Open Access
Translator Disclaimer
2014 On the Inverse EEG Problem for a 1D Current Distribution
George Dassios, George Fragoyiannis, Konstantia Satrazemi
J. Appl. Math. 2014: 1-11 (2014). DOI: 10.1155/2014/715785

Abstract

Albanese and Monk (2006) have shown that, it is impossible to recover the support of a three-dimensional current distribution within a conducting medium from the knowledge of the electric potential outside the conductor. On the other hand, it is possible to obtain the support of a current which lives in a subspace of dimension lower than three. In the present work, we actually demonstrate this possibility by assuming a one-dimensional current distribution supported on a small line segment having arbitrary location and orientation within a uniform spherical conductor. The immediate representation of this problem refers to the inverse problem of electroencephalography (EEG) with a linear current distribution and the spherical model of the brain-head system. It is shown that the support is identified through the solution of a nonlinear algebraic system which is investigated thoroughly. Numerical tests show that this system has exactly one real solution. Exact solutions are analytically obtained for a couple of special cases.

Citation

Download Citation

George Dassios. George Fragoyiannis. Konstantia Satrazemi. "On the Inverse EEG Problem for a 1D Current Distribution." J. Appl. Math. 2014 1 - 11, 2014. https://doi.org/10.1155/2014/715785

Information

Published: 2014
First available in Project Euclid: 2 March 2015

zbMATH: 07131817
Digital Object Identifier: 10.1155/2014/715785

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.2014 • 2014
Back to Top