Abstract
Let Xn be a sequence of integrable real random variables, adapted to a filtration (Gn). Define Cn = √{(1 / n)∑k=1nXk - E(Xn+1 | Gn)} and Dn = √n{E(Xn+1 | Gn) - Z}, where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn, Dn) → N(0, U) x N(0, V) stably are given, where U and V are certain random variables. In particular, under such conditions, we obtain √n{(1 / n)∑k=1nX_k - Z} = Cn + Dn → N(0, U + V) stably. This central limit theorem has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced urns.
Citation
Patrizia Berti. Irene Crimaldi. Luca Pratelli. Pietro Rigo. "A central limit theorem and its applications to multicolor randomly reinforced urns." J. Appl. Probab. 48 (2) 527 - 546, June 2011. https://doi.org/10.1239/jap/1308662642
Information