TOPICS ON SEQUENTIALLY COHEN-MACAULAY MODULES

NAOKI TANIGUCHI, TRAN THI PHUONG, NGUYEN THI DUNG AND TRAN NGUYEN AN

ABSTRACT. In this paper, we study the two different topics related to sequentially Cohen-Macaulay modules. Questions arise as to when the sequentially Cohen-Macaulay property preserves the localization and the module-finite extension of rings.

1. Introduction. Throughout this paper, unless otherwise specified, let R be a commutative Noetherian ring, $M \neq (0)$ a finitely generated R-module of dimension d. Then, there exists the largest R-submodule M_n of M with $\dim_R M_n \leq n$ for every $n \in \mathbb{Z}$ (here $\dim_R(0) = -\infty$, for convention). Let

 $\mathcal{S}(M) = \{ \dim_R N \mid N \text{ is an } R \text{-submodule of } M, N \neq (0) \}$ $= \{ \dim R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R M \}.$

Set $\ell = \sharp \mathcal{S}(M)$, and write $\mathcal{S}(M) = \{d_1 < d_2 < \cdots < d_\ell = d\}$. Then, the dimension filtration of M is a chain

$$\mathcal{D}: D_0 := (0) \subsetneq D_1 \subsetneq D_2 \subsetneq \cdots \subsetneq D_\ell = M$$

of *R*-submodules of *M*, where $D_i = M_{d_i}$ for every $1 \le i \le \ell$. Note that the notion of dimension filtration is due to Goto, Horiuchi and Sakurai [4] and is a little different from that of the original one given by Schenzel

Copyright ©2018 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 13E05, 13H10.

Keywords and phrases. Dimension filtration, sequentially Cohen-Macaulay module, localization.

The first author was partially supported by a grant-in-aid for JSPS Fellows, No. 26-126 and by a JSPS Research Fellow. The second author was partially supported by JSPS KAKENHI, No. 26400054. The third and the fourth authors were partially supported by a grant from the Vietnam Institute for Advanced Study in Mathematics (VIASM) and Vietnam National Foundation for Science and Technology Development (NAFOSTED), No. 101.04-2014.15, and by the Scientific Research Project at Ministerial level in Mathematics.

Received by the editors on April 25, 2015, and in revised form on December 15, 2015.

DOI:10.1216/JCA-2018-10-2-295

[6]. However, we adopt the above definition throughout this paper. We say that M is a sequentially Cohen-Macaulay R-module if the quotient module $C_i = D_i/D_{i-1}$ of D_i is Cohen-Macaulay for every $1 \le i \le \ell$. In particular, the ring R is called a sequentially Cohen-Macaulay ring if dim $R < \infty$, and R is a sequentially Cohen-Macaulay module over itself.

The aim of this paper is to investigate the following questions. The first one is whether the sequentially Cohen-Macaulay property is inherited from localizations, which has already been studied by Cuong et al. [2] and Cuong and Nhan [3] in the case of local rings. In Section 2, we shall probe into a possible generalization of their results ([2, Proposition 2.6], [3, Proposition 4.7]). More precisely, we prove the following.

Theorem 1.1. Suppose that $\dim R/\mathfrak{p} = \dim R_\mathfrak{m}/\mathfrak{p}R_\mathfrak{m}$ for every $\mathfrak{p} \in \operatorname{Ass}_R M$ and for every maximal ideal \mathfrak{m} of R such that $\mathfrak{p} \subseteq \mathfrak{m}$. Then, the following conditions are equivalent.

- (1) M is a sequentially Cohen-Macaulay R-module.
- (2) M_P is a sequentially Cohen-Macaulay R_P -module for every $P \in \operatorname{Supp}_R M$.

Another is the question of whether or not the sequentially Cohen-Macaulay property preserves the module-finite extension of rings. In Section 3, in particular, we will give the characterization of sequentially Cohen-Macaulay local rings obtained by the idealization, that is, trivial extension, which is stated as follows.

Theorem 1.2 (Corollary 3.9). Suppose that R is a local ring. Let $R \ltimes M$ denote the idealization of M over R. Then the following conditions are equivalent.

- (1) $R \ltimes M$ is a sequentially Cohen-Macaulay local ring.
- (2) $R \ltimes M$ is a sequentially Cohen-Macaulay R-module.
- (3) R is a sequentially Cohen-Macaulay local ring, and M is a sequentially Cohen-Macaulay R-module.

2. Localization of sequentially Cohen-Macaulay modules. The purpose of this section is mainly to prove Theorem 1.1. Proof of Theorem 1.1.

 $(1) \Rightarrow (2)$. We may assume that $\ell > 1$, and the assertion holds for $\ell - 1$. Due to [2, Proposition 2.6], it is sufficient to show the case where P is a maximal ideal of R. Then, we obtain the exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow C \longrightarrow 0$$

of *R*-modules where $N = D_{\ell-1}$ and $C = C_{\ell}$. We may also assume $N_P \neq (0), C_P \neq (0)$ and $\dim_{R_P} N_P = \dim_{R_P} M_P$, since N_P is sequentially Cohen-Macaulay and C_P is Cohen-Macaulay. By using the hypothesis, we get $\dim_{R_P} M_P = \dim_{R_P} C_P$ (see also [6, Corollary 2.3]).

Let

$$E_0 = (0) \subsetneq E_1 \subsetneq \cdots \subsetneq E_{t-1} \subsetneq E_t = N_P$$

be the dimension filtration of N_P . Then, M_P/E_{t-1} is a Cohen-Macaulay R_P -module of dimension $\dim_{R_P} M_P$ since N_P/E_{t-1} and M_P/N_P are Cohen-Macaulay R_P -modules of the same dimension $\dim_{R_P} M_P$. Hence, M_P is a sequentially Cohen-Macaulay R_P -module.

(2) \Rightarrow (1). Suppose that C_i is not Cohen-Macaulay for some $1 \leq i \leq \ell$. Then, there exists a maximal ideal P of R such that $[C_i]_P \neq (0)$, and $[C_i]_P$ is not a Cohen-Macaulay R_P -module. Let $\alpha = \dim_{R_P}[C_i]_P$. We choose $\mathfrak{p} \in \operatorname{Ass}_R C_i$ such that $\mathfrak{p} \subseteq P$, $\alpha = \dim_{R_P}(\mathfrak{p}) R_P$. Then,

$$\alpha = \dim R_P / \mathfrak{p} R_P = \dim R / \mathfrak{p} = d_i$$

by using the hypothesis and $\mathfrak{p} \in \operatorname{Ass}_R C_i$. Therefore, $d_i \in \mathcal{S}(M_P) \subseteq \mathcal{S}(M)$ since

$$\mathcal{S}(M_P) = \{\dim R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R M, \ \mathfrak{p} \subseteq P\} \subseteq \mathcal{S}(M).$$

Let $q = \sharp \mathcal{S}(M_P)$. We write $\mathcal{S}(M_P) = \{n_1 < n_2 < \cdots < n_q\}$. Then, $d_i = n_j$ for some $1 \le j \le q$. Let

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M} M(\mathfrak{p})$$

be a primary decomposition of (0) in M. In this case,

$$(0) = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M\\ \mathfrak{p} \subseteq P}} [M(\mathfrak{p})]_P$$

forms a primary decomposition of (0) in M_P .

Claim 2.1. The following assertions hold.

- (1) $[D_i]_P = D_j(M_P),$ (2) $[D_{i-1}]_P = D_{j-1}(M_P)$
- where $\{D_j(M_P)\}_{0 \le j \le q}$ stands for the dimension filtration of M_P . Proof of Claim 2.1.
 - (1) We may assume that $i < \ell$. Then,

$$D_i = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R/\mathfrak{p} > d_i}} M(\mathfrak{p}),$$

so that

$$[D_i]_P = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R/\mathfrak{p} > n_j \\ \mathfrak{p} \subseteq P}} [M(\mathfrak{p})]_P.$$

We now assume that $\mathfrak{p} \not\subseteq P$ for every $\mathfrak{p} \in \operatorname{Ass}_R M$ with $\dim R/\mathfrak{p} > d_i$. Then, $M(\mathfrak{p})_P = M_P$ so that $[D_i]_P = M_P$. Then, $\dim_{R_P} M_P = d_i$ since $\dim_{R_P} M_P \leq d_i \in \mathcal{S}(M_P)$. Therefore, $d_i = n_q$, j = q and

$$[D_i]_P = M_P = D_q(M_P) = D_j(M_P).$$

Thus, we may assume that $\mathfrak{p} \subseteq P$ for some $\mathfrak{p} \in \operatorname{Ass}_R M$ with dim $R/\mathfrak{p} > d_i$. Therefore,

$$n_q = \dim_{R_P} M_P \ge \dim_{R_P} R_P / \mathfrak{p} R_P = \dim R / \mathfrak{p} > d_i = n_j,$$

whence $1 \leq j < q$. Hence,

$$[D_i]_P = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R_P/\mathfrak{p} R_P > n_j \\ \mathfrak{p} \subseteq P}} [M(\mathfrak{p})]_P = D_j(M_P).$$

(2) We obtain

$$[D_{i-1}]_P = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R/\mathfrak{p} \ge d_i \\ \mathfrak{p} \subseteq P}} [M(\mathfrak{p})]_P$$

since

$$D_{i-1} = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R/\mathfrak{p} \ge d_i}} M(\mathfrak{p}).$$

We may assume that j > 1. Then, $d_i = n_j > n_{j-1}$ so that

$$[D_{i-1}]_P = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R/\mathfrak{p} \ge d_i \\ \mathfrak{p} \subseteq P}} [M(\mathfrak{p})]_P = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Ass}_R M \\ \dim R_P/\mathfrak{p}R_P > n_{j-1}}} [M(\mathfrak{p})]_P = D_{j-1}(M_P). \ \Box$$

Hence, $C_j(M_P) = D_j(M_P)/D_{j-1}(M_P)$ is Cohen-Macaulay since M_P is sequentially Cohen-Macaulay, whence $[C_i]_P$ is a Cohen-Macaulay R_P -module, a contradiction.

If the base ring R is a finitely generated algebra over a field, then the assumption of Theorem 1.1 is automatically satisfied, and we obtain the following.

Corollary 2.2. Let R be a finitely generated algebra over a field, $M \neq (0)$ a finitely generated R-module. Then, the following conditions are equivalent.

- (1) M is a sequentially Cohen-Macaulay R-module.
- (2) M_P is a sequentially Cohen-Macaulay R_P -module for every $P \in \operatorname{Supp}_R M$.

From now on, we explore the localization property for graded rings. Let $R = \sum_{n \in \mathbb{Z}} R_n$ be a Noetherian Z-graded ring, and assume that R is an H-local ring with an H-maximal ideal P of R in the sense of Goto and Watanabe, see [5, Definitions 1.1.5, 1.1.6]. Let $M \neq (0)$ be a finitely generated graded R-module of dimension d. In addition, let $\{D_i\}_{0 \leq i \leq \ell}$ be the dimension filtration of M. We set $q = \dim R/P$. For an arbitrary ideal I of a graded ring, I^* stands for the ideal generated by every homogeneous elements in I.

Lemma 2.3. $\dim_R M = \dim_{R_P} M_P + q$. Therefore, $\dim_R M = \dim_{R_{\mathfrak{m}}} M_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of R with $\mathfrak{m} \supseteq P$.

Proof. We may assume q > 0 (thus, q = 1). Let \mathfrak{m} be a maximal ideal of R such that $\mathfrak{m} \supseteq P$ and $\dim R_{\mathfrak{m}}/PR_{\mathfrak{m}} = 1$. Let $\mathfrak{p} \in \operatorname{Ass}_R M$ be such that $P \supseteq \mathfrak{p}$ and $\dim R_P/\mathfrak{p}R_P = \dim_{R_P} M_P$. Then, we have $\dim_R M \ge \dim_{R_P} M_P + 1$. Conversely, we choose $\mathfrak{p} \in \operatorname{Ass}_R M$ and a maximal ideal \mathfrak{m} of R such that $\mathfrak{p} \subseteq \mathfrak{m}$ and $\dim R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} = d$. Since \mathfrak{p} is a graded ideal of R, $\mathfrak{p} \subseteq \mathfrak{m}^*$. Note that \mathfrak{m} is not a graded ideal of R since q = 1. Hence, we obtain $\mathfrak{m}^* \subseteq P$ and

$$d = \dim R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} = \dim R_{\mathfrak{m}^*}/\mathfrak{p}R_{\mathfrak{m}^*} + 1$$

$$\leq \dim R_P/\mathfrak{p}R_P + 1 \leq \dim_{R_P} M_P + 1. \qquad \Box$$

Apply [4, Theorem 2.3] and Lemma 2.3 to obtain the following.

Corollary 2.4. The following assertions hold true.

- (1) $[D_0]_{\mathfrak{m}} = (0) \subsetneq [D_1]_{\mathfrak{m}} \subsetneq \cdots \subsetneq [D_\ell]_{\mathfrak{m}} = M_{\mathfrak{m}}$ is the dimension filtration of $M_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} of R such that $\mathfrak{m} \supseteq P$.
- (2) $[D_0]_P = (0) \subsetneq [D_1]_P \subsetneq \cdots \subsetneq [D_\ell]_P = M_P$ is the dimension filtration of M_P so that M is a sequentially Cohen-Macaulay R-module if and only if M_P is a sequentially Cohen-Macaulay R_P -module.

Finally, we reach the goal of this section.

Theorem 2.5. The following conditions are equivalent.

- (1) M is a sequentially Cohen-Macaulay R-module.
- (2) M_P is a sequentially Cohen-Macaulay R_P -module.

When this is the case, $M_{\mathfrak{p}}$ is a sequentially Cohen-Macaulay $R_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \operatorname{Supp}_R M$.

Proof. The equivalence of conditions (1) and (2) follows from Corollary 2.4. We verify the last assertion. Note that $\mathfrak{p}^* \subseteq P$ for any $\mathfrak{p} \in \operatorname{Supp}_R M$. Due to [2, Proposition 2.6], $M_{\mathfrak{p}^*}$ is a sequentially Cohen-Macaulay $R_{\mathfrak{p}^*}$ -module. Since $\mathfrak{p}^*R_{(\mathfrak{p})}$ is an *H*-maximal ideal of the homogeneous localization $R_{(\mathfrak{p})}$ of R, $M_{(\mathfrak{p})}$ is a sequentially Cohen-Macaulay $R_{(\mathfrak{p})}$ -module. We may assume that \mathfrak{p} is not a graded ideal of R so that $\mathfrak{p}R_{(\mathfrak{p})}$ is a maximal ideal of $R_{(\mathfrak{p})}$. Therefore, $M_{\mathfrak{p}}$ is a sequentially Cohen-Macaulay $R_{\mathfrak{p}}$ -module. \Box

3. Module-finite extension of sequentially Cohen-Macaulay modules. In this section, we assume that R is a local ring with maximal ideal \mathfrak{m} . Recall that M_n stands for the largest R-submodule of M with $\dim_R M_n \leq n$ for each $n \in \mathbb{Z}$.

We note the following.

Lemma 3.1. Let M and N be finitely generated R-modules. Then, $[M \oplus N]_n = M_n \oplus N_n$ for every $n \in \mathbb{Z}$.

Proof. We have $[M \oplus N]_n \supseteq M_n \oplus N_n$ since $\dim_R(M_n \oplus N_n) = \max\{\dim_R M_n, \dim_R N_n\} \le n$. Let

$$p: L = M \oplus N \longrightarrow M, (x, y) \longmapsto x$$

be the first projection. Then, $p(L_n) \subseteq M_n$ since $\dim_R p(L_n) \leq \dim_R L_n \leq n$. We similarly have $q(L_n) \subseteq N_n$, where

$$q: M \oplus N \longrightarrow N, (x, y) \longmapsto y$$

denotes the second projection. Hence, $[M \oplus N]_n \subseteq M_n \oplus N_n$, as claimed. \Box

The following proposition includes the result [3, Proposition 4.5].

Proposition 3.2. Let M and N $(M, N \neq (0))$ be finitely generated R-modules. Then, $M \oplus N$ is a sequentially Cohen-Macaulay R-module if and only if both M and N are sequentially Cohen-Macaulay R-modules.

Proof. We set $L = M \oplus N$ and $\ell = \sharp S(L)$. Then, $S(L) = S(M) \cup S(N)$ since $\operatorname{Ass}_R L = \operatorname{Ass}_R M \cup \operatorname{Ass}_R N$. Hence, if $\ell = 1$, then S(L) = S(M) = S(N) and $\dim_R L = \dim_R M = \dim_R N$. Therefore, when $\ell = 1$, L is a sequentially Cohen-Macaulay R-module if and only if L is a Cohen-Macaulay R-module, and the second condition is equivalent to saying that the R-modules M and N are Cohen-Macaulay, that is, M and N are sequentially Cohen-Macaulay R-modules. Suppose that $\ell > 1$ and that our assertion holds true for $\ell - 1$. Let

$$D_0 = (0) \subsetneq D_1 \subsetneq D_2 \subsetneq \cdots \subsetneq D_\ell = L$$

be the dimension filtration of $L = M \oplus N$, where $S(L) = \{d_1 < d_2 < \cdots < d_\ell\}$. Then, $\{D_i/D_1\}_{1 < i < \ell}$ is the dimension filtration of L/D_1 ,

and hence, L is a sequentially Cohen-Macaulay R-module if and only if D_1 is a Cohen-Macaulay R-module and L/D_1 is a sequentially Cohen-Macaulay R-module. Since

$$D_1 = \begin{cases} M_{d_1} \oplus (0) & (d_1 \in \mathcal{S}(M) \setminus \mathcal{S}(N)), \\ M_{d_1} \oplus N_{d_1} & (d_1 \in \mathcal{S}(M) \cap \mathcal{S}(N)), \\ (0) \oplus N_{d_1} & (d_1 \in \mathcal{S}(N) \setminus \mathcal{S}(M)), \end{cases}$$

by Lemma 3.1, the hypothesis on ℓ readily shows the second condition is equivalent to saying that the *R*-modules *M* and *N* are sequentially Cohen-Macaulay.

In what follows, let A be a Noetherian local ring, and assume that A is a module-finite algebra over R.

The main result of this section is stated as follows.

Theorem 3.3. Let $M \neq (0)$ be a finitely generated A-module. Then, the following assertions hold true.

- (1) M_n is the largest A-submodule of M with $\dim_A M_n \leq n$ for every $n \in \mathbb{Z}$.
- (2) The dimension filtration of M as an A-module coincides with that of M as an R-module.
- (3) M is a sequentially Cohen-Macaulay A-module if and only if M is a sequentially Cohen-Macaulay R-module.

Proof. Let $n \in \mathbb{Z}$ and X denote the largest A-submodule of M with $\dim_A X \leq n$. Then, $X \subseteq M_n$ since $\dim_R X = \dim_A X \leq n$. Let $Y = AM_n$. Then, $\dim_A Y \leq n$. In fact, let $\mathfrak{p} \in \operatorname{Ass}_R Y$. Then, since $[M_n]_{\mathfrak{p}} \subseteq Y_{\mathfrak{p}} = A_{\mathfrak{p}} \cdot [M_n]_{\mathfrak{p}} \subseteq M_{\mathfrak{p}}$, we see that $[M_n]_{\mathfrak{p}} \neq (0)$ so that $\mathfrak{p} \in \operatorname{Supp}_R M_n$. Hence, $\dim R/\mathfrak{p} \leq \dim_R M_n \leq n$. Thus, $\dim_A Y = \dim_R Y \leq n$, whence $M_n \subseteq Y \subseteq X$, which shows $X = M_n$. Therefore, assertions (1) and (2) follow. Since

$$\dim_A L = \dim_R L$$
 and $\operatorname{depth}_A L = \operatorname{depth}_R L$

for every finitely generated A-module L, we obtain assertion (3). \Box

Some conclusions are now summarized.

Corollary 3.4. A is a sequentially Cohen-Macaulay local ring if and only if A is a sequentially Cohen-Macaulay R-module.

Corollary 3.5. Let M be a finitely generated A-module. Suppose that R is a direct summand of M as an R-module. If M is a sequentially Cohen-Macaulay A-module, then R is a sequentially Cohen-Macaulay local ring.

Proof. We write $M = R \oplus N$, where N is an R-submodule of M. Since M is a sequentially Cohen-Macaulay A-module, by Theorem 3.3, it is a sequentially Cohen-Macaulay R-module as well so that, by Proposition 3.2, R is a sequentially Cohen-Macaulay local ring.

Corollary 3.6. Suppose that R is a direct summand of A as an R-module. If A is a sequentially Cohen-Macaulay local ring, then R is a sequentially Cohen-Macaulay local ring.

Next, we consider the invariant subring $R = A^G$.

Corollary 3.7. Let A be a Noetherian local ring, G a finite subgroup of Aut A. Suppose that the order of G is invertible in A. If A is a sequentially Cohen-Macaulay local ring, then the invariant subring $R = A^G$ of A is a sequentially Cohen-Macaulay local ring.

Proof. Since the order of G is invertible in A, A is a module-finite extension of $R = A^G$ such that R is a direct summand of A (see [1] and reduce to the case where A is a reduced ring). Hence, the assertion follows from Corollary 3.6.

Remark 3.8. In the setting of Corollary 3.7, let $\{D_i\}_{0 \le i \le \ell}$ be the dimension filtration of A. Then, every D_i is a G-stable ideal of A (compare with Theorem 3.3 (1)) and the dimension filtration of R is given by a refinement of $\{D_i^G\}_{0 \le i \le \ell}$.

The goal of this section is the following.

Corollary 3.9. Let R be a Noetherian local ring, $M \neq (0)$ a finitely generated R-module. We set $A = R \ltimes M$ as the idealization of M over R. Then, the following conditions are equivalent.

- (1) $A = R \ltimes M$ is a sequentially Cohen-Macaulay local ring.
- (2) $A = R \ltimes M$ is a sequentially Cohen-Macaulay R-module.
- (3) R is a sequentially Cohen-Macaulay local ring, and M is a sequentially Cohen-Macaulay R-module.

Acknowledgments. The authors would like to thank Professor Shiro Goto for his valuable advice and comments.

REFERENCES

1. J.W. Brewer and E.A. Rutter, Must R be Noetherian if \mathbb{R}^G is Noetherian?, Comm. Alg. **5** (1977), 969–979.

2. N.T. Cuong, S. Goto and H.L. Truong, The equality $I^2 = \mathfrak{q}I$ in sequentially Cohen-Macaulay rings, J. Algebra **379** (2013), 50–79.

3. N.T. Cuong and L.T. Nhan, *Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules*, J. Algebra **267** (2003), 156–177.

4. S. Goto, Y. Horiuchi and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric decomposition of powers of parameter ideals, J. Comm. Alg. 2 (2010), 37–54.

5. S. Goto and K.-i. Watanabe, On graded rings II (\mathbb{Z}^{n} -graded rings), Tokyo J. Math. 1 (1978), 237–261.

6. P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in Proc. Ferrara Meeting in honour of Mario Fiorentini, University of Antwerp, Wilrijk, Belgium, 1998, 245–264.

WASEDA UNIVERSITY, GLOBAL EDUCATION CENTER, 1-6-1 NISHI-WASEDA, SHINJUKU-KU, TOKYO, 169-8050, JAPAN

Email address: naoki.taniguchi@aoni.waseda.jp

Ton Duc Thang University, Faculty of Mathematics and Statistics, Ho Chi Minh City, Vietnam

Email address: tranthiphuong@tdt.edu.vn

Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Viet-NAM

Email address: nguyenthidung@tuaf.edu.vn

THAI NGUYEN UNIVERSITY OF PEDAGOGICAL, THAI NGUYEN, VIETNAM **Email address: antrannguyen@gmail.com**