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MONOIDS OF TORSION-FREE MODULES
OVER RINGS WITH FINITE REPRESENTATION TYPE

NICHOLAS R. BAETH AND MELISSA R. LUCKAS

ABSTRACT. Given a local ring R, we let T(R) denote the
monoid of isomorphism classes of finitely generated torsion-
free R-modules with operation [M] + [N] = [M & N]. The
main goal of this paper is to determine which monoids occur
as T(R) for one-dimensional local ring-orders R with finite
representation type. A byproduct of this investigation is a
Krull-Remak-Schmidt theorem for finitely generated torsion-
free modules over these rings.

1. Introduction and terminology. It is well known [17] that
the Krull-Remak-Schmidt property holds for the class of all finitely
generated modules over any complete local ring. That is, whenever
Mi®@M;®---®M; = Ny ® Ny ®--- D Ny with each M; and Nj in-
decomposable, then (1) s = ¢ and (2) there exists some permutation
o of the set {1,2,...,t} such that M; = N, ;) for each i. Beginning
with Evans [7], many authors, including Wiegand [19], have produced
examples of non-complete local rings over which direct sum decompo-
sitions of finitely generated modules can be non-unique. In [8], the
class of generically free modules over all local ring-orders was consid-
ered. The Krull-Remak-Schmidt property almost always fails for this
larger class of modules. Thus, we restrict our rings and restrict to the
nicer class of torsion-free modules. In [2] the first author gave a Krull-
Remak-Schmidt theorem for the class of all finitely generated modules,
and then for the much smaller class of finitely generated torsion-free
modules over a family of equicharacteristic one-dimensional local rings
(R, m) with finite representation type—those rings having, up to isomor-
phism, only finitely many indecomposable torsion-free modules. These
results hinge on a result of Levy and Odenthal [16] and a list of pos-
sible ranks of indecomposable modules over the m-adic completion of
R. Recently, the authors [3] gave a complete list of all possible ranks
of indecomposable torsion-free modules over arbitrary one-dimensional
reduced rings with finite representation type. The goal of this current
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work is to use the list of ranks from [3] to give a Krull-Remak-Schmidt
theorem for all one-dimensional reduced rings with finite representation
type. Moreover, for those rings over which the Krull-Remak-Schmidt
property fails, we measure how far from unique direct-sum decomposi-
tions can be.

Throughout, (R, m) will denote a one-dimensional local ring with m-
adic completion R. Since the class of all finitely generated torsion-free
modules over a local ring is closed under finite direct sums and under
direct summands, the monoid 7 (R) of isomorphism classes of finitely
generated torsion-free R-modules with operation [M]+ [N] = [M & N|
carries all the information we need about direct sum decompositions
over R.

We consider a monoid H to be a finitely generated commutative
cancellative semigroup with identity. Furthermore, we restrict our
attention to monoids that have no non-identity invertible elements and
that are generated by their irreducible elements—elements that cannot
be written as a sum of two non-zero elements in H. We say that z <y
in H provided there exists z € H such that z + z = y. A monoid H
is a Krull monoid provided that there is a divisor homomorphism from
H into a free monoid. That is, a map ¢ : H < N* such that a < b if
and only if ¢(a) < @(b).

A divisor theory is a divisor homomorphism ¢ : H < N? such that
each element in N7 is the greatest lower bound (with respect to <) of
some finite set of elements in ¢(H). It is known that each Krull monoid
has a divisor theory, cf. [10].

The quotient group Q(H) of a Krull monoid, H, is the group of formal
differences of elements in H, i.e., Q(H) ={a—b:a,be H}. If H is
a Krull monoid and ¢ : H — D is a divisor theory for H, the divisor
class group of H, denoted CI(H), is defined to be the cokernel of the
induced map 9(¢) : Q(H) — 9(D).

For any element h € H, L(h) = {n | h = a1 + a2 + - +
ap, for atoms a;} is the set of lengths for the element h. A monoid
H is said to be factorial if each element can be written uniquely (up
to order of the terms) as a sum of atoms of H. A monoid H is said to
be half-factorial if L(h) is a singleton for each h € H. The set L(H) =
{L(h) | 0 # h € H} is the system of lengths of H. The elasticity is a
measure of how far from unique the factorization is in the monoid. The
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elasticity of an element h € H is p(h) = sup{L(h)}/inf{L(h)}. The
elasticity of the monoid H is p(H) = sup{p(h) | h € H — {0}}. We
note that p(H) =1 if and only if H is half-factorial.

We now introduce the block monoid of a Krull monoid. This subject
is often easier to study but yet carries a great deal of information
about the original monoid. Let G be an abelian group, let Gy C G
be any subset of G, and let F(Gy) be the free abelian monoid (written
multiplicatively) over Go. Consider the map

C: j:(Go) — G
ngGo gt — deGo Ngg
The submonoid B(Gy) = {s € F(Gy) : ¢(s) = 0} C F(Gy) is called the
block monoid of Gy. Let H < N* be a divisor theory with H a Krull
monoid. The prime divisor classes in CI(H) are the elements g € CI(H)
such that ¢ = p+ Q(H) for some atom p € N*. It is shown in [9] that
if we let G = CI(H) and Gy be the set of prime divisor classes in G
then the system of lengths of H is the same as the system of lengths of
B(Gy). In particular, the elasticities of these two monoids are equal.

Since direct sum cancelation holds for R-modules [7], T(R) satisfies
our definition of a monoid. Since Ris a complete local ring, the
decomposition of R-modules is unique up to isomorphism, [1], and
hence ’T(I/%) =~ NA where A is the set of isomorphism classes of
indecomposable torsion-free R-modules. It is shown in [18] that the
natural map taking M to R ®gr M induces a divisor homomorphism
T(R) — T(R). Thus we may consider 7(R) as a full submonoid
of N2; that is, a submonoid that satisfies, for any a,b € T(R), if
b = a+ c for some ¢ € N* then ¢ € T(R). Note that the atoms of
T (R) correspond to the minimally extended R-modules—the extended

R-modules for which no proper direct summand is extended.

2. T(R) as a Diophantine monoid. The goal of this section
is to consider T(R) as a Diophantine monoid, that is, as the set
of nonnegative integer solutions to a system of linear equations with
integer coefficients. Given a list of all of the indecomposable torsion-
free R-modules as well as their ranks at each of the minimal prime
ideals of R, we can determine 7 (R) as a full submonoid of T (R) using
the following result, which follows as an immediate corollary to [16,
Theorem 6.2]:
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Proposition 2.1. Let R and R be local ring-orders. Let M be a
finitely generated R-module. Then M is extended (&;M 2 N®r R
for some N € T(R)) from an R-module if and only if rankp(M) =
rankg (M) whenever P and Q are minimal prime ideals ofl/% lying over
the same prime ideal of R.

In particular, if {M;, Ma,... ,M,;} is a finite set of indecomposable
modules over R, then the R-module M = M ® My?* @ --- @ M
is extended from an R-module if and only if >'_, n;(rankp(M;) —
rankg(M;)) = 0 for any pair of minimal prime ideals P and @ of
R that lie over a common prime ideal of R. Thus, given a finite
set {M, Ms, ... ,M;} of indecomposable finitely generated torsion-free
modules over ﬁ, we can form the free monoid N* of isomorphism classes
of R-modules that can be expressed as direct sums of the M;. Then
the full-submonoid of N? consisting of R-modules extended from R-
modules can be described as follows (cf. [2, 8]): Let {Py, Ps, ..., Ps} de-
note the set of minimal prime ideals of R and, for eachi € {1,2,... s},
let Qi1,Qi,2,.-.,Qi ¢ denote the minimal prime ideals of R lying over
P;. Now if ¢ = spl (R) := #Spec (ﬁ) — #Spec (R) is the splitting num-
ber of R, then ¢ = t; +t3 +---+t; —s. Set A to be the ¢ x ¢ matrix
whose kth column corresponds to the indecomposable R-module My
and is the transpose of the vector

(P10 — 71,2 " - Tlt—1— Tty = - Tsl —Ts2 " " Tsty—1— Tsit,)

where r; ; = rankg, (Mg). Then, the full submonoid of extended
modules is isomorphic to ker (A) N N¢.

In [8] monoids of all generically free modules are considered and hence
the matrix A may have infinitely many columns. Since in our context
R, and hence R has only finitely many indecomposable torsion-free
modules, A is a finite matrix.

The following lemma [2] allows us to calculate CI(T(R)) as well as
the system of lengths of T(R).

Lemma 2.2. 1. The divisor class group Cl(H) of a finitely generated
reduced Krull monoid H is trivial if and only if H = Nt for some t,
i.e., H is free.
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2. Let R and R be as above. If spl (R) =0, then T(R) = T(R), and
hence CI(T(R)) = 0.

3. If a monoid H contains a Z-basis for a group G O H then
G = 9(H).

4. Let H = ker (A) N N* C N* where A is an s X t matriz with
entries in Z. Further assume that H contains a Z-basis for ker (A)
and that the natural inclusion i : H — Nt is a divisor theory. Then
Cl(H) is isomorphic to the image of A : Z* — Z*. Furthermore, the
prime divisor classes in CI(H) are the elements {Ae;}’_,

In Section 3 we see, for each ring with finite representation type, the
number of minimal prime ideals is at most three, and hence A has
either one or two rows. Moreover, if spl (R) = 1 and if P; and P» are
two prime ideals of R lying over a common prime ideal of R, then by
setting M; = R/P; and My = R/P, we may assume that the first
two entries of A are 1 and —1. If spl (R) = 2, with minimal prime
ideals Py, P, and Pj of R lying over a common prime ideal of R, then
settlng M1 = R/Pl, M2 = R/PQ, M3 = R/P‘g,, M4 = R/(Pl ﬂPQ)

= R/(P,N P3), and Mg = R/(P, N P3) allows us to assume that
the first six columns of A are

o BT8R E L) )

The following two lemmas use Lemma 2.2 to determine explicitly the
monoid of extended modules just described. As we see in Section 3,
the matrices considered in Lemmas 2.3 and 2.4 are much more general
than we need. However, the process following Proposition 2.1 gives
more general monoids that can occur as submonoids of 7(R) when R
has infinite representation type.

Lemma 2.3. If A = [1 —1asas - a;| with each a; € Z, then the
natural inclusion ker (A) N Nt < N is a divisor theory if and only if
there exist distinct 1,5 € {3,4,... ,t} with a; <0 and a; > 0. In this
case, Cl(ker (A) N N*) = Z. Otherwise, Cl(ker (A) N N*) = 0.

Proof. First suppose that a; > 0 for all + € {3,4,...,t}. An
element h = (hy, ha,... ,h;) in N* is in the kernel of A if and only
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if hy = hy + Y_i_s aih;. That is, ker (A) N N* = N*~! is free. Thus
the natural inclusion ker (A) N N* < N’ is not a divisor theory
and Cl(ker (A) N N*) = 0 by Lemma 2.2. The case a; < 0 for all
i €{3,4,...,t} can be handled similarly.

Without loss of generality we assume that there is some number s
with 3 < s < t such that a; < 0 for all ¢ € {3,4,...,s} and a; > 0 for
alli € {s+1,s+2,...,t}. We show that ker (A) N N* contains a Z-
basis for ker (A) and that each e; € Nt is the greatest lower bound of a
finite set of elements of ker (A) N N*. Suppose that g = (g1, g2,--- ,9t)
is an element of ker (A). Then g = gie; + gee2 + -+ + grer and
g1+ 2223 a;g; = g2. We write g as a unique Z-linear combination of
the elements e; + ey, —a;e; +e; for each i € {3,4,...,s}, and a,es +¢;
foreachi € {s+ 1,5+ 2,...,t} as follows:

s t s
D gi(—aier +e)+ > gilaies +e) + <Zaigi + gl> (e +e2)
=3

i=s+1 =3

t t
=gie1 + Zgiei + <Z a;gi + 91> €2
i=3 i=3
t
=g1€1+ Zgiei + 9262 = g.
i=3
We now show that each e; € Nt is the greatest lower bound of two
elements in ker (A) NIN?. First note that e; = glb{e; +e2, —aze; +e3}
and ey = glb {e; +e2,as1162+ €541} Now for j and k integers with 3 <
j < sands+1 < k <t wehave that e; = glb {—a;je;+e¢;, —ajex+are;}
and e = glb{ares + ex, —ajer + are;}.
Since ker (A) N N* contains a Z-basis for ker (A) and each e; € Nt is

the greatest lower bound of a finite set of elements of ker (A) N N* we
have a divisor theory by Lemma 2.2.

Also by Lemma 2.2, Cl(ker (A) NN*) is isomorphic to the image of A
as a map from Z! to Z. Since the first two entries of A are 1 and —1,
this map is a surjection and hence Cl(ker (A) N N*) = Z. O

Lemma 2.4. If A = [é _11 701 (; 711 _01 ‘bl: ‘;: Z“}, then the natural

inclusion ker (A)NN¥ — N* is a divisor theory. Moreover, Cl(ker (A)N
N*) 2 72,
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Proof. Without loss of generality we assume the following structure
on A: For 7<m<n<p<qg<r<s<t<u;a;b; > 0 whenever
7<i<m;a; >0,b; <0 whenever m+1 <1t < n;a; <0,b; >0
whenever n+1 <14 < p; a;,b; < 0 whenever p+1<i<gq;a; =0,b; >0
whenever ¢ +1 < i < 7r; a; = 0,b; < 0 whenever r +1 < 7 < s;
a; > 0,b; = 0 whenever s +1 < ¢ < t; and a; < 0,b; = 0 whenever
t+1<:<u.

We first show that ker (A) N N*“ contains a Z-basis for ker (\A).
Suppose that ¢ = (g1, g2,---,9x) is an element of ker (4). Then
g = gier +gaea + - + gueu, g1 — g2 + g5 — g6 + >_;i_7 aigi = 0 and
g2 — g3+ 9gs — gs + ;7 bigi = 0. We write g uniquely as a Z-linear
combination of elements in ker (A) N N* as follows:

m n

g= Zgi(aieﬁ + bies +e;) + Z gi(aies — bieq + €;)
i=7 i=m+1
P
+ Z gi(—aier + biez + ;)
i=n+1

i=p+1
+ > gilbies+e)+ Y gi(—bies + €;)
i=qg+1 i=r+1
t u
+ Z gi(aies +€;) + Z gi(—aier + e;)
i=t+1
p
" (gl P gt > agt Y i) (e + o
i=n+1 —p+1 i=t+1
+ (o= Db RTEDS b ) (ea + €4
=7 1=n-+1 i=qg+1
+ <g4 — g3+ szgz> es+e5+ €)
+ <95 94+ 93— szgl> ez +es).

=7
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We now show that each e; € N is the greatest lower bound of two or
three elements of ker (A) NIN“. Indeed, e; = glb {e; +eg,e1 +ex+e3},
es = glb{es + es,e1 + ex + e3}, es = glb{es + es,e1 + ex + es},
es = glb{es + es,e4 + €5 + €6}, €5 = glb{ex + €5,e4 + €5 + €6}, and
es = glb{e1+eg,eat+es+egt. U7 <i < mthene; =glb{a;es+be3+
ei,a;(ea+e3) +bies+e;,ae6+bi(es+es)+e;t. fm+1<i<nthen
€e; = glb {aieg - bi64 + €, (Li(ez + 63) - bi64 + €;,Q;€6 — bi(el + 62) + ei}.
Ifn+1 <3 < pthen e; = glb{—ase; + bies + e;, —a;(es + e4) +
bies + e;, —ajer + bi(es + es) +e}. If p+1 < i < g then ¢; =
glb {—aiel —bes+e;, —ai(e5+e4) —beste;, —azer —bi(el +62) +6i}. If
g+1<i<rthene; =glb{bes+e;b(es+es)+e}. Ifr+1<i<s
then e; = glb{—bieq + €;, —bi(e1 +e2) +€;}. If s+ 1 < i < ¢ then
e; = glb{aies + e;,a;(es + e3) + e;}. Finally, if t +1 < i < u then
e; = glb{—a;e; +e;,—a;(es +eq) +€;}.

By Lemma 2.2, the inclusion map is a divisor theory and Cl(ker (A) N
Nv) is isomorphic to the image of A as a map from Z* to Z2. Since

the first two columns of A span Z2, this map is a surjection and hence
Cl(ker (A)NN¥) >~ Z2 0O

3. Rings with finite representation type. Throughout this
section, (R, m) is a one-dimensional local ring with finite representation
type. The characterization of these rings was completed in 1994. The
classification of such rings is given by the following theorem, whose
proof is summarized in [4].

Theorem 3.1. Let R be a one-dimensional Cohen-Macaulay local
ring with maximal ideal m. Then R has finite representation type if
and only if

1. R is reduced,;

2. The normalization R of R is generated by at most three elements
as an R-module; and

3. mR/m is cyclic as an R-module.

Over the past 40 years, an extensive series of authors, including Dade,
Drozd and Roiter, Green and Reiner, Jacobinski, Jones, and R. and
S. Wiegand have studied indecomposable modules over these and other
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local rings, cf. [5, 6, 11-13, 20]. In [2], the first author showed that if
R is in addition equicharacteristic and local with perfect residue field
and characteristic not 2, 3 or 5, then the bound on the ranks is 3.
Moreover, a complete list of all possible rank tuples was given for these
rings. Recently, in [3], the authors finalized the list of ranks that occur
for each of the rings classified in Theorem 3.1. The following theorem
summarizes these results.

Theorem 3.2. Let R be a Noetherian one-dimenstonal reduced local
ring with finitely generated normalization, and assume that there is a
bound on the ranks of indecomposable finitely generated torsion-free R-
modules, equivalently R has finite representation type. Then R has at
most three minimal prime ideals. Moreover:

1. If R is a domain, then every indecomposable module has rank 1, 2
or 3.

2. If R has exactly two minimal prime ideals, then every indecom-
posable module has rank

(0,1),(1,0),(1,1),(1,2),(2,1) or (2,2).

3. If R has exactly three minimal prime ideals then, with a suitable
ordering of the minimal prime ideals, every indecomposable module has
rank

(0,0,1),(0,1,0), (1,0,0), (0,1,1),(1,0,1), (1,1,0), (1,1,1) or (2,1,1).

We apply the results of Section 2 to rings with finite representation
type. If (R, m) has finite representation type, then spl(R) € {0,1,2}
and the number of minimal prime ideals of the m-adic completion
R is either 1, 2 or 3. Lemmas 2.3 and 2.4 and Theorem 3.2 give
explicit descriptions of T(R) when R is a local ring-order with finite
representation type.

Suppose that spl(R) = 0. Then every torsion-free R-module is
extended from an R-module and thus, 7(R) & T(R) = N’ where ¢
is the number of isomorphism classes of indecomposable torsion-free

R-modules.
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Now suppose that spl (R) = 1. Then applying methods of Section 2,
we see that 7(R) is isomorphic to ker (A) N N¢~* @& N*® where ¢ is
the number of isomorphism classes of indecomposable torsion-free R-
modules and s is the number of indecomposable torsion-free R-modules
with constant rank. We note that, in this case, each entry of matrix A
is nonzero. Equivalently, we could allow matrix A4 to contain s zeros
in which case T (R) = ker (A) N N*. For notational ease, we stick with
the first formulation of 7 (R). Considering the possible ranks given in
Theorem 3.2, it must be the case that the entries of A are all ones
and negative ones. If P and @) are two minimal prime ideals lying
over a common prime ideal of R, then the number of ones in matrix A
corresponds to the number of indecomposable torsion-free R-modules
M such that rankp(M) — rankg (M) = 1, and the number of negative
ones in matrix A correspond to the number of indecomposable torsion-
free R-modules M such that rankp (M) — rankg(M) = —1. From
Lemma 2.3 we see that 7(R) C T(ﬁ) is a divisor theory if and only if
there are at least two positive and at least two negative entries in A.
By considering the ranks listed in Theorem 3.2, we see that the only
time this does not occur is when the following condition is satisfied.

(1) The local ring-order (R,m) is a domain, the m-adic completion R
has two minimal primes P and @ and up to isomorphism, either ﬁ/ P
is the only indecomposable torsion-free R-module of rank (r,s) with
r—s =1 or the E/ Q is the only indecomposable torsion-free R-module
of rank (r,s) with r — s = —1.

Finally, suppose that spl(R) = 2. That is, R has three minimal
primes and R is a domain. In this case, after applying the methods of
Section 2, we have that T(R) 2 ker (4) N N* where u is the number
of isomorphism classes of indecomposable torsion-free R-modules and
where A is as in Lemma 2.4. Moreover, considering the possible ranks
given in Theorem 3.2, all nonzero columns of A are identical to one of
the six vectors in (2) and each of these six vectors occurs as at least
one column.

These results are summarized in the following proposition.

Proposition 3.3. Let R denote a local ring-order with finite repre-
sentation type. If spl (R) # 1, then the class group of the monoid T (R)
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~

depends only on the splitting number spl (R) = #Spec (R) — #Spec (R).
If spl(R) = 1, then CI(T(R)) depends on condition (). The results
are summarized in Table 1. The integer t denotes the number of non-
isomorphic indecomposable torsion-free R-modules while the integer s
denotes the number of non-isomorphic indecomposable torsion-free R-
modules with constant rank.

TABLE 1. Monoids of torsion-free modules.

minimal prime | spl (R) t T(R) | T(R) CI(T(R))
ideals of R (yes/no)
1,2o0r3 0 Nt Nt 0
2 1 no Nt | N¢! 0
2 1 yes N¢ (ker (A1) NN!=$)dN*® | Z
3 1 Nt | (ker (A;) "Nt—*)@N* | Z
3 2 Nt (ker (A2) NNt~ $)dN*® | ZOZ

The matrices in Table 1 are as follows:

e A =[111-1-1- _1]1><(t—s) where the number of ones corre-

sponds to the number of indecomposable R-modules M with rank p (M)—
rankg (M) > 0 and the number of negative ones corresponds to the num-
ber of indecomposable R-modules M with rankp (M) — rankg (M) < 0
for some predetermined order of the two minimal prime ideals P and
Q of Rwith PNR=QNR.

1-100 1 —1-
o Az = [0 1 —11-10 "']2><t—s

columns is identical to one of the first six columns.

where each of the remaining t —s—6

We now give a complete description of the direct sum decompositions
that can occur over one-dimensional local rings with finite representa-
tion type. As we see, the monoid 7 (R) is almost always half-factorial
and the elasticity of 7(R) never exceeds 3/2.

Theorem 3.4. Let (R, m) be a one-dimensional local ring with finite
representation type, and let R denote its m-adic completion.

1. If spl(R) = 0, then T(R) is factorial and the Krull-Remak-
Schmidt property holds for all finitely generated torsion-free R-modules.
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2. If spl(R) = 1, then T(R) is half-factorial. Moreover, T(R) is
factorial if and only if R has two mintmal prime ideals and at least one
of the following two conditions holds.

(a) There is, up to isomorphism, ezactly one R-module with rank (1,0)
and there are no indecomposable R-modules of rank (2,1).

(b) There is, up to isomorphism, exactly one R-module with rank (0,1)
and there are no indecomposable R-modules of rank (1,2).

3. If spl(R) = 2, then p(T(R)) = 3/2 and thus T (R) is not half-
factorial.

Proof. If spl (R) = 0, then by Lemma 2.2 all R-modules are extended,
and hence 7T (R) = T(R) is free.

If spl (R) = 1, then there are two minimal prime ideals P and @
of R with PN R = QN R. Then T(R) = (ker (A;) N N*"%) @ N*
where A; is as in Proposition 3.3, ¢ is the number of isomorphism
classes of indecomposable torsion-free R-modules and s is the number
of isomorphism classes of indecomposable torsion-free R-modules with
constant rank over the two prime ideals P and Q.

Note that the matrix A; contains only one positive entry if and only if
there is, up to isomorphism, exactly one indecomposable R-module M
with rankp M —rankgM =1 and A; contains only one negative entry
if and only if there is, up to isomorphism, exactly one indecomposable
R-module N with rankp/N — rankgN = —1. If R has three minimal
prime ideals, then neither of these conditions holds as evidenced by the
existence of the indecomposable R-modules R/ P, for i € {1,2,3} and
R/(P; NP;) with 4,5 € {1,2, 3} distinct. Thus, we see that one of these
two conditions holds precisely when one of properties 2 (a) or 2 (b)
holds. In either of these cases, T (R) has trivial class group and is free.

Now, if spl (R) = 1 and both of properties 2 (a) and 2 (b) fail to hold,
then from Proposition 3.3 and Lemma 2.3 we see that CI(T(R)) = Z.
From Lemma 2.2, the set of prime ideal divisor classes in CI(T(R)) is
Gy = {0,1,—1}. Now B(Gy) = N? which is half-factorial, implying
that T(R) too is half-factorial. However, T(R) is not factorial. In
particular, if A, B, C' and D are indecomposable R-modules with ranks
(1,0), (2,1), (0,1) and (1, 2), respectively, then A¢ C, A® D, BeC
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and B @ D are extended ﬁ—modules, no direct summand is extended,
and the isomorphism (A& C)® (B® D) = (A® D) ® (B C) exhibits
the failure of Krull-Remak-Schmidt over R.

Finally, suppose that spl (R) = 2. Then T (R) = (ker (A2) NN*=%) @
N*® where A is as in Proposition 3.3. From Lemma 2.4 we see that

Cl(T(R)) & Z*. Moreover, by Lemma 2.2 the set of the prime ideal
divisor classes is

{(17 0)7 (715 0)) (Oa ]-)a (Oa 71)7 (]-7 71)5 (717 l)}

and thus the block monoid is

oot -1 0 0 1 -1 6
BT(R) Zker | | | | }ﬂN .
Using the algorithm from [14, Section 2] we easily determine that
p(T(R)) = p(H) =3/2. ©

01 —-11-10
can be exhibited by the equation a; + as + a3 = a4 + as where
a; = (1,0,0,0,0,1)!, az = (0,0,1,1,0,0)t, a3 = (0,1,0,0,1,0)!, ay =
(1,1,1,0,0,0)* and a5 = (0,0,0,1,1,1)" are five distinct atoms. More-
over, this failure of unique factorization in the Diophantine monoid
corresponds to the following isomorphism of R-modules:

(%@ler?%)@(%@H};Ps)@(%@Pllrfp2>
g@@E@E)
PP, P
@< R o R o R >
PNP, " PANP;  P,NP;

As is suggested by this isomorphism, the failure of 7 (R) to be half-
factorial falls not on the existence of non-trivial ranks of indecompos-
able torsion-free R-modules, but on spl(R) > 1. As the next result
shows, we can find examples of arbitrarily large elasticities for T (R)
simply by finding a local ring-order that is a domain and whose com-
pletion has a large number of minimal prime ideals. Such examples

The elasticity in the monoid B(T(R)) = ker [1 —roeut _1} NN
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exist in abundance, cf. [15], although these rings do not have finite
representation type whenever spl (R) > 2.

Proposition 3.5. Let (R,m) denote a one-dimensional local ring

~

with reduced completion R such that there are n > 1 minimal prime
ideals lying over the same prime ideal of R. Then p(T (R)) > n/2.

Proof. We prove this result in the case where R is a domain and
Py, ..., P, are the distinct minimal prime ideals of R. The proof of
the more general case is similar. If R is also a domain, then all R-
modules are extended and thus 7 (R) is factorial. Then p(7(R)) =1
and the result trivially holds. We now assume that n > 2. For each 1,
1 < i < n, there are indecomposable torsion-free R-modules A; = R/P;
and B = R/(P,N--Pi_ NPy N--NP,). Let A = & A,
B =@} B, C; = A; @ B, for each i, and C' = @ ;C;. Since R is a
domain, an R-module is extended if and only if it has constant rank.
By considering ranks, we see that A, B and each C; are minimally
extended. Since C' = @7 ,C; = A @ B, we have that p(C) > n/2 and
thus p(T(R)) > n/2. O

We now return to ring-orders with finite representation type. Very
explicit calculations of the monoids 7 (R) are given in [2, Table 2] in
the case where R is equicharacteristic with perfect residue field having
characteristic different from 2, 3 and 5. The results from Proposition 3.3
give very similar results in the more general case. However, we still have
the following open question:

Question 3.6. Let R be an arbitrary local ring-order with finite
representation type. How many, if any, indecomposable torsion-free
R-modules are there of each possible rank?

Although probably unanswerable in general, in certain cases such as
those rings considered in [2], we can determine exactly which ranks
occur and in what numbers. Aside from the case when spl (R) = 1 and
one of properties 2 (a) or 2 (b) from Theorem 3.4 fails to hold, the
answer to this question has no effect on the elasticity of T (R).
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We conclude, in Propositions 3.7 and 3.8, with a result which gives a
partial Krull-Remak-Schmidt theorem for local ring-orders with finite
representation type in terms of the number of irreducible elements of

T(R) and T(R).

Proposition 3.7. Let (R,m) be a local ring-order with finite repre-
sentation type, and let R denote its m-adic completion. Suppose that,
up to isomorphism, R has ezxactly b indecomposable torsion-free mod-
ules and R has exactly a indecomposable torsion-free modules. If the
Krull-Remak-Schmidt theorem holds for all finitely generated torsion-
free R-modules, then either b=a orb=a+ 1.

Proof. Suppose that the Krull-Remak-Schmidt property holds for
all finitely generated torsion-free R-modules. By Theorem 3.4 either
spl (R) = 0 or spl (R) =1 and condition (}) is satisfied.

If spl (R) = 0, then by Proposition 2.1 all R-modules are extended
from R-modules, and there is a one-to-one correspondence between
the indecomposable R-modules and the indecomposable R-modules.
Moreover, by faithful flatness, an R-module M is indecomposable if
and only if M is indecomposable as an R-module. Therefore, b = a.

Now assume that spl (R) = 1, and that condition (f) is satisfied.
Let s denote the number of indecomposable }Af-modules/\with constant
rank. Suppose that R/P is the only indecomposable R-module with
rank (r, s) with r > s and let Cy,C5,. .. ,C, denote the indecomposable
R-modules with rank (r,s) such that 7 < s. Then b = s +n + 1.
Let My, My, ..., M, denote the non-isomorphic indecomposable R-
modules. Then from Proposition 2.1, Ml, Mz, ..., M, all have constant
rank as R-modules. Suppose that M; = N; L ®N;, @ - @ N;, for some
indecomposable R-modules Ni;, 1 < j < u. By hypothesis, each N;;
has constant rank or is isomorphic to either E/ P or C} for some k. If
N;; has constant rank for some j, then so does L := ]\Z/Nij. Thus
]\/Zi = N;; ® L where both N;, and L are extended from R-modules. By
faithful flatness, L = 0 since M; was assumed to be indecomposable. If
N;; does not have constant rank, then it is isomorphic to one of R/P
or C} for some k. Note that any direct summand of ]\Z which has, as
a direct summand, an equal number of copies isomorphic to R/P and
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of C, is extended. Therefore, for each i, either M is 1ndecomposable
as an R-module, or M; = R/P @ Cj, for some k. That is, a = s + k
and hence b = a + 1. The case where R/ Q is the only indecomposable
R-module with rank (r,s) with r < s is handled similarly. O

As the following proposition shows, the converse of Proposition 3.7
nearly always holds. Together, Propositions 3.7 and 3.8 say that, except
for the three exceptions in Proposition 3.8 (2), (3) and (4), the Krull-
Remak-Schmidt theorem holds if and only if b =a or b =a + 1.

Proposition 3.8. Let (R,m) be a local ring-order with finite repre-
sentation type, and let R denote its m-adic completion. Suppose that,
up to isomorphism, R has exactly b indecomposable torsion-free mod-
ules and R has ezactly a indecomposable torsion-free modules. Further
suppose that either b= a or b =a+1. Then one of the following holds.

1. The Krull-Remak-Schmidt theorem holds for all finitely generated
torsion-free R-modules.

2. spl(R) =1 and R has ezactly four indecomposable torsion-free
modules with nonconstant rank.

3. spl(R) = 2 and R has exactly siz indecomposable torsion-free
modules with nonconstant rank.

4. spl(R) = 2 and R has ezactly seven indecomposable torsion-free
modules with nonconstant rank.

Proof. We consider three cases. If spl(R) = 0, then all finitely
generated R-modules are extended from R-modules and hence (1) is
satisfied.

Suppose now that spl(R) = 1 with P and @ are minimal prime
ideals of R with PN R = QN R. Then either 7(R) is free or
T(R) = (ker (A;) N N**) @ N* as given in Proposition 3.3. If we
let © denote the number of ones in the matrix A; and y the number
of negative ones in the matrix 4;, then the number of indecomposable
R-modules is s + zy.

If we assume that b = a, then s + z + y = s + zy, that is,
x +y = zy. The only nonnegative integer solutions to this equation
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arex =y = 2or z =y = 0. In the former case, R has exactly
four indecomposable torsion-free modules with nonconstant rank, i.e.,
condition (2) is satisfied. The latter case is impossible since R/P and
}/%/ Q@ are both indecomposable R-modules with non-constant rank.

If we assume that b = a + 1, then we have ¢ +y = zy + 1. The only
positive integer solutions to this equation are (1,y) for any y > 1 and
(x,1) for any « > 1. In either case, we see from Theorem 3.4 that (1)
is satisfied.

Finally, suppose that spl(R) = 2. If a = b, we prove that R has
exactly seven indecomposable torsion-free modules with nonconstant
rank. Note that 7(R) = (ker (A2) N IN*"%) @ N* as given in Proposi-
tion 3.3. Each column of A5 is identical to one of the first six columns.
If u, v, w, xz, y and z denote the number of columns of A, identical to
columns one through six, respectively, then

U+ V+W+HT+Y+2=UZ+ VY + WT+ UVW + TYZ

since the left hand side of this equation represents the number of in-
decomposable R-modules with non-constant rank and the right hand
side represents the number of indecomposable R-modules whose com-
pletions are not indecomposable R-modules. Moreover, each of u, v,
w, x, y and z are positive integers.

If each variable is at least two, then u + 2z < wz, v+ y < vy
and w + z < wz. Since wvw and zyz are positive, we then have
u+v+w+z+y+z <uz+ovy+we+uvw+ zyz, which is impossible.
Thus we assume, without loss of generality, that « = 1. We have

l+v+w+z+y=vy+we+vw+ zyz
v(y +w) + z(w +y2)
v(y +w) +z(w+y)
(v+)(y + w)

v

since z > 1.

Setting o := y + w and [ := v + x, we have 1 + a + 8 > af with
a,f8 > 2. The only solutions here are (1) a = 8 =2, (2) @« = 2 and
B8 =3 and (3) a =3 and 8 = 2. Solution (1) gives u = v = w =
z =y =1and z = 2. Solution (2) means all variables are one except
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one of v or z is two. Solution (3) means all variables are one except
one of y or w is two. If u > 1, then some other variable must be one
and a similar argument shows that all but one variable must be one,
while a lone variable is two. In any of these situations, R has exactly
seven indecomposable torsion-free modules with nonconstant rank. In
particular, condition (4) is satisfied.

A similar argument shows that if a + 1 = b, then R has exactly six
indecomposable torsion-free modules with nonconstant rank, in which
case condition (3) is satisfied. u]

We conclude with two examples which illustrate the existence of local
ring-orders satisfying (2) and (3) of Proposition 3.8, but for which the
Krull-Remak-Schmidt theorem does not hold over R. The authors know
of no example where condition (4) of Proposition 3.8 holds.

Example 3.9. Let k£ be a perfect field with characteristic different
from 2, 3 and 5. Let (R,m) be a local integral domain with m-adic
completion R = k[[z,y]]/(z2y — y*). Such a ring exists by a theorem
of Lech, cf. [15]. From [2], we see that up to isomorphism, the ring
R has exactly eight indecomposable torsion-free modules: one each of
rank (1,0) and (2,1), two of rank (0,1) and four of rank (1,1). Then
T(R) = (ker 11-1-1 NN*) & N*, and hence 7 (R) is half-factorial,
but not factorial. However, up to isomorphism, both R and R have
exactly eight indecomposable torsion-free modules. In particular, both
R and R have exactly four indecomposable torsion-free modules with
nonconstant rank.

Example 3.10. Let k be a perfect field with characteristic different
from 2, 3 and 5. Let (R,m) be a local integral domain with m-adic
completion R = k[[z,y]]/(z2y — ¥*). Such a ring exists by a theorem
of Lech, cf. [15]. From [2], we see that up to isomorphism, the ring
R has exactly nine indecomposable torsion-free modules: one each of
rank (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), and (0,1,1) and three
of rank (1,1,1). Then

N 1 -1 0 0 1 -1 6 3
BT(R) =ker \o 7 4 1 4 o}ﬂN &N,
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and hence T (R) is not half-factorial. However, up to isomorphism, R
has exactly eight indecomposable torsion-free modules. In particular,
both R and R have exactly six indecomposable torsion-free modules
with nonconstant rank.
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