Spring 2022 Splitting the conormal module for licci ideals
Mark R. Johnson
J. Commut. Algebra 14(1): 55-60 (Spring 2022). DOI: 10.1216/jca.2022.14.55

Abstract

For a licci ideal in a power series ring over a field, it is shown that its conormal module has a free summand precisely when the ideal is a hypersurface section. Using results of B. Ulrich, in the Gorenstein case one can show, up to deformation, that the conormal module is indecomposable.

Citation

Download Citation

Mark R. Johnson. "Splitting the conormal module for licci ideals." J. Commut. Algebra 14 (1) 55 - 60, Spring 2022. https://doi.org/10.1216/jca.2022.14.55

Information

Received: 25 January 2019; Revised: 20 September 2019; Accepted: 20 September 2019; Published: Spring 2022
First available in Project Euclid: 31 May 2022

MathSciNet: MR4430701
zbMATH: 1491.13018
Digital Object Identifier: 10.1216/jca.2022.14.55

Subjects:
Primary: 13C40 , 13D10 , 13H10

Keywords: conormal module , licci , rigid

Rights: Copyright © 2022 Rocky Mountain Mathematics Consortium

Vol.14 • No. 1 • Spring 2022
Back to Top