JOURNAL OF COMMUTATIVE ALGEBRA
Volume 4, Number 1, Spring 2012

SEMI-LOCAL FORMAL FIBERS
OF MINIMAL PRIME IDEALS
OF EXCELLENT REDUCED LOCAL RINGS

N. ARNOSTI, R. KARPMAN, C. LEVERSON, J. LEVINSON AND S. LOEPP

ABSTRACT. Let T be a complete local (Noetherian) ring
containing the rationals, and let C be a finite set of incom-
parable non-maximal prime ideals of T' partitioned into m
subsets C1,...,Cm. We find necessary and sufficient condi-
tions for T' to be the completion of an excellent reduced local
ring A with precisely m minimal prime ideals J1,... , J;, such
that, for each 7 = 1,2,... ,m, the maximal elements of the set
{Q € SpecT | Q N A = J;} are precisely the elements of C;.
We also find necessary and sufficient conditions for 7" to be
the completion of such a ring A for the case where A need not
be excellent.

1. Introduction. Much research has been dedicated to elucidating
the relationship between a local ring and its completion. A natural
question is as follows: if T is a complete local ring, does there exist
a local subring A of T', with some desired property, whose completion
is T? In [6], Lech answered this question when the property on A is
that it be a local integral domain. In particular, Lech proved that a
complete local ring T is the completion of a local integral domain if
and only if the following two conditions hold:

(1) the prime subring I of T is an integral domain, and 7" has no
torsion as an I-module;

(2) the maximal ideal of T is either equal to (0), or is not an associated
prime ideal of T'.

In [4], Heitmann proved a similar result for when the property on A
is that it be a unique factorization domain. Specifically, he showed
the remarkable result that a complete local ring 7" is the completion
of a unique factorization domain if and only if T is a field, a discrete
valuation ring, or has depth at least two with no element of its prime
subring a zerodivisor.

The authors thank the National Science Foundation for their support of this

research via grant DMS-0850577.
Received by the editors on March 31, 2010, and in revised form on September 1,

2010.
DOI:10.1216/JCA-2012-4-1-29  Copyright (©2012 Rocky Mountain Mathematics Consortium

29



30 ARNOSTI, KARPMAN, LEVERSON, LEVINSON AND LOEPP

In this paper, we provide results when the property on A is that it
be an excellent reduced ring such that the formal fibers of its minimal
prime ideals are semi-local and can be prescribed. We also consider the
case where A is not required to be excellent. Let A be a local ring with
maximal ideal M and T the M-adic completion of A. If () is a prime
ideal of A, the formal fiber of A at @ is given by Spec (T ®4 k(Q)),
where k(Q) = Ag/QA¢g. It is known that the formal fibers of a ring
encode important information about the relationship between the ring
and its completion. Note that there is a one-to-one correspondence
between the formal fiber of A at @ and the inverse image of ) under
the surjective map SpecT — Spec A, given by P — PN A. We will
therefore (by abuse of notation) also refer to this subset of SpecT as
the formal fiber of A at @. If this set has only finitely many maximal
elements, we say that the formal fiber of A at @ is semi-local.

Past research on semi-local formal fibers has focused on formal fibers
of height-one prime ideals (see, for example, [2, 3]), and of the zero
ideal in the case when A is a domain (see, for example, [1, 8, 9]).
In [1], Charters and Loepp characterized all complete local rings which
are completions of integral domains possessing a semi-local formal fiber
at the prime ideal (0). In particular, for any finite set of incomparable
prime ideals G of a complete local ring T, Charters and Loepp gave
necessary and sufficient conditions for 7" to be the completion of a local
domain A whose formal fiber at (0) is semi-local with maximal ideals
the elements of G. In the same paper, Charters and Loepp examined
the case in which the domain A is excellent, and proved a result when
T has characteristic zero.

In this paper, we generalize Charters’ and Loepp’s result in the
following way. Let 1" be a complete local ring with n > 1 minimal prime
ideals, and let m be a positive integer less than n. We find conditions
guaranteeing that 7" is the completion of an excellent reduced local ring
A with exactly m minimal prime ideals, such that the formal fiber of
each is semi-local with prescribed maximal elements. We also prove
results in the case when the ring A is not required to be excellent. To
clarify what we mean by the maximal elements of the formal fibers of
the minimal prime ideals of A are “prescribed,” suppose the ring A has
m minimal prime ideals Jy,J2,... ,J,. For ¢ = 1,2,... ,m, let C; be
a finite set of prime ideals of T. We want to construct A so that, for
every i = 1,2,... ,m, the formal fiber of J; is semi-local with maximal
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elements the elements of C;. In other words, we want to have complete
control of the formal fibers of the prime ideals Jy, Ja, ... , Jy. It is not
hard to see that there are necessary conditions on the sets C; for such
an A to exist. To specify these conditions, we introduce the following
definition.

Definition 1.1. Let 7" be a complete local ring. Let C =
{P,...,P,} be a finite collection of incomparable non-maximal prime
ideals of T, and let C be partitioned into m > 2 subcollections
Ciy...,Cp. We call P = (C,{C;}™,) a feasible partition on C (or sim-
ply a feasible partition) if, for each @ in AssT, P satisfies the following
conditions:

(1) Q C P, for at least one P; € C;
(2) There exists exactly one ¢ such that whenever Q C P;, P; € Cy.

Hence, the subcollections C; partition not only the elements of the
collection C, but also the associated prime ideals of 7T'. It is easy to
see that the set C = U7",C; must be a finite set of incomparable, non-
maximal prime ideals of T such that the sets C{,Cs,...,C,, form a
feasible partition on C for a reduced ring A to exist such that, for every
t=1,2,...,m, the formal fiber of J; is semilocal with maximal ideals
the elements of C;.

Note that we can find a feasible partition for any complete local ring
T. In particular, we can define a feasible partition simply by letting
C be the maximal elements of Ass (T'), and partitioning C into disjoint
subcollections satisfying the condition that if @Q, P, P’ € Ass(T) with
Q C Pand Q C P/, then P,P’ € C; for some i. Charters and Loepp
studied the case where the elements of C are grouped into a single class.
For most complete local rings, there are many feasible partitions.

As we know that we must have a feasible partition to construct our
reduced local ring A, we now pose the following specific question: let
T be a complete local ring of dimension at least one which contains the
rationals, and let P = (C, {C;}™,) be a feasible partition. Under what
conditions is T' the completion of an excellent reduced local subring A
such that A has exactly m minimal prime ideals {Ji, ..., J,,}, and the
formal fiber of each J; is semi-local with maximal ideals the elements of
C;? We are able to answer this question definitively. In Theorem 4.4, we
prove that such a subring exists if and only if the following conditions
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hold:
(1) T is reduced;

(2) If Q; denotes the intersection of all minimal prime ideals contained
in the elements of C;, then (T/Q;)p is a regular local ring for all
1=1,2,...,m and every P € C;;

(3) If Q; denotes the intersection of all minimal prime ideals contained
in the elements of C;, then T/Q; is equidimensional for every i =
1,2,...,m.

If, moreover, A is not required to be excellent, we show in Theorem 3.12
that no conditions on 7' are needed: such a subring exists for any
feasible partition P = (C, {C;},).

In our construction of A, we not only control the formal fibers of the
minimal prime ideals of A. Indeed, we control the formal fiber of every
prime ideal of A: we ensure that the formal fiber of every minimal
prime ideal is semi-local, and that the formal fiber of any other prime
ideal of A has a single element. This property of A is striking because,
for most local rings, the formal fibers of the prime ideals are complex
and difficult to characterize.

We base our construction on the approach of Loepp in [10] and of
Heitmann in [5]. We begin with Q, which is simply the prime subring
of T localized at (0). We then successively adjoin elements of T' to our
ring, to produce the desired ring A.

Note that, given the finite collection of incomparable non-maximal
prime ideals C of 7" and the feasible partition P = (C,{C;}™,) on C,
we must construct A so that, whenever P € C; and P’ € C;, we have
PNA=PnNnAif and only if i = j. We also make sure to adjoin
elements of T' so that for every prime ideal P of T such that P ¢ P’ for
all P’ € C, PN A contains a non-zerodivisor. This will guarantee that
no prime ideals of T" outside our feasible partition are in the formal fiber
of a minimal prime ideal in A. Furthermore, we will adjoin elements of
T so that our ring contains a nonzero element of every coset in T'/.J,
where J is an ideal of T such that J ¢ P for all P € C. Thus, the
map A — T/J is onto for all ideals J of T such that J ¢ P for all
P € C. In particular, this implies that the map A — T/M? is onto.
In Lemma 3.8 we adjoin elements of 1" to make IT'N A = I for every
finitely generated ideal I of A. This, along with the condition that the
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map A — T/M? is onto, establishes that A is Noetherian and that the
completion of A is T'.

Throughout this paper, all rings are commutative with unity. Local
rings are always Noetherian, whereas quasi-local rings may be non-
Noetherian. We write (R, M) is a quasi-local ring if R is quasi-local
with maximal ideal M. We then denote the M-adic completion of R
by R.

2. Preliminaries and definitions. The following result, which
is Proposition 1 from [5], gives conditions which imply that a quasi-
local subring R of a complete local ring 7" is Noetherian, and that the
completion of R is T'. This proposition will play a crucial role in our
construction.

Proposition 2.1. If (R, MNR) is a quasi-local subring of a complete
local ring (T', M), the map R — T'/M? is onto, and ITNR = I for every
finitely generated ideal I of R, then R is Noetherian and the natural
homomorphism R — T is an isomorphism.

We recall the definition of a feasible partition.

Definition 2.2. Let (7, M) be a complete local ring. Let C =
{P1,...,P,} be a finite collection of incomparable non-maximal prime
ideals of T, and let C be partitioned into m > 2 subcollections
Ciy... ,Cm. We call P = (C,{C;}7~,) a feasible partition on C (or
simply a feasible partition) if, for each @ in Ass(T'), P satisfies the
following conditions:

(1) Q C P, for at least one P; € C;

(2) There exists exactly one ¢ such that whenever Q C P;, P; € C,.

The relationship between the subcollection C; and the minimal prime
ideals of T" provides the motivation for the following definition.

Definition 2.3. Let (7', M) be a complete local ring of dimension at
least one, and let P = (C,{C;}",) be a feasible partition. We define
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the sets &; by

E={Q eMinT | Q C P for some P € C;}.

Note that feasible partitions on T are easy to construct. It suffices
to ensure that, whenever two prime ideals P, P’ of C each contain a
minimal prime ideal @, they are placed in the same C;. The following
examples help to clarify the concept of a feasible partition.

Example 2.4. Let
Rz, y, ]

(zyz)
Suppose P = (C,{C;}2_,) is defined by C1 = {(z,y + 2),{y,x)},
C> = {(2)}. Then P = (C,{Ci}?,) is a feasible partition, with
& ={(z),(y)} and & = {(2)}.

T =

Example 2.5. Let

Riz,y, 2, w]]

T =
(zoyPzrw?)

)

with o, 3,7,6 € N. Let P = (C,{C;}?_;) be defined by C; =
{{z,y), (x,2)} and C2 = {(z,w)}. Then P = (C,{C;}2,) is not a
feasible partition, because the prime ideal (z) € Min (7T') is contained
in both & = {(x), (v), (2)} and & = {(z), (w)}.

We will use feasible partitions to guide the construction of our subring
A. In particular, we will ensure that, for a given 4, the intersection of
A with any P € C; or @ € &; is the same minimal prime ideal of A,
and that this ideal is distinct for each 7. We use a slightly stronger
condition during our construction, as given in the following definition.

Definition 2.6. Let T be a complete local ring, C a finite set of
incomparable non-maximal prime ideals of 7" and P = (C,{C;},)
a feasible partition on C. A quasi-local subring (R,R N M) of T is
called an intersection preserving subring (abbreviated IP-subring) if
the following conditions hold:
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(1) R is infinite;

(2) For any P € C, RNP = RNQ for any @ € Min (T') satisfying
QC P;

(3) For P,P' €C, P,P' €C; if and only if RN P = RN P';
(4) For each P € C, r € PN R implies Anny(r) € P.

The ring R is called small intersection preserving (abbreviated SIP-
subring) if, additionally, |R| < |T.

Remark 2.7. In what follows, let (T, M) be a complete local ring of
dimension at least one which contains the rationals. Let C be a finite
set of incomparable non-maximal ideals of T. Let P = (C,{C;}™,) be
a feasible partition, and let R be an IP-subring of T. Let P € C; then
PN R is a prime ideal of R, and P € C; for some i. Abusing notation,
we denote PN R by C;N R. This abuse of notation makes sense because,
if P,P'€C;,then PNR=P NR.

In our construction, we create an IP-subring A whose completion
is T'; furthermore, each of the prime ideals C; N A of A is, in fact,
minimal. Note that, if 7' contains the rationals, then the prime subring
localized at (0) is Q, which trivially satisfies conditions (1), (2) and
(4) of Definition 2.6, and one direction of condition (3): that is, for
any P,P' € C, if P,P' € C;, then QNP = QN P. We use this
fact to construct an SIP-subring R of 7. We then successively adjoin
elements to R, creating an IP-subring at each step, until the conditions
of Proposition 2.1 are satisfied.

Note that any subring of T satisfying condition (4) is reduced, as the
following lemma (modified from Lemma 5 of [7]) establishes.

Lemma 2.8. Let T and P = (C,{C;}™,) be as in Remark 2.7. Let
R be a subring of T' such that, for each P € C, if r € PN R, then
Anny(r) € P. Then R is reduced.

Proof. First note that, for any nonzero ¢t € T, Ann (t) C @ for some
Q € Ass (T). Then, since @ C P for some P € C, Ann (t) C P.

Now, suppose that r € R is nilpotent and nonzero. Let { € N
be the smallest positive integer such that r¢ = 0. By the above,
Anng(rf~1) C P for some P € C.
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In particular, r € P since 7 € Anngy(r*~!). By hypothesis there

exists an s ¢ P such that sr = 0. But then s € Annp(r®~!) C P, a
contradiction. o

Hence, in particular, an IP-subring is reduced.

3. The construction. We begin the construction with a few
technical lemmata. First, we prove that the properties of SIP-subrings
are preserved under unions of nested subrings, and under localization.

Lemma 3.1 (Unioning lemma). Let (T, M) and P = (C,{C;}™,) be
as in Remark 2.7. Let B be a well-ordered index set, and let Rg, 5 € B,
be a family of SIP-subrings such that if 5,7 € B such that 8 < 7y, then
Rg C R,. Then R = UgecpRp is an IP-subring. Moreover, if there
exists some X\ < |T| such that |[Rg| < A for all B, and |B| < |T|, then
|R| < max{\,|B|}, and R is an SIP-subring of T

Proof. Since each Rg is quasi-local with maximal ideal M N Rg, we
have that R is quasi-local with maximal ideal R N M. Since Rg is
infinite, R is an infinite subring of T'.

Let I, J be ideals of 1" such that /N Rg = JN Rg for each 8 € B. Let
a € RNI. Then a € RgNI for some 3 € B. Hence, a € RgN J and
a€ RNJ. Thus, IN R C JN R. By a similar argument, the reverse
containment holds, and TN R =JNR.

Let P,P" € C; for some C; C C. Then PN Rg = P’ N Ry for all
B € B, because the Rg are IP-subrings. By the above argument,
PNR =P NR. Similarly, PN R = Q N R for every Q € Min (T)
such that Q C P.

Next, let P € C;, and P’ € C;, where ¢ # j. Let 8 € B. Then Rg
is an IP-subring, so P N Rg # P’ N Rg. Without loss of generality,
PN Rg ¢ P'N Rg. Hence, there exists some b € PN Rg such that
b ¢ P'. Therefore,be RNP but b ¢ P’'. Thus, PNR# P NR.

Now let P € C, and let » € PN R. Then r € PN Ry for some
B € B. Since Rg is an IP-subring, Anny(r) ¢ P. Hence, condition (4)
of Definition 2.6 is maintained.

Finally, suppose there exists some A < |T'| such that |[Rg| < X for all
B, and |B| < |T|. Then |R| < A|B| = max{\, |B|}. Since A, |B| < [T},
we have |R| < |T| and so R is an SIP-subring of T o
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Lemma 3.2 (Localization lemma). Let (T, M) and P = (C,{C;}™,)
be as in Remark 2.7. Let R be a subring of T satisfying all conditions
for an IP-subring except that it need not be quasi-local. Then R(rnnr)
is an IP-subring of T with |R(raar)| = |R|. Additionally, if |R| < |T},
then R(ranry 18 an SIP-subring of T'.

Proof. Since M is the maximal ideal of 7', and M is a prime ideal,
RN M is a prime ideal of R, and each element of R — (M N R) is a unit
in T. Thus, R(ynpg) is well-defined, and we can embed R(y/nr) as a
subring of T'. Since R is infinite, R(yng) is infinite as well.

Let P € C be given. Then, for any Q € Min (7)) such that Q C P,
(PNR)R(mnr) = (RNR)R(rnRy- Similarly, for any P, P’ € C, PNR =
P'NRif and only if (PNR)R(ynr) = (P'NR)R(pnr)- Since R satisfies
condition (3) for an IP-subring, (P N R)Rynr)y = (P' N R)R(ynr) if
and only if P, P’ € C; for some subcollection of prime ideals C;.

Now, let r € (PN R)R(pngr). Then r = p/s, for some p € PN R, and
some s € R—(MNR). Since R satisfies condition (4) for an IP-subring,
Anny(p) € P, and there exists ¢ ¢ P such that gp = 0. Hence, gr = 0,
and Annp(r) € P. It follows that R(gnps) is an IP-subring of 7.

Since R is infinite, |R(gnan| = |R|. If |[R| < [T, it follows that
R(rnny is an SIP-subring of T'. n]

The next several lemmata will allow us to find and adjoin elements
to create a nested chain of SIP-subrings whose union satisfies the
conditions of Proposition 2.1. Note that if R is an SIP-subring and
u € T, then R[u]yngp)) automatically satisfies condition (1) of
Definition 2.6, and the backwards direction of condition (3). In order
to show that R[u|(anr[w) is an SIP-subring of T, we must maintain
condition (2), (4), and the forward direction of (3).

We first show that, given a subring R, adjoining elements that are
transcendental over R/(P N R) for prime ideals P maintains various
properties of IP-subrings. Most notably, Lemma 3.3 implies that, if R
is an SIP-subring and u + P € T/P is transcendental over R/(P N R)
for all P € C UMin (T), then R[u]rnR[u)) is also an SIP-subring.

Lemma 3.3 (Adjoining lemma). Let R be a subring of a complete
local ring T. Let Py, Py be prime ideals of T such that PLNR = P,NR.
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Suppose that, for i = 1,2, w+ P, € T/P; is transcendental over
R/(P;NR). Then PiNR[u] = P.NR[u]. Furthermore, if Anng(p) € Py
for allp € RN Py, then Annr(p) € Py for all p € Rlu] N P;.

Proof. Let f € R[u]N Py. Then, for 0 < ¢ < n, there exists an r; € R
such that
f=ru" 4+ +ru+ry € P

Consider the coset f + Py in T/P;. Then

f+Pr=(rn+P)(u+P)" + (rae1 + Pr)(u+ P 4o
+ (ro + P1)

Since u + P is transcendental over R/(P; N R), we know that r; € P;
for each i. Since PN R = P,NR, r; € P, for all 4, and so f € Ps.
Hence, Py N R[u] C P> N R[u]. Reverse inclusion follows by a similar
argument, so P; N R[u] = P, N R[u].

Again, let f € R[u] N P;. Then, as shown above, f = r,u™ + -+ +

riu + ro € Py, for some r; € Py N R. Hence, there exist s1,...,8, € T
such that, for each i =1,... ,n, s;7; =0 and s; ¢ P;. Let

n
s = H Sk-
i=1

Then s ¢ Py, and sr; = 0 for i = 1,... ,n. Therefore, sf = 0, and so
Anny(f) € Pr. O

The following is Lemma 2.4 from [1]. Together with the succeeding
lemma, Lemma 3.4 will allow us to find transcendental elements.

Lemma 3.4. Let (T, M) be a complete local ring of dimension at least
one, let C' be a finite set of incomparable non-mazximal prime ideals of
T, and D a subset of T such that |D| < |T|. Let I be an ideal of T
such that I ¢ P for all P € C. Then I £ U{r+ P | P € C,r € D}.

Lemma 3.5. Let (T, M) and P = (C,{C;}™,) be as in Remark 2.7.
Let R be a subring of T such that |R| < |T|. Let J be an ideal of T
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such that J € P for every P € C. Let t,q € T. Then there exists an
element t' € J such that, for every P € C withq ¢ P,t+qt'+P € T/P
is transcendental over R/(P N R). If, in addition, @ € Min (T), P € C
with @ C P, q¢ P,and RONP =RNQ, thent+qt' + Q € T/Q 1is
transcendental over R/(Q N R).

Proof. Let G = {P € C | ¢ ¢ P}. Then G is a finite set of
incomparable non-maximal prime ideals of T'. Suppose that t+qt'+P =
t+qs'+ P for some P € G. Then (t+qt') — (t+¢s') =q(t' — ') € P.
But g ¢ P, so (¢’ —s') € P. These steps are reversible, so t +gt' + P =
t+qgs'+ Pifand only if ' + P = s’ + P.

For each P € G, let D(p) be a full set of coset representatives of the
cosets t' 4+ P that make ¢ + qt' + P € T/P algebraic over R/(P N R).
Let D = UpegD(P)- Then |D| = |D(P)‘ = |R/(POR)‘ < |R| < |T|
for every P € G. Now use Lemma 3.4 with I = J and C = G to show
that there exists an element ¢ € J such that ¢t + gt' + P € T/P is
transcendental over R/(P N R) for every P € G. Then we have that
for every P € C with ¢ ¢ P, t + qt' + P € T/P is transcendental over
R/(PNR). Now suppose Q € Min (T), P € C with @ C P, q ¢ P,
and RNP = RNQ. Then, ¢t + gt' + P € T/P is transcendental over
R/(PNR). Since PNR = QN R we have t + ¢qt' + Q € T/Q is
transcendental over R/(Q N R) as well. o

Corollary 3.6. Let (T,M) and P = (C,{C;}™;) be as in Re-
mark 2.7, and let J be an ideal of T such that J € P for every P € C.
Let R be an SIP-subring of T and t + J € T/J. Then there exists an
SIP-subring S of T such that RC S C T, t + J is in the image of the
map S — T/J, and |S| = |R|. Moreover, if t € J, then SN J contains
a non-zerodivisor of T'.

Proof. Apply Lemma 3.5 with ¢ = 1. Then q ¢ P for every
P € SpecT, so it is possible to choose t’ € J such that t+t'+P € T'/P is
transcendental over R/(P N R) for every P € CUMin (T'). Consider the
ring S = R[t+t'| mng[t4+])- By Lemma 3.3, R[t+1'] satisfies conditions
(2), (3) and (4) of being an IP-subring. Further, |R[t + ¢']| = |R|. By
Lemma 3.2, S is an SIP-subring of T', and |S| = |R|. Further, (t+t') € S
and (¢+¢')+J =t+J, sot+ J is in the image of the map S — T'/J.
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Suppose t € J and t + ¢’ is a zerodivisor. Then t + ¢ € @ for
some @ € Ass(7T). However, @ C P for some P € C, and so
(t+t)+P =0+ P. Hence, t +¢ + P € T/P is algebraic over
R/(P N R), a contradiction. Thus, ¢+t is a non-zerodivisor contained
inSnNdJ. O

The following lemma is the heart of our construction. Given an SIP-
subring R of T, repeated application of Lemma 3.7 will enable us to
construct an SIP-subring S O R of T which satisfies IT NS = I for all
finitely generated ideals I of S. This condition is necessary to satisfy
the hypotheses of Proposition 2.1.

Lemma 3.7. Let (T, M) and P = (C,{C;}™,) be as in Remark 2.7.
Let R be an SIP-subring of T. Then, for any finitely-generated ideal
I of R and any ¢ € IT N R, there exists a subring S of T with the
following properties:

(1) RCS;

(2) S is an SIP-subring of T;
(3) S| = |R];
(4) ce IS.

Proof. We shall proceed inductively on the number of generators of
1. First suppose I = aR. If a = 0, then S = R is the desired subring.
Assume a # 0, and let ¢ = at for some ¢ € T. Note that, because
a € R, a is in some P € C; if and only if a is in every P € C;. If this is
the case, then, abusing notation, we shall refer to a as being contained
in Ci-

By condition (4) of the definition of IP-subrings, Anny(a) € P for all
P € C such that a € P. By the Prime Avoidance theorem, this means
that Annyp(a) € Ugep,pecP. Thus, we can choose some ¢ € Annyp(a)
such that ¢ ¢ P for all P € C such that a € P. Ifa ¢ P for every P € C,
we let ¢ = 0. By Lemma 3.5, there exists some t' € T such that, for
each P € C with a € P, the coset t + qt' + P € T/P is transcendental
over R/(P N R). Let u = t+qt'. We claim that S = R[u](g[ujnm) is the
desired subring. By Lemma 3.2 (the Localization lemma), it suffices
to show that R[u] satisfies conditions (1), (2), (3) and (4) of being an
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SIP-subring, and that |R[u]| = |R|. Condition (1) of Definition 2.6
follows immediately. We now show that condition (3) holds for R[u].

For any C; containing a, if P,P’ € C;, then R[u] N P = Rlu]N P’
by Lemma 3.3 (the Adjoining lemma). Next, consider any C; not
containing a. Let P, P’ € C;, and f € R[u] N P. Then

f=ru"+---+rmu+ry
for some 7; € R. Multiplying both sides by a™, we get
af = rac” 4+ +a* ric+a*ro € RN P

since au = at = ¢ € R. Because R is an SIP-subring, a"f € RN P
implies a™ f € P’. However, by hypothesis a ¢ P’ and so f must be in
P’. Consequently f € R[u] N P’. Reverse inclusion follows by a similar
argument, and so R[u]| NP = R[u]N P’. Condition (2) of Definition 2.6
follows for R[u] by a similar argument.

We will now show that condition (4) holds for R[u]. For each P € C,
consider f € R[u] N P, so that f = r,u™ +---+ru+ry. Ifa € P,
u+ P € T/P is transcendental over R/(P N R), so each ; € PNR. By
assumption, for each r; there exists a ¢; ¢ P such that r;q; = 0. Let
g =][¢ ¢ P, and note that f¢g = 0. Thus, Annr(f) € P. If a ¢ P,
recall that a™f € RN P. By assumption, there exists a ¢ ¢ P such
that ga™f = 0. Note that ga™ ¢ P, so Anny(f) € P, and condition (4)
holds. Hence, R[u](gr[ujnnm) is an SIP-subring. Finally, observe that
|R[u](rlujnny| = |R| and ¢ € aR[u](grju)nn), as desired. So the lemma
holds if I is generated by a single element.

Continuing inductively, suppose that the lemma holds when I is
generated by k — 1 elements where £ > 2. Let I = (a1,...,ar)R
and ¢ = a1t +asta +---+aity € R for some t; € T. We will first show
that the lemma follows in the case where

(%) {Cila1€Ci} ={Cj|az €Cj}

We will then prove that it is always possible to define a generating set
for I such that (*) holds, completing the proof.

Assume that (%) holds. Taking a = aj, define ¢ as in the principal
case, and note that a;g = 0. Thus, ¢ can be rewritten as

c=ay(t1 + qt' + agt”) + az(tz — art”) + asts + - - - + apty



42 ARNOSTI, KARPMAN, LEVERSON, LEVINSON AND LOEPP

for any t',¢" € T. Let u = t1 +qt’' +ast”. We will choose t',t" such that
u+ P € T/P is transcendental over R/(P N R) for all P € C, allowing
us to create an SIP-subring R[u](gjujnm)-

Use Lemma 3.5 to find ¢’ such that, for each P € C with ¢ ¢ P,
t1 +gqt' + P € T/P is transcendental over R/(RN P). If ¢ € P for all
P € C,let t' = 0. By our choice of g and the assumption that (*) holds,
each P in C contains precisely one of ¢ and as. Thus, if P € C is such
that ¢ ¢ P, then u+ P =t; +qt' + ast" + P=1t,+q' + P T/P is
transcendental over R/(P N R) regardless of the choice of t”". Now, if
P € C is such that ¢ € P, then ay ¢ P, and so we can use Lemma 3.5
to find ¢ € T such that t; + aot” + P is transcendental over R/(P N R)
for all P € C satisfying az ¢ P. If ap € P for all P € C, then let
t” = 0. By our choice of ¢ and ", u + P is transcendental over
R/(PNR) for all P € C. By Lemma 3.3, R[u] satisfies condition (3) of
Definition 2.6. Using an identical argument to the principal case, R[u]
satisfies condition (4). It clearly satisfies conditions (1) and (2), and
|R[u]| = |R|. By Lemma 3.2, R = R[u](g[unn) is an SIP-subring of T’
with |R'| = |R).

Now let J = (ag,as,...,a;)R’ and
" =c—aju=ax(ty — art”) + azts + - - + axty.

We have c € R C R’ and aju € R’, so ¢* € JT N R'. By our inductive
hypothesis, there exists an SIP-subring S of T' containing R’ such that
c* € JS, so ¢ = agss + -+ + agsy for some s; € S. It follows that
c=aju+assy+ -+ agsk € IS, so S is the desired SIP-subring.

We will now show that, given a set of generators (aj,asz,... ,ax)
for I, it is always possible to create a new set of generators for [
that satisfy (x). Our set of generators will be of the form (a; +
las,ay — las,as, ... ,a;) where £ € N\{0}. Because T contains Q,
these elements generate I. We will choose £ such that (x) holds.

First note that £ is a unit, so fay € P; if and only if as € P; for any
prime ideal P; in T. It follows that fas € C; if and only if as € C;.
Next, note that, for each C;, C; N R is an ideal of R. It follows that if
ai,as € C;NR, then ay fas € C;NR. On the other hand, if a; € C;NR
but as ¢ C; N R, then a; + fas ¢ C; N R. The same holds if a; ¢ C; N R
but as € C; N R.
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Finally, consider the case where a1, as ¢ C;. Only in this case does the
choice of ¢ determine whether a; +fas € C;. Suppose that ¢, ¢ € N\ {0}
such that a; + las,a; + £'az € C;. Then (a; + las) — (a1 + laz) =
as(f — ') € C;. Because az ¢ C;, it must be that £ — ¢ € C;, so
¢ — ¢ = 0. This indicates that for each C; that contains neither a; nor
az, there is at most one value of ¢ such that a; + fas € C;. Similarly,
there is at most one value of ¢ such that a; — fas € C;.

Choose ¢ such that a;+£as ¢ C; for all C; that contain neither of ay, as.
From the above observations, this choice ensures that a; + fas € C; if
and only if both a1,a2 € C;. Hence, {C; | a1 + laz € C;} = {C; |
a1 —laz € C;}, so we have (x), and the previous argument applies. O

Lemma 3.8. Let (T, M) and P = (C,{C;}™,) be as in Remark 2.7.
Let J be an ideal of T such that J € P for all P € C, and let
u+J € T/J. Suppose R is an SIP-subring. Then there exists an
SIP-subring S of T such that

() RCSCT;

(2) ifu € J, then SN J contains a non-zerodiwisor of T’

(3) u+ J is in the image of the map S — T/ J;

(4) for every finitely generated ideal I of S, we have IT NS = I;

(5) |R| = |S].

Proof. First, we use Corollary 3.6 to find an SIP-subring R’ such
that R C R', u+ J is in the image of R" — T'/J, if u € J, then JN R’
contains a non-zerodivisor, and |R'| = |R|. We will construct an S such
that R' C .S C T and so conditions (1)—(3) of the lemma hold for S.

Let Q@ = {(I,c) | I finitely generated, ¢ € IT N R'}. The cardinality
of the set of finitely generated ideals of R’ is less than or equal to
|R'|. Hence, |Q| = |R'| < |T"|. Well-order  so that it has no maximal
element, and let 0 denote the minimal element of 2. For each a € (,
we define y(a) = sup{8 € Q| 8 < a}. Let Ry = R'.

Let A € 2. Assume that Rg has been defined for all 5 < A, such
that Rg is an SIP-subring, and |Rg| = |R’'|. Suppose y(A) < A, and
let (I,c¢) = v(\). Then, using Lemma 3.7, we construct Ry such that
R’Y()\) C Ry and c € IR). Note that ‘RA‘ = |R7()\)| = |R/|.
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Next, suppose y(A) = A. In this case, we define Ry = Ug<xRg. Since
|Rg| = |R'| for all 3 < A, and |Q2] = |R'|, Lemma 3.1 implies that R, is
an SIP-subring, and |R,| = |R/|.

Define
Ry = |J Ra.
ac

Then |R;| = |R'|, and Ry is an SIP-subring of 7. If I is a finitely
generated ideal of Ry, and ¢ € IT N Ry, then (I,¢) = v(a) for some
a such that y(a) < a. It follows that ¢ € IR, C IR;. Hence,
IT N Ry C IR, for every finitely generated ideal I of Ry.

We repeat this process for R;, and obtain an SIP-subring R, contain-
ing R; such that IT N Ry C IR, for each finitely generated ideal I of
Ry, and |Rp| = |R’'|. Continuing in this fashion, we construct a chain
of SIP-subrings Ry C Ry C Ry C --- such that ITNR,, C IR, 4, for
every finitely generated ideal I of R, and |R,| = |R'| for all n € N.

Let

Then, |S| = |R'| = |R|, and S is an SIP-subring of 7. Let I =
(s1,...,8,) be an ideal of S, and let ¢ € IT NS. Then ¢ =
sit1 + --- + sptn, where t; € T, and where each s; € R,,, for some
my € N. Now, there exists an my € N such that ¢ € R,,,. Let
N = max{m; | 0 < k < n}. Then ¢ € (s1,...,5,)T N Ry C
(s1,...8n)RNs1 C IS. Therefore IT NS = I. It follows that S is
our desired SIP-subring of 7. O

Until this point, all of our lemmata have established ways of modi-
fying IP-subrings and SIP-subrings. Now, we must show that an SIP-
subring of T exists.

To construct an SIP-subring, we will use the concept of a semi-SIP-
subring, which satisfies a weaker version of the SIP conditions: the
ideals C; N R are not required to be distinct from each other. We will
begin with a semi-SIP-subring R, and then adjoin elements of T' to
make the ideals C; N R distinct.

Definition 3.9. Let (T, M) and P = (C,{C;}!™,) be as in Re-
mark 2.7. We say that a quasi-local subring (R,RN M) of T is a
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semi-SIP subring of T if the following conditions hold.
(1) R is infinite.
(2) Foreach PeC,PNR=QNR for Q € Ass(T) with Q C P.
(3) For each subcollection C;, if P, P’ € C;, then PN R =P' NR.
(4) For each P € C and r € PN R, Annr(r) € P.
(5) |R| < |T|.

Lemma 3.10. Let (T, M) and P = (C,{C;}™,) be as in Remark 2.7,
and fix C;. Let R be a semi-SIP-subring of T', and let p; € T be given
such that p; € Q for every Q € &;, but p; ¢ P for any P € C;, where
j # 1. Suppose further that Annr(p;) € P for any P € C;. Then there
exists a unit u in T such that R[up;](rup,)nm) s a semi-SIP-subring
of T.

Proof. Define S = R[p;], and note that |S| = |R| < |T|. Apply
Lemma 3.5 witht = 0,¢ = 1 and J = M to find an element t' € M such
that, for each P € C, t' + P € T/P is transcendental over S/(P N S).
Let u = t' + 1. Note that u is a unit, since T is local, and that
u+ P € T/P is transcendental over S/(P N S), because 1 € S.

Define p = up;. Then p € Q for every Q € &;, but p ¢ P for any
P € Cj, where j # i. We claim that R[p](g[yn) is a semi-SIP-subring.
Let f € R[p]. Then we can write f in the form f = r,p"+---+rip+ro
for some r; € R. To see that conditions (2) and (3) of Definition 3.9
hold for P € C;, suppose f € P for some P € C;. Given any Q € &;,
we will show that f € Q. Note that p € Q C P, so f € P implies
ro € PNR = QNR. Hence, ry € @Q,and so f = r,p"+---+rip+ro € Q.
Thus, P N R[p] = P' N R[p] = Q N R]p| for every P, P’ € C; and every
Qecé.

Next we show that, if f € R[p] N P for some P € C;, then Anny(f) €
P. By hypothesis, there exists some v ¢ P such that vp = 0. Since R
is a semi-SIP-subring, there exists a w ¢ P such that wrg = 0. Then
vw ¢ P, and (wv)f = 0. Hence, Annr(f) Z P.

Now we show that p+ P € T'/P is transcendental over R/(R N P) for
every P € Cj, where j # i. By Lemma 3.3, this implies conditions (2),
(3) and (4) of Definition 3.9 hold for R[p]. Let f € R[p] N P for some
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P €C;, where j # i. Then

f=rap"+--+rp+ro
=ra(piw)” + -+ r1(piv) + 1o
= (rapi’)u" + -+ + (r1pi)u + ro.

Hence, we can express f as an element of S[u] N P. Since u + P €
T/P is transcendental over S/(S N P), this implies that ryp¥ € P,
and thus r, € P for all kK = 1,...,n. We have shown that, if
f=mrp*+---+mp+ry € P, then r, € P for k = 1,... ,n.
Hence, p + P € T/P is transcendental over R/(RN P). It follows
that R[p|(ripjnm) = R[upi|(R[up:jnar) is a semi-SIP-subring of T O

Lemma 3.11. Let (T, M) and P = (C,{C;}™,) be as in Remark 2.7.
Then there exists an SIP-subring of T'.

Proof. Let Ry be the prime subring of T localized at (0). Then, since
T contains the rationals, Ry = Q C T. Now, PN Ry = (0) for any
PeC,and QN Ry = (0) for any Q € Ass (T'). The other conditions of
Definition 3.9 follow trivially, so Ry is a semi-SIP-subring.

Consider the m subcollections Cy, ... ,C,,. Using a process described
below, we successively adjoin m elements pq,... ,p, to Ry, such that
p; € P if and only if P € C;, and such that the resulting ring S remains
a semi-SIP-subring. Consequently, if P € C;, and P’ € C; where i # j,
then the construction ensures that P N S contains some element p;
which is not contained in P’, so that PN S # P’ N S. Thus, S will be
an SIP-subring of T

Let R be a semi-SIP-subring of 7. Let Min (') = {Q1,... ,Qx}. For
each Q;, use the Prime Avoidance theorem to find ¢; € @Q; —U{P € C |
Q; Z P}. Let

q= H 4q;-
i=1

Then ¢ is nilpotent, so let ¢ be the smallest positive integer such that
¢* = 0. We note that, while each of the ¢; is non-zero, ¢ itself may be
zero. In this case, £ = 1, and the argument still follows.

Fix C, € C. We will construct a semi-SIP-subring R’ containing R
and such that Cx N R’ # C; N R’ for all j # k. Consider those minimal
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prime ideals contained in &,. We define

=[] & andsi= [] o

Qi€E Qi &k

Note that py - s, = [[[-;¢f = ([[[-,; %) = ¢ = 0, and thus
Anng(pp) € P for each P € Cr. By Lemma 3.10, there exists a
unit ¢ € T such that R' = R[trpr](r[t.pi]nm) 18 @ semi-SIP-subring.
Note that, for each j # k, pr ¢ C;. Thus, Cx N R[txpr](Ritrpenm) 7
Cj N Rltkpr](Rritppr)nna)-

We now repeat this process for each C;. Our resulting subring S will
be a semi-SIP-subring and will, for each C;, contain an element p; that
is not in C; for all j # ¢. Hence S is an SIP-subring of T'. i

The following theorem characterizes the completions of reduced rings
whose minimal prime ideals have semi-local formal fibers. We start
with the initial subring of T" constructed in Lemma 3.11 and construct
a local IP-subring A of T satisfying the conditions of Proposition 2.1.

Theorem 3.12. Let (T, M) be a complete local ring of dimension
at least one, containing the rationals, and let P = (C,{C;},) be a
feasible partition. Then T is the completion of a reduced local subring
A such that Min A = {C; N A,...,C,, N A} and the formal fiber of
C; N A is semi-local with mazimal ideals precisely the elements of C;.
Furthermore, if J is an ideal of T' such that J € P for every P € C,
then the natural map A — T'/J is onto.

Proof. Let Q ={u+J |ueT,J ¢ P for all P € C} equipped with
a well-ordering <, such that every element has strictly fewer than |Q]
predecessors. Note that

{J | J is an ideal of T with J ¢ P for every P € C}| < |T.

For each a € Q, we let |a| = |{8 € Q| B8 < a}|, by abuse of notation.
Let 0 denote the first element of 2, and let Ry be the SIP-subring
of T constructed in Lemma 3.11. For each A € Q after the first, we
define Ry recursively as follows: assume Rg is defined for all 8 < A
such that Rg is an SIP-subring, and |Rg| < |8||Ry| for all 8 < a. As
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before, let v(A\) = uw + J denote the least upper bound of the set of
predecessors of A. If y(A) < A, we use Lemma 3.8 with R = R\ to
find an SIP-subring R, such that
(1) Ry € Ry C T;
(2) 1f u € J, then J N Ry contains a non-zerodivisor;
(3) the coset y(A\) = u+J is in the image of the map Ry — T'/J; and
(4) for all finitely-generated ideals I of Ry, ITN Ry = I.
In this case,
[Bal = [Ry)]
< YV Ro|
< [M[Rol-

On the other hand, if v(X) = A, we let
Ry = J Rs.

Then, |A| < || = |T, and |Rx| < |\||Ro|. By Lemma 3.1, R, is an
SIP-subring of T'.

Let
A= | Ra.
a€
Then (A, AN M) is an IP-subring of 7T'.

Note that M? ¢ P for every P € C so, by our construction, the map
A — T/M? is onto. Next, let I = (ay, ... ,a,)A be a finitely-generated
ideal of A and ¢ € ITN A. Then, for some § € Q, {c,a1,...,a,} C Rs.
In particular, this yields ¢ € IRs C I. Hence ITNA = I for all finitely-
generated ideals I of A. Since (A, AN M) is a quasi-local subring of T,
Proposition 2.1 implies that A is Noetherian and A=T.

Now, since T is faithfully flat over A, the ideals C;N A are the minimal
prime ideals of A, so that Min (A) has m elements. By our construction,
the formal fiber of C; N A is semi-local with maximal ideals precisely
the elements of C;. Furthermore, the natural map A — T'/J is onto for
any ideal J such that J € P for all P € C. o

It is interesting to note that, for the ring A in Theorem 3.12, we
know not only the formal fibers of the minimal prime ideals, but also
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the formal fibers of all other prime ideals of A. To see this, suppose
p € Spec (A) with htp > 0. Then pT" € P for every P € C. It follows
by our construction that A — T'/pT is onto. Since pT'N A = p, we have
A/p = T/pT. Tt follows that the only element in the formal fiber of p
is pT'.

4. Excellent reduced rings. We now examine the conditions
under which A from Theorem 3.12 can be made excellent. Let (T, M)
and P = (C,{C;}™,) be as in Remark 2.7. Our goal in this section
is to find necessary and sufficient conditions on 7' to ensure that it is
the completion of an excellent reduced local subring A such that A has
exactly m minimal prime ideals {Ji,...,J,}, and the formal fiber of
each J; is semi-local with maximal ideals the elements of C;. Recall that
a local ring is excellent if it is both a G-ring and universally catenary.

Definition 4.1. Let (T,M) and P = (C,{C;}™,) be as in Re-
mark 2.7. Suppose (4, AN M) is a reduced local (Noetherian) subring
of T such that

(1) A=T;
(2) Min(A) = {C: N A,...,C, N A}, and, for i = 1,2,... ,m, the

formal fiber of C; N A is semi-local with maximal ideals precisely the
elements of C;;

(3) For all ideals J of T such that J ¢ P for all P € C, the map
A — T/J is onto.

Then we call A a minimal-controlled subring (abbreviated MC-subring)
of T.

The ring A constructed in Theorem 3.12 is an MC-subring of 7. We
will show, in Theorem 4.4 that, if the complete local ring 7" has an
ezcellent subring satisfying all conditions for being an MC-subring of T’
except for condition (3), then, for all i, and for all P € C;, (T/Q;)p is
a regular local ring where Q; = Ngeg, Q. Lemma 4.2 helps us do this.

Lemma 4.2. Let (T, M) and P = (C,{C;}™) be as in Remark 2.7.
Fiz C;, and let Q; = Ngee, Q. Suppose there exists an ideal I of T
with I C Q; and (T'/I)% is a regular local ring for each P € C;. Then
(T/Qi)p is a regular local ring for all P € C;.
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Proof. Let P € C;, and let d = ht P. Define T" = (T/I)p,
T" = (T'/Qs)p, and let M’ denote the maximal ideal of 7" and M"
the maximal ideal of 1.

We claim that dim7” = dimT"” = ht P = d. To see why this holds,
let Py C -+ C Py be a maximal chain of prime ideals in T" such that
P; = P. Note that Py = @ for some minimal prime ideal Q C P.
Now, @Q € &; and so Q; C @. Consider any ideal J C . Observe
that Py/J C --- C Py/J, and so hty,;P/J > d. By Theorem 15.15 in
[12], hty,,P/J < htyP = d. Hence, hty;P/J = d. Finally, by [12,
Theorem 14.18], dim (T'//J)s = htp,;P/J = d. This argument with
J = I implies dim 7’ = d, while the argument with J = Q; yields
dim 7" = d. This proves our claim.

Since T" is a regular local ring of dimension d, every minimal gener-
ating set of its maximal ideal M’ must have exactly d members. Let

ar+ 1 ag+ 1

1+177777 141
be a minimal generating set for the maximal ideal M’ of T'. Then it
is not hard to show that

{01+Qi ad+Qi}

1+Q; 7 1+Q;
generates the maximal ideal M" of T". It follows that (T'/Q;)p is a
regular local ring for all P € C;. mi

In Lemma 4.3, we find sufficient conditions for the complete local ring
T to have a subring A such that A is both an MC-subring of 7' and
a G-ring. We will use this lemma to construct an excellent ring A in
Theorem 4.4.

Lemma 4.3. Let (T, M) and P = (C,{C},) be as in Remark 2.7,
and suppose that T is reduced. For each i, let Q; = Ngeg, @, and
suppose that, for each C; and each P € C;, (T'/Q;)p is a regular
local ring. Then there exists an MC-subring A of T that is a G-ring.
Moreover, for everyi=1,2,... ,m, (C;NA)T = Q;.

Proof. Let Q; be given. We first claim that there exists a minimal gen-
erating set (qo,q1,--- ,qn) of Q; such that, if k # 4, then ¢; ¢ Upce, P
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for all 7 =0,1,2,... ,n. We will find g, q1,-.. ,q, inductively. First
use the Prime Avoidance theorem to find gy satisfying ¢o € Q;, and

qogz{MQ,-u U P}.

PECy,, ki

Now assume that gy, ... , g, have been found and Q; # (qo,q1,--- , qr)-
Then use the Prime Avoidance theorem to find ¢, so that ¢,11 € Q;
and ¢ry1 ¢ MQ; + (go,---¢r) and ¢r11 € Upcey,ktiP- As T is
Noetherian, this process must stop so that eventually we get Q; =
(qos--- ;qn). Note that this generating set for @); is minimal by [11,
Theorem 2.3].

Let MinT-&; = {Q},Q%, ... ,Q.}. Forevery k =1,2,...,r, use the
Prime Avoidance theorem to find vy € Q) —Upec, P. Let v = HZ:l Vi,
and note that v # 0. For all j =0,1,2,...,n, ¢jv € Ngeminr®@ = (0)
since T is reduced. Also, v ¢ Upec, P, so v ¢ P for every P € C;. It
follows that, for all j =0,1,2,... ,n and all P € C;, Ann(q;) € P.

Let Ry be the SIP-subring constructed in Lemma 3.11. Then use
Lemma 3.10 to find a unit ug of 7" so that Ro[uoqo](ro[uoqo)nrr) 15
a semi-SIP-subring of T Note that Ro[uoqo](ro[uoqo)nm) I8, in fact,
an SIP-subring since Ry is. We repeat this process for each j =

1,...,n: at each step we adjoin g;ju;, where u; is a unit chosen so
that the resulting ring is an SIP-subring of 7. Since the u; are units,
(gouo, q1u1,- - - ,qnuy) generates @; in 7T

Continuing in this fashion, we adjoin a generating set for the ideal Q;
corresponding to each C;. Let S be the resulting subring. Then S is an
SIP-subring which has the property that, for each C;, (C; N S)T = Q;.
We now repeat the construction used in the proof of Theorem 3.12. For
our initial subring, instead of the SIP-subring constructed in the proof
of Lemma 3.11, we use the ring S.

Let A be the resulting ring. Then A is an MC-subring of 7', and by
construction, for every i = 1,2,... ,m, (C;NA)T = Q;. We have left to
show that A is a G-ring. To do this, we show that for every J € Spec A,
and for all finite field extensions L of k(J), where k(J) = A;/JA,,
T ®a L is a regular ring. Since A contains the rationals, it suffices to
show that T'®4 k(J) is a regular ring.

First, suppose that ht J = 0. Then J = C; N A for some i =
1,2,...,m. In this case, T ®4 k(J) localized at a maximal ideal is
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isomorphic to (1'/JT)p for some P € C;. But
(T/JT)5 = (T/(C: N A)T)p = (T/Q:)p-

This ring is a regular local ring by hypothesis. It follows that T® 4 k(J)
is a regular ring.

Now suppose that ht J > 0. Then JT' & P for all P € C, and so the
map A — T/JT is onto. The kernel of this map is JT N A = J and so
T/JT = A/J. We now have T ®4 k(J) = (T/JT) 51— = (A)J)z=5 =
Ay /JA; =Ek(J), a field.

It follows that T ®4 k(J) is a regular ring for all J € Spec A and so
A is a G-ring. O

Theorem 4.4 is the main theorem of this section. Specifically, we
demonstrate necessary and sufficient conditions for the desired subring
A of T to exist.

Theorem 4.4. Let (T, M) be a complete local ring of dimension
at least one, containing the rationals. Let P = (C,{C;}/™,) be a
feasible partition. For each C; € P, let Q; = Ngeg; Q. Then T
is the completion of an excellent reduced local subring A, such that
Min (A) = {C1 N A4,...,Cy, N A} and the formal fiber of C; N A is semi-
local with mazimal ideals precisely the elements of C;, if and only if the
following conditions hold:

(1) T is reduced,
(2) for each Q; and each P € C;, (T'/Q;)% is a regular local ring,
(3) for each Q;, T/Q; is equidimensional.

Proof. Assume that such an A exists. Then, since A is excellent and
reduced, T' must be reduced.

Now let P € C; for some ¢. Then PN A = J for some minimal
prime ideal J of A. Since A satisfies condition (2) of MC-subrings,
for every Q € &;, we have QN A = J. It follows that JT C Ngeg, Q.
Since A is a G-ring, T® 4 k(J), where k(J) = Ay/J Ay, is aregular ring.
Now, because the formal fiber of J is semilocal with maximal ideals the
elements of C; and P € C;, T ®4 k(J) localized at the maximal ideal
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P ®4 k(J) is isomorphic to (1'/JT)p. Hence, (I'/JT)p is a regular
local ring. This argument holds for all P € C;, so (T'/JT)5 is a regular
local ring for all P € C;. It follows from Lemma 4.2 that (1'/Q;)5 is a
regular local ring for all P € C;.

Since A is excellent, it is universally catenary and hence formally
catenary. Consequently, since C; N A is a (minimal) prime ideal of A,
A/(C; N A) is formally equidimensional. Then its completion

(A ) i T
€nA))  (@naAd (CGNAT

is equidimensional. We now show that, since T'/[(C; N A)T] is equidi-
mensional, so too is T//Q;. Note that

(TY\_[@Q
Mln(Qi>_{Qi

Q (T

0. € Min ( Qi),

then Q/[(C; N A)T] is a minimal prime ideal of T/[(C; N A)T]. Now,
there exists a @ € &; such that Q/Q; is a minimal prime ideal of T//Q;
satisfying dim7T'/Q; = dim (7/Q:)/(Q/Q:) = dimT/Q. Note that
Q/[(C; N A)T] is a minimal prime ideal of T'/[(C; N A)T]. Let Q'/Q;
be a minimal prime ideal of T/Q;. Then Q’/[(C; N A)T] is a minimal
prime ideal of T'/[(C; N A)T]. So,

Q € gi}a

and if

. T/Q; T Z_ . T/(CiNAT
dim Q70 = dim ] _dlm—Q’/(CiﬂA)T
B T/(C;NAT
dim ey ~ M G e n AT
= dim — = dim %

It follows that T/Q; is equidimensional. So conditions (1)—(3) of the
theorem hold.

Conversely, suppose conditions (1)—(3) in the statement of the theo-
rem hold. Then by Lemma 4.3, there exists a subring A of T that is a
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G-ring and is an MC-subring of 7. Moreover, for every i = 1,2,... ,m,
(C,’ N A)T = Q.
It remains to show that A is universally catenary. Let J € Spec (A).

Ifht4J = 0, then J = C;NA for some 7, and so (I\/J) =T/((CGNA)T) =
T/Q; is equidimensional. Hence, A/J is formally equidimensional.

On the other hand, if ht4J > 0, then JT' € P for all P € C.
Consequently, the natural map A — T/JT is onto since A satisfies
condition (3) of MC-subrings. Since the kernel of the map is JT' N
A = J, we have T/JT = A/J, which is a domain and therefore

—

equidimensional. Now observe that (A/J) = T/JT = A/J, so A/J
is its own completion and thus formally equidimensional. Hence A is
formally catenary, and therefore universally catenary. ]

If the three conditions of Theorem 4.4 are satisfied, then the ring
A constructed in Theorem 4.4 satisfies the condition that all minimal
prime ideals have semi-local formal fibers. In addition, if J is a prime
ideal of A with J not a minimal prime ideal, then the formal fiber of J
contains exactly one element, namely JT'. This follows since, as shown
in the proof of Theorem 4.4, A/J = T/JT.

It is interesting to note that, if the complete local ring T is the
completion of a ring A as in Theorem 4.4, then there are restrictions on
the partition P. In particular, Corollary 4.5 shows the rather restrictive
condition that each P € C can only contain one minimal prime ideal
of T.

Corollary 4.5. Let (T,M), P = (C,{C}™,) and A be as in
Theorem 4.4. Then each P € C contains exactly one minimal prime
ideal.

Proof. For P € C;, since (T/Q;)p is a regular local ring, it is an
integral domain. It follows that P contains exactly one minimal prime
ideal of T. mi

To demonstrate Theorem 4.4, we present the following class of exam-
ples:
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Example 4.6. Let (7,M) be a complete local reduced ring of
dimension at least one, containing the rationals. Let C = Min (1)) =
{Q1,...,Qxn}, and let P = (C,{C;}™,) be any partition on C. Then
P = (C,{C;}™,) is automatically a feasible partition. For any ¢ and
Q' € &;, we know

<m%ﬁ>5

is a field and so a regular local ring for all 4. If, for every ¢, T'/(Ngeg,; Q)
is equidimensional, then T is the completion of an excellent reduced
local subring A, with Min (A) = {C; N A}, and the formal fiber of
C; N A is precisely C;.

Acknowledgments. The authors thank the referee for improve-
ments to Lemma 3.5 and the proof of Lemma 4.3.
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