, T ), T )

(1)∼= ExtiR(HomR(T
∨,M), T )

(2)∼= H−i(HomR(HomR(T
∨,M), I))

(3)∼= H−i(HomR(HomR(T
∨,M), I∨∨))

(4)∼= H−i(HomR(HomR(T
∨,M)⊗R I∨, E))

(5)∼= HomR(Hi(I
∨ ⊗R HomR(T

∨,M)), E)

(6)∼= HomR(Tor
R
i (T

∨,HomR(T
∨,M)), E).

Step (1) follows from the isomorphism (3.3.1). Step (3) follows from the
fact that any finite direct sum of artinian modules is artinian; thus, Ij is
artinian for all j and we can apply Fact 1.3. Step (4) follows from Hom-
tensor adjointness, and step (5) follows from the fact that E is injective
and homology commutes with exact functors. Since M ∈ Bmr

T∨(R), we

have TorRi (T
∨,HomR(T

∨,M)) = 0 for all i > 0. Hence, we conclude
that

ExtiR(HomR(M
∨, T ), T ) ∼= HomR(Tor

R
i (T

∨,HomR(T
∨,M)), E) = 0

for all i > 0.

Given an R-module M ′ ∈ Gmr
T (R), the argument to show that

M ′∨ ∈ Bmr
T∨(R) is similar. Since M and M ′ are Matlis reflexive, that is,

M ∼= M∨∨ and M ′ ∼= M ′∨∨, we conclude that the maps Bmr
T∨(R)

(−)∨−−−→
Gmr
T (R) and Gmr

T (R)
(−)∨−−−→ Bmr

T∨(R) are inverse equivalences. �

Corollary 3.4. Assume that R is complete, and let T be a quasi-
dualizing R-module. Then the following maps are inverse bijections:

Bnoeth
T∨ (R)

(−)∨ // Gartin
T (R)

(−)∨
oo and Bartin

T∨ (R)
(−)∨ // Gnoeth

T (R).
(−)∨
oo

Proof. Fact 1.3 implies that, if N is a noetherian R-module, then
N∨ is an artinian R-module and N ∼= N∨∨. Furthermore, if A
is an artinan R-module, then A∨ is a noetherian R-module and
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A ∼= A∨∨. Together with Proposition 3.3, this implies that the

maps Bnoeth
T∨ (R)

(−)∨ // Gartin
T (R)

(−)∨
oo are inverse bijections. The proof for

Bartin
T∨ (R)

(−)∨ // Gnoeth
T (R)

(−)∨
oo is similar. �

Proposition 3.5. Assume that R is complete, and let T be a quasidu-

alizing R-module. Then the maps Bmr
T (R)

(−)∨ // Gmr
T∨(R)

(−)∨
oo are inverse

bijections.

Proof. Let M be a Matlis reflexive R-module. We show that if
M ∈ Gmr

T∨(R), then M∨ ∈ Bmr
T (R). First we show that the map ξTM∨ is

an isomorphism. The fact that M is Matlis reflexive implies that the
map δEM in the following commutative diagram is an isomorphism:

M
δEM
∼=

//

δT
∨

M

��

M∨∨

(ξT
M∨ )∨

��
HomR(HomR(M,T∨), T∨)

∼=
��

HomR(HomR(T,M
∨)⊗R T,E)

HomR(HomR(T,M
∨), T∨).

∼=

33gggggggggggggggggggg

The unspecified isomorphisms are from Hom-tensor adjointness and
Lemma 1.4. Since M ∈ Gmr

T∨(R), we have that the map δT
∨

M is an
isomorphism. Hence, (ξTM∨)∨ is an isomorphism. Since E is faithfully
injective, this implies that ξTM∨ is an isomorphism.

Next we show that ExtiR(T,M
∨) = 0 for all i > 0. Since M is Matlis

reflexive, Lemma 1.4 explains the first step in the following sequence
ExtiR(T,M

∨) ∼= ExtiR(M,T∨) = 0. The second step follows from the
fact that M ∈ Gmr

T∨(R).

Lastly, we show that TorRi (T,HomR(T,M
∨)) = 0 for all i > 0. The

commutativity of tensor product explains the first step in the following
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sequence:

TorRi (T,HomR(T,M
∨))∨ ∼= TorRi (HomR(T,M

∨), T )∨

∼= ExtiR(HomR(T,M
∨), T∨)

∼= ExtiR(HomR(M,T∨), T∨)

= 0.

The second step follows from [6, Remark 1.9], and the third step follows
from Lemma 1.4. The last step follows from the fact that M ∈ Gmr

T∨(R).

Given an R-moduleM ′ ∈ Bmr
T (R), the argument to show thatM ′∨ ∈

Gmr
T∨(R) is similar but easier. Since M and M ′ are Matlis reflexive,

we conclude that the maps Bmr
T (R)

(−)∨−−−→ Gmr
T∨(R) and Gmr

T∨(R)
(−)∨−−−→

Bmr
T (R) are inverse equivalences. �

Corollary 3.6. Assume that R is complete, and let T be a quasi-
dualizing R-module. Then the following maps are inverse bijections:

Bnoeth
T (R)

(−)∨ // Gartin
T∨ (R)

(−)∨
oo and Bartin

T (R)
(−)∨ // Gnoeth

T∨ (R).
(−)∨
oo

The next proposition establishes the relationship between a subclass
of the Auslander class and a subclass of the derived reflexive modules.

Proposition 3.7. If R is complete and T is a quasidualizing R-module,
then

Gmr
T∨(R) = Amr

T (R).

Proof. Let M be a Matlis reflexive R-module. We show that M
satisfies the defining conditions of Gmr

T∨(R) if and only if M satisfies
the defining conditions of Amr

T (R). For the isomorphisms, consider the
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following commutative diagram:

M

δT
∨

M //

γT
M

��

HomR(HomR(M,T∨), T∨)

∼=

��
HomR(T, T ⊗R M)

HomR(T,δET⊗RM )∼=

��

HomR(HomR(M,T∨) ⊗R T,E)

∼=

��
HomR(T,HomR((T ⊗R M)∨, E)) ∼=

// HomR(T,HomR(HomR(M,T∨), E)).

The unspecified isomorphisms are Hom-tensor adjointness. The module
T ⊗R M is artinian by [6, Lemma 1.19 and Theorem 3.1]. Fact 1.3
implies that the map δET⊗RM , and hence the map HomR(T, δ

E
T⊗RM ), is

an isomorphism. Therefore, the map γT
M is an isomorphism if and only

if the map δT
∨

M is an isomorphism.

Next we show that, for all i > 0, we have ExtiR(M,T∨) = 0 if and

only if TorRi (M,T ) = 0. By [6, Remark 1.9], we have ExtiR(M,T∨) ∼=
TorRi (M,T )∨. Because the Matlis dual of a module is zero if and only
if the module is zero, we conclude that ExtiR(M,T∨) = 0 if and only if

TorRi (M,T ) = 0 for all i > 0.

Next we show that, for all i > 0, we have ExtiR(HomR(M,T∨), T∨) =
0 if and only if ExtiR(T,M⊗RT ) = 0. Hom-tensor adjointness explains
the first step in the following sequence:

ExtiR(HomR(M,T∨), T∨) ∼= ExtiR((M ⊗R T )∨, T∨)

∼= ExtiR(T
∨∨, (M ⊗R T )∨∨)

∼= ExtiR(T,M ⊗R T ).

The second step follows from Lemma 1.4 and the fact that T is artinian
and thus Matlis reflexive. The third step follows from the fact that T
and M ⊗R T are artinian and hence Matlis reflexive, see [6, Corollary
3.9]. �

Corollary 3.8. Assume that R is complete, and let T be a quasi-
dualizing R-module. Then Gnoeth

T∨ (R) = Anoeth
T (R) and Gartin

T∨ (R) =
Aartin

T (R).
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Proposition 3.9. If R is complete and T is a quasidualizing R-module,
then

Gmr
T (R) = Amr

T∨(R).

Proof. Let M be a Matlis reflexive R-module. We show that M
satisfies the defining conditions of Gmr

T (R) if and only if M satisfies
the defining conditions of Amr

T∨(R). For the isomorphisms, consider the
following commutative diagram:

M

δTM //

γT∨
M

��

HomR(HomR(M,T ), T )

∼=HomR(HomR(M,T ),δET )

��

HomR(T∨, T∨ ⊗R M)

HomR(T∨,δE
T∨⊗M

)

��
HomR(T∨, (T∨ ⊗R M)∨∨)

∼=

��
HomR(HomR(T∨ ⊗R M,E), T∨∨)

∼=

��
HomR(HomR(M,T∨∨), T∨∨)

∼=

HomR(HomR(M,δET ),T∨∨)

// HomR(HomR(M,T ), T∨∨)

where the unlabeled isomorphisms are Hom-tensor adjointness and
Hom-swap. Since T is artinian, and hence Matlis reflexive, both the
right hand map and the bottom map are isomorphisms. The module
T∨ ⊗R M is Matlis reflexive by [6, Corollary 3.6]. Thus, the map
δET∨⊗M , and hence the map HomR(T

∨, δET∨⊗M ) is an isomorphism.

Therefore, the map γT∨

M is an isomorphism if and only if the map δTM
is an isomorphism.

Next we show that, for all i > 0, we have ExtiR(M,T ) = 0 if and

only if TorRi (T
∨,M) = 0. The fact that T is artinian, and hence Matlis

reflexive, explains the first step in the following sequence

ExtiR(M,T ) ∼= ExtiR(M,T∨∨) ∼= TorRi (M,T∨)∨ ∼= TorRi (T
∨,M)∨.

The second step follows from [6, Remark 1.9], and the last step follows
from the commutativity of the tensor product. Because the Matlis dual
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of a module is zero if and only if the module is zero, we conclude that
ExtiR(M,T ) = 0 if and only if TorRi (T

∨,M) = 0 for all i > 0.

Next we show that, for all i > 0, we have ExtiR(HomR(M,T ), T ) = 0
if and only if ExtiR(T

∨, T∨⊗RM) = 0. The fact that T is artinian, and
hence Matlis reflexive, explains the first and third steps in the following
sequence:

ExtiR(HomR(M,T ), T ) ∼= ExtiR(HomR(M,T∨∨), T )

∼= ExtiR(HomR(M ⊗R T∨, E), T )

∼= ExtiR(HomR(M ⊗R T∨, E), T∨∨)

∼= ExtiR(T
∨,M ⊗R T∨).

The second step follows from Hom-tensor adjointness, and the last step
follows from Lemma 1.4. �

Corollary 3.10. Assume that R is complete and let T be a quasi-
dualizing R-module. Then Gnoeth

T (R) = Anoeth
T∨ (R) and Gartin

T (R) =
Aartin

T∨ (R).

The above results show that the classes Gmr
T (R), Gartin

T (R), and
Gnoeth
T (R) do not exhibit some of the same properties as the class

Gnoeth
C (R), where C is semidualizing. For instance, we consider the

following property. We say a class of R-modules C satisfies the two-
of-three condition if, given an exact sequence of R-module homomor-
phisms 0 → L1 → L2 → L3 → 0, when any two of the modules are
in C, so is the third. The two-of-three condition holds for some classes
of modules and not for others. For example, the class of noetherian
modules and the class of artinian modules both satisfy the two-of-three
condition. On the other hand, the class Gnoeth

C (R) does not satisfy
the two-of-three condition when C is semidualizing. In contrast, the
next result shows that the class Gfull

T (R) satisfies the two-of-three con-
dition when the ring is complete. This is somewhat surprising since
the definitions of Gnoeth

C (R) and Gfull
T (R) are so similar. First we need

a lemma. In the language of [4] it says that quasidualizing implies
faithfully quasidualizing.

Lemma 3.11. Let L and T be R-modules such that T is quasidualizing.
If one has HomR(L, T ) = 0, then L = 0.
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Proof. Assume that HomR(L, T ) = 0.

Case 1. T = E. Because HomR(L,E) = 0, we have L∨∨ = 0. Since
the map δEL : L → L∨∨ is injective by Fact 1.2, we conclude that L = 0.

Case 2. R is complete. Then T is Matlis reflexive and we have
0 = HomR(L, T ) ∼= HomR(T

∨, L∨) from Lemma 1.4. Since T∨ is
semidualizing by Proposition 3.1, we have L∨ = 0 by [4, Proposition
3.6]. By Case 1, we conclude that L = 0.

Case 3. the general case. The first step in the following sequence is
by assumption:

0 = HomR(L, T ) ∼= HomR(L,HomR̂(R̂, T )) ∼= HomR̂(R̂⊗R L, T ).

The second step follows from the fact that T is artinian and hence

has an R̂ structure, and the third step is from Hom-tensor adjointness.

Since T is a quasidualizing R̂-module, we can apply Case 2 to conclude

that R̂⊗R L = 0. Then L = 0 because R̂ is faithfully flat over R. �

Question 3.12. Does a version of Lemma 3.11 hold for T ⊗R − as in
[4]?

Theorem 3.13. Assume that R is complete, and let T be a quasidu-
alizing R-module. Then Gfull

T (R) satisfies the two-of-three condition.

Proof. Let

(3.13.1) 0 −→ L1
f−→ L2

g−→ L3 −→ 0

be an exact sequence of R-module homomorphisms, and let (−)T =
HomR(−, T ). There are two conditions to check and three cases.
We will deal with the case when L1, L2 ∈ Gfull

T (R). The case where
L2, L3 ∈ Gfull

T (R) is similar. The case where L1, L3 ∈ Gfull
T (R) is also

similar but easier.

Assume that L1, L2 ∈ Gfull
T (R). Then we have ExtiR(L1, T ) = 0 =

ExtiR(L2, T ) for all i > 0. The following portion of the long exact
sequence in ExtiR(−, T ) associated to the short exact sequence (3.13.1)
(3.13.2)

· · · → Exti−1
R (L1, T ) → ExtiR(L3, T ) → ExtiR(L2, T ) → ExtiR(L1, T ) → · · ·
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shows that ExtiR(L3, T ) = 0 for all i > 1. For the case where i = 1, we
apply (−)T to the following portion of the long exact sequence

0 −→ (L3)
T −→ (L2)

T −→ (L1)
T −→ Ext1R(L3, T ) −→ 0

to obtain exactness in the top row of the following commutative
diagram:

0 // (Ext1R(L3, T ))
T // (L1)

TT fTT

// (L2)
TT

0 // L1
f //

∼= δTL1

OO

L2.

∼= δTL2

OO

Since f is an injective map, the diagram shows that fTT is an injective
map. Hence, we have (Ext1R(L3, T ))

T = 0. From Lemma 3.11, we
conclude that Ext1R(L3, T ) = 0.

Next we show that ExtiR(HomR(L3, T ), T ) = 0 for all i > 0. From
the argument above, we have the exact sequence

(3.13.3) 0 −→ (L3)
T −→ (L2)

T −→ (L1)
T −→ 0.

In a similar, but easier, manner than above, the long exact sequence in
ExtiR(−, T ) shows that, if L1, L2 ∈ Gfull

T (R), then ExtiR(HomR(L3, T ), T )
= 0 for all i > 0.

Lastly, we show that the map δTL3
is an isomorphism. From the short

exact sequence (3.13.1) and as a consequence of the above argument
together with the short exact sequence (3.13.3), we obtain the following
commutative diagram with exact rows

0 // L1
f //

δTL1
∼=
��

L2
g //

δTL2
∼=
��

L3
//

δTL3
��

0

0 // (L1)
TT fTT

// (L2)
TT gTT

// (L3)
TT // 0.

Since L1, L2 are in Gfull
T (R), the maps δTL1

and δTL2
are isomorphisms.

By the Snake lemma, we conclude that δTL3
is an isomorphism. �

Corollary 3.14. Assume that R is complete, and let T be a quasidual-
izing R-module. Then Gartin

T (R) = Aartin
T∨ (R), Gnoeth

T (R) = Anoeth
T∨ (R),

and Gmr
T (R) satisfy the two-of-three condition.
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Proof. Apply Theorem 3.13 and Corollary 3.10. �
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