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The present trend in industries is to improve the techniques currently used in design and manufacture of products in order
to meet the challenges of the competitive market. The crucial task nowadays is to find the optimal design and machining
parameters so as to minimize the production costs. Design optimization involves more numbers of design variables with multiple
and conflicting objectives, subjected to complex nonlinear constraints. The complexity of optimal design of machine elements
creates the requirement for increasingly effective algorithms. Solving a nonlinear multiobjective optimization problem requires
significant computing effort. From the literature it is evident that metaheuristic algorithms are performing better in dealing with
multiobjective optimization. In this paper, we extend the recently developed parameter adaptive harmony search algorithm to
solve multiobjective design optimization problems using the weighted sum approach. To determine the best weightage set for this
analysis, a performance index based on least average error is used to determine the index of each weightage set. The proposed
approach is applied to solve a biobjective design optimization of disc brake problem and a newly formulated biobjective design
optimization of helical spring problem. The results reveal that the proposed approach is performing better than other algorithms.

1. Introduction

Engineering design optimization has recently received lot of
attention from designers so as to produce better designs. It
saves time, cost, and energy involved. Engineering design
optimization often deals with many design objectives under
nonlinear and complex constraints. Also the design problem
is subjected to constraints limited by cost, weight, and
material properties like strength, design specifications, and
availability of resources. The design objectives are often
conflicting in nature and hence finding the true Pareto
optimal front is difficult. Conventionally, numerous math-
ematical methods such as linear, nonlinear, dynamic, and
geometric programming have been developed in the past to
solve engineering design optimization problems. But these
methods have many drawbacks and no single method is
found suitable for solving all types of engineering design
optimization problems.

Even for a single objective design optimization prob-
lem involving large number of nonlinear design variables,

arriving at a global best solution is not an easy task. The
shortcoming of mathematical methods gives way for meta-
heuristics algorithm to solve engineering design optimization
problems. Metaheuristics algorithms have proven to be pow-
erful in solving this kind of optimization since they combine
rules and randomness to mimic natural phenomena such
as biological systems (Genetic Algorithm), animal behavior
(ant algorithm, tabu search), and physical annealing process
(Simulated Annealing). GA is a popular metaheuristics algo-
rithm which has been broadly applied to solve various design
optimization problems and proven to be successful in finding
the global best than traditional methods. These include the
design optimization of machine elements such as gears [1],
gearbox [2], journal bearing [3], magnetic thrust bearing [4],
rolling element bearing [5], and automotive wheel bearing
unit [6]. Swarm intelligence is another important concept
in many recent metaheuristics algorithms such as particle
swarm optimization, firefly algorithm, artificial bee colony
algorithm, and cuckoo search.
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Particle swarm optimization mimics the group behavior
of birds and fish schools [7]. Sabarinath et al. [8] have
applied PSO algorithm for solving optimal design of belt
pulley system. Yang [9] developed firefly algorithm that
imitates the flashing behavior of tropic firefly swarms. Yang
and Deb [10] also proposed cuckoo search algorithm based
on the behavior of cuckoo birds. Recently Geem et al.
[11] proposed a new harmony search (HS) that draws its
motivation not from a biological or physical process likemost
other metaheuristic optimization algorithms, but from an
arty one, that is, the improvisation process ofmusicians in the
hunt for amagnificent harmony.Geemet al. [11] explained the
similarity between musical performance and optimization
that explains the strength and language of HS.The attempt to
find the harmony inmusic is similar to finding the optimality
in an optimization process and the musician’s improvisations
are similar to local and global search schemes in optimiza-
tion techniques. HS algorithm uses random search based
on harmony memory considering rate (HMCR) and the
pitch adjusting rate (PAR) instead of gradient search. Even
though the basic algorithm is successful in solving variety
of problems still there is a growing diversity of modified HS
algorithms that try to find improved performance. Recently
Kumar et al. [12] had proposed a newversion ofHS algorithm,
namely, parameter adaptive harmony search (PAHS) to solve
standard benchmark functions in single objective optimiza-
tion successfully. This PAHS algorithm is extended to solve
multiobjective design optimization problems by weighted
sum approach. In this weighted sum PAHS approach, a
performance index based on least average error [13] is used
to evaluate the performance of each weightage set.

2. Literature Review

2.1. PreviousWork onDisc BrakeOptimization. Theproposed
multiobjective disc brake optimization problem was intro-
duced by Osyczka and Kundu [21]. The authors used the
modified distance method in genetic algorithm to solve the
disc brake problem and compared their results with that of
a plain stochastic method. Ray and Liew [22] used a swarm
metaphor approach in which a new optimization algorithm
based on behavioural concepts similar to real swarm was
proposed to solve the same problem. Yıldız et al. [23] used
hybrid robust genetic algorithm combining Taguchi’smethod
and genetic algorithm.The combination of genetic algorithm
with robust parameter design through a smaller population
of individuals resulted in a solution that lead to better
parameter values for design optimization problems. L16
orthogonal arrays were considered to design the experiments
for this problem.The optimal levels of the design parameters
were found using ANOVA with respect to the effects of
parameters on the objectives and constraints. Yıldız [24] used
hybrid method combining immune algorithm with a hill
climbing local search algorithm for solving complex real-
world optimization problems. The results of the proposed
hybrid approach for multiobjective disc brake problem were
compared with the previous solutions reported in literature.

Yang and Deb [25] used multiobjective cuckoo search
(MOCS) algorithm for solving this disc brake problem by
considering two objective functions. The authors extended
the original cuckoo search for single objective optimization
by Yang and Deb for multiobjective optimization by modify-
ing the first and third rule of three idealized rules of original
cuckoo search. The same author [26] used multiobjective
firefly algorithm (MOFA) for solving this disc brake problem.
By extending the basic ideas of FA, Yang et al. developed
multiobjective firefly algorithm (MOFA). Yang et al. [27]
successfully extended a flower algorithm for single objective
optimization to solve multiobjective design problems. The
author solved the biobjective disc brake problem using mul-
tiobjective flower pollination algorithm (MOFPA). Reynoso-
Meza et al. [28] used the evaluation of design concepts and the
analysis of multiple Pareto fronts in multicriteria decision-
making using level diagrams. They addressed multiobjective
design optimization problem of disc brake by considering the
friction surfaces as 4 and 6 to obtain Pareto fronts.

2.2. Previous Work on Helical Compression Spring Optimiza-
tion. In single objective spring design optimization problem,
two different cases were proposed with objective function of
volume minimization as case I and weight minimization as
case II. This single objective design problem had been solved
using many optimization algorithms as two different cases.
In this section we will look into a few reviews on case I
of a compression spring design problem since the proposed
multiobjective helical compression spring optimization prob-
lem is the conversion of well-known standard benchmark
problem of single objective design optimization, that is,
volume minimization of helical compression spring (case I).
For both the cases, the design variables are common. The
three design variables are the wire diameter 𝑑 = 𝑥

1
, the mean

coil diameter 𝐷 = 𝑥
2
, and the number of active coils 𝑁 =

𝑥
3
. But the data type of design variables, objective function,

and constraints of these two cases are different. Sandgren
[15] used integer programming to solve this problem. Chen
and Tsao [16] used simple genetic algorithm to minimize
the volume of the helical compression spring. Wu and Chow
[17] used metagenetic parameter in GA to solve the same
problem. Another improved version of GA called geneAS
was used by Deb and Goyal [29] to address this problem.
The same problem was solved by discrete version of PSO
by Kennedy and Eberhart [20] and by using differential
evolution algorithm by Lampinen and Zelinka [19]. Guo et
al. [18] used swarm intelligence to optimize the design of
helical compression spring. Datta and Figueira [30] used real-
integer-discrete-coded PSO for solving this case I problem.
He et al. [31] used an improved version of PSO to solve this
case I spring problem. Deb et al. [32] proposed NSGA II
algorithm for solving some biobjective design optimization
of mechanical components. He used case I spring problem
and converted it to a biobjective problem by adding one
more objective of minimizing stress induced in the spring.
In this work, we have converted the case I spring problem
into a biobjective problem by adding one more objective of
maximizing the strain energy stored in the spring. In all works
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related with case I spring problem, the previous researchers
used FPS unit system. But in this work, all data are converted
into SI units and the results of this proposed multiobjective
spring problem are presented in SI units.

The main objectives of this work are (i) multiobjective
design optimization of the disc brake and compression spring
using the weighted sum approach of parameter adaptive
harmony search algorithm and (ii) to demonstrate the effec-
tiveness of this proposed algorithm for multiobjective opti-
mization of machine components. So far, the weighted sum
approach of parameter adaptive harmony search algorithm
has not been tried or experimented for the multiobjective
optimization of machine components. In this paper, abil-
ity of the algorithm is demonstrated using a performance
index based on least average error. The optimization results
obtained by using this proposed algorithm are comparedwith
those obtained by previous researchers using other methods.

2.3. PreviousWorks on HS Algorithm. HS algorithm is widely
used in solving various optimization problems such as pipe
network design [33], design of coffer dam drainage pipes
[34], water distribution networks [35], satellite heat pipe
design [36], design of steel frame [37], power economic
load dispatch [38], economic power dispatch [39], power
flow problem [40], vehicle routing [41], orienteering [42],
robot application [43], and data clustering [44]. Mahdavi et
al. [45] proposed improved HS algorithm by changing the
parameters of HS algorithm dynamically. HS algorithm has
been implemented bymany researchers for the past few years
to solve optimization problems inmany fields of engineering,
science, and technology. To increase the performance of HS
algorithm, several improvements were done periodically in
the past. From the literature, it is observed that mainly two
improvements had been considered. First improvement is
in terms of tuning the parameters of HS algorithm and the
other one is in terms of hybridizing the components of HS
algorithm with other metaheuristic algorithms. In this work,
we are concentrating only with the first improvement.

Mahdavi et al. [45] first attempted an improvement in
HS algorithm by proposing a new variant of HS known as
improved HS (IHS) algorithm. They changed the variants
such as pitch adjusting rate (PAR) and bandwidth (BW)
dynamically with generations. Linear increase in PAR and
exponential decrease in BW were allowed between prespeci-
fied minimum and maximum range.

Kong et al. [46] proposed an adaptive HS (AHS) algo-
rithm to adjust PAR and BW. In this approach, PAR was
changed dynamically in response to objective function values
while BW was tuned for each variable. Omran and Mahdavi
[47] proposed a global best HS algorithm inspired by PSO
algorithm to improve the performance of HS algorithm. The
difficulty in finding the lower and upper bounds of BW was
solved by using global best particle which is the fittest particle
in the swarm in terms of objective function values than
other particles. A self-adaptive mechanism for selecting BW
was proposed by Das et al. [48], known as explorative HS
algorithm. BW was recomputed for each iteration while the
other parameters were kept fixed.The other improvements in

Step 1: initialization of parameters: decision variables and their 
possible ranges, harmony memory size (HMS), range of harmony 

Step 2: perform the random selection of solution vectors so as to 
initialize a harmony memory (HM)

Step 3: improvise a new harmony vector from the HM based on
the linear form of HMCR and the exponential form of PAR

Step 4: check 
whether the new 
harmony vector is 
better than the 

existing harmony 
vectors in the HM

Update HM

Step 5: stopping 
criterion satisfied? 

End

No

No

Yes

Yes

memory considering rate (HMCRmin , HMCRmax ), pitch adjusting
rate (PARmin , PARmax), and range of bandwidth (BWmin , BWmax )

Figure 1: Flow chart of the proposed PAHS optimization approach.

HS variants were reported in the literature [14, 41, 44, 48–55].
In all the above cases, only PAR and BW values were changed
whereas HMCR was kept fixed. This fixed value of HMCR is
the key factor which prevents to get global optimal solution.
In order to overcome this difficulty, a parameter adaptive
harmony search (PAHS) algorithm was recently proposed
by Kumar et al. [12]. A detailed description of the proposed
parameter adaptive harmony search (PAHS) algorithm can
be seen from [12]. However, for the sake of easiness a brief
introduction and a step by step computational procedure
for implementing this algorithm are given in the following
section. A flow chart showing the Steps 1 to 5 of the proposed
PAHS approach is given in Figure 1.

3. Parameter Adaptive Harmony Search
(PAHS) Algorithm

Theharmony search algorithm (HS) is one of the most recent
metaheuristic optimization algorithms, analogous to music
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improvisation process where the musicians improvise the
pitches of their instruments to obtain better harmony. Mah-
davi et al. [45] further improved HS in the form of improved
harmony search algorithm (IHS) wherein the parameters
are changed dynamically. Harmony memory consideration
rate (HMCR) and pitch adjustment rate (PAR) are the two
important parameters that largely affect the performance of
HS algorithm. While searching for global best solution, we
make use of HMCR, which in turns requires proper tuning,
failing which the solution may stuck with local optima. PAR
plays a vital role as far as the local search is concerned.During
improvisation process, the fixed value of these parameters
may lead to a delay in convergence because of the absence
of proper balance of global and local search capabilities. The
only solution for this issue may be obtained by changing both
HMCR and PAR dynamically.The above issue is addressed in
the newly proposed algorithm named as parameter adaptive
harmony search algorithm (PAHS) by Kumar et al. [12]. In
PAHS, a dynamic change in PAR and HMCR values were
proposed consequently by modifying improvisation step of
IHS. The value of HMCR is initially kept small in order to
explore the entire search space to a larger extent and later on
the value of HMCR is increased to confine the search space
HM (local search) only. Similarly, the value of PAR is initially
kept high in order tomodify the solutions either stored inHM
or from feasible range. Finally PAR value is reduced to obtain
better solutions. Based on the modifications stated above, (1)
in linear form forHMCRand (2) in exponential form for PAR
had been proposed as given below:

HMCR (gn) = HMCRmin +
(HMCRmax −HMCRmin)

NI
× gn,

(1)

PAR (gn)

= PARmax ⋅ 𝑒 (
ln (PARmin/PARmax)

NI
× gn) ,

(2)

where HMCR(gn) is the harmony memory consideration
rate for generation gn and HMCRmin and HMCRmax are the
minimum and maximum values of harmony memory con-
sideration rate, respectively. Similarly PARmin and PARmax
are the minimum and maximum values of pitch adjustment
rate, respectively. NI represents the maximum number of
improvisations and gn represents generation number. The
bandwidth is given as

BW (gn) = BWmax ⋅ 𝑒 (
ln (BWmin/BWmax)

NI
× gn) , (3)

where BW(gn) is the bandwidth for generation gn and
BWmin and BWmax are the minimum and maximum values
of bandwidth, respectively.

They have considered four different cases wherein besides
the linear change, two parameters have been allowed expo-
nential change also. PAHS’s variants were applied on fifteen
standard benchmark test functions. They have compared the
results of PAHS with the other versions of HS as proposed
by Geem et al. [11], Mahdavi et al. [45], and Kong et al.

[46]. The authors also applied this PAHS to data clustering
problem. From their results it is evident that the PAHS-3, that
is, linear change in HMCR and exponential change in PAR,
has outperformed the results of HS, IHS, AHS, and other
variants of HS. PAHS-3 also provided better results in both
dimensional and noisy environments. Hence, in this work,
PAHS-3 is used to solve multiobjective design optimization
problems using weighted sum approach.

3.1. Computational Procedure of PAHS

Step 1 (initialization). In this step, the optimization problem
and the algorithmic parameters are initialized. In this paper,
the minimization of objective function is considered for the
two design optimization scenarios.

Theoptimization problem is stated asminimize𝑓(𝑥) such
that 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is the decision variable set. 𝑛 is

the number of decision variables. UB
𝑖
and LB

𝑖
are the upper

and lower bounds for decision variable 𝑥
𝑖
, respectively. The

parameters of the PAHS algorithm are harmony memory
size (HMS), range for harmony memory consideration rate
(HMCRmin, HMCRmax), range for pitch adjustment rate
(PARmin, PARmax), range for distance bandwidth (BWmin,
BWmax), and number of improvisation (NI).

Step 2 (initialize harmony memory (HM)). Solution vectors
are randomly generated for the size of HM, that is, (HMS) in
order to fill the harmony memory. Next sorting of harmony
memory is done based on the values of the objective function
𝑓(𝑥).

Step 3 (generation of new harmony). Using the procedure
given below, a new harmony vector 𝑥1 = (𝑥

1

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is

generated

For each 𝑖 ∈ [1, 𝑛] do
HMCR = HMCR(gn)/∗ Proposed equation (1)∗/
PAR = PAR(gn)/∗ Proposed equation (2)∗/
BW = BW(gn)/∗(3)∗/
if 𝑈(0, 1) ≤ HMCR then/∗memory consideration ∗/
begin
𝑥


𝑖
= 𝑥
𝑖

𝑙 where 𝑙 ∼ 𝑈(1, . . . ,HMS)
if 𝑈(0, 1) ≤ PAR then/∗ pitch adjustment ∗/
begin
𝑥


𝑖
= 𝑥


𝑖
± BW × Rand, Rand ∼ 𝑈(0, 1)

endif
else/∗ random selection ∗/
𝑥


𝑖
= LB
𝑖
+ (UB

𝑖
− LB
𝑖
) × Rand

endif
done

Step 4 (update harmony memory). Evaluate the newly gen-
erated harmony vector 𝑥 = (𝑥



1
, 𝑥


2
, . . . , 𝑥



𝑁
) in terms of

objective function value. It is compared with that of the initial
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harmonymemory.The better harmony vector is added in the
harmony memory and the worst harmony vector is dropped
from the harmony memory. This step is the deciding stage
of the algorithm whether a new harmony vector is to be
included in the harmony memory or not.

Step 5 (check for the termination criterion). If the maximum
number of improvisation step (termination criterion) is
reached, computation is terminated and the best harmony
vector is returned by the algorithm. Otherwise, repeat Steps
3 and 4 till the best harmony vector is obtained.

For solving the two design optimization problems of
machine elements (disc brake and compression coil spring)
explained in Section 4 using weighted sum approach of
PAHS, the harmony memory size (HMS) is set to 20, and
the maximum generations (set as stopping condition) are
set to 200 generations. The harmony memory consideration
rate (HMCR) is varied in the range of 0.7 to 0.99 while the
pitch adjustment rate (PAR) is varied in the range of 0.01 to
0.99. The bandwidth (BW) is varied in the range of 0.001 to
1/20(UB-LB). Static penalty method is applied for handling
the constraints. A total of 4000 fitness function evaluations
were made with this optimization approach in each run.
To study the performance of proposed parameter adaptive
harmony search algorithm, constrained optimization of input
parameters to minimize the objective functions was solved
and the best results obtained through the mentioned opti-
mization approach in 40 trials were compared with those
reported in the literature.

3.2.Weight BasedMultiobjective Optimization Approach. The
easiest way of implementing the multiobjective optimization
is done through weighted sum method. In this approach, the
parameter adaptive harmony search algorithm is modified to
facilitate multiobjective design optimization. The implemen-
tation of weighted sum approach by assigning suitable weight
values to represent the preference in choice is explained by
Marler and Arora in multiobjective optimization (MOO)
[56]. The implementation of weighted sum approach to arti-
ficial bee colony algorithm is addressed in Hemamalini and
Simon [57] where the multiobjective optimization is treated
as composite objective function. The composite objective
function is expressed as follows:

𝑓 (𝑥) = 𝑤
1
𝑓
1
(𝑥) + 𝑤

2
𝑓
2
(𝑥) , (4)

where 𝑤
1
and 𝑤

2
are the assigned weights. The relationship

between the variables 𝑤
1
and 𝑤

2
is given by 𝑤

2
= 1 − 𝑤

1

where 𝑤
1
is chosen in the range of [0-1].

Min max normalization is performed for the objective
functions so as to assess the fitness of the composite objective
function. The normalization is done for scaling the objective
functions within a specified range. The following normaliza-
tion formula is used [58]:

fit
𝑖
=

fit
𝑖
−min (fitoverall) × 𝜕

max (fitoverall) −min (fitoverall) × 𝜕
, (5)

where fit
𝑖
represents the fitness to be normalized and fitoverall

represents the overall fitness. 𝜕 is taken as 0.999 in order to
avoid zeroes during normalization process.

3.3. Selection of Weightage Value and Performance Index. An
analysis is performed by changing the weight values 𝑤

1
from

1 to 0 with a step size of 0.1 so as to assign the proper
weightage values in (4). It is done to see the importance of
each weightage set (𝑤set) towards the objective function. A
performance index based on the least average error (LAE)
formulated by Naidu et al. [13] is used to evaluate the
performance of each weightage set. The LAE is evaluated by

LAE = ((
𝐹
1,𝑤set ,𝑖

−min (𝐹
1,overall)

min (𝐹
1,overall)

)

+(
𝐹
2,𝑤set ,𝑖

−min (𝐹
2,overall)

min (𝐹
2,overall)

)) × (2)
−1
,

(6)

where 𝐹
1,𝑤set ,𝑖

represents fitness 1 value and 𝐹
2,𝑤set ,𝑖

represents
fitness 2 value at weightage set 𝐼 (where 𝐼 = 1, 2, . . . , 11).
𝐹
1,overall and 𝐹2,overall represent the overall fitness 1 and fitness

2 values. The performance index based on LAE (𝜂LAE) is
expressed as

𝜂LAE =
1

LAE
. (7)

4. Problem Formulation

4.1. Multiobjective Disc Brake Optimization Problem. The
multiobjective disc brake optimization problemwas solved by
Osyczka and Kundu [21] using plain stochastic method and
genetic algorithms for optimization of disc brake problem.
They have shown that genetic algorithm was giving better
results compared with that of plain stochastic method. The
objectives of the problem are to minimize the mass of the
brake and to minimize the stopping time. The disc brake
optimization model has four variables (as shown in Figure 2)
that are

(1) 𝑅
𝑖
, inner radius of the discs, in mm = 𝑥

1
,

(2) 𝑅
𝑜
, outer radius of the discs, in mm = 𝑥

2
,

(3) F, engaging force, in N = 𝑥
3
,

(4) n, number of the friction surfaces (integer) = 𝑥
4
.

The objective functions and constraints of the disc brake
design optimization model provided by Osyczka and Kundu
[21] are defined as follows.

Objective Functions

Mass of the brake:

𝑓
1
(𝑥) = 4.9 × 10

−5
(𝑥
2

2
− 𝑥
2

1
) (𝑥
4
− 1) , in kg. (8)

Stopping time:

𝑓
2
(𝑥) =

9.82 × 10
6
(𝑥
2

2
− 𝑥
2

1
)

𝑥
3
𝑥
4
(𝑥3
2
− 𝑥3
1
)

, in s. (9)

The constraints are as follows.
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Figure 2: The disc brake design problem.

(1) Side constraints 55 ≤ 𝑥
1
≤ 80, 75 ≤ 𝑥

2
≤ 110, 1000 ≤

𝑥
3
≤ 3000, 2 ≤ 𝑥

4
≤ 20.

(2) Geometric constraints

(i) Minimum distance between radii:

𝑔
1
(𝑥) = (𝑥

2
− 𝑥
1
) − 20 ≥ 0. (10)

(ii) Maximum length of the brake:

𝑔
2
(𝑥) = 30 − 2.5 (𝑥

4
+ 1) ≥ 0. (11)

(3) Behaviour constraints

(i) Pressure constraint

𝑔
3
(𝑥) = 0.4 −

𝑥
3

3.14 (𝑥2
2
− 𝑥2
1
)
≥ 0. (12)

(ii) Temperature constraint

𝑔
4
(𝑥) = 1 −

2.22 × 10
−3
𝑥
3
(𝑥
3

2
− 𝑥
3

1
)

(𝑥2
2
− 𝑥2
1
)
2

≥ 0. (13)

(iii) Generated torque constraint

𝑔
5
(𝑥) =

2.66 × 10
−2
𝑥
3
𝑥
4
(𝑥
3

2
− 𝑥
3

1
)

(𝑥2
2
− 𝑥2
1
)

− 900 ≥ 0. (14)

4.2. Compression Coil Spring Design: Case I. This problem
involves the design of a coil spring, which is to support a
constant axial compressive load. It is required to minimize
the wire volume of the spring so that it can support a given
load without failure. At the same time, it is desired to store
maximum strain energy possible. So these two objectives
are conflicting in nature. As shown in Figure 3, there are
three design variables: the real-valued outside diameter of the
spring (𝐷), the integer-valued number of spring coils (𝑁),
and the discrete-valued spring wire diameter (𝑑).

The objective, in this problem, is to find the optimal
combination of the above three design parameters that
provides minimum weight and maximum storage of energy
subjected to the constraints.

D

d

F

i = N

i = 2

i = 1

Fr
ee

 le
ng

th

D
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ce

m
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t

Figure 3: The compression coil spring design problem.

Accordingly, the biobjective optimization problem is
formulated as below:

Determine x = (𝐷,𝑁, 𝑑) . (15)

To minimize the weight of the spring, that is,

𝐹
1
(𝑥) =

𝜋
2

4
𝐷𝑑
2
(𝑁 + 2) , (16)

and to maximize the strain energy stored, that is,

𝐹
2
(𝑥) =

1

2
× 𝑃 × 𝜕,

𝐹
2
(𝑥) =

1

2
× 𝑃 ×

8𝑃𝐷
3
𝑁

𝐺𝑑4
,

𝐹
2
(𝑥) =

4𝐹
2

max𝐷
3
𝑁

𝐺𝑑4
,

Subjected to 𝑔
1
(𝑥) =

8𝐶𝐾𝐹max
𝜋𝑑2

− 𝑆 ≤ 0,

𝑔
2
(𝑥) = 𝑙 − 𝑙max ≤ 0,

𝑔
3
(𝑥) = 𝑑min − 𝑑 ≤ 0,

𝑔
4
(𝑥) = (𝐷 + 𝑑) − 𝐷max ≤ 0,

𝑔
5
(𝑥) = 3.0 − 𝐶 ≤ 0,

𝑔
6
(𝑥) = 𝛿

𝑝
− 𝛿
𝑝𝑚

≤ 0,

𝑔
7
(𝑥) = 𝛿

𝑝
+
𝐹max − 𝐹𝑝

𝑘



Journal of Applied Mathematics 7

+ 1.05 (𝑁 + 2) 𝑑 − 𝑙 ≤ 0,

𝑔
8
(𝑥) = 𝛿

𝑤
−
𝐹max − 𝐹𝑝

𝑘
≤ 0,

(17)

where

𝐶 =
𝐷

𝑑
, 𝐾 =

4𝐶 − 1

4𝐶 − 4
+
0.615

𝐶
,

𝑘 =
𝐺𝑑

8𝑁𝐶
3
, 𝛿
𝑝
=
𝐹
𝑝

𝑘
,

𝑙 =
𝐹max
𝑘

+ 1.05 (𝑁 + 2) 𝑑.

(18)

The supplied numerical data for the problem are given in SI
units in Table 1 along with the allowable discrete values of the
spring wire diameter (𝑑) in Table 2.

The present work aims to minimize the volume of the
spring and maximize the energy stored. Since the objectives
are conflicting in nature, modification of second objective,
that is, strain energy (SE), is done to get it converted for
minimization.

The objective functions are given below:

Objective 1 = Volume of the helical spring,

Objective 2 = 1

S.E
.

(19)

5. Results and Discussion

The multiobjective PAHS algorithm has been applied for
constrained design optimization of input parameters of disc
brake and helical compression spring problems. The opti-
mization process has been implemented usingMatlab 2009 to
run on aPC compatiblewith Pentium IV, a 3.2GHzprocessor,
and 2GB of RAM (Random Access Memory).

5.1. Disc Brake Problem. The weightage set is varied in the
range of 0 to 1 with a step size of 0.1. It is evident from the
results that single objective optimization is achieved, when
the weights are defined at their extreme values. The optimal
design parameters of disc brake at differentweights are shown
in Table 3. When 𝑤

1
= 1 and 𝑤

2
= 0, minimizing the mass

of the brake is the effective objective function and it can be
observed that the mass of the brake is minimum but the
stopping time value is large. In the other extreme, when𝑤

1
=

0 and 𝑤
2
= 1, minimizing the stopping time of the brake is

the effective objective function in which the stopping time is
minimum but the mass of the brake is large.These results are
in accordance with the literature discussed above. By varying
the weightage set with a step size of 0.1, we can generate 11
possible combinations. In order to find the best combination
of weightage set, a performance index based on least average
error (LAE) is used as explained in Section 3.2. The purpose
of this performance index is to find the least possible error
for both objective functions. The first part of (5) is to find
the lowest error ratio for the first objective function, that is,

Table 1: Numerical data for spring problem.

Parameter name Symbol Numerical value
Maximum working load 𝐹max 4448.22N
Maximum allowable shear stress 𝑆 1303.109MPa
Maximum free length 𝑙max 355.6mm
Minimum wire diameter 𝑑min 5.08mm
Maximum outside spring
diameter 𝐷max 76.2mm

Preload compression force 𝐹
𝑝 1334.47N

Maximum allowable deflection
under preload 𝛿pm 152.4mm

Deflection from preload position
to maximum load position 𝛿

𝑤
31.75mm

Shear modulus of the material 𝐺 79289.32MPa

Table 2: Allowable wire diameters (discrete values of 𝑑).

Allowable wire diameters (mm)
0.2286 0.2413 0.26416 0.29972 0.32512 0.33528 0.3556
0.381 0.41148 0.43942 0.4572 0.508 0.5842 0.635
0.7112 0.8128 0.889 1.0414 1.1938 1.3716 1.6002
1.8288 2.032 2.3368 2.667 3.048 3.429 3.7592
4.1148 4.4958 4.8768 5.2578 5.715 6.1976 6.6802
7.1882 7.7978 8.4074 9.1948 10.0076 11.1125 12.7

mass of the brake. This is done by subtracting the minimum
error value (min𝐹

1,overall). Every objective function value of
mass of the brake in Table 3 will be subtracted from this
particular value and then the resulting value will be divided
by theminimumerror value (min𝐹

1,overall) to obtain the ratio.
A negative answer would not appear through this method
since we are subtracting the least value. The same principle
is applied to the second objective function, that is, stopping
time of the brake. The results for both the calculations are
then averaged to obtain a single index value. Based on the
highest 𝜂LAE value observed in Table 3, the weightage set of
𝑤
1
= 0.9 and 𝑤

2
= 0.1 is chosen as the best combination.

Figure 4 shows the plot of performance index based on LAE
(𝜂LAE) calculated from the average results of 40 independent
trials, each trial having 200 generations for the three different
weight sets. It is evident from the plot that theweightage set of
𝑤
1
= 0.9 and𝑤

2
= 0.1 shows better performance with higher

𝜂LAE values. The best combination is marked by bold font in
Table 3.

The statistical measures like mean, best, worst, and
standard deviation are calculated from 40 independent trials.
Statistical performances are given in Table 4.

The results of the proposed PAHS approach are compared
with the previous solutions reported in literature. Yıldız [24]
used Hybrid Immune-Hill Climbing algorithm for solving
this problem. Osyczka and Kundu [21] used distance method
in GA to solve this problem and compared their results with
that of the plain stochasticmethod. Sabarinath et al. [59] used
fast and elitist NSGA II algorithm for solving this disc brake
problem. Table 5 compares the results obtained by various
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Table 3: Optimal design parameters of disc brake at different weights.

𝑊
1

𝑊
2

𝑋
1
(mm) 𝑋

2
(mm) 𝑋

3
(N) 𝑋

4
Mass of the brake (Kg) Stopping time (Sec) Comb. fitness 𝜂LAE

1 0 55 75 2666.9 2 0.1274 21.2723 4.79𝐸 − 05 0.215715

0.9 0.1 79.9987 100.0002 2997 4 0.5117 6.1905 0.151448 0.399551
0.8 0.2 79.9841 99.9841 3000 6 0.8539 4.1348 0.239908 0.29855

0.7 0.3 79.9880 99.9887 3000 8 1.1792 3.1422 0.29341 0.227969

0.6 0.4 79.9900 99.9901 3000 10 1.5099 2.5261 0.321191 0.180646

0.5 0.5 79.9885 99.9907 3000 11 1.7631 2.1963 0.310603 0.155044

0.4 0.6 79.9960 99.9964 2997 11 1.7641 2.1960 0.24995 0.154951

0.3 0.7 79.9888 99.9942 3000 11 1.7631 2.1968 0.189033 0.155041

0.2 0.8 79.9934 100.0140 2997 11 1.7686 2.1949 0.128576 0.154535

0.1 0.9 79.9970 109.0948 2999 11 2.6382 2.0885 0.095252 0.101438

0 1 80 110 3000 11 2.7890 2.071 1 0.095732

Table 4: Statistical performance for disc brake design optimization.

𝑊
1

𝑊
2

Best Worst Mean Standard deviation
1 0 0.127401474 0.127433238 0.127409073 8.12523𝐸 − 06

0.9 0.1 1.079576294 1.079820227 1.079606351 4.90341𝐸 − 05

0.8 0.2 1.509991256 1.510078349 1.510009705 1.79996𝐸 − 05

0.7 0.3 1.768104744 1.768180817 1.768123371 1.82142𝐸 − 05

0.6 0.4 1.916348799 1.916466239 1.916370027 2.06882𝐸 − 05

0.5 0.5 1.979631 1.980991 1.979855 0.000272

0.4 0.6 2.022804 2.023961 2.023146 0.000294

0.3 0.7 2.065902 2.067994 2.066419 0.000422

0.2 0.8 2.109074 2.110377 2.109351 0.0003

0.1 0.9 2.14321361 2.143577898 2.143269642 6.87429𝐸 − 05

0 1 2.071118 2.072861 2.071514 0.000387
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Figure 4: Comparison of results of disc brake at different weights.

methods including the proposed approach for solving the
biobjective disc brake problem. It is evident from Table 5 that
the results provided by the proposed PAHS approach are bet-
ter than the results of Yıldız [24] andOsyczka andKundu [21]
with less function evaluations. Yıldız [24] also reported the
extreme points (i.e., minimum value points for each separate

criterion) obtained from three methods in their paper. The
extreme points reported for NSGA II algorithm is the same
as that of the proposed PAHS algorithm. Comparison of the
extreme points obtained by PAHS against other fourmethods
is given in Table 5.

5.2. Compression Coil Spring Problem. The weightage set is
varied in the range of 0 to 1 with a step size of 0.1. It is evident
from the results that single objective optimization is achieved,
when the weights are defined at their extreme values. The
optimal design parameters of spring at different weights are
shown in Table 6. When 𝑤

1
= 1 and 𝑤

2
= 0, minimizing the

volume of the spring is the effective objective function and it
can be observed that the volume of the spring is minimum.
In the other extreme, when 𝑤

1
= 0 and 𝑤

2
= 1, maximizing

strain energy stored is the effective objective function in
which the strain energy stored is maximum. Here also the
concept of performance index based on least average error
(LAE) as explained in disc brake problem is applied. Based on
the highest 𝜂LAE value observed in Table 6, the weightage set
of 𝑤
1
= 0.5 and 𝑤

2
= 0.5 is chosen as the best combination.

Figure 5 shows the plot of performance index based on LAE
(𝜂LAE) calculated from the average results of 40 independent
trials, each trial having 200 generations for the three different
weight sets. It is evident from the plot that theweightage set of
𝑤
1
= 0.5 and𝑤

2
= 0.5 shows better performance with higher
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Table 5: Comparison of results for disc brake problem.

Method Minima 𝑋 = [𝑥
𝑙
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝑇

𝑓(𝑥) = [𝑓
1
(𝑥) , 𝑓

2
(𝑥)]
𝑇

𝑔(𝑥) = [𝑔
1
(𝑥), 𝑔

2
(𝑥), . . . , 𝑔

5
(𝑥)]
𝑇

Plain stochastic method Min 𝑓
1
(𝑥) [62.6, 83.5, 2920.9, 11] [1.79, 2.77] [0.89, 0.00, 0.09, 0.76, 45.0]

Min 𝑓
2
(𝑥) [70.4, 106.6, 2948.4, 11] [3.76, 2.24] [16.1, 0.00, 0.25, 0.86, 264.0]

GA method Min 𝑓
1
(𝑥) [65.8, 86.1, 2982.4, 10] [1.66, 2.87] [0.65, 0.25, 0.09, 0.75, 11.6]

Min 𝑓
2
(𝑥) [78.7, 108.3, 2988.3, 11] [3.25, 2.11] [9.57, 0.00, 0.22, 0.83, 340.0]

Hybrid Immune-Hill
Climbing algorithm (HIHC)

Min 𝑓
1
(𝑥) NA [0.137, 25.87] NA

Min 𝑓
2
(𝑥) NA [2.816, 2.083] NA

NSGA II Min 𝑓
1
(𝑥) [55, 75, 2736.72, 2] [0.1274, 16.83] [0, 22.5, 0.034, 0.75, 14122]

Min 𝑓
2
(𝑥) [79.99, 109.99, 2999.99, 11] [3.3459, 2.071] [10, 0, 0.23, 0.832, 361.2]

Proposed PAHS Min 𝑓
1
(𝑥) [57.95, 78.57, 2736.72, 2] [0.1274, 17.38] [0.6142, 22.5, 0.09, 0.77, 1412.2]

Min 𝑓
2
(𝑥) [79.99, 109.99, 2999.99, 11] [3.3459, 2.071] [10, 0, 0.23, 0.832, 361.2]

Table 6: Optimal design parameters of compression coil spring at different weights.

𝑊
1

𝑊
2

𝑋
1
(mm) 𝑋

2
(mm) 𝑋

3
Volume (mm3) Strain energy stored (J) Comb. fitness 𝜂LAE

1 0 7.1882 31.07 9 43567 100.926 0.000272 1.050567
0.9 0.1 7.1882 31.915 10 48776 119.617 0.107336 1.273232
0.8 0.2 7.1882 36.4877 9 51118 163.5858 0.128889 2.071811
0.7 0.3 7.7978 41.9044 7 56533 139.2175 0.239447 1.425222
0.6 0.4 7.7978 27.1831 9 69942 185.6148 0.239112 1.688518
0.5 0.5 7.7978 53.92 8 80809 338.443 0.116524 2.777167
0.4 0.6 8.4074 37.96 12 92581 131.135 0.525667 0.847559
0.3 0.7 8.4074 46.352 10 96911 199.013 0.308506 1.178813
0.2 0.8 9.1948 56.46 10 141201 251.755 0.239791 0.831192
0.1 0.9 9.1948 48.84 18 203591 292.851 0.159556 0.544499
0 1 7.7978 35.6234 24 138822 292.851 0.066173 0.914756
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Figure 5: Comparison of results of biobjective helical spring
problem.

𝜂LAE values. The best combination is marked by bold font in
Table 6.

The statistical measures like mean, best, worst, and
standard deviation are calculated from 40 independent trials.
Statistical performances are given in Table 7.

Since we are proposing a new biobjective design
optimization for spring problem by converting the standard

single objective benchmark problem, we are unable to
compare the results as in the case of disc brake. But when
𝑤
1
= 1 and 𝑤

2
= 0, minimizing the volume of the spring

is the effective objective function and thus it becomes
single objective benchmark problem. The results obtained
for single objective, that is, volume minimization for the
proposed PAHS approach, are compared with that of the
results reported in literature in Table 8. Since the values for
comparison are available in inches, the result of the proposed
PAHS algorithm is reported in inches as given in Table 8.

For validating our results for biobjective spring problem,
the same problem is solved usingNSGA II algorithmwith the
following values of the parameters of NSGA-II algorithm.

Variable type = real variable, population size = 50,
crossover probability = 0.8, real-parameter mutation prob-
ability = 0.01, real-parameter SBX parameter = 10, real-
parameter mutation parameter = 100, and total number of
generations = 100. The results are presented in Table 9. It
is evident from Table 9 that the results provided by the
proposed PAHS approach are slightly better than the results
of NSGA II algorithm.

6. Conclusion

In this paper, a recently proposed parameter adaptive har-
mony search algorithm based on the combinations of linear
and exponential changes has been applied successfully to
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Table 7: Statistical performance for compression coil spring optimization.

𝑊
1

𝑊
2

Best Worst Mean Standard deviation
1 0 43567.2821 43568.3547 43567.8357 0.0006548
0.9 0.1 43898.3784 43899.5618 43898.9832 0.0004875
0.8 0.2 40894.3587 40896.3241 40895.5897 0.0002971
0.7 0.3 39573.0857 39574.9854 39574.0658 0.0002184
0.6 0.4 41965.1857 41966.5267 41965.7364 0.0003654
0.5 0.5 40404.4875 40405.2148 40404.9587 0.000238
0.4 0.6 37031.9547 37032.6874 37032.0548 0.000322
0.3 0.7 29073.3154 29074.6257 29073.9658 0.000483
0.2 0.8 28240.1586 28241.6328 28240.8294 0.000365
0.1 0.9 20359.0587 20360.8724 20360.0875 0.000587
0 1 3.4145𝐸 − 06 3.42654𝐸 − 06 3.4196𝐸 − 06 5.826489𝐸 − 06

Table 8: Comparison of optimal solutions for the compression coil spring design problem.

Variables/functions Sandgren [15] Chen and Tsao
[16]

Wu and Chow
[17] Guo et al. [18] Lampinen and

Zelinka [19]
PSO of Kennedy
and Eberhart [20]

Proposed
PAHS

𝐷 (in.) 1.180701 1.2287 1.227411 1.223 1.223042 1.223047 1.22304142
𝑁 10 9 9 9 9 9 9
𝑑 (in.) 0.283 0.283 0.283 0.283 0.283 0.283 0.283
𝑓
1
(x) (in3) 2.7995 2.6709 2.6681 2.659 2.65856 2.658573 2.658559

Table 9: Optimum results of biobjective spring design optimization problem.

Method Solution 𝑋
1
(mm) 𝑋

2
(mm) 𝑋

3
Volume (mm3) Strain energy stored (J)

NSGA II Min. volume 7.1882 31.122112 9 43645.734 101.435
Max. energy 7.7978 49.408799 10 88954.819 325.6445

Proposed weighted sum PAHS Min. volume 7.1882 31.0654446 9 43566.263 100.883
Max. energy 7.7978 53.91658 8 80892.1 338.523

solve multiobjective design optimization problems using
weighted sum approach. In this weighted sum approach,
a performance index based on least average error (LAE)
was used to find the performance of each weightage set.
Based on the higher LAE value, optimumweightage selection
was determined. First, a standard benchmark problem of
biobjective disc brake optimization has been solved and the
results are compared with that of a plain stochastic method,
simple genetic algorithm, HIHC, and NSGA II. Based on
the analysis carried out, the weightage set of 𝑤

1
= 0.9 and

𝑤
2
= 0.1 is determined as the best selection for disc brake

optimization problem. It is evident from the results that this
approach performs better than other algorithms. Hence this
approach is extended to solve a newly formulated biobjective
design optimization of spring problem and the results are
presented. The optimal weightage set of 𝑤

1
= 0.5 and 𝑤

2
=

0.5 is determined as the best selection for spring optimization
problem. The result of spring problem is compared with the
results of NSGA II algorithm and the results are better than
NSGA II. This weighted sum approach based on LAE can be
extended to any metaheuristic algorithm for implementing
multiobjective optimization. Also Pareto optimal solutions
can be found by using adaptive weighted sum method as a
future extension of the present problem.
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