Open Access
Translator Disclaimer
2014 Studies on the Existence of Unstable Oscillatory Patterns Bifurcating from Hopf Bifurcations in a Turing Model
Yan Zhang, Zhenhua Bao
J. Appl. Math. 2014: 1-5 (2014). DOI: 10.1155/2014/574921

Abstract

We revisit a homogeneous reaction-diffusion Turing model subject to the Neumann boundary conditions in the one-dimensional spatial domain. With the help of the Hopf bifurcation theory applicable to the reaction-diffusion equations, we are capable of proving the existence of Hopf bifurcations, which suggests the existence of spatially homogeneous and nonhomogeneous periodic solutions of this particular system. In particular, we also prove that the spatial homogeneous periodic solutions bifurcating from the smallest Hopf bifurcation point of the system are always unstable. This together with the instability results of the spatially nonhomogeneous periodic solutions by Yi et al., 2009, indicates that, in this model, all the oscillatory patterns from Hopf bifurcations are unstable.

Citation

Download Citation

Yan Zhang. Zhenhua Bao. "Studies on the Existence of Unstable Oscillatory Patterns Bifurcating from Hopf Bifurcations in a Turing Model." J. Appl. Math. 2014 1 - 5, 2014. https://doi.org/10.1155/2014/574921

Information

Published: 2014
First available in Project Euclid: 2 March 2015

zbMATH: 07131702
MathSciNet: MR3214511
Digital Object Identifier: 10.1155/2014/574921

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
5 PAGES


SHARE
Vol.2014 • 2014
Back to Top