Translator Disclaimer
2015 On a Nonlinear Degenerate Evolution Equation with Nonlinear Boundary Damping
A. T. Lourêdo, G. Siracusa, C. A. Silva Filho
J. Appl. Math. 2015: 1-13 (2015). DOI: 10.1155/2015/281032

Abstract

This paper deals essentially with a nonlinear degenerate evolution equation of the form K u - Δ u + j = 1 n b j u / x j + u σ u = 0 supplemented with nonlinear boundary conditions of Neumann type given by u / ν + h · ,   u = 0 . Under suitable conditions the existence and uniqueness of solutions are shown and that the boundary damping produces a uniform global stability of the corresponding solutions.

Citation

Download Citation

A. T. Lourêdo. G. Siracusa. C. A. Silva Filho. "On a Nonlinear Degenerate Evolution Equation with Nonlinear Boundary Damping." J. Appl. Math. 2015 1 - 13, 2015. https://doi.org/10.1155/2015/281032

Information

Published: 2015
First available in Project Euclid: 15 April 2015

zbMATH: 1347.35176
MathSciNet: MR3321597
Digital Object Identifier: 10.1155/2015/281032

Rights: Copyright © 2015 Hindawi

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.2015 • 2015
Back to Top