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ZERO DIVISOR GRAPHS FOR MODULES
OVER COMMUTATIVE RINGS

M. BEHBOODI

ABSTRACT. In this article, we give several generalizations
of the concept of zero-divisor elements in a commutative
ring with identity to modules. Then, for each R-module
M , we associate three undirected (simple) graphs Γ∗(RM) ⊆
Γ(RM) ⊆ Γ∗(RM) which, for M = R, all coincide with the
zero-divisor graph of R. The main objective of this paper is to
study the interplay of module-theoretic properties of M with
graph-theoretic properties of these graphs.

0. Introduction. Let R be a commutative ring with identity and
Z(R) its set of zero divisors. In [6], Anderson and Livingston associated
an undirected (simple) graph Γ(R) to R with vertices Z(R)∗ := Z(R)\
{0} and with two distinct vertices x and y adjacent if xy = 0, and
then studied the relationship between the properties of Γ(R) and R.
This graph is defined somewhat differently from the graph introduced
by Beck [8], who took the set of vertices to be all of R. Recently,
this subject has received a good deal of attention from several authors
assigning a graph to a ring or a group and then studying the algebraic
properties of these objects via their associated graphs; see, for instance,
[1 8, 13, 14, 18, 19, 23]. Moreover, Redmond in [20] has considered
the zero-divisor graph for arbitrary rings (see also [1]). In the present
article, we introduce and study several generalizations of zero-divisor
graphs to modules M over a commutative ring R which, for M = R, all
coincide with Γ(R) (the zero-divisor graph of R). Our main objective
is to establish connections between module theoretic properties with
the properties of associated graphs.

Throughout, all rings are commutative with identity elements, and
all modules are unitary. The symbol ⊆ denotes containment, and ⊂
denotes proper containment for sets. If N is a submodule (respectively,
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proper submodule) of M , we write N ≤ M (respectively, N < M). We
denote by soc (M) and dim (R) the socle of M and the classical Krull
dimension of R, respectively.

Let R be a commutative ring and M an R-module. For x ∈ M ,
we denote the annihilator of the factor module M/Rx by Ix (i.e.,
Ix := {r ∈ R | rM ⊆ Rx}). It is clear that, for each x ∈ M ,
Ann (M) ⊆ Ix and Rx = M if and only if Ix = R. In particular,
if M = R, then for each x ∈ R, Ix = Ann (R/Rx) = Rx. This means
that IxIy = 0, if and only if xy = 0. Therefore, an element x ∈ R is
a zero-divisor in R if and only if IxIyR = 0 for some nonzero y ∈ R.
We shall use these facts to give several generalizations of the concept
of zero-divisor elements in a commutative ring to modules. An element
x of M is called a:

weak zero-divisor, if either x = 0 or IxIyM = 0 for some nonzero
y ∈ M with Iy ⊂ R;

zero-divisor, if either x = 0 or 0 �= Ix and IxIyM = 0 for some
nonzero y ∈ M with 0 �= Iy ⊂ R;

strong zero-divisor, if either x = 0 or Ann (M) ⊂ Ix and IxIyM = 0
for some nonzero y ∈ M with Ann (M) ⊂ Iy ⊂ R.

For any R-module M , we denote Z∗(M), Z(M) and Z∗(M), re-
spectively, for the set of weak zero-divisors, zero-divisors and strong
zero-divisors of M . We note that Z∗(M) ⊆ Z(M) ⊆ Z∗(M) and,
these facts are clear when M = R, all of the above concepts co-
incide with the set of zero-divisor elements of R. Now, for an R-
module M , we let Z̃∗(M) := Z∗(M) \ {0}, Z̃(M) := Z(M) \ {0}
and Z̃∗(M) := Z∗(M) \ {0}. Then we associate three (simple) graphs

Γ∗(RM), Γ(RM) and Γ∗(RM) to M with vertices Z̃∗(M), Z̃(M) and

Z̃∗(M), respectively, and the vertices x and y are adjacent if and only
if IxIyM = 0. It is clear that we have Γ∗(RM) ⊆ Γ(RM) ⊆ Γ∗(RM)
as the induced subgraphs.

Recall that a graph Γ is connected if there is a path between any
two distinct vertices. For distinct vertices x and y of Γ, let d(x, y) be
the length of the shortest path from x to y (d(x, y) = ∞ if there is no
such path). The diameter of Γ is diam (Γ) = sup{d(x, y) | x and y are

distinct vertices of Γ}. The girth of Γ, denoted by g(Γ), is defined as
the length of the shortest cycle in Γ (g(Γ) = ∞ if G contains no cycles).
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This article consists of four sections. In Section 1, we show that,
for any module M , either Γ∗(RM) = Γ(RM) or Γ(RM) = Γ∗(RM)
and, also, Γ∗(RM) is always connected with diam (Γ(RM)) ≤ 3.
Moreover, if Γ∗(RM) contains a cycle, then g(Γ∗(RM)) ≤ 4. In
Section 2, we shall be able to characterize all R-modules M for which
Γ∗(RM) = Γ(RM) = Γ∗(RM). In fact, we show that multiplication-
like modules (defined later) are the only modules with this property. In
Section 3, we shall study R-modulesM for which Γ∗(RM) is a complete

graph with vertices M̃ := M \ {0} and Γ(RM) is the empty graph. We
also investigate R-modules M for which Γ∗(RM) is the empty graph

and Γ(RM) is a complete graph with vertices M̃ . In particular, prime

modules M for which Γ∗(RM) is a complete graph with vertices M̃ are
characterized. In the final section, we show that, for an R-module M ,
Γ∗(RM) is finite if and only if either M is a finite module or a prime
multiplication-like module. In particular, if 1 ≤ |Γ∗(RM)| < ∞, then
M is finite and not a simple module.

1. Various zero-divisor graphs for modules. We begin this
section with the following definition (given an R-module M , and given
x ∈ M , we will denote Ann (M/Rx) by Ix).

Definition 1.1. Let M be an R-module. An element x of M is
called a:

weak zero-divisor, if either x = 0 or IxIyM = 0 for some nonzero
y ∈ M with Iy ⊂ R.

zero-divisor, if either x = 0 or 0 �= Ix and IxIyM = 0 for some
nonzero y ∈ M with 0 �= Iy ⊂ R.

strong zero-divisor, if either x = 0 or Ann (M) ⊂ Ix and IxIyM = 0
for some nonzero y ∈ M with Ann (M) ⊂ Iy ⊂ R.

For any moduleM we denote Z∗(M), Z(M) and Z∗(M), respectively,
for the set of weak zero-divisor, zero-divisor and strong zero-divisor
elements of M . It is clear that

Z∗(M) ⊆ Z(M) ⊆ Z∗(M).

The following evident proposition shows that, for M = R, all of the
above concepts coincide with the set of zero-divisor elements of R.
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Proposition 1.2. Let R be a ring and x ∈ R. Then the following
are equivalent.

(1) x is a zero divisor element in R;

(2) x is a weak zero divisor element in RR;

(3) x is a zero divisor element in RR;

(4) x is a strong zero divisor element in RR.

Now, for an R-module M , we let Z̃∗(M) := Z∗(M) \ {0}, Z̃(M) :=

Z(M) \ {0} and Z̃∗(M) := Z∗(M) \ {0}. Then we associate three
undirected (simple) graphs Γ∗(RM), Γ(RM) and Γ∗(RM) to M with

vertices Z̃∗(M), Z̃(M) and Z̃∗(M), respectively, and for which the
vertices x and y are adjacent if and only if IxIyM = 0. It is clear that
we have Γ∗(RM) ⊆ Γ(RM) ⊆ Γ∗(RM) as induced subgraphs.

Let Γ(R) be the zero-divisor graph of a ring R. By Proposition 1.2,
we have the following corollary.

Corollary 1.3. Let R be a ring. Then

Γ∗(RR) = Γ(RR) = Γ∗(RR) = Γ(R).

Proposition 1.4. Let M be an R-module with I = Ann (M). Then

Γ∗(RM) = Γ∗(R/IM) and Γ∗(RM) = Γ∗(R/IM).

Proof. Let x ∈ Z̃∗(M). Then there exists a 0 �= y ∈ M such that
IxIyM = 0. It is clear that I ⊆ Ix ∩ Iy, AnnR/I(M/Rx) = Ix/I,
AnnR/I(M/Ry) = Iy/I and (Ix/I)(Iy/I)M = 0. It follows that
x ∈ Z∗(RM) if and only if x ∈ Z∗(R/IM), and the vertices x and
y are adjacent in Γ∗(RM) if and only if x and y are adjacent in
Γ∗(R/IM). Therefore, Γ∗(RM) = Γ∗(R/IM). Similarly, we can show
that Γ∗(RM) = Γ∗(R/IM).

The proofs of Corollaries 1.5 and 1.6 follow immediately from Propo-
sition 1.4. In fact, the next corollary shows that, for any R-module M ,
either Γ(RM) = Γ∗(RM) or Γ(RM) = Γ∗(RM).
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Corollary 1.5. Let M be an R-module. (a) If M is a faithful module,
then Γ(RM) = Γ∗(RM).

(b) If M is not a faithful module, then Γ(RM) = Γ∗(RM).

Corollary 1.6. Let M = Rm be a cyclic R-module. Then

Γ∗(RM) = Γ(RM) = Γ∗(RM) = Γ(R/I),

where I = Ann (m).

In [6, Theorem 2.3], it is shown that, for any commutative ring R,
Γ(R) is connected and diam(Γ(R)) ≤ 3. Moreover, if Γ(R) contains
a cycle, then g(Γ(R)) ≤ 7 (and by [19], g(Γ(R)) ≤ 4). In the next
theorem, we extend these results to modules. We show that, for every
R-moduleM , Γ∗(M) is a connected graph and has diameter less than or
equal to 3. Moreover, if Γ∗(RM) contains a cycle, then g(Γ∗(RM)) ≤ 4.

We need the following lemma.

Lemma 1.7. Let M be an R-module and x, y ∈ Z̃∗(M). If x y is
a path in Γ∗(M), then for each 0 �= r ∈ R, either ry = 0 or x ry is
also a path in Γ∗(M).

Proof. Let x, y ∈ Z̃∗(M) and r ∈ R. Assume that x y is a path in
Γ∗(M) and ry �= 0. Then IxIyM = 0. It is clear that Iry ⊆ Iy and so
IxIryM ⊆ IxIyM = 0. Thus, x ry is also a path in Γ∗(M).

The proof of the following theorem is in many ways similar to the
proof of the corresponding argument in [6].

Theorem 1.8. Let M be an R-module. Then Γ∗(RM) is a connected
graph and diam (Γ∗(RM)) ≤ 3. Moreover, if Γ∗(RM) contains a cycle,
then g(Γ∗(RM)) ≤ 4.

Proof. Let x, y ∈ Z̃∗(M) be distinct. If IxIyM = 0, then d(x, y) = 1.
So suppose that IxIyM �= 0. Since IxIyM ⊆ Rx∩Ry, this implies that
Rx∩Ry �= 0. If (Ix)

2M = (Iy)
2M = 0, then for each 0 �= z ∈ Rx∩Ry,



180 M. BEHBOODI

Iz ⊆ Ix ∩ Iy. So x z y is a path of length 2; thus, d(x, y) = 2. If

(Ix)
2M = 0 and (Iy)

2M �= 0, then there is a b ∈ Z̃∗(M) \ {x, y} such
that IbIyM = 0. If IbIxM = 0, then x b y is a path of length 2.
Let IbIxM �= 0. Then, for each 0 �= c ∈ Rb ∩ Rx, Ic ⊆ Ib ∩ Ix, so
that x c y is a path of length 2. In either case, d(x, y) = 2. A
similar argument holds if (Iy)

2M = 0 and (Ix)
2M �= 0. Thus, we may

assume that IxIyM, (Ix)
2M and (Iy)

2M are all nonzero. Hence, there

are a, b ∈ Z̃∗(M) \ {x, y} with IaIxM = IbIyM = 0. If Ia = Ib,
then x a y is a path of length 2. Thus we may assume that
Ia �= Ib. If IaIbM = 0, then x a b y is a path of length 3,
and hence d(x, y) ≤ 3. If IaIbM �= 0, then Ra ∩Rb �= 0 and, for every
0 �= d ∈ Ra ∩ Rb, x d y is a path of length 2; thus, d(x, y) = 2.
Hence d(x, y) ≤ 3, and thus diam (Γ(RM)) ≤ 3.

Now let (x1, . . . , xn) be a cycle with length n. Note that n ≥ 3.
Define x0 := xn and xn+1 := x1 = x. If there is an i ∈ {1, 2, n} such
that Rxi ∩ {xi−1, xi+1} �= ∅, then letting

l(i) =

⎧⎨
⎩

(x, x2, xn) if i = 1,

(x, x2, x3) if i = 2,

(x, xn−1, xn) if i = n.

Now, by Lemma 1.7, it is easy to see that l(i) is a cycle for i = 1, 2, n.
Hence, g(Γ∗(RM)) ≤ 3. Henceforth, assume Rxi ∩ {xi−1, xi+1} = ∅
for all i ∈ {1, 2, n}. Thus, the proof will now break into two cases:

Case 1. Suppose Rxi ⊆ {xi−1, xi, xi+1, 0} for all i ∈ {1, 2, n}.
Then we must have Rxi = {xi, 0} for all i ∈ {1, 2, n}. Consequently,
Rx2 ∩ Rxn = 0. In this case Ix2IxnM ⊆ Rx2 ∩ Rxn = 0, and so
(x, x2, xn) is a cycle with length 3, and thus g(Γ∗(RM)) ≤ 3.

Case 2. Suppose there is an i ∈ {1, 2, n} such that Rxi �⊆
{xi−1, xi, xi+1, 0}. Pick y ∈ Rxi \ {xi−1, xi, xi+1, 0}. Define

l(i) =

⎧⎨
⎩

(x, x2, y, xn) if i = 1,

(x, x2, x3, y) if i = 2,

(x, y, xn−1, xn) if i = n.

By Lemma 1.7, it is straightforward to verify that l(i, y) is a cycle for
all i = 1, 2, n, and hence g(Γ∗(RM)) ≤ 4.
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In view of the above result, we state the following conjecture:

Conjecture 1.9. Let M be an R-module. Then Γ∗(RM) is also
connected and diam(Γ∗(RM)) ≤ 3. Moreover, if Γ∗(RM) contains a
cycle, then g(Γ∗(RM)) ≤ 4.

Let Γ be a graph with vertices V and, let ∅ �= A, B ⊆ V . Then
A � B means that, for each a ∈ A, b ∈ B, a b is a path in Γ. Also,
for each nonzero R-module M , we shall denote the set of all nonzero
elements of M by M̃ (i.e., M̃ = M \ {0}).

Lemma 1.10. Let M be an R-module, and let M = M1 ⊕M2 where
M1, M2 are nonzero R-submodules of M . Then M̃1, M̃2 ⊆ Z̃∗(M)

and M̃1 � M̃2 in Γ∗(M). Moreover, if 0 �= x,∈ Z̃∗(M1), then

(x, 0) ∈ Z̃∗(M) and, if the vertices x and y are adjacent in Γ∗(M1),
then (x, 0), (y, 0) are adjacent in Γ∗(RM).

Proof. Let 0 �= x ∈ M1 and 0 �= y ∈ M2. It is clear that

Ix = Ann

(
M

Rx

)
= Ann

(
M1 ⊕M2

Rx⊕ (0)

)
= Ann

(
M1

Rx
⊕M2

)

Iy = Ann

(
M

Ry

)
= Ann

(
M1 ⊕M2

(0)⊕Ry

)
= Ann

(
M1 ⊕

M2

Ry

)
.

It follows that Ix ⊆ Ann (M2) and Iy ⊆ Ann (M1). Thus, IxIyM = 0,

i.e., x y is a path in Γ∗(M). Therefore, M̃1, M̃2 ⊆ Z̃∗(M) and

M̃1 � M̃2 in Γ∗(M).

Now let x ∈ Z̃(M1). Then there exists a 0 �= y ∈ M1 such that
IxIyM1 = 0, where Ix = Ann (M1/Rx) and Iy = Ann (M1/Ry).
Clearly,

I(x,0) = Ann

(
M1 ⊕M2

R(x, 0)

)
= Ann

(
M1

Rx
⊕M2

)
,

J(y,0) = Ann

(
M1 ⊕M2

R(y, 0)

)
= Ann

(
M1

Ry
⊕M2

)
.

It follows that I(x,0) ⊆ Ix, J(y,0) ⊆ Iy and I(x,0)M2 = J(y,0)M2 = 0.
Thus, I(x,0)J(y,0)M = 0, i.e., (x, 0) and (y, 0) are adjacent in Γ∗(RM).
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Theorem 1.11. Let M = M1 ⊕ M2 where M1, M2 are nonzero
R-modules. If Γ∗(M1) �= ∅, then Γ∗(M1) ∼= G, where G is induced

subgraph of Γ∗(RM) with vertices {(x, 0) ∈ Z̃∗(M) | x ∈ Z̃∗(M1)}.

Proof. The proof follows directly from Lemma 1.10.

Proposition 1.12. Let M be a non-simple semisimple R-module.
Then Γ∗(RM) is a connected graph with vertices M̃ . Moreover, if Rx
and Ry are two distinct simple R-submodules of M , then x y is a
path in Γ∗(M).

Proof. Since every proper submodule of a semisimple module M is a
direct summand of M , this follows from Lemma 1.10.

Corollary 1.13. Let M be a non-simple homogeneous semisimple
R-module. Then Γ∗(RM) = ∅ and Γ∗(RM) is a complete graph with

vertices M̃ .

Proof. Since every cyclic submodule of a homogeneous semisimple
module M is simple, by Proposition 1.12, Γ∗(RM) is a complete graph

with vertices M̃ . Also Γ∗(RM) is the empty graph since Ann (M) is a
maximal ideal.

We conclude this section with the following example.

Example 1.14. Let R = Z and M = Z2 ⊕ Z4. Then M has
eight elements and the nonzero elements of M are: m1 = (1, 0),
m2 = (0, 1), m3 = (0, 2), m4 = (0, 3), m5 = (1, 1), m6 = (1, 2)
and m7 = (1, 3). It is easy to check that Im1 = Im6 = 4Z =
Ann (M) and Im2 = Im3 = Im4 = Im5 = Im7 = 2Z. Thus, by

Definition 1.1, Z̃∗(M) = Z̃(M) = {m1,m2,m3,m4,m5,m6,m7} and

Z̃∗(M) = {m2,m3,m4,m5,m7}. Since ImiImjM = 4Z(Z2 ⊕ Z4) = 0
for all 1 ≤ i, j ≤ 7, we conclude that Γ∗(RM) is complete with five
vertices: m2, m3, m4, m5 and m7, but Γ∗(RM) and Γ∗(RM) are
complete with seven vertices: m1, m2, m3, m4, m5, m6 and m7.
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TABLE 1. Graphs of several Z-modules.

Z-modules Γ∗(M) Γ(M) Γ∗(M)

M = Z6

M = Z2 ⊕ Z2 ∅

∅

∅

∅

∅

∅

∅M = Z2 ⊕ Z2 ⊕ Z2

M = Zp∞ or Q ∅
Γ∗(M) is a

complete graph

with vertices M̃

M = Z⊕ Z2 ∅

..............

................

...............

.................

M = Z2 ⊕ Z2 ⊕ Z3

M = Zp or Z ∅ ∅

M =
⊕n

i=1 Z, n ≥ 2 ∅

M = Z12

Γ∗(M) is a

with vertices M̃

complete graph
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Example 1.15. Table 1 shows the zero divisor graphs for several
Z-modules.

2. Multiplication-like modules. Let R be a ring and M an R-
module. If M �= 0 and Ann (M) = Ann (N) for all nonzero submodules
N of M , then M is called a prime module. It is immediate that
Ann (M) is a prime ideal, and it is called the affiliated prime of RM (see
[9 12, 15] for some known results about prime modules). Also, an R-
module M is called a multiplication module if each submodule of M is
of the form IM , where I is an ideal of R, i.e., for each 0 �= m ∈ M there
is an ideal I of R such that Rm = IM (see [15] for some known results
about multiplication modules). Let N be a nonzero submodule of a
multiplication module M . It is clear that, for each nonzero submodule
N ofM , N = Ann (M/N)M and so Ann (M) ⊂ Ann (M/N) (i.e., there
is an r ∈ R\Ann (M) with rM ⊆ N). Therefore, we have the following
definition.

Definition 2.1. Let M be an R-module. We say that M is a
multiplication-like module if, for each nonzero submodule N of M ,
Ann (M) ⊂ Ann (M/N).

Multiplication-like modules have been considered in [17, 21]. For
example, in [17, Corollary 1.6] it is shown that, if R is a commutative
ring and M is a multiplication-like R-module, then M is prime if and
only if Ann (M) is a prime ideal.

Clearly, every multiplication module is multiplication-like, but hith-
erto we have not found any example where M is multiplication-like
and M is not a multiplication module. Therefore, we have the follow-
ing question.

Question 2.2. Let M be a multiplication-like R-module. Is M a
multiplication R-module?

Later in this section, we shall be able to characterize all modules
M for which Γ∗(RM) = Γ(RM) = Γ∗(RM). In fact, we show that
multiplication-like modules are the only modules with this property.
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Lemma 2.3. Let M be an R-module. Then M is multiplication-like
if and only if, for each 0 �= m ∈ M , Ann (M) ⊂ Im.

Proof. The necessity is clear. Conversely, suppose that, for each
0 �= m ∈ M , Ann (M) ⊂ Im. Let N be a nonzero submodule of M .
For each 0 �= x ∈ N , there exists an ideal Ix such that 0 �= IxM ⊆ Rx.
Let I =

∑
0�=x∈N Ix. Then 0 �= IM ⊆ N . It follows that M is a

multiplication-like module.

For an R-module M , we define:

A(M) := {x ∈ M | Ann (M) ⊂ Ix}
A(M) := {x ∈ M | Ann (M) = Ix}.

It is clear that M = A(M) ∪ A(M) and A(M) ∩ A(M) = ∅. By

Lemma 2.1, M is multiplication-like if and only if A(M) = M̃ if and
only if A(M) = {0}.
Now we are in a position to characterize those R-modules for which

the zero-divisor graphs Γ∗(RM), Γ(RM) and Γ∗(RM) coincide.

Theorem 2.4. Let M be an R-module. Then Γ∗(RM) = Γ(RM) =
Γ∗(RM) if and only if M is a multiplication-like module.

Proof. (⇒). Suppose Γ∗(RM) = Γ∗(RM). If x is a nonzero element in
A(M), then Ix = Ann (M). Therefore, IxIyM = 0 for each 0 �= y ∈ M .
It follows that x is a vertex in Γ∗(RM), so that x is a vertex in Γ∗(RM).
Thus, Ann (M) ⊂ Ix, a contradiction. Thus, A(M) = {0}. Hence, by
Lemma 2.3, M is a multiplication-like module.

(⇐). Suppose that M is a multiplication-like module. It is clear
that, if Γ∗(RM) = ∅, then Γ∗(RM) = ∅. Assume that Γ∗(RM) �= ∅,
and fix a vertex x ∈ Γ∗(RM). Hence, there is a 0 �= y ∈ M such that
IxIyM = 0. For every 0 �= m ∈ M , Ann (M) ⊂ Im, so that x is a

vertex in Γ∗(RM). Thus, Z̃∗(M) ⊆ Z̃∗(M). Now let x y be a path
in Γ∗(RM). Then IxIyM = 0 and so x y is a path in Γ∗(RM). Thus,
Γ∗(RM), Γ(RM) and Γ∗(RM).
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Since every multiplication module is multiplication-like, we have the
following corollary.

Corollary 2.5. Let M be a multiplication R-module. Then

Γ∗(RM) = Γ(RM) = Γ∗(RM).

It is clear that, for a commutative ring R, Γ(R) is the empty graph
if and only if R is an integral domain. Here, we generalize this fact to
modules. In fact, we characterize all R-modules M for which Γ∗(RM),
Γ(RM) and Γ∗(RM) are the empty graph.

Theorem 2.6. Let M be an R-module. Then the following state-
ments are equivalent.

(1) Γ∗(RM) = Γ(RM) = Γ∗(RM) = ∅ (i.e., Γ∗(RM) = ∅).

(2) M is a prime multiplication-like module.

(3) M is a multiplication-like module for which Ann (M) is a prime
ideal.

Proof. (1) ⇒ (2). Let Γ∗(RM) = ∅. By Theorem 2.2, M is a
multiplication-like module. Assume that M is not a prime module,
i.e., Ann (M) is not a prime ideal (see [17, Corollary 1.6]). Therefore,
IJM = 0 for some ideals I, J � Ann (M). Since IM �= 0 and
JM �= 0, so that there exist 0 �= x ∈ IM and 0 �= y ∈ JM . Then
IxM ⊆ Rx ⊆ IM and IyM ⊆ Ry ⊆ JM . Thus, IyIxM ⊆ IyIM =

IIyM ⊆ IJM = 0. It follows that x, y ∈ Z̃∗(M), a contradiction. Thus
M is a prime multiplication-like module.

(2) ⇒ (1). Suppose M is a prime multiplication-like module. Then,
for every 0 �= x ∈ M , Ann (M) ⊂ Ix. It follows that IxIyM �= 0 for
each 0 �= x, y ∈ M . So, Γ∗(RM) = ∅.

(2) ⇔ (3) is by [17, Corollary 1.6].

An R-module M is called indecomposable if M �= 0 and M cannot be
written as a direct sum of nonzero submodules. It is clear that every
prime ring R is indecomposable as an R-module. Now we generalize
this fact to multiplication-like modules.
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Proposition 2.7. Every prime multiplication-like R-module is an
indecomposable module.

Proof. Let M be a prime multiplication-like R-module. By Theo-
rem 2.6, Γ∗(RM) = ∅. If M = M1 ⊕ M2, where M1 and M2 are
nonzero R-modules, then by Lemma 1.10, Γ∗(RM) �= ∅, a contradic-
tion. Thus M is an indecomposable module.

Proposition 2.8. Let M be a prime multiplication-like R-module
with soc (M) �= 0. Then M is a simple module.

Proof. LetM be a prime multiplication-like module with soc (M) �= 0.
By [11, Corollary 1.9], every prime module with nonzero socle is a
homogeneous semisimple module. Thus, by Proposition 2.7, M must
be a simple module.

Corollary 2.9. Let M be an Artinian prime multiplication-like
module. Then M is a simple module.

Proof. This immediately follows from Proposition 2.8.

We recall that, if U and M are R−modules, then we say U is
M−injective if, for every submodule N of M , each homomorphism
N → U can be extended to M → U , and an R-module M is called
co-semisimple if every simple module is M−injective (see, for example
[22], for definition and characterization). Every semisimple module is
of course co-semisimple. In [11, Corollary 1.9], the authors proved that
a co-semisimple module M over a commutative ring R is prime if and
only if M is a homogeneous semisimple module. Thus, we have the
following proposition.

Proposition 2.10. Every prime multiplication-like co-semisimple
module is simple.

3. Virtually divisible modules. Let R be an integral domain.
We recall the definition of a divisible R-module M . An R module
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M is called divisible if rM = M , for all 0 �= r ∈ R. For example,
every injective module is divisible. Over Z, or more generally over any
principal ideal domain, the divisible modules are exactly the injective
modules. Over other domains, however, divisible modules need not be
injective (see [16, Exercise 6F]).

Let M be a nonzero divisible R-module. It is clear that, for each
proper submodule N of M , we have Ann (M/N) = Ann (M) = 0. It
thus follows that, if R is not a field, then Γ(RM) = ∅ and Γ∗(RM)

is a complete graph with vertices M̃ (see Table 1, where M is the Z-
module Zp∞ or Q). Now let R be a commutative ring (not necessarily
a domain) and M a homogeneous semisimple R-module. It is clear
that Ann (M) is a maximal ideal and so, for each proper submodule N
of M , we have Ann (M/N) = Ann (M). Thus, if R is not a field and
M is not a simple module, then, for each 0 �= x ∈ M , Ix = Ann (M).
It follows that Γ∗(RM) is the empty graph and Γ(RM) is a complete

graph with vertices M̃ (see Table 1, where M is the Z-module Z2 ⊕Z2

or Z2 ⊕ Z2 ⊕ Z2).

In this section, we shall study R-modules M for which Γ∗(RM) is

a complete graph with vertices M̃ and Γ(RM) = ∅. Also, we study

R-modules M for which Γ(RM) is a complete graph with vertices M̃
and Γ∗(RM) = ∅. In particular, prime modules M for which Γ∗(RM)

is a complete graph with vertices M̃ are characterized.

Definition 3.1. Let M be a nonzero R-module. We say that M is
a virtually divisible module if Ann (M/N) = Ann (M) for each proper
submoduleN ofM . Also, M is called a weakly virtually divisible module
if Ann (M/Rm) = Ann (M) for each proper cyclic submodule Rm of
M (i.e., Ix = Ann (M) for each 0 �= x ∈ M which Rx �= M).

Example 3.2. (i) Let R be an integral domain. It is clear that
every divisible R-module is virtually divisible but the converse is not
true (for example, every non-simple homogeneous semisimple Z-module
M is virtually divisible but it is not a divisible Z-module).

(ii) Let R be any ring. Then every homogeneous semisimple R-
module is virtually divisible (see Proposition 3.3).

(iii) It is clear that every virtually divisible R-module is weakly
virtually divisible but the converse is not true (for example, M = Z⊕Z
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is a weakly virtually divisible Z-module but it is not a virtually divisible
Z-module).

(iv) Let R be an integral domain. Then every non-cyclic free R-
module F is a weakly virtually divisible R-module (see Proposition 3.9
and Theorem 3.11).

Proposition 3.3. Let M be an R-module with P = Ann (M). Then
M is virtually divisible if and only if P is a prime ideal and M is a
divisible R/P-module.

Proof. Suppose M is virtually divisible. Let ab ∈ P , where a, b ∈ R.
Assume aM �= 0; then aM is a nonzero submodule of M . If aM �= M ,
then Ann (M/aM) = Ann (M) = P (since M is virtually divisible) and
so a ∈ Ann (M/aM) = Ann (M), a contradiction. Thus, aM = M and
so bM = baM = 0. It follows that b ∈ Ann (M) = P . Therefore, P is a
prime ideal. Now, let 0 �= r ∈ R \ P . Then rM �= 0. If rM �= M , then
r ∈ Ann (M/rM) = Ann (M) = P , a contradiction. Thus, rM = M
i.e., (r+P)M = M and soM is divisible as a R/P-module.The converse
is clear.

In the following theorem there are several equivalent statements for
a virtually divisible module.

Theorem 3.4. Let M be an R-module. Then the following are
equivalent.

(1) M is virtually divisible.

(2) P = Ann (M) is a prime ideal and M is a divisible R/P-module.

(3) Each direct summand of M is a virtually divisible module.

(4) For each a ∈ R, we have aM = M or aM = 0.

(5) For each ideal I of R, we have IM = M or IM = 0.

Proof. The equivalence of (1) and (2) is from Proposition 3.3, and
the equivalence of (4) and (5) is clear.

(2) ⇒ (3). Let N be a direct summand of M . Then M = N ⊕K, for
some K ≤ M . If N = (0), then we are through. Let N �= (0). Since
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P = Ann (M) is a prime ideal and M is a divisible R/P-module, the
factor module M/K is also a divisible R/P-module. Now by (1) ⇔ (2),
Ann (N) = Ann (M) = P , and N is a divisible R/P-module (since,
M/K ∼= N). Thus, N is a virtually divisible R-module.

(3) ⇒ (1) is evident.

(2) ⇒ (4). Let a ∈ R and aM �= 0. Then a /∈ Ann (M) = P . Since
M is a divisible R/P-module, (a+ P)M = M , i.e., aM = M .

(4) ⇒ (2). Let a, b ∈ R and abM = 0. If bM �= 0, then by our
hypothesis bM = M and so aM = 0. Thus, P = Ann (M) is a prime
ideal. Now let r ∈ R \ P . Then rM = M , and so (r + P)M = M .
Thus, M is a divisible R/P-module.

Next, we determine virtually divisible modules over one-dimensional
domains.

Corollary 3.5. Let R be an integral domain with dim (R) = 1, and
let M be an R-module. Then M is a virtually divisible R-module if and
only if one of the following statements hold.

(1) M is a homogeneous semisimple module.

(2) M is a divisible module.

Proof. (⇒). Let M be a virtually divisible R-module. By Propo-
sition 3.3, P = Ann (M) is a prime ideal and M is a divisible R/P-
module. If P = 0, then M is a divisible R-module but, if P �= 0 then
P is a maximal ideal and so M is a homogeneous semisimple module.

(⇐). This immediately follows from Theorem 3.4.

Remark 3.6. Let R be an integral domain which is not a field.
Then every divisible R-module M has no maximal submodule, for
otherwise if M is a divisible R-module with a maximal submodule
N , then Ann (M/N) = P is a maximal ideal of R. This means that
M = PM ⊆ N , a contradiction. In particular, if R is a one-dimensional
Noetherian integral domain, then an R-module M is divisible if and
only if it has no maximal submodule (see [11, Corollary 3.3]).
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The following proposition shows that, if M is a finitely generated
module, then homogeneous semisimplicity and virtually divisibility of
M coincide.

Proposition 3.7. Let R be a ring, and let M be a finitely gener-
ated R-module. Then M is virtually divisible if and only if M is a
homogeneous semisimple module.

Proof. Let M be a finitely generated virtually divisible R-module.
Then by Proposition 3.3, P = Ann (M) is a prime ideal of R and M is
a divisible R/P-module. If P is not a maximal ideal of R, then R/P
is an integral domain which is not a field. By Remark 3.6, M as an
R/P-module has no maximal submodule; this is a contradiction (since
M is a finitely generated R/P-module). Therefore, P is a maximal
ideal of R, and so M is a homogeneous semisimple module.

Proposition 3.8. Let M be a weakly virtually divisible R-module
which is not cyclic. Then:

(1) Γ∗(RM) is the empty graph and Γ∗(RM) is a complete graph with

vertices M̃ .

(2) If M is faithful, then Γ(RM) is also the empty graph.

(3) If M is not faithful, then Γ(RM) is a complete graph with

vertices M̃ .

Proof. Let M be a weakly virtually divisible module which is not
cyclic. Then Ix = Ann (M), for all x ∈ M . Now by Definition 1.1,
Γ∗(RM) is the empty graph and Γ∗(RM) is a complete graph with

vertices M̃ . If M is faithful, then by Corollary 1.5, Γ∗(RM) = Γ(RM)
and so Γ(RM) is the empty graph. Now let Ann (M) �= 0. Then by
Corollary 1.5, Γ(RM) = Γ∗(RM) and so Γ(RM) is a complete graph

with vertices M̃ .

Let R be a ring which is not a field, and let M be a homogeneous
semisimple R-module. Then Ann (M) is a maximal ideal and so
Ann (M) �= 0. Therefore, M is a non-faithful virtually divisible R-
module and so we have the following corollary.
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Corollary 3.9. Let R be a ring which is not a field. Let M be a
homogeneous semisimple R-module. Then:

(1) if M is a simple module, then Γ∗(RM) = Γ(RM) = Γ∗(RM) = ∅.

(2) If M is not a simple module, then Γ∗(RM) = ∅ and Γ(RM) =

Γ∗(RM) are complete graphs with vertices M̃ .

Next, we shall determine the structure of the all zero divisor graphs
for free modules over an integral domain R.

Proposition 3.10. Let R be an integral domain and M a free R-
module. Then:

(1) M ∼= R if and only if Γ∗(RM), Γ(RM) and Γ∗(RM) are the empty
graph.

(2) M �∼= R if and only if Γ∗(RM) and Γ(RM) are the empty graph

and Γ∗(RM) is a complete graph with vertices M̃ .

Proof. If M and R are isomorphic, it is clear that all the graphs in
question are empty. For the converse, let Γ∗(RM), Γ(RM) and Γ∗(RM)
be the empty graphs. By Theorem 2.6, M is a prime multiplication-like
module. Now by Proposition 2.7, M is an indecomposable module and
so M ∼= R.

To see (2), let M = ⊕λ∈ΛR where Λ is an index set with |Λ| ≥ 2.
Let 0 �= x = (xλ)λ∈Λ ∈ M where xλ ∈ R for each λ ∈ Λ. Thus,
xμ �= 0 for some μ ∈ Λ and also IxM = ⊕λ∈ΛIx ⊆ Rx = R(xλ)λ∈Λ.
If Ix �= 0 and 0 �= a ∈ Ix, then we put yμ = 0 and yλ = a for each
λ �= μ. Then (yλ)λ∈Λ ∈ ⊕λ∈ΛIx, and so there exists a t ∈ R such that
(yλ)λ∈Λ = t(xλ)λ∈Λ. It follows that 0 = yμ = txμ and a = txλ for
each λ �= μ. Since R is a domain and xμ �= 0, t = 0; hence, a = 0, a
contradiction. Thus, Ix = 0 for each 0 �= x ∈ M . This implies that
Γ∗(RM) is a complete graph with vertices M̃ , and since M is a faithful
R-module, by Definition 1.1, Γ∗(RM) = Γ(RM) = ∅. The converse is
clear.

Theorem 3.11. Let M be a prime R-module. Then Γ∗(RM) is a

complete graph with vertices M̃ if and only if M is a non-simple weakly
virtually divisible module.
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Proof. Suppose Γ∗(RM) is a complete graph with vertices M̃ . Then,

for distinct x, y ∈ M̃ , Ix and Iy are two ideals ofR such that IxIyM = 0.
Since Ann (M) is a prime ideal, either IxM = 0 or IyM = 0, i.e., for
each 0 �= x, y ∈ M , either Ix = Ann (M) or Iy = Ann (M). We claim
that Ann (M) = Ix, for each x ∈ M , for otherwise, Ann (M) ⊂ Ix0

for some 0 �= x0 ∈ M . We will show that Rx0 = {0, x0}. Let
rx0 �= x0 where r ∈ R. Since Ix0M ⊆ Rx0 and rIx0M ⊆ Rrx0,
we have rIx0 ⊆ Irx0 = Ann (M). Since Ann (M) is a prime ideal of R
and Ix0 �⊆ Ann(M), rM = 0 and so rx0 = 0. Thus, Rx0 = {0, x0},
and hence Rx0 is a simple submodule of M . Therefore, soc (M) �= 0.
Since M is a prime module, by [11, Corollary 1.9], M is a homogeneous
semisimple module, i.e., Ann (M) is a maximal ideal of R. It follows
that Ix = Ann (M), a contradiction. Therefore, Ann (M) = Ix, for
each x ∈ M i.e., M is a weakly virtually divisible module. Since M
is a prime module, M is a nonzero module and so M̃ �= ∅ and hence
Γ∗(RM) is a non-empty graph. Therefore, M is not a simple module.
The converse is clear.

Theorem 3.12. Let M be a nonzero R-module for which Ann (M) is
a prime ideal and soc (M) = 0. Then Γ∗(RM) is a complete graph with

vertices M̃ if and only if M is a non-simple weakly virtually divisible
module.

Proof. Suppose Γ∗(RM) is a complete graph with vertices M̃ . Then,
for distinct x, y ∈ M \ {0}, Ix and Iy are two ideals of R such that
IxIyM = 0. Since Ann (M) is a prime ideal, either IxM = 0 or
IyM = 0 i.e., for each 0 �= x, y ∈ M , either Ix = Ann (M) or
Iy = Ann (M). Exactly as in the proof of Theorem 3.11, if Ix0 does
not equal Ann (M), we have that Rx0 = {0, x0} which is a simple
submodule of M and so soc (M) �= 0, a contradiction. Therefore,
Ann (M) = Ix, for each x ∈ M , i.e., M is a weakly virtually divisible
module. Since M is nonzero, Γ∗(RM) is a non-empty graph. Therefore,
M is not a simple module. The converse is clear.

Next, we give some properties of the zero-divisor graphs for a certain
class of modules. In fact, the following theoremmore or less summarizes
the overall situation for a module whose annihilator is prime.
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Theorem 3.13. Let M be an R-module for which Ann (M) is a
prime ideal.

(a) If M is multiplication-like, then Γ∗(RM), Γ(RM) and Γ∗(RM)
are the empty graph.

(b) Assume that M is not a multiplication-like module. Then:

(1) if M is a faithful weakly virtually divisible module (i.e., A(M) =

M), then Γ∗(RM) is a complete graph with vertices M̃ . Moreover,
Γ∗(RM) and Γ(RM) are the empty graph.

(2) if M is faithful and it is not a weakly virtually divisible module

(i.e., A(M) �= M̃), then Γ∗(RM) is a connected graph with vertices M̃
such that A(M) \ {0} � A(M) \ {0} � A(M). Moreover, Γ∗(M)
and Γ(RM) are the empty graph.

(3) if M is a non-faithful weakly virtually divisible module (i.e.,
Ann (M) �= 0 and A(M) = M), then Γ(M) = Γ∗(RM) and this graph

is complete with vertices M̃ . Moreover, Γ∗(M) is the empty graph.

(4) If M is not faithful and it is not a weakly virtually divisible module
(i.e., Ann (M) �= 0 and A(M) �= M), then Γ(M) = Γ∗(RM), and this

graph is complete with vertices M̃ such that

A(M) \ {0} � A(M) \ {0} � A(M).

Moreover, Γ∗(M) is the empty graph.

Proof. Part (a) is just Theorem 2.6. Parts (1), (2) and (3) of (b)
follow from Proposition 3.8. For the last implication, assume M is not
faithful and A(M) �= M . By Corollary 1.5, Γ(M) = Γ∗(M). Since M
is not multiplication-like, A(M) �= ∅ and {0} ⊂ A(M) ⊂ M (see the
comments before Theorem 2.4). Let x ∈ A(M) and y ∈ A(M). Then
0 �= Ann (M) = Ix and 0 �= Ann (M) ⊂ Iy . Hence, IxIyM = 0, i.e.,
x and y are adjacent in Γ∗(M). If x1, x2 ∈ A(M), then Ix1Ix2M = 0.

Thus, x1 and x2 are also adjacent in Γ∗(RM)). If z ∈ A(M) ∩ Z̃∗(M),
then IzItM = 0, for some t ∈ A(M). Since Ann (M) is a prime
ideal, so that ItM = 0 (i.e., It = Ann (M)), a contradiction. Thus,

Z̃∗(M) ∩ A(M) = ∅. Hence, Γ(RM) = Γ∗(RM) is a connected graph

with vertices M̃ , in which at least A(M) \ {0} � A(M) \ {0} �
A(M).
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Corollary 3.14. Let M be an R-module for which Ann (M) is
a prime ideal. Then Γ∗(RM) is connected and diamΓ∗(RM) ≤ 2.
Moreover, if M is a finite module with |M | ≥ 4, then Γ∗(RM) contains
a cycle and g(Γ∗(RM)) ≤ 3.

Proof. The proof is immediate from Theorem 3.13.

4. On the zero-divisor graphs of finite modules. Let R be a
ring. For an R-module M we let Γ = Γ∗(RM), Γ(RM) or Γ∗(RM). Of
course, Γ may be infinite (i.e., a module may have an infinite number
of weak zero-divisors, zero-divisors or strong zero-divisors). But Γ is
probably of most interest when it is finite, for then one can draw Γ.
In [6], Anderson and Livingston prove that Γ(R) is finite if and only if
either R is finite or an integral domain. In particular, if 1 ≤ Γ(R) < ∞
then R is finite and not a field. In this section, we give a generalization
of this fact to modules.

Theorem 4.1. Let M be an R-module. Then Γ∗(RM) is finite if
and only if either M is finite or a prime multiplication-like module. In
particular, if 1 ≤ |Γ∗(RM)| < ∞, then M is finite and not a simple
module.

Proof. (⇒). Suppose that Γ∗(RM) is finite. We proceed by cases.

Case 1. A(M) �= {0}. Then there exists a 0 �= x ∈ M such that

Ix = Ann (M). Thus, IxIyM = 0 for all 0 �= y ∈ M , i.e., Z̃∗(M) = M̃
and so M is finite.

Case 2. A(M) = {0}. Then, by the comments before Theorem 2.4,
M is multiplication-like.

Subcase 1. Γ∗(RM) = ∅. Then by Theorem 2.6, M is prime.

Subcase 2. Γ∗(RM) �= ∅ (and finite). If M is finite, there is nothing
to prove.

SupposeM is infinite. SinceM is multiplication-like, for each nonzero
submodule N of M , Ann (M/N) �= 0 (in particular, Ix �= 0 for all

0 �= x ∈ M). Since Γ∗(RM) �= ∅, IxIyM = 0 for some x, y ∈ M̃ . By
Lemma 1.7, for each 0 �= r ∈ R, either ry = 0 or x ry is also a path
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in Γ∗(RM). It follows that Rx ⊆ Z∗(M). Thus, Rx is finite. Since
0 �= IxM ⊆ Rx, IxM is also finite. Let a ∈ Ix such that 0 �= aM . Then
aM is finite, and there exists an ideal J of R such that 0 �= JM ⊆ aM .
If M is not finite, then there is an element m0 ∈ M with T := {m ∈
M | am0 = am} infinite. It follows that N := {m ∈ M | am = 0}
is a nonzero submodule of M and N is infinite. Since M is virtually
multiplication, there is an ideal I of R such that 0 �= IM ⊆ N . Now
let 0 �= jm1 ∈ JM . Then Ijm1M ⊆ Rjm1 ⊆ JM and so, for each
0 �= m ∈ N , ImIjm1M ⊆ ImJM ⊆ ImaM = aImM ⊆ aN = 0.

Therefore, N ⊆ Z∗(M) = Z̃∗(M) ∪ {0}, a contradiction.

(⇐). If M is finite, there is nothing to do, and if M is prime and
multiplication-like, Theorem 3.13 does the job.

We conclude this paper with the following conjecture.

Conjecture 4.2. Let M be an R-module. If Γ∗(RM) is finite and
nonempty, then M is finite.
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