SEMI-LOCAL FORMAL FIBERS OF MINIMAL PRIME IDEALS OF EXCELLENT REDUCED LOCAL RINGS

N. ARNOSTI, R. KARPMAN, C. LEVERSON, J. LEVINSON AND S. LOEPP

ABSTRACT. Let T be a complete local (Noetherian) ring containing the rationals, and let C be a finite set of incomparable non-maximal prime ideals of T partitioned into msubsets C_1, \ldots, C_m . We find necessary and sufficient conditions for T to be the completion of an excellent reduced local ring A with precisely m minimal prime ideals J_1, \ldots, J_m such that, for each $i=1,2,\ldots,m$, the maximal elements of the set $\{Q\in\operatorname{Spec} T\mid Q\cap A=J_i\}$ are precisely the elements of \mathcal{C}_i . We also find necessary and sufficient conditions for T to be the completion of such a ring A for the case where A need not be excellent.

- 1. Introduction. Much research has been dedicated to elucidating the relationship between a local ring and its completion. A natural question is as follows: if T is a complete local ring, does there exist a local subring A of T, with some desired property, whose completion is T? In [6], Lech answered this question when the property on A is that it be a local integral domain. In particular, Lech proved that a complete local ring T is the completion of a local integral domain if and only if the following two conditions hold:
- (1) the prime subring I of T is an integral domain, and T has no torsion as an *I*-module;
- (2) the maximal ideal of T is either equal to (0), or is not an associated prime ideal of T.
- In [4], Heitmann proved a similar result for when the property on A is that it be a unique factorization domain. Specifically, he showed the remarkable result that a complete local ring T is the completion of a unique factorization domain if and only if T is a field, a discrete valuation ring, or has depth at least two with no element of its prime subring a zerodivisor.

The authors thank the National Science Foundation for their support of this research via grant DMS-0850577.

Received by the editors on March 31, 2010, and in revised form on September 1,

In this paper, we provide results when the property on A is that it be an excellent reduced ring such that the formal fibers of its minimal prime ideals are semi-local and can be prescribed. We also consider the case where A is not required to be excellent. Let A be a local ring with maximal ideal M and T the M-adic completion of A. If Q is a prime ideal of A, the formal fiber of A at Q is given by $\operatorname{Spec}(T \otimes_A k(Q))$, where $k(Q) = A_Q/QA_Q$. It is known that the formal fibers of a ring encode important information about the relationship between the ring and its completion. Note that there is a one-to-one correspondence between the formal fiber of A at Q and the inverse image of Q under the surjective map $\operatorname{Spec} T \to \operatorname{Spec} A$, given by $P \mapsto P \cap A$. We will therefore (by abuse of notation) also refer to this subset of $\operatorname{Spec} T$ as the formal fiber of A at Q. If this set has only finitely many maximal elements, we say that the formal fiber of A at Q is semi-local.

Past research on semi-local formal fibers has focused on formal fibers of height-one prime ideals (see, for example, [2, 3]), and of the zero ideal in the case when A is a domain (see, for example, [1, 8, 9]). In [1], Charters and Loepp characterized all complete local rings which are completions of integral domains possessing a semi-local formal fiber at the prime ideal (0). In particular, for any finite set of incomparable prime ideals G of a complete local ring T, Charters and Loepp gave necessary and sufficient conditions for T to be the completion of a local domain A whose formal fiber at (0) is semi-local with maximal ideals the elements of G. In the same paper, Charters and Loepp examined the case in which the domain A is excellent, and proved a result when T has characteristic zero.

In this paper, we generalize Charters' and Loepp's result in the following way. Let T be a complete local ring with n>1 minimal prime ideals, and let m be a positive integer less than n. We find conditions guaranteeing that T is the completion of an excellent reduced local ring A with exactly m minimal prime ideals, such that the formal fiber of each is semi-local with prescribed maximal elements. We also prove results in the case when the ring A is not required to be excellent. To clarify what we mean by the maximal elements of the formal fibers of the minimal prime ideals of A are "prescribed," suppose the ring A has m minimal prime ideals of A. We want to construct A so that, for every $i=1,2,\ldots,m$, the formal fiber of J_i is semi-local with maximal

elements the elements of C_i . In other words, we want to have complete control of the formal fibers of the prime ideals J_1, J_2, \ldots, J_m . It is not hard to see that there are necessary conditions on the sets C_i for such an A to exist. To specify these conditions, we introduce the following definition.

Definition 1.1. Let T be a complete local ring. Let $C = \{P_1, \ldots, P_n\}$ be a finite collection of incomparable non-maximal prime ideals of T, and let C be partitioned into $m \geq 2$ subcollections C_1, \ldots, C_m . We call $\mathcal{P} = (C, \{C_i\}_{i=1}^m)$ a feasible partition on C (or simply a feasible partition) if, for each Q in Ass T, \mathcal{P} satisfies the following conditions:

- (1) $Q \subseteq P_i$ for at least one $P_i \in \mathcal{C}$;
- (2) There exists exactly one ℓ such that whenever $Q \subseteq P_i$, $P_i \in \mathcal{C}_{\ell}$.

Hence, the subcollections C_i partition not only the elements of the collection C, but also the associated prime ideals of T. It is easy to see that the set $C = \bigcup_{j=1}^m C_j$ must be a finite set of incomparable, non-maximal prime ideals of T such that the sets C_1, C_2, \ldots, C_m form a feasible partition on C for a reduced ring A to exist such that, for every $i = 1, 2, \ldots, m$, the formal fiber of J_i is semilocal with maximal ideals the elements of C_i .

Note that we can find a feasible partition for any complete local ring T. In particular, we can define a feasible partition simply by letting $\mathcal C$ be the maximal elements of Ass (T), and partitioning $\mathcal C$ into disjoint subcollections satisfying the condition that if $Q, P, P' \in \mathrm{Ass}(T)$ with $Q \subseteq P$ and $Q \subseteq P'$, then $P, P' \in \mathcal C_i$ for some i. Charters and Loepp studied the case where the elements of $\mathcal C$ are grouped into a single class. For most complete local rings, there are many feasible partitions.

As we know that we must have a feasible partition to construct our reduced local ring A, we now pose the following specific question: let T be a complete local ring of dimension at least one which contains the rationals, and let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be a feasible partition. Under what conditions is T the completion of an excellent reduced local subring A such that A has exactly m minimal prime ideals $\{J_1, \ldots, J_m\}$, and the formal fiber of each J_i is semi-local with maximal ideals the elements of \mathcal{C}_i ? We are able to answer this question definitively. In Theorem 4.4, we prove that such a subring exists if and only if the following conditions

hold:

- (1) T is reduced;
- (2) If Q_i denotes the intersection of all minimal prime ideals contained in the elements of C_i , then $(T/Q_i)_{\overline{P}}$ is a regular local ring for all $i = 1, 2, \ldots, m$ and every $P \in C_i$;
- (3) If Q_i denotes the intersection of all minimal prime ideals contained in the elements of C_i , then T/Q_i is equidimensional for every $i = 1, 2, \ldots, m$.

If, moreover, A is not required to be excellent, we show in Theorem 3.12 that no conditions on T are needed: such a subring exists for any feasible partition $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$.

In our construction of A, we not only control the formal fibers of the minimal prime ideals of A. Indeed, we control the formal fiber of every prime ideal of A: we ensure that the formal fiber of every minimal prime ideal is semi-local, and that the formal fiber of any other prime ideal of A has a single element. This property of A is striking because, for most local rings, the formal fibers of the prime ideals are complex and difficult to characterize.

We base our construction on the approach of Loepp in [10] and of Heitmann in [5]. We begin with \mathbb{Q} , which is simply the prime subring of T localized at (0). We then successively adjoin elements of T to our ring, to produce the desired ring A.

Note that, given the finite collection of incomparable non-maximal prime ideals $\mathcal C$ of T and the feasible partition $\mathcal P=(\mathcal C,\{\mathcal C_i\}_{i=1}^m)$ on $\mathcal C$, we must construct A so that, whenever $P\in\mathcal C_i$ and $P'\in\mathcal C_j$, we have $P\cap A=P'\cap A$ if and only if i=j. We also make sure to adjoin elements of T so that for every prime ideal P of T such that $P\nsubseteq P'$ for all $P'\in\mathcal C$, $P\cap A$ contains a non-zerodivisor. This will guarantee that no prime ideals of T outside our feasible partition are in the formal fiber of a minimal prime ideal in A. Furthermore, we will adjoin elements of T so that our ring contains a nonzero element of every coset in T/J, where J is an ideal of T such that $J\nsubseteq P$ for all $P\in\mathcal C$. Thus, the map $A\to T/J$ is onto for all ideals J of T such that $J\nsubseteq P$ for all $P\in\mathcal C$. In particular, this implies that the map $A\to T/M^2$ is onto. In Lemma 3.8 we adjoin elements of T to make $IT\cap A=I$ for every finitely generated ideal I of A. This, along with the condition that the

map $A \to T/M^2$ is onto, establishes that A is Noetherian and that the completion of A is T.

Throughout this paper, all rings are commutative with unity. Local rings are always Noetherian, whereas quasi-local rings may be non-Noetherian. We write (R, M) is a quasi-local ring if R is quasi-local with maximal ideal M. We then denote the M-adic completion of R by \widehat{R} .

2. Preliminaries and definitions. The following result, which is Proposition 1 from [5], gives conditions which imply that a quasi-local subring R of a complete local ring T is Noetherian, and that the completion of R is T. This proposition will play a crucial role in our construction.

Proposition 2.1. If $(R, M \cap R)$ is a quasi-local subring of a complete local ring (T, M), the map $R \to T/M^2$ is onto, and $IT \cap R = I$ for every finitely generated ideal I of R, then R is Noetherian and the natural homomorphism $\widehat{R} \to T$ is an isomorphism.

We recall the definition of a feasible partition.

Definition 2.2. Let (T,M) be a complete local ring. Let $\mathcal{C} = \{P_1, \ldots, P_n\}$ be a finite collection of incomparable non-maximal prime ideals of T, and let \mathcal{C} be partitioned into $m \geq 2$ subcollections $\mathcal{C}_1, \ldots, \mathcal{C}_m$. We call $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ a feasible partition on \mathcal{C} (or simply a feasible partition) if, for each Q in Ass (T), \mathcal{P} satisfies the following conditions:

- (1) $Q \subseteq P_i$ for at least one $P_i \in \mathcal{C}$;
- (2) There exists exactly one ℓ such that whenever $Q \subseteq P_i, P_i \in \mathcal{C}_{\ell}$.

The relationship between the subcollection C_i and the minimal prime ideals of T provides the motivation for the following definition.

Definition 2.3. Let (T, M) be a complete local ring of dimension at least one, and let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be a feasible partition. We define

the sets \mathcal{E}_i by

$$\mathcal{E}_i = \{ Q \in \operatorname{Min} T \mid Q \subseteq P \text{ for some } P \in \mathcal{C}_i \}.$$

Note that feasible partitions on T are easy to construct. It suffices to ensure that, whenever two prime ideals P, P' of \mathcal{C} each contain a minimal prime ideal Q, they are placed in the same \mathcal{C}_i . The following examples help to clarify the concept of a feasible partition.

Example 2.4. Let

$$T = rac{\mathbf{R}[[x, y, z]]}{\langle xyz
angle}.$$

Suppose $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^2)$ is defined by $\mathcal{C}_1 = \{\langle x, y + z \rangle, \langle y, x \rangle\}$, $\mathcal{C}_2 = \{\langle z \rangle\}$. Then $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^2)$ is a feasible partition, with $\mathcal{E}_1 = \{\langle x \rangle, \langle y \rangle\}$ and $\mathcal{E}_2 = \{\langle z \rangle\}$.

Example 2.5. Let

$$T = \frac{\mathbf{R}[[x, y, z, w]]}{\langle x^{\alpha} y^{\beta} z^{\gamma} w^{\delta} \rangle},$$

with $\alpha, \beta, \gamma, \delta \in \mathbf{N}$. Let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^2)$ be defined by $\mathcal{C}_1 = \{\langle x, y \rangle, \langle x, z \rangle\}$ and $\mathcal{C}_2 = \{\langle z, w \rangle\}$. Then $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^2)$ is not a feasible partition, because the prime ideal $\langle z \rangle \in \text{Min}(T)$ is contained in both $\mathcal{E}_1 = \{\langle x \rangle, \langle y \rangle, \langle z \rangle\}$ and $\mathcal{E}_2 = \{\langle z \rangle, \langle w \rangle\}$.

We will use feasible partitions to guide the construction of our subring A. In particular, we will ensure that, for a given i, the intersection of A with any $P \in \mathcal{C}_i$ or $Q \in \mathcal{E}_i$ is the same minimal prime ideal of A, and that this ideal is distinct for each i. We use a slightly stronger condition during our construction, as given in the following definition.

Definition 2.6. Let T be a complete local ring, \mathcal{C} a finite set of incomparable non-maximal prime ideals of T and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ a feasible partition on \mathcal{C} . A quasi-local subring $(R, R \cap M)$ of T is called an *intersection preserving subring* (abbreviated IP-subring) if the following conditions hold:

- (1) R is infinite;
- (2) For any $P \in \mathcal{C}$, $R \cap P = R \cap Q$ for any $Q \in \text{Min}(T)$ satisfying $Q \subseteq P$;
 - (3) For $P, P' \in \mathcal{C}, P, P' \in \mathcal{C}_i$ if and only if $R \cap P = R \cap P'$;
 - (4) For each $P \in \mathcal{C}$, $r \in P \cap R$ implies $\operatorname{Ann}_T(r) \not\subseteq P$.

The ring R is called *small intersection preserving* (abbreviated SIP-subring) if, additionally, |R| < |T|.

Remark 2.7. In what follows, let (T,M) be a complete local ring of dimension at least one which contains the rationals. Let \mathcal{C} be a finite set of incomparable non-maximal ideals of T. Let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be a feasible partition, and let R be an IP-subring of T. Let $P \in \mathcal{C}$; then $P \cap R$ is a prime ideal of R, and $P \in \mathcal{C}_i$ for some i. Abusing notation, we denote $P \cap R$ by $\mathcal{C}_i \cap R$. This abuse of notation makes sense because, if $P, P' \in \mathcal{C}_i$, then $P \cap R = P' \cap R$.

In our construction, we create an IP-subring A whose completion is T; furthermore, each of the prime ideals $C_i \cap A$ of A is, in fact, minimal. Note that, if T contains the rationals, then the prime subring localized at (0) is \mathbf{Q} , which trivially satisfies conditions (1), (2) and (4) of Definition 2.6, and one direction of condition (3): that is, for any $P, P' \in C$, if $P, P' \in C_i$, then $\mathbf{Q} \cap P = \mathbf{Q} \cap P'$. We use this fact to construct an SIP-subring R of T. We then successively adjoin elements to R, creating an IP-subring at each step, until the conditions of Proposition 2.1 are satisfied.

Note that any subring of T satisfying condition (4) is reduced, as the following lemma (modified from Lemma 5 of [7]) establishes.

Lemma 2.8. Let T and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let R be a subring of T such that, for each $P \in \mathcal{C}$, if $r \in P \cap R$, then $\operatorname{Ann}_T(r) \not\subseteq P$. Then R is reduced.

Proof. First note that, for any nonzero $t \in T$, Ann $(t) \subseteq Q$ for some $Q \in \text{Ass } (T)$. Then, since $Q \subseteq P$ for some $P \in C$, Ann $(t) \subseteq P$.

Now, suppose that $r \in R$ is nilpotent and nonzero. Let $\ell \in \mathbf{N}$ be the smallest positive integer such that $r^{\ell} = 0$. By the above, $\operatorname{Ann}_{T}(r^{\ell-1}) \subseteq P$ for some $P \in \mathcal{C}$.

In particular, $r \in P$ since $r \in \operatorname{Ann}_T(r^{\ell-1})$. By hypothesis there exists an $s \notin P$ such that sr = 0. But then $s \in \operatorname{Ann}_T(r^{\ell-1}) \subseteq P$, a contradiction. \square

Hence, in particular, an IP-subring is reduced.

- 3. The construction. We begin the construction with a few technical lemmata. First, we prove that the properties of SIP-subrings are preserved under unions of nested subrings, and under localization.
- **Lemma 3.1** (Unioning lemma). Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let B be a well-ordered index set, and let R_{β} , $\beta \in B$, be a family of SIP-subrings such that if $\beta, \gamma \in B$ such that $\beta < \gamma$, then $R_{\beta} \subseteq R_{\gamma}$. Then $R = \bigcup_{\beta \in B} R_{\beta}$ is an IP-subring. Moreover, if there exists some $\lambda < |T|$ such that $|R_{\beta}| \leq \lambda$ for all β , and |B| < |T|, then $|R| \leq \max\{\lambda, |B|\}$, and R is an SIP-subring of T.

Proof. Since each R_{β} is quasi-local with maximal ideal $M \cap R_{\beta}$, we have that R is quasi-local with maximal ideal $R \cap M$. Since R_{β} is infinite, R is an infinite subring of T.

Let I, J be ideals of T such that $I \cap R_{\beta} = J \cap R_{\beta}$ for each $\beta \in B$. Let $a \in R \cap I$. Then $a \in R_{\beta} \cap I$ for some $\beta \in B$. Hence, $a \in R_{\beta} \cap J$ and $a \in R \cap J$. Thus, $I \cap R \subseteq J \cap R$. By a similar argument, the reverse containment holds, and $I \cap R = J \cap R$.

Let $P, P' \in \mathcal{C}_i$ for some $\mathcal{C}_i \subseteq \mathcal{C}$. Then $P \cap R_{\beta} = P' \cap R_{\beta}$ for all $\beta \in B$, because the R_{β} are IP-subrings. By the above argument, $P \cap R = P' \cap R$. Similarly, $P \cap R = Q \cap R$ for every $Q \in \text{Min}(T)$ such that $Q \subseteq P$.

Next, let $P \in \mathcal{C}_i$, and $P' \in \mathcal{C}_j$, where $i \neq j$. Let $\beta \in B$. Then R_{β} is an IP-subring, so $P \cap R_{\beta} \neq P' \cap R_{\beta}$. Without loss of generality, $P \cap R_{\beta} \not\subseteq P' \cap R_{\beta}$. Hence, there exists some $b \in P \cap R_{\beta}$ such that $b \notin P'$. Therefore, $b \in R \cap P$ but $b \notin P'$. Thus, $P \cap R \neq P' \cap R$.

Now let $P \in \mathcal{C}$, and let $r \in P \cap R$. Then $r \in P \cap R_{\beta}$ for some $\beta \in B$. Since R_{β} is an IP-subring, $\operatorname{Ann}_{T}(r) \not\subseteq P$. Hence, condition (4) of Definition 2.6 is maintained.

Finally, suppose there exists some $\lambda < |T|$ such that $|R_{\beta}| \leq \lambda$ for all β , and |B| < |T|. Then $|R| \leq \lambda |B| = \max\{\lambda, |B|\}$. Since $\lambda, |B| < |T|$, we have |R| < |T| and so R is an SIP-subring of T.

Lemma 3.2 (Localization lemma). Let (T,M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let R be a subring of T satisfying all conditions for an IP-subring except that it need not be quasi-local. Then $R_{(R\cap M)}$ is an IP-subring of T with $|R_{(R\cap M)}| = |R|$. Additionally, if |R| < |T|, then $R_{(R\cap M)}$ is an SIP-subring of T.

Proof. Since M is the maximal ideal of T, and M is a prime ideal, $R \cap M$ is a prime ideal of R, and each element of $R - (M \cap R)$ is a unit in T. Thus, $R_{(M \cap R)}$ is well-defined, and we can embed $R_{(M \cap R)}$ as a subring of T. Since R is infinite, $R_{(M \cap R)}$ is infinite as well.

Let $P \in \mathcal{C}$ be given. Then, for any $Q \in \text{Min}(T)$ such that $Q \subseteq P$, $(P \cap R)R_{(M \cap R)} = (Q \cap R)R_{(M \cap R)}$. Similarly, for any $P, P' \in \mathcal{C}$, $P \cap R = P' \cap R$ if and only if $(P \cap R)R_{(M \cap R)} = (P' \cap R)R_{(M \cap R)}$. Since R satisfies condition (3) for an IP-subring, $(P \cap R)R_{(M \cap R)} = (P' \cap R)R_{(M \cap R)}$ if and only if $P, P' \in \mathcal{C}_i$ for some subcollection of prime ideals \mathcal{C}_i .

Now, let $r \in (P \cap R)R_{(M \cap R)}$. Then r = p/s, for some $p \in P \cap R$, and some $s \in R - (M \cap R)$. Since R satisfies condition (4) for an IP-subring, $\operatorname{Ann}_T(p) \not\subseteq P$, and there exists $q \notin P$ such that qp = 0. Hence, qr = 0, and $\operatorname{Ann}_T(r) \not\subseteq P$. It follows that $R_{(R \cap M)}$ is an IP-subring of T.

Since R is infinite, $|R_{(R\cap M)}|=|R|$. If |R|<|T|, it follows that $R_{(R\cap M)}$ is an SIP-subring of T. \square

The next several lemmata will allow us to find and adjoin elements to create a nested chain of SIP-subrings whose union satisfies the conditions of Proposition 2.1. Note that if R is an SIP-subring and $u \in T$, then $R[u]_{(M \cap R[u])}$ automatically satisfies condition (1) of Definition 2.6, and the backwards direction of condition (3). In order to show that $R[u]_{(M \cap R[u])}$ is an SIP-subring of T, we must maintain condition (2), (4), and the forward direction of (3).

We first show that, given a subring R, adjoining elements that are transcendental over $R/(P\cap R)$ for prime ideals P maintains various properties of IP-subrings. Most notably, Lemma 3.3 implies that, if R is an SIP-subring and $u+P\in T/P$ is transcendental over $R/(P\cap R)$ for all $P\in \mathcal{C}\cup \mathrm{Min}\,(T)$, then $R[u]_{(M\cap R[u])}$ is also an SIP-subring.

Lemma 3.3 (Adjoining lemma). Let R be a subring of a complete local ring T. Let P_1, P_2 be prime ideals of T such that $P_1 \cap R = P_2 \cap R$.

Suppose that, for $i=1,2,\ u+P_i\in T/P_i$ is transcendental over $R/(P_i\cap R)$. Then $P_1\cap R[u]=P_2\cap R[u]$. Furthermore, if $\mathrm{Ann}_T(p)\not\subseteq P_1$ for all $p\in R\cap P_1$, then $\mathrm{Ann}_T(p)\not\subseteq P_1$ for all $p\in R[u]\cap P_1$.

Proof. Let $f \in R[u] \cap P_1$. Then, for $0 \le i \le n$, there exists an $r_i \in R$ such that

$$f = r_n u^n + \dots + r_1 u + r_0 \in P_1.$$

Consider the coset $f + P_1$ in T/P_1 . Then

$$f + P_1 = (r_n + P_1)(u + P_1)^n + (r_{n-1} + P_1)(u + P_1)^{(n-1)} + \cdots + (r_0 + P_1)$$

= 0 + P_1.

Since $u+P_1$ is transcendental over $R/(P_1\cap R)$, we know that $r_i\in P_1$ for each i. Since $P_1\cap R=P_2\cap R$, $r_i\in P_2$ for all i, and so $f\in P_2$. Hence, $P_1\cap R[u]\subseteq P_2\cap R[u]$. Reverse inclusion follows by a similar argument, so $P_1\cap R[u]=P_2\cap R[u]$.

Again, let $f \in R[u] \cap P_1$. Then, as shown above, $f = r_n u^n + \cdots + r_1 u + r_0 \in P_1$, for some $r_i \in P_1 \cap R$. Hence, there exist $s_1, \ldots, s_n \in T$ such that, for each $i = 1, \ldots, n, s_i r_i = 0$ and $s_i \notin P_1$. Let

$$s = \prod_{i=1}^{n} s_k.$$

Then $s \notin P_1$, and $sr_i = 0$ for i = 1, ..., n. Therefore, sf = 0, and so $\operatorname{Ann}_T(f) \not\subseteq P_1$. \square

The following is Lemma 2.4 from [1]. Together with the succeeding lemma, Lemma 3.4 will allow us to find transcendental elements.

Lemma 3.4. Let (T, M) be a complete local ring of dimension at least one, let C be a finite set of incomparable non-maximal prime ideals of T, and D a subset of T such that |D| < |T|. Let I be an ideal of T such that $I \nsubseteq P$ for all $P \in C$. Then $I \nsubseteq \cup \{r + P \mid P \in C, r \in D\}$.

Lemma 3.5. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let R be a subring of T such that |R| < |T|. Let J be an ideal of T

such that $J \not\subseteq P$ for every $P \in \mathcal{C}$. Let $t, q \in T$. Then there exists an element $t' \in J$ such that, for every $P \in \mathcal{C}$ with $q \notin P$, $t+qt'+P \in T/P$ is transcendental over $R/(P \cap R)$. If, in addition, $Q \in \text{Min}(T)$, $P \in \mathcal{C}$ with $Q \subseteq P$, $q \notin P$, and $R \cap P = R \cap Q$, then $t+qt'+Q \in T/Q$ is transcendental over $R/(Q \cap R)$.

Proof. Let $\mathcal{G} = \{P \in \mathcal{C} \mid q \notin P\}$. Then \mathcal{G} is a finite set of incomparable non-maximal prime ideals of T. Suppose that t+qt'+P=t+qs'+P for some $P \in \mathcal{G}$. Then $(t+qt')-(t+qs')=q(t'-s') \in P$. But $q \notin P$, so $(t'-s') \in P$. These steps are reversible, so t+qt'+P=t+qs'+P if and only if t'+P=s'+P.

For each $P \in \mathcal{G}$, let $D_{(P)}$ be a full set of coset representatives of the cosets t' + P that make $t + qt' + P \in T/P$ algebraic over $R/(P \cap R)$. Let $D = \bigcup_{P \in \mathcal{G}} D_{(P)}$. Then $|D| = |D_{(P)}| = |R/(P \cap R)| \le |R| < |T|$ for every $P \in \mathcal{G}$. Now use Lemma 3.4 with I = J and $C = \mathcal{G}$ to show that there exists an element $t' \in J$ such that $t + qt' + P \in T/P$ is transcendental over $R/(P \cap R)$ for every $P \in \mathcal{G}$. Then we have that for every $P \in \mathcal{C}$ with $q \notin P$, $t + qt' + P \in T/P$ is transcendental over $R/(P \cap R)$. Now suppose $Q \in \text{Min}(T)$, $P \in \mathcal{C}$ with $Q \subseteq P$, $q \notin P$, and $R \cap P = R \cap Q$. Then, $t + qt' + P \in T/P$ is transcendental over $R/(P \cap R)$. Since $P \cap R = Q \cap R$ we have $t + qt' + Q \in T/Q$ is transcendental over $R/(Q \cap R)$ as well. \square

Corollary 3.6. Let (T,M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7, and let J be an ideal of T such that $J \not\subseteq P$ for every $P \in \mathcal{C}$. Let R be an SIP-subring of T and $t+J \in T/J$. Then there exists an SIP-subring S of T such that $R \subseteq S \subset T$, t+J is in the image of the map $S \to T/J$, and |S| = |R|. Moreover, if $t \in J$, then $S \cap J$ contains a non-zerodivisor of T.

Proof. Apply Lemma 3.5 with q=1. Then $q \notin P$ for every $P \in \operatorname{Spec} T$, so it is possible to choose $t' \in J$ such that $t+t'+P \in T/P$ is transcendental over $R/(P \cap R)$ for every $P \in \mathcal{C} \cup \operatorname{Min}(T)$. Consider the ring $S = R[t+t']_{(M \cap R[t+t'])}$. By Lemma 3.3, R[t+t'] satisfies conditions (2), (3) and (4) of being an IP-subring. Further, |R[t+t']| = |R|. By Lemma 3.2, S is an SIP-subring of T, and |S| = |R|. Further, $(t+t') \in S$ and (t+t') + J = t + J, so t+J is in the image of the map $S \to T/J$.

Suppose $t \in J$ and t + t' is a zero divisor. Then $t + t' \in Q$ for some $Q \in Ass(T)$. However, $Q \subseteq P$ for some $P \in \mathcal{C}$, and so (t + t') + P = 0 + P. Hence, $t + t' + P \in T/P$ is algebraic over $R/(P \cap R)$, a contradiction. Thus, t + t' is a non-zero divisor contained in $S \cap J$.

The following lemma is the heart of our construction. Given an SIP-subring R of T, repeated application of Lemma 3.7 will enable us to construct an SIP-subring $S \supseteq R$ of T which satisfies $IT \cap S = I$ for all finitely generated ideals I of S. This condition is necessary to satisfy the hypotheses of Proposition 2.1.

Lemma 3.7. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let R be an SIP-subring of T. Then, for any finitely-generated ideal I of R and any $c \in IT \cap R$, there exists a subring S of T with the following properties:

- (1) $R \subseteq S$;
- (2) S is an SIP-subring of T;
- (3) |S| = |R|;
- (4) $c \in IS$.

Proof. We shall proceed inductively on the number of generators of I. First suppose I=aR. If a=0, then S=R is the desired subring. Assume $a\neq 0$, and let c=at for some $t\in T$. Note that, because $a\in R$, a is in some $P\in \mathcal{C}_i$ if and only if a is in every $P\in \mathcal{C}_i$. If this is the case, then, abusing notation, we shall refer to a as being contained in \mathcal{C}_i .

By condition (4) of the definition of IP-subrings, $\operatorname{Ann}_T(a) \not\subseteq P$ for all $P \in \mathcal{C}$ such that $a \in P$. By the Prime Avoidance theorem, this means that $\operatorname{Ann}_T(a) \not\subseteq \bigcup_{a \in P, P \in \mathcal{C}} P$. Thus, we can choose some $q \in \operatorname{Ann}_T(a)$ such that $q \notin P$ for all $P \in \mathcal{C}$ such that $a \in P$. If $a \notin P$ for every $P \in \mathcal{C}$, we let q = 0. By Lemma 3.5, there exists some $t' \in T$ such that, for each $P \in \mathcal{C}$ with $a \in P$, the coset $t + qt' + P \in T/P$ is transcendental over $R/(P \cap R)$. Let u = t + qt'. We claim that $S = R[u]_{(R[u] \cap M)}$ is the desired subring. By Lemma 3.2 (the Localization lemma), it suffices to show that R[u] satisfies conditions (1), (2), (3) and (4) of being an

SIP-subring, and that |R[u]| = |R|. Condition (1) of Definition 2.6 follows immediately. We now show that condition (3) holds for R[u].

For any C_i containing a, if $P, P' \in C_i$, then $R[u] \cap P = R[u] \cap P'$ by Lemma 3.3 (the Adjoining lemma). Next, consider any C_i not containing a. Let $P, P' \in C_i$, and $f \in R[u] \cap P$. Then

$$f = r_n u^n + \dots + r_1 u + r_0$$

for some $r_i \in R$. Multiplying both sides by a^n , we get

$$a^n f = r_n c^n + \dots + a^{n-1} r_1 c + a^n r_0 \in R \cap P$$

since $au = at = c \in R$. Because R is an SIP-subring, $a^n f \in R \cap P$ implies $a^n f \in P'$. However, by hypothesis $a \notin P'$ and so f must be in P'. Consequently $f \in R[u] \cap P'$. Reverse inclusion follows by a similar argument, and so $R[u] \cap P = R[u] \cap P'$. Condition (2) of Definition 2.6 follows for R[u] by a similar argument.

We will now show that condition (4) holds for R[u]. For each $P \in \mathcal{C}$, consider $f \in R[u] \cap P$, so that $f = r_n u^n + \dots + r_1 u + r_0$. If $a \in P$, $u + P \in T/P$ is transcendental over $R/(P \cap R)$, so each $r_i \in P \cap R$. By assumption, for each r_i there exists a $q_i \notin P$ such that $r_i q_i = 0$. Let $q = \prod q_i \notin P$, and note that fq = 0. Thus, $\operatorname{Ann}_T(f) \not\subseteq P$. If $a \notin P$, recall that $a^n f \in R \cap P$. By assumption, there exists a $q \notin P$ such that $qa^n f = 0$. Note that $qa^n \notin P$, so $\operatorname{Ann}_T(f) \not\subseteq P$, and condition (4) holds. Hence, $R[u]_{(R[u] \cap M)}$ is an SIP-subring. Finally, observe that $|R[u]_{(R[u] \cap M)}| = |R|$ and $c \in aR[u]_{(R[u] \cap M)}$, as desired. So the lemma holds if I is generated by a single element.

Continuing inductively, suppose that the lemma holds when I is generated by k-1 elements where $k \geq 2$. Let $I = (a_1, \ldots, a_k)R$ and $c = a_1t_1 + a_2t_2 + \cdots + a_kt_k \in R$ for some $t_i \in T$. We will first show that the lemma follows in the case where

$$\{\mathcal{C}_i \mid a_1 \in \mathcal{C}_i\} = \{\mathcal{C}_i \mid a_2 \in \mathcal{C}_i\}$$

We will then prove that it is always possible to define a generating set for I such that (*) holds, completing the proof.

Assume that (*) holds. Taking $a = a_1$, define q as in the principal case, and note that $a_1q = 0$. Thus, c can be rewritten as

$$c = a_1(t_1 + qt' + a_2t'') + a_2(t_2 - a_1t'') + a_3t_3 + \dots + a_kt_k$$

for any $t', t'' \in T$. Let $u = t_1 + qt' + a_2t''$. We will choose t', t'' such that $u + P \in T/P$ is transcendental over $R/(P \cap R)$ for all $P \in \mathcal{C}$, allowing us to create an SIP-subring $R[u]_{(R[u] \cap M)}$.

Use Lemma 3.5 to find t' such that, for each $P \in \mathcal{C}$ with $q \notin P$, $t_1 + qt' + P \in T/P$ is transcendental over $R/(R \cap P)$. If $q \in P$ for all $P \in \mathcal{C}$, let t' = 0. By our choice of q and the assumption that (*) holds, each P in \mathcal{C} contains precisely one of q and a_2 . Thus, if $P \in \mathcal{C}$ is such that $q \notin P$, then $u + P = t_1 + qt' + a_2t'' + P = t_1 + qt' + P \in T/P$ is transcendental over $R/(P \cap R)$ regardless of the choice of t''. Now, if $P \in \mathcal{C}$ is such that $q \in P$, then $a_2 \notin P$, and so we can use Lemma 3.5 to find $t'' \in T$ such that $t_1 + a_2t'' + P$ is transcendental over $R/(P \cap R)$ for all $P \in \mathcal{C}$ satisfying $a_2 \notin P$. If $a_2 \in P$ for all $P \in \mathcal{C}$, then let t'' = 0. By our choice of t' and t'', u + P is transcendental over $R/(P \cap R)$ for all $P \in \mathcal{C}$. By Lemma 3.3, R[u] satisfies condition (3) of Definition 2.6. Using an identical argument to the principal case, R[u] satisfies condition (4). It clearly satisfies conditions (1) and (2), and |R[u]| = |R|. By Lemma 3.2, $R' = R[u]_{(R[u] \cap M)}$ is an SIP-subring of T with |R'| = |R|.

Now let $J = (a_2, a_3, \ldots, a_k)R'$ and

$$c^* = c - a_1 u = a_2 (t_2 - a_1 t'') + a_3 t_3 + \dots + a_k t_k.$$

We have $c \in R \subseteq R'$ and $a_1u \in R'$, so $c^* \in JT \cap R'$. By our inductive hypothesis, there exists an SIP-subring S of T containing R' such that $c^* \in JS$, so $c^* = a_2s_2 + \cdots + a_ks_k$ for some $s_i \in S$. It follows that $c = a_1u + a_2s_2 + \cdots + a_ks_k \in IS$, so S is the desired SIP-subring.

We will now show that, given a set of generators (a_1, a_2, \ldots, a_k) for I, it is always possible to create a new set of generators for I that satisfy (*). Our set of generators will be of the form $(a_1 + \ell a_2, a_1 - \ell a_2, a_3, \ldots, a_k)$ where $\ell \in \mathbf{N} \setminus \{0\}$. Because T contains \mathbf{Q} , these elements generate I. We will choose ℓ such that (*) holds.

First note that ℓ is a unit, so $\ell a_2 \in P_i$ if and only if $a_2 \in P_i$ for any prime ideal P_i in T. It follows that $\ell a_2 \in \mathcal{C}_i$ if and only if $a_2 \in \mathcal{C}_i$. Next, note that, for each \mathcal{C}_i , $\mathcal{C}_i \cap R$ is an ideal of R. It follows that if $a_1, a_2 \in \mathcal{C}_i \cap R$, then $a_1 \pm \ell a_2 \in \mathcal{C}_i \cap R$. On the other hand, if $a_1 \in \mathcal{C}_i \cap R$ but $a_2 \notin \mathcal{C}_i \cap R$, then $a_1 \pm \ell a_2 \notin \mathcal{C}_i \cap R$. The same holds if $a_1 \notin \mathcal{C}_i \cap R$ but $a_2 \in \mathcal{C}_i \cap R$.

Finally, consider the case where $a_1, a_2 \notin \mathcal{C}_i$. Only in this case does the choice of ℓ determine whether $a_1 + \ell a_2 \in \mathcal{C}_i$. Suppose that $\ell, \ell' \in \mathbf{N} \setminus \{0\}$ such that $a_1 + \ell a_2, a_1 + \ell' a_2 \in \mathcal{C}_i$. Then $(a_1 + \ell a_2) - (a_1 + \ell' a_2) = a_2(\ell - \ell') \in \mathcal{C}_i$. Because $a_2 \notin \mathcal{C}_i$, it must be that $\ell - \ell' \in \mathcal{C}_i$, so $\ell - \ell' = 0$. This indicates that for each \mathcal{C}_i that contains neither a_1 nor a_2 , there is at most one value of ℓ such that $a_1 + \ell a_2 \in \mathcal{C}_i$. Similarly, there is at most one value of ℓ such that $a_1 - \ell a_2 \in \mathcal{C}_i$.

Choose ℓ such that $a_1 \pm \ell a_2 \notin \mathcal{C}_i$ for all \mathcal{C}_i that contain neither of a_1, a_2 . From the above observations, this choice ensures that $a_1 \pm \ell a_2 \in \mathcal{C}_i$ if and only if both $a_1, a_2 \in \mathcal{C}_i$. Hence, $\{\mathcal{C}_i \mid a_1 + \ell a_2 \in \mathcal{C}_i\} = \{\mathcal{C}_j \mid a_1 - \ell a_2 \in \mathcal{C}_j\}$, so we have (*), and the previous argument applies. \square

Lemma 3.8. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Let J be an ideal of T such that $J \not\subseteq P$ for all $P \in \mathcal{C}$, and let $u + J \in T/J$. Suppose R is an SIP-subring. Then there exists an SIP-subring S of T such that

- (1) $R \subseteq S \subset T$;
- (2) if $u \in J$, then $S \cap J$ contains a non-zerodivisor of T;
- (3) u + J is in the image of the map $S \to T/J$;
- (4) for every finitely generated ideal I of S, we have $IT \cap S = I$;
- (5) |R| = |S|.

Proof. First, we use Corollary 3.6 to find an SIP-subring R' such that $R \subseteq R'$, u + J is in the image of $R' \to T/J$, if $u \in J$, then $J \cap R'$ contains a non-zerodivisor, and |R'| = |R|. We will construct an S such that $R' \subseteq S \subset T$ and so conditions (1)–(3) of the lemma hold for S.

Let $\Omega = \{(I,c) \mid I \text{ finitely generated, } c \in IT \cap R'\}$. The cardinality of the set of finitely generated ideals of R' is less than or equal to |R'|. Hence, $|\Omega| = |R'| < |T|$. Well-order Ω so that it has no maximal element, and let 0 denote the minimal element of Ω . For each $\alpha \in \Omega$, we define $\gamma(\alpha) = \sup\{\beta \in \Omega \mid \beta < \alpha\}$. Let $R_0 = R'$.

Let $\lambda \in \Omega$. Assume that R_{β} has been defined for all $\beta < \lambda$, such that R_{β} is an SIP-subring, and $|R_{\beta}| = |R'|$. Suppose $\gamma(\lambda) < \lambda$, and let $(I,c) = \gamma(\lambda)$. Then, using Lemma 3.7, we construct R_{λ} such that $R_{\gamma(\lambda)} \subseteq R_{\lambda}$ and $c \in IR_{\lambda}$. Note that $|R_{\lambda}| = |R_{\gamma(\lambda)}| = |R'|$.

Next, suppose $\gamma(\lambda) = \lambda$. In this case, we define $R_{\lambda} = \bigcup_{\beta < \lambda} R_{\beta}$. Since $|R_{\beta}| = |R'|$ for all $\beta < \lambda$, and $|\Omega| = |R'|$, Lemma 3.1 implies that R_{λ} is an SIP-subring, and $|R_{\lambda}| = |R'|$.

Define

$$R_1 = \bigcup_{\alpha \in \Omega} R_{\alpha}.$$

Then $|R_1| = |R'|$, and R_1 is an SIP-subring of T. If I is a finitely generated ideal of R_0 , and $c \in IT \cap R_0$, then $(I,c) = \gamma(\alpha)$ for some α such that $\gamma(\alpha) < \alpha$. It follows that $c \in IR_{\alpha} \subseteq IR_1$. Hence, $IT \cap R_0 \subseteq IR_1$ for every finitely generated ideal I of R_0 .

We repeat this process for R_1 , and obtain an SIP-subring R_2 containing R_1 such that $IT \cap R_1 \subseteq IR_2$ for each finitely generated ideal I of R_1 , and $|R_2| = |R'|$. Continuing in this fashion, we construct a chain of SIP-subrings $R_0 \subseteq R_1 \subseteq R_2 \subseteq \cdots$ such that $IT \cap R_n \subseteq IR_{n+1}$ for every finitely generated ideal I of R_n and $|R_n| = |R'|$ for all $n \in \mathbb{N}$.

Let

$$S = \bigcup_{i=0}^{\infty} R_i.$$

Then, |S| = |R'| = |R|, and S is an SIP-subring of T. Let $I = (s_1, \ldots, s_n)$ be an ideal of S, and let $c \in IT \cap S$. Then $c = s_1t_1 + \cdots + s_nt_n$, where $t_i \in T$, and where each $s_k \in R_{m_k}$ for some $m_k \in \mathbb{N}$. Now, there exists an $m_0 \in \mathbb{N}$ such that $c \in R_{m_0}$. Let $N = \max\{m_k \mid 0 \leq k \leq n\}$. Then $c \in (s_1, \ldots, s_n)T \cap R_N \subseteq (s_1, \ldots, s_n)R_{N+1} \subseteq IS$. Therefore $IT \cap S = I$. It follows that S is our desired SIP-subring of T.

Until this point, all of our lemmata have established ways of modifying IP-subrings and SIP-subrings. Now, we must show that an SIP-subring of T exists.

To construct an SIP-subring, we will use the concept of a semi-SIP-subring, which satisfies a weaker version of the SIP conditions: the ideals $C_i \cap R$ are not required to be distinct from each other. We will begin with a semi-SIP-subring R, and then adjoin elements of T to make the ideals $C_i \cap R$ distinct.

Definition 3.9. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. We say that a quasi-local subring $(R, R \cap M)$ of T is a

semi-SIP subring of T if the following conditions hold.

- (1) R is infinite.
- (2) For each $P \in \mathcal{C}$, $P \cap R = Q \cap R$ for $Q \in Ass(T)$ with $Q \subseteq P$.
- (3) For each subcollection C_i , if $P, P' \in C_i$, then $P \cap R = P' \cap R$.
- (4) For each $P \in \mathcal{C}$ and $r \in P \cap R$, $\operatorname{Ann}_T(r) \not\subseteq P$.
- (5) |R| < |T|.

Lemma 3.10. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7, and fix \mathcal{C}_i . Let R be a semi-SIP-subring of T, and let $p_i \in T$ be given such that $p_i \in Q$ for every $Q \in \mathcal{E}_i$, but $p_i \notin P$ for any $P \in \mathcal{C}_j$, where $j \neq i$. Suppose further that $\operatorname{Ann}_T(p_i) \not\subseteq P$ for any $P \in \mathcal{C}_i$. Then there exists a unit u in T such that $R[up_i]_{(R[up_i] \cap M)}$ is a semi-SIP-subring of T.

Proof. Define $S = R[p_i]$, and note that |S| = |R| < |T|. Apply Lemma 3.5 with t = 0, q = 1 and J = M to find an element $t' \in M$ such that, for each $P \in \mathcal{C}$, $t' + P \in T/P$ is transcendental over $S/(P \cap S)$. Let u = t' + 1. Note that u is a unit, since T is local, and that $u + P \in T/P$ is transcendental over $S/(P \cap S)$, because $1 \in S$.

Define $p=up_i$. Then $p\in Q$ for every $Q\in \mathcal{E}_i$, but $p\notin P$ for any $P\in \mathcal{C}_j$, where $j\neq i$. We claim that $R[p]_{(R[p]\cap M)}$ is a semi-SIP-subring. Let $f\in R[p]$. Then we can write f in the form $f=r_np^n+\cdots+r_1p+r_0$ for some $r_i\in R$. To see that conditions (2) and (3) of Definition 3.9 hold for $P\in \mathcal{C}_i$, suppose $f\in P$ for some $P\in C_i$. Given any $Q\in \mathcal{E}_i$, we will show that $f\in Q$. Note that $p\in Q\subseteq P$, so $f\in P$ implies $r_0\in P\cap R=Q\cap R$. Hence, $r_0\in Q$, and so $f=r_np^n+\cdots+r_1p+r_0\in Q$. Thus, $P\cap R[p]=P'\cap R[p]=Q\cap R[p]$ for every $P,P'\in \mathcal{C}_i$ and every $Q\in \mathcal{E}_i$.

Next we show that, if $f \in R[p] \cap P$ for some $P \in C_i$, then $\operatorname{Ann}_T(f) \not\subseteq P$. By hypothesis, there exists some $v \notin P$ such that vp = 0. Since R is a semi-SIP-subring, there exists a $w \notin P$ such that $wr_0 = 0$. Then $vw \notin P$, and (wv)f = 0. Hence, $\operatorname{Ann}_T(f) \not\subseteq P$.

Now we show that $p + P \in T/P$ is transcendental over $R/(R \cap P)$ for every $P \in \mathcal{C}_j$, where $j \neq i$. By Lemma 3.3, this implies conditions (2), (3) and (4) of Definition 3.9 hold for R[p]. Let $f \in R[p] \cap P$ for some

 $P \in \mathcal{C}_i$, where $j \neq i$. Then

$$f = r_n p^n + \dots + r_1 p + r_0$$

= $r_n (p_i u)^n + \dots + r_1 (p_i u) + r_0$
= $(r_n p_i^n) u^n + \dots + (r_1 p_i) u + r_0$.

Hence, we can express f as an element of $S[u] \cap P$. Since $u + P \in T/P$ is transcendental over $S/(S \cap P)$, this implies that $r_k p_i^k \in P$, and thus $r_k \in P$ for all $k = 1, \ldots, n$. We have shown that, if $f = r_n p^n + \cdots + r_1 p + r_0 \in P$, then $r_k \in P$ for $k = 1, \ldots, n$. Hence, $p + P \in T/P$ is transcendental over $R/(R \cap P)$. It follows that $R[p]_{(R[p] \cap M)} = R[up_i]_{(R[up_i] \cap M)}$ is a semi-SIP-subring of T. \square

Lemma 3.11. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Then there exists an SIP-subring of T.

Proof. Let R_0 be the prime subring of T localized at (0). Then, since T contains the rationals, $R_0 = \mathbf{Q} \subseteq T$. Now, $P \cap R_0 = (0)$ for any $P \in \mathcal{C}$, and $Q \cap R_0 = (0)$ for any $Q \in \mathrm{Ass}(T)$. The other conditions of Definition 3.9 follow trivially, so R_0 is a semi-SIP-subring.

Consider the m subcollections $\mathcal{C}_1, \ldots, \mathcal{C}_m$. Using a process described below, we successively adjoin m elements p_1, \ldots, p_m to R_0 , such that $p_i \in P$ if and only if $P \in \mathcal{C}_i$, and such that the resulting ring S remains a semi-SIP-subring. Consequently, if $P \in \mathcal{C}_i$, and $P' \in \mathcal{C}_j$ where $i \neq j$, then the construction ensures that $P \cap S$ contains some element p_i which is not contained in P', so that $P \cap S \neq P' \cap S$. Thus, S will be an SIP-subring of T.

Let R be a semi-SIP-subring of T. Let $\operatorname{Min}(T) = \{Q_1, \ldots, Q_n\}$. For each Q_i , use the Prime Avoidance theorem to find $q_i \in Q_i - \cup \{P \in \mathcal{C} \mid Q_i \not\subseteq P\}$. Let

$$q = \prod_{i=1}^{n} q_i.$$

Then q is nilpotent, so let ℓ be the smallest positive integer such that $q^{\ell} = 0$. We note that, while each of the q_i is non-zero, q itself may be zero. In this case, $\ell = 1$, and the argument still follows.

Fix $C_k \in \mathcal{C}$. We will construct a semi-SIP-subring R' containing R and such that $C_k \cap R' \neq C_j \cap R'$ for all $j \neq k$. Consider those minimal

prime ideals contained in \mathcal{E}_k . We define

$$p_k = \prod_{Q_i \in \mathcal{E}_k} q_i^\ell \quad \text{and } s_k = \prod_{Q_i \notin \mathcal{E}_k} q_i^\ell.$$

Note that $p_k \cdot s_k = \prod_{i=1}^n q_i^\ell = (\prod_{i=1}^n q_i)^\ell = q^\ell = 0$, and thus $\operatorname{Ann}_T(p_k) \not\subseteq P$ for each $P \in \mathcal{C}_k$. By Lemma 3.10, there exists a unit $t_k \in T$ such that $R' = R[t_k p_k]_{(R[t_k p_k] \cap M)}$ is a semi-SIP-subring. Note that, for each $j \neq k$, $p_k \notin \mathcal{C}_j$. Thus, $\mathcal{C}_k \cap R[t_k p_k]_{(R[t_k p_k] \cap M)} \neq \mathcal{C}_j \cap R[t_k p_k]_{(R[t_k p_k] \cap M)}$.

We now repeat this process for each C_i . Our resulting subring S will be a semi-SIP-subring and will, for each C_i , contain an element p_i that is not in C_j for all $j \neq i$. Hence S is an SIP-subring of T.

The following theorem characterizes the completions of reduced rings whose minimal prime ideals have semi-local formal fibers. We start with the initial subring of T constructed in Lemma 3.11 and construct a local IP-subring A of T satisfying the conditions of Proposition 2.1.

Theorem 3.12. Let (T,M) be a complete local ring of dimension at least one, containing the rationals, and let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be a feasible partition. Then T is the completion of a reduced local subring A such that $\min A = \{\mathcal{C}_1 \cap A, \ldots, \mathcal{C}_m \cap A\}$ and the formal fiber of $\mathcal{C}_i \cap A$ is semi-local with maximal ideals precisely the elements of \mathcal{C}_i . Furthermore, if J is an ideal of T such that $J \not\subseteq P$ for every $P \in \mathcal{C}$, then the natural map $A \to T/J$ is onto.

Proof. Let $\Omega = \{u + J \mid u \in T, J \nsubseteq P \text{ for all } P \in \mathcal{C}\}$ equipped with a well-ordering <, such that every element has strictly fewer than $|\Omega|$ predecessors. Note that

$$|\{J\mid J \text{ is an ideal of } T \text{ with } J\nsubseteq P \text{ for every } P\in\mathcal{C}\}|\leq |T|.$$

For each $\alpha \in \Omega$, we let $|\alpha| = |\{\beta \in \Omega \mid \beta \leq \alpha\}|$, by abuse of notation. Let 0 denote the first element of Ω , and let R_0 be the SIP-subring of T constructed in Lemma 3.11. For each $\lambda \in \Omega$ after the first, we define R_{λ} recursively as follows: assume R_{β} is defined for all $\beta < \lambda$ such that R_{β} is an SIP-subring, and $|R_{\beta}| \leq |\beta| |R_0|$ for all $\beta < \alpha$. As

before, let $\gamma(\lambda) = u + J$ denote the least upper bound of the set of predecessors of λ . If $\gamma(\lambda) < \lambda$, we use Lemma 3.8 with $R = R_{\gamma(\lambda)}$ to find an SIP-subring R_{λ} such that

- (1) $R_{\gamma(\lambda)} \subseteq R_{\lambda} \subseteq T$;
- (2) if $u \in J$, then $J \cap R_{\lambda}$ contains a non-zerodivisor;
- (3) the coset $\gamma(\lambda) = u + J$ is in the image of the map $R_{\lambda} \to T/J$; and
- (4) for all finitely-generated ideals I of R_{λ} , $IT \cap R_{\lambda} = I$.

In this case,

$$|R_{\lambda}| = |R_{\gamma(\lambda)}|$$

$$\leq |\gamma(\lambda)||R_0|$$

$$\leq |\lambda||R_0|.$$

On the other hand, if $\gamma(\lambda) = \lambda$, we let

$$R_{\lambda} = \bigcup_{\beta < \lambda} R_{\beta}.$$

Then, $|\lambda| < |\Omega| = |T|$, and $|R_{\lambda}| \le |\lambda| |R_0|$. By Lemma 3.1, R_{λ} is an SIP-subring of T.

Let

$$A = \bigcup_{\alpha \in \Omega} R_{\alpha}.$$

Then $(A, A \cap M)$ is an IP-subring of T.

Note that $M^2 \nsubseteq P$ for every $P \in \mathcal{C}$ so, by our construction, the map $A \to T/M^2$ is onto. Next, let $I = (a_1, \ldots, a_n)A$ be a finitely-generated ideal of A and $c \in IT \cap A$. Then, for some $\delta \in \Omega$, $\{c, a_1, \ldots, a_n\} \subset R_{\delta}$. In particular, this yields $c \in IR_{\delta} \subset I$. Hence $IT \cap A = I$ for all finitely-generated ideals I of A. Since $(A, A \cap M)$ is a quasi-local subring of T, Proposition 2.1 implies that A is Noetherian and $\widehat{A} = T$.

Now, since T is faithfully flat over A, the ideals $\mathcal{C}_i \cap A$ are the minimal prime ideals of A, so that Min (A) has m elements. By our construction, the formal fiber of $\mathcal{C}_i \cap A$ is semi-local with maximal ideals precisely the elements of \mathcal{C}_i . Furthermore, the natural map $A \to T/J$ is onto for any ideal J such that $J \nsubseteq P$ for all $P \in \mathcal{C}$.

It is interesting to note that, for the ring A in Theorem 3.12, we know not only the formal fibers of the minimal prime ideals, but also

the formal fibers of all other prime ideals of A. To see this, suppose $p \in \operatorname{Spec}(A)$ with $\operatorname{ht} p > 0$. Then $pT \not\subseteq P$ for every $P \in \mathcal{C}$. It follows by our construction that $A \to T/pT$ is onto. Since $pT \cap A = p$, we have $A/p \cong T/pT$. It follows that the only element in the formal fiber of p is pT.

4. Excellent reduced rings. We now examine the conditions under which A from Theorem 3.12 can be made excellent. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Our goal in this section is to find necessary and sufficient conditions on T to ensure that it is the completion of an excellent reduced local subring A such that A has exactly m minimal prime ideals $\{J_1, \ldots, J_m\}$, and the formal fiber of each J_i is semi-local with maximal ideals the elements of \mathcal{C}_i . Recall that a local ring is excellent if it is both a G-ring and universally catenary.

Definition 4.1. Let (T,M) and $\mathcal{P}=(\mathcal{C},\{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Suppose $(A,A\cap M)$ is a reduced local (Noetherian) subring of T such that

- (1) $\widehat{A} = T$;
- (2) Min $(A) = \{C_1 \cap A, \dots, C_m \cap A\}$, and, for $i = 1, 2, \dots, m$, the formal fiber of $C_i \cap A$ is semi-local with maximal ideals precisely the elements of C_i ;
- (3) For all ideals J of T such that $J \not\subseteq P$ for all $P \in \mathcal{C}$, the map $A \to T/J$ is onto.

Then we call A a minimal-controlled subring (abbreviated MC-subring) of T.

The ring A constructed in Theorem 3.12 is an MC-subring of T. We will show, in Theorem 4.4 that, if the complete local ring T has an excellent subring satisfying all conditions for being an MC-subring of T except for condition (3), then, for all i, and for all $P \in \mathcal{C}_i$, $(T/Q_i)_{\overline{P}}$ is a regular local ring where $Q_i = \bigcap_{Q \in \mathcal{E}_i} Q$. Lemma 4.2 helps us do this.

Lemma 4.2. Let (T, M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be as in Remark 2.7. Fix \mathcal{C}_i , and let $Q_i = \cap_{Q \in \mathcal{E}_i} Q$. Suppose there exists an ideal I of T with $I \subseteq Q_i$ and $(T/I)_{\overline{P}}$ is a regular local ring for each $P \in \mathcal{C}_i$. Then $(T/Q_i)_{\overline{P}}$ is a regular local ring for all $P \in \mathcal{C}_i$.

Proof. Let $P \in \mathcal{C}_i$, and let $d = \operatorname{ht} P$. Define $T' = (T/I)_{\overline{P}}$, $T'' = (T/Q_i)_{\overline{P}}$, and let M' denote the maximal ideal of T' and M'' the maximal ideal of T''.

We claim that $\dim T' = \dim T'' = \operatorname{ht} P = d$. To see why this holds, let $P_0 \subsetneq \cdots \subsetneq P_d$ be a maximal chain of prime ideals in T such that $P_d = P$. Note that $P_0 = Q$ for some minimal prime ideal $Q \subseteq P$. Now, $Q \in \mathcal{E}_i$ and so $Q_i \subseteq Q$. Consider any ideal $J \subseteq Q$. Observe that $P_0/J \subsetneq \cdots \subsetneq P_d/J$, and so $\operatorname{ht}_{T/J}P/J \geq d$. By Theorem 15.15 in $[\mathbf{12}]$, $\operatorname{ht}_{T/J}P/J \leq \operatorname{ht}_T P = d$. Hence, $\operatorname{ht}_{TJ}P/J = d$. Finally, by $[\mathbf{12}]$, Theorem 14.18, $\dim (T/J)_{\overline{P}} = \operatorname{ht}_{T/J}P/J = d$. This argument with J = I implies $\dim T' = d$, while the argument with $J = Q_i$ yields $\dim T'' = d$. This proves our claim.

Since T' is a regular local ring of dimension d, every minimal generating set of its maximal ideal M' must have exactly d members. Let

$$\left\{\frac{a_1+I}{1+I},\ldots,\frac{a_d+I}{1+I}\right\}$$

be a minimal generating set for the maximal ideal M' of T'. Then it is not hard to show that

$$\left\{\frac{a_1+Q_i}{1+Q_i},\dots,\frac{a_d+Q_i}{1+Q_i}\right\}$$

generates the maximal ideal M'' of T''. It follows that $(T/Q_i)_{\overline{P}}$ is a regular local ring for all $P \in C_i$.

In Lemma 4.3, we find sufficient conditions for the complete local ring T to have a subring A such that A is both an MC-subring of T and a G-ring. We will use this lemma to construct an excellent ring A in Theorem 4.4.

Lemma 4.3. Let (T,M) and $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}\}_{i=1}^m)$ be as in Remark 2.7, and suppose that T is reduced. For each i, let $Q_i = \cap_{Q \in \mathcal{E}_i} Q$, and suppose that, for each \mathcal{C}_i and each $P \in \mathcal{C}_i$, $(T/Q_i)_{\overline{P}}$ is a regular local ring. Then there exists an MC-subring A of T that is a G-ring. Moreover, for every $i = 1, 2, \ldots, m$, $(\mathcal{C}_i \cap A)T = Q_i$.

Proof. Let Q_i be given. We first claim that there exists a minimal generating set (q_0, q_1, \ldots, q_n) of Q_i such that, if $k \neq i$, then $q_j \notin \bigcup_{P \in \mathcal{C}_k} P$

for all $j=0,1,2,\ldots,n$. We will find q_0,q_1,\ldots,q_n inductively. First use the Prime Avoidance theorem to find q_0 satisfying $q_0 \in Q_i$, and

$$q_0 \notin \left\{ MQ_i \cup \bigcup_{P \in \mathcal{C}_k, \ k \neq i} P \right\}.$$

Now assume that q_0, \ldots, q_r have been found and $Q_i \neq (q_0, q_1, \ldots, q_r)$. Then use the Prime Avoidance theorem to find q_{r+1} so that $q_{r+1} \in Q_i$ and $q_{r+1} \notin MQ_i + (q_0, \ldots, q_r)$ and $q_{r+1} \notin \bigcup_{P \in \mathcal{C}_k, k \neq i} P$. As T is Noetherian, this process must stop so that eventually we get $Q_i = (q_0, \ldots, q_n)$. Note that this generating set for Q_i is minimal by [11, Theorem 2.3].

Let $\operatorname{Min} T - \mathcal{E}_i = \{Q_1', Q_2', \dots, Q_r'\}$. For every $k = 1, 2, \dots, r$, use the Prime Avoidance theorem to find $v_k \in Q_k' - \bigcup_{P \in \mathcal{C}_i} P$. Let $v = \prod_{k=1}^r v_k$, and note that $v \neq 0$. For all $j = 0, 1, 2, \dots, n$, $q_j v \in \bigcap_{Q \in \operatorname{Min} T} Q = (0)$ since T is reduced. Also, $v \notin \bigcup_{P \in \mathcal{C}_i} P$, so $v \notin P$ for every $P \in \mathcal{C}_i$. It follows that, for all $j = 0, 1, 2, \dots, n$ and all $P \in \mathcal{C}_i$, $\operatorname{Ann}(q_i) \not\subseteq P$.

Let R_0 be the SIP-subring constructed in Lemma 3.11. Then use Lemma 3.10 to find a unit u_0 of T so that $R_0[u_0q_0]_{(R_0[u_0q_0]\cap M)}$ is a semi-SIP-subring of T. Note that $R_0[u_0q_0]_{(R_0[u_0q_0]\cap M)}$ is, in fact, an SIP-subring since R_0 is. We repeat this process for each $j=1,\ldots,n$: at each step we adjoin q_ju_j , where u_j is a unit chosen so that the resulting ring is an SIP-subring of T. Since the u_j are units, $(q_0u_0,q_1u_1,\ldots,q_nu_n)$ generates Q_i in T.

Continuing in this fashion, we adjoin a generating set for the ideal Q_i corresponding to each C_i . Let S be the resulting subring. Then S is an SIP-subring which has the property that, for each C_i , $(C_i \cap S)T = Q_i$. We now repeat the construction used in the proof of Theorem 3.12. For our initial subring, instead of the SIP-subring constructed in the proof of Lemma 3.11, we use the ring S.

Let A be the resulting ring. Then A is an MC-subring of T, and by construction, for every $i=1,2,\ldots,m,$ $(\mathcal{C}_i\cap A)T=Q_i$. We have left to show that A is a G-ring. To do this, we show that for every $J\in\operatorname{Spec} A$, and for all finite field extensions L of k(J), where $k(J)=A_J/JA_J$, $T\otimes_A L$ is a regular ring. Since A contains the rationals, it suffices to show that $T\otimes_A k(J)$ is a regular ring.

First, suppose that ht J=0. Then $J=\mathcal{C}_i\cap A$ for some $i=1,2,\ldots,m$. In this case, $T\otimes_A k(J)$ localized at a maximal ideal is

isomorphic to $(T/JT)_{\overline{P}}$ for some $P \in \mathcal{C}_i$. But

$$(T/JT)_{\overline{P}} = (T/(\mathcal{C}_i \cap A)T)_{\overline{P}} = (T/Q_i)_{\overline{P}}.$$

This ring is a regular local ring by hypothesis. It follows that $T \otimes_A k(J)$ is a regular ring.

Now suppose that ht J > 0. Then $JT \not\subseteq P$ for all $P \in \mathcal{C}$, and so the map $A \to T/JT$ is onto. The kernel of this map is $JT \cap A = J$ and so $T/JT \cong A/J$. We now have $T \otimes_A k(J) \cong (T/JT)_{\overline{A-J}} \cong (A/J)_{\overline{A-J}} \cong A_J/JA_J = k(J)$, a field.

It follows that $T \otimes_A k(J)$ is a regular ring for all $J \in \operatorname{Spec} A$ and so A is a G-ring. \square

Theorem 4.4 is the main theorem of this section. Specifically, we demonstrate necessary and sufficient conditions for the desired subring A of T to exist.

Theorem 4.4. Let (T,M) be a complete local ring of dimension at least one, containing the rationals. Let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be a feasible partition. For each $\mathcal{C}_i \in \mathcal{P}$, let $Q_i = \cap_{Q \in \mathcal{E}_i} Q$. Then T is the completion of an excellent reduced local subring A, such that $\text{Min } (A) = \{\mathcal{C}_1 \cap A, \ldots, \mathcal{C}_m \cap A\}$ and the formal fiber of $\mathcal{C}_i \cap A$ is semilocal with maximal ideals precisely the elements of \mathcal{C}_i , if and only if the following conditions hold:

- (1) T is reduced;
- (2) for each Q_i and each $P \in \mathcal{C}_i$, $(T/Q_i)_{\overline{P}}$ is a regular local ring;
- (3) for each Q_i , T/Q_i is equidimensional.

Proof. Assume that such an A exists. Then, since A is excellent and reduced, T must be reduced.

Now let $P \in \mathcal{C}_i$ for some i. Then $P \cap A = J$ for some minimal prime ideal J of A. Since A satisfies condition (2) of MC-subrings, for every $Q \in \mathcal{E}_i$, we have $Q \cap A = J$. It follows that $JT \subseteq \bigcap_{Q \in \mathcal{E}_i} Q$. Since A is a G-ring, $T \otimes_A k(J)$, where $k(J) = A_J/JA_J$, is a regular ring. Now, because the formal fiber of J is semilocal with maximal ideals the elements of \mathcal{C}_i and $P \in \mathcal{C}_i$, $T \otimes_A k(J)$ localized at the maximal ideal

 $P \otimes_A k(J)$ is isomorphic to $(T/JT)_{\overline{P}}$. Hence, $(T/JT)_{\overline{P}}$ is a regular local ring. This argument holds for all $P \in \mathcal{C}_i$, so $(T/JT)_{\overline{P}}$ is a regular local ring for all $P \in \mathcal{C}_i$. It follows from Lemma 4.2 that $(T/Q_i)_{\overline{P}}$ is a regular local ring for all $P \in \mathcal{C}_i$.

Since A is excellent, it is universally catenary and hence formally catenary. Consequently, since $C_i \cap A$ is a (minimal) prime ideal of A, $A/(C_i \cap A)$ is formally equidimensional. Then its completion

$$\left(\frac{\widehat{A}}{(\mathcal{C}_i \cap A)}\right) = \frac{\widehat{A}}{(\mathcal{C}_i \cap A)\widehat{A}} = \frac{T}{(\mathcal{C}_i \cap A)T}$$

is equidimensional. We now show that, since $T/[(C_i \cap A)T]$ is equidimensional, so too is T/Q_i . Note that

$$\operatorname{Min}\left(\frac{T}{Q_i}\right) = \left\{\frac{Q}{Q_i} \mid Q \in \mathcal{E}_i\right\},$$

and if

$$\frac{Q}{Q_i} \in \operatorname{Min}\left(\frac{T}{Q_i}\right),$$

then $Q/[(\mathcal{C}_i \cap A)T]$ is a minimal prime ideal of $T/[(\mathcal{C}_i \cap A)T]$. Now, there exists a $Q \in \mathcal{E}_i$ such that Q/Q_i is a minimal prime ideal of T/Q_i satisfying $\dim T/Q_i = \dim (T/Q_i)/(Q/Q_i) = \dim T/Q$. Note that $Q/[(\mathcal{C}_i \cap A)T]$ is a minimal prime ideal of $T/[(\mathcal{C}_i \cap A)T]$. Let Q'/Q_i be a minimal prime ideal of T/Q_i . Then $Q'/[(\mathcal{C}_i \cap A)T]$ is a minimal prime ideal of $T/[(\mathcal{C}_i \cap A)T]$. So,

$$\dim \frac{T/Q_i}{Q'/Q_i} = \dim \frac{T}{Q'} = \dim \frac{T/(\mathcal{C}_i \cap A)T}{Q'/(\mathcal{C}_i \cap A)T}$$

$$= \dim \frac{T}{(\mathcal{C}_i \cap A)T} = \dim \frac{T/(\mathcal{C}_i \cap A)T}{Q/(\mathcal{C}_i \cap A)T}$$

$$= \dim \frac{T}{Q} = \dim \frac{T}{Q_i}.$$

It follows that T/Q_i is equidimensional. So conditions (1)–(3) of the theorem hold.

Conversely, suppose conditions (1)–(3) in the statement of the theorem hold. Then by Lemma 4.3, there exists a subring A of T that is a

G-ring and is an MC-subring of T. Moreover, for every i = 1, 2, ..., m, $(C_i \cap A)T = Q_i$.

It remains to show that A is universally catenary. Let $J \in \operatorname{Spec}(A)$. If $\operatorname{ht}_A J = 0$, then $J = \mathcal{C}_i \cap A$ for some i, and so $\widehat{(A/J)} \cong T/((\mathcal{C}_i \cap A)T) = T/Q_i$ is equidimensional. Hence, A/J is formally equidimensional.

On the other hand, if $\operatorname{ht}_A J > 0$, then $JT \not\subseteq P$ for all $P \in \mathcal{C}$. Consequently, the natural map $A \to T/JT$ is onto since A satisfies condition (3) of MC-subrings. Since the kernel of the map is $JT \cap A = J$, we have $T/JT \cong A/J$, which is a domain and therefore equidimensional. Now observe that $\widehat{(A/J)} = T/JT \cong A/J$, so A/J is its own completion and thus formally equidimensional. Hence A is formally catenary, and therefore universally catenary. \square

If the three conditions of Theorem 4.4 are satisfied, then the ring A constructed in Theorem 4.4 satisfies the condition that all minimal prime ideals have semi-local formal fibers. In addition, if J is a prime ideal of A with J not a minimal prime ideal, then the formal fiber of J contains exactly one element, namely JT. This follows since, as shown in the proof of Theorem 4.4, $A/J \cong T/JT$.

It is interesting to note that, if the complete local ring T is the completion of a ring A as in Theorem 4.4, then there are restrictions on the partition \mathcal{P} . In particular, Corollary 4.5 shows the rather restrictive condition that each $P \in \mathcal{C}$ can only contain one minimal prime ideal of T.

Corollary 4.5. Let (T,M), $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}\}_{i=1}^m)$ and A be as in Theorem 4.4. Then each $P \in \mathcal{C}$ contains exactly one minimal prime ideal.

Proof. For $P \in \mathcal{C}_i$, since $(T/Q_i)_{\overline{P}}$ is a regular local ring, it is an integral domain. It follows that P contains exactly one minimal prime ideal of T.

To demonstrate Theorem 4.4, we present the following class of examples:

Example 4.6. Let (T, M) be a complete local reduced ring of dimension at least one, containing the rationals. Let $\mathcal{C} = \text{Min}(T) = \{Q_1, \ldots, Q_n\}$, and let $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ be any partition on \mathcal{C} . Then $\mathcal{P} = (\mathcal{C}, \{\mathcal{C}_i\}_{i=1}^m)$ is automatically a feasible partition. For any i and $Q' \in \mathcal{E}_i$, we know

$$\left(\frac{T}{(\bigcap_{Q\in\mathcal{E}_i} Q)}\right)_{\overline{Q'}}$$

is a field and so a regular local ring for all i. If, for every i, $T/(\cap_{Q \in \mathcal{E}_i} Q)$ is equidimensional, then T is the completion of an excellent reduced local subring A, with Min $(A) = \{\mathcal{C}_i \cap A\}_{i=1}^m$ and the formal fiber of $\mathcal{C}_i \cap A$ is precisely \mathcal{C}_i .

Acknowledgments. The authors thank the referee for improvements to Lemma 3.5 and the proof of Lemma 4.3.

REFERENCES

- 1. P. Charters and S. Loepp, Semilocal generic formal fibers, J. Algebra 278 (2004), 370-382.
- 2. John Chatlos, Brian Simanek, Nathaniel G. Watson and Sherry X. Wu, Semilocal formal fibers of principal prime ideals, J. Commutative Algebra, to appear.
- 3. A. Dundon, D. Jensen, S. Loepp, J. Provine and J. Rodu, Controlling formal fibers of principal prime ideals, Rocky Mountain J. Math. 37 (2007), 1871–1891.
- 4. Raymond C. Heitmann, Characterization of completions of unique factorization domains, Trans. Amer. Math. Soc. 337 (1993), 379–387.
- 5. ——, Completions of local rings with an isolated singularity, J. Algebra 163 (1994), 538–567.
- 6. Christer Lech, A method for constructing bad Noetherian local rings, in Algebra, algebraic topology and their interactions, Lect. Notes Math. 1183, Springer, Berlin, 1986.
- 7. Dan Lee, Leanne Leer, Shara Pilch and Yu Yasufuku, *Characterization of completions of reduced local rings*, Proc. Amer. Math. Soc. **129** (2001), 3193–3200 (electronic).
- 8. S. Loepp, Constructing local generic formal fibers, J. Algebra 187 (1997), 16-38.
- 9. ——, Excellent rings with local generic formal fibers, J. Algebra $\bf 201$ (1998), 573–583.
- 10. ——, Characterization of completions of excellent domains of characteristic zero, J. Algebra 265 (2003), 221–228.

- 11. Hideyuki Matsumura, *Commutative ring theory*, second edition, Cambr. Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1989 (translated from the Japanese by M. Reid).
- 12. R.Y. Sharp, Steps in commutative algebra, second edition, Lond. Math. Soc. Student Texts 51, Cambridge University Press, Cambridge, 2000.

Stanford University, 212 Pine Hill Court, Apartment 205, Stanford, CA 94305

Email address: narnosti@stanford.edu

University of Michigan, Department of Mathematics, 530 Church Street, Ann Arbor, MI 48109

Email address: rachelkarpman@gmail.com

Duke University, Mathematics Department, Box 90320, Durham, NC 27708

Email address: cleverso@math.duke.edu

University of Michigan, Department of Mathematics, 530 Church Street, Ann Arbor, MI 48109

Email address: levinson.jake@gmail.com

WILLIAMS COLLEGE, BRONFMAN SCIENCE CENTER, WILLIAMSTOWN, MA 01267 Email address: sloepp@williams.edu