Fall 2024 RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS
Baian Liu
J. Commut. Algebra 16(3): 305-335 (Fall 2024). DOI: 10.1216/jca.2024.16.305

Abstract

Integer-valued rational functions are a natural generalization of integer-valued polynomials. Given a domain D, the collection of all integer-valued rational functions over D forms a ring extension IntR(D) of D. For a valuation domain V, we characterize when IntR(V) is a Prüfer domain and when IntR(V) is a Bézout domain. We also extend the classification of when IntR(D) is a Prüfer domain.

Citation

Download Citation

Baian Liu. "RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS." J. Commut. Algebra 16 (3) 305 - 335, Fall 2024. https://doi.org/10.1216/jca.2024.16.305

Information

Received: 21 August 2022; Revised: 20 February 2024; Accepted: 24 February 2024; Published: Fall 2024
First available in Project Euclid: 28 August 2024

Digital Object Identifier: 10.1216/jca.2024.16.305

Subjects:
Primary: 13A15 , 13A18 , 13F05 , 13F20

Keywords: Bézout domain , integer-valued rational function , Prüfer domain , valuation

Rights: Copyright © 2024 Rocky Mountain Mathematics Consortium

Vol.16 • No. 3 • Fall 2024
Back to Top