Translator Disclaimer
2017 An Analysis of a Semelparous Population Model with Density-Dependent Fecundity and Density-Dependent Survival Probabilities
Arild Wikan
J. Appl. Math. 2017: 1-14 (2017). DOI: 10.1155/2017/8934295

Abstract

A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability to instability goes through a supercritical Neimark−Sacker bifurcation, and it is further shown that when the population switches from possessing a precocious to a delayed semelparous life history both stability properties and the possibility of periodic dynamics become weaker.

Citation

Download Citation

Arild Wikan. "An Analysis of a Semelparous Population Model with Density-Dependent Fecundity and Density-Dependent Survival Probabilities." J. Appl. Math. 2017 1 - 14, 2017. https://doi.org/10.1155/2017/8934295

Information

Received: 12 June 2017; Revised: 23 August 2017; Accepted: 24 September 2017; Published: 2017
First available in Project Euclid: 9 January 2018

zbMATH: 07037493
MathSciNet: MR3740175
Digital Object Identifier: 10.1155/2017/8934295

Rights: Copyright © 2017 Hindawi

JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.2017 • 2017
Back to Top