Open Access
Translator Disclaimer
SPRING 2014 A remark on a conjecture of Derksen
Andrew Snowden
J. Commut. Algebra 6(1): 109-112 (SPRING 2014). DOI: 10.1216/JCA-2014-6-1-109

Abstract

Let $V$ be a complex representation of a finite group $G$ of order $g$. Derksen conjectured that the $p$th syzygies of the invariant ring $\text{Sym\,}(V)^G$ are generated in degrees $\le (p+1)g$. We point out that a simple application of the theory of twisted commutative algebras\endash/using an idea due to Weyl\endash/gives the weaker bound $pg^3$, almost for free.

Citation

Download Citation

Andrew Snowden. "A remark on a conjecture of Derksen." J. Commut. Algebra 6 (1) 109 - 112, SPRING 2014. https://doi.org/10.1216/JCA-2014-6-1-109

Information

Published: SPRING 2014
First available in Project Euclid: 2 June 2014

zbMATH: 1291.13013
MathSciNet: MR3215564
Digital Object Identifier: 10.1216/JCA-2014-6-1-109

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
4 PAGES


SHARE
Vol.6 • No. 1 • SPRING 2014
Back to Top