2021 The COVID-19 Model with Partially Recovered Carriers
T. S. Faniran, E. A. Bakare, A. O. Falade
Author Affiliations +
J. Appl. Math. 2021: 1-17 (2021). DOI: 10.1155/2021/6406274

Abstract

Novel coronavirus (COVID-19) has been spreading and wreaking havoc globally, despite massive efforts by the government and World Health Organization (WHO). Consideration of partially recovered carriers is hypothesized to play a leading role in the persistence of the disease and its introduction to new areas. A model for transmission of COVID-19 by symptomless partially recovered carriers is proposed and analysed. It is shown that key parameters can be identified such that below a threshold level, built on these parameters, the epidemic tends towards extinction, while above another threshold, it tends towards a nontrivial epidemic state. Moreover, optimal control analysis of the model, using Pontryagin’s maximum principle, is performed. The optimal controls are characterized in terms of the optimality system and solved numerically for several scenarios. Numerical simulations and sensitivity analysis of the basic reproduction number, Rc, indicate that the disease is mainly driven by parameters involving the partially recovered carriers rather than symptomatic ones. Moreover, optimal control analysis of the model, using Pontryagin’s maximum principle, is performed. The optimal controls were characterized in terms of the optimality system and solved numerically for several scenarios. Numerical simulations were explored to illustrate our theoretical findings, scenarios were built, and the model predicted that social distancing and treatment of the symptomatic will slow down the epidemic curve and reduce mortality of COVID-19 given that there is an average adherence to social distancing and effective treatment are administered.

Acknowledgments

The second author would like to thank the Faculty of Science in the Federal University Oye Ekiti, Ekiti State, Nigeria. All authors would like to thank the Faculty of Basic Medical and Applied Sciences in Lead City University, Ibadan, Oyo state, Nigeria.

Citation

Download Citation

T. S. Faniran. E. A. Bakare. A. O. Falade. "The COVID-19 Model with Partially Recovered Carriers." J. Appl. Math. 2021 1 - 17, 2021. https://doi.org/10.1155/2021/6406274

Information

Received: 4 July 2020; Accepted: 9 March 2021; Published: 2021
First available in Project Euclid: 28 July 2021

Digital Object Identifier: 10.1155/2021/6406274

Rights: Copyright © 2021 Hindawi

JOURNAL ARTICLE
17 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.2021 • 2021
Back to Top